
Elements of a Usability
Reasoning Framework

Jinhee Lee
Len Bass

September 2005

Software Architecture Technology Initiative

Unlimited distribution subject to the copyright.

Technical Note
CMU/SEI-2005-TN-030

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Abstract..vii

1 Introduction..1

2 Usability and Software Architecture ..2

3 ARL and ArchE...4

4 Pieces of a Reasoning Framework and the Process of Developing a
Reasoning Framework ..6

5 Progress Feedback Reasoning Framework ..7
5.1 General Scenarios..7
5.2 Create the UI Configuration File for ArchE ...9
5.3 Responsibilities...10
5.4 Workflow Description .. 11

5.4.1 Background...11
5.4.2 Identifying Unknowns..12
5.4.3 Construct the Quality Attribute Model12

5.5 Implementation ...12
5.5.1 Preparation ...14
5.5.2 Instantiation and Evaluation..15
5.5.3 Apply Tactics...15

5.6 Summary ..17

6 Cancellation Reasoning Framework..18
6.1 General Scenarios..18
6.2 Create the UI Configuration File for ArchE ...19
6.3 Responsibilities...20
6.4 Workflow Description ..22

6.4.1 Background...22
6.4.2 Identifying Unknowns..22
6.4.3 Construct the Quality Attribute Model22

6.5 Implementation ...23

CMU/SEI-2005-TN-030 i

6.5.1 Preparation ... 23
6.5.2 Instantiation and Evaluation.. 23
6.5.3 Apply Tactics .. 24

6.6 Summary of Cancellation ... 28

7 Summary .. 29

Appendix A ARL Implementation for Progress Feedback 31

Appendix B rfconfig.xml for Progress Feedback.. 43

Appendix C ARL Implementation for Cancellation 45

Appendix D rfconfig.xml for Cancellation ... 55

References... 57

ii CMU/SEI-2005-TN-030

List of Figures

Figure 1: Information Flow from the Specification of a Reasoning Framework
to an End User ... 4

Figure 2: Creating a Concrete Scenario in ArchE.. 10

Figure 3: Responsibility Graph Linked to Scenario Before the Actions of the
Reasoning Framework ... 13

Figure 4: Responsibility Graph After Adding Progress Feedback
Responsibilities .. 13

Figure 5: Responsibility Graph After Adding Time-Based Progress Feedback
Responsibilities .. 16

Figure 6: Responsibility Graph After Adding Non-Time-Based Progress
Feedback Responsibilities.. 17

Figure 7: Responsibility Graph After Adding Application-Level Cancellation
Responsibilities .. 25

Figure 8: Responsibility Graph After Adding Infrastructure-Level Cancellation
Responsibilities .. 26

Figure 9: Responsibility Graph After Adding Progress Feedback
Responsibilities .. 27

Figure 10: ARL Namespaces for Progress Feedback ... 31

Figure 11: ARL Namespaces for Cancellation... 45

CMU/SEI-2005-TN-030 iii

iv CMU/SEI-2005-TN-030

List of Tables

Table 1: Six-Part Scenario Formulation for Progress Feedback 8

Table 2: Element Types and Units for Progress Feedback 9

Table 3: General Responsibilities for Progress Feedback 11

Table 4: Six-Part Scenario Formulation for Cancellation 19

Table 5: Element Types and Units for Cancellation.. 20

Table 6: General Responsibilities for Cancellation... 21

CMU/SEI-2005-TN-030 v

vi CMU/SEI-2005-TN-030

Abstract

This technical note brings together two different threads of work: (1) investigating the
relationship between usability and software architecture that has generated a number of
usability scenarios with implications for software architecture and (2) developing an
architecture design assistant, Architecture Expert (ArchE). One key element of ArchE is that
quality attribute knowledge can be encapsulated into reasoning frameworks, and a Carnegie
Mellon University Master of Software Engineering project team has developed an ArchE
reasoning language (ARL) with which to specify the actions of reasoning frameworks within
ArchE.

This note describes an ARL implementation of two usability scenarios: (1) displaying
progress feedback and (2) allowing cancel. These implementations begin to provide ArchE
with the ability to reason about aspects of usability that have software architecture
implications.

CMU/SEI-2005-TN-030 vii

viii CMU/SEI-2005-TN-030

1 Introduction

Earlier this year, we described the encapsulation of quality attribute knowledge into
reasoning frameworks [Bass 05]. A reasoning framework embodies the information necessary
to interpret an architecture in terms of a quality attribute theory. We described two reasoning
frameworks for real-time scheduling and modifiability based on rate monotonic analysis and
impact analysis [Bachmann 05]. This work was done while developing an architecture design
assistant (ArchE) whose preliminary design we described [Bachmann 03] and which was
implemented in the Jess rule language [Friedman-Hill 03]. In addition to these published
descriptions of our work, we have also been working to make reasoning frameworks easier to
incorporate into ArchE. In conjunction with a team in the 2005 Master of Software
Engineering program, we defined an ArchE reasoning language (ARL) and a set of associated
tools that allow architects to specify reasoning frameworks and incorporate them within
ArchE.

In this technical note, we describe how this machinery is applied to create the initial elements
of a usability reasoning framework. At the time this technical note was published, ArchE was
totally functional, but the ARL compiler was not.

This technical note is organized as follows:

• Section 2 describes the usability quality architecture theory upon which the reasoning
framework is based.

• Section 3 describes the machinery we created—that is, the ARL—and how something
specified in the ARL is incorporated into ArchE.

• Section 4 describes the process we used to define the reasoning frameworks, beginning
with the quality attribute theories.

• Sections 5 and 6 include the specification of two elements of the reasoning framework
that support the usability scenarios of progress feedback and cancellation.

CMU/SEI-2005-TN-030 1

2 Usability and Software Architecture

A very successful technique used by software architecture designers to support usability is
separating presentation (input and output) from the rest of the application. The most widely
used architectural pattern for accomplishing this separation is Model View Controller
(MVC), which was developed in the early 1980s and documented by Buschmann
[Buschmann 96]). However, using MVC (or any other separation-based pattern) complicates
concerns that cut across MVC component types—particularly those that involve view and
model.

We investigated such cross-cutting concerns [Bass 01] and identified scenarios that represent
usability concerns involving the view, controller, and model. For example, giving the user the
ability to cancel a long-running command (an important usability feature) involves restoring
the application and its resources to their state prior to the invocation of the command.

We packaged our scenarios with other information to create Usability-Supporting
Architectural Patterns (USAPs) [John 04]. USAPs have five parts:

1. the scenario of interest (e.g., giving the user the ability to cancel commands)

2. constraints on applying the scenario (e.g., cancel only makes sense for long-running
commands)

3. benefits to the user when this scenario is supported (e.g., supporting cancel makes the
performance of routine tasks more efficient by providing the ability to recover from
inadvertent slips)

4. general responsibilities that any implementation of the scenario must support (e.g., the
system must always listen for a cancel command from the user)

5. a sample solution embedded in the MVC pattern (e.g., the controller listens for cancel
commands)

2 CMU/SEI-2005-TN-030

General responsibilities are presented because even though MVC is the most widely used
separation pattern, other patterns are available. General responsibilities show designers what
they need to be concerned about without prejudging any portion of their design.

A sample solution is presented to demonstrate how particular responsibilities are distributed
among elements of the pattern.

In the work described by this technical note, we use the scenario of interest to capture the
requirement that the scenario be supported, and we use general responsibilities as (1) a means
for the reasoning framework to determine whether the scenario is currently supported and (2)
as a means of transforming the architecture (by adding responsibilities) to cause the
architecture to support the scenario.

CMU/SEI-2005-TN-030 3

3 ARL and ArchE

The ARL is currently under development. Therefore, the ARL code in the appendices is not
yet fully implemented. The language has stabilized, however, and the implemented code
should not vary dramatically from the code presented here.

Figure 1 shows how the ARL is used to specify a reasoning framework that is then used to
assist in the design process.

ARL
Development
Environment ArchE

User interface
configuration file

Jess
implementation
of a reasoning
framework

End System

Design

Quality Attribute Expert Architect End User

Interacts with

Key: Data flow

Figure 1: Information Flow from the Specification of a Reasoning Framework to an
End User

First, the quality attribute expert uses the ARL development to prepare input for ArchE and
specify the reasoning framework. The ARL development environment then outputs two forms
of data that are incorporated into ArchE:

1. a configuration file used by the ArchE input/output component to allow the architect
using ArchE to specify usability scenarios

2. a collection of Jess rules [Friedman-Hill 03] that represent the workings of the reasoning
framework

Jess rules are divided into four sections: (1) preparation to ensure that all parameters have
been furnished, (2) interpretation to convert the current architectural specification to a
quality attribute model, (3) evaluation to determine whether the model satisfies the

4 CMU/SEI-2005-TN-030

quality attribute requirement, and (4) tactic generation to determine which architectural
tactics [Bass 03, Ch. 5] will improve the architecture with respect to the quality attribute
of interest.

Next, the architect interacts with ArchE to produce a design for a particular system. Finally,
the end user interacts with the designed system.

Several levels of indirection complicate the specification of a reasoning framework. Consider
progress feedback: the USAP for progress feedback specifies that if an interaction takes less
than two seconds, no special interaction is required. If an interaction takes between 2 and 10
seconds, the cursor shape should be changed to indicate a busy state, and if the interaction
takes more than 10 seconds, some indication of progress should be given. The questions
become (1) how does the quality attribute expert specify this situation? and (2) where is the
determination made regarding the type of feedback to present?

The quality attribute expert cannot make that determination because the system being
designed is unknown to the expert. Therefore, the specification in the reasoning framework
must consider the following information:

• The designer knows which commands will take more than 2 seconds and less than 10
seconds. In this case, the designer can specify that the cursor shape be changed for those
commands.

• The designer does not know which commands will take more than 2 seconds and less
than 10 seconds. In this case, the designer must specify that the designed system predict
the elapsed time of a command and adjust the cursor shape appropriately.

• For commands that will take longer than 10 seconds, a reasonable assumption is that the
designer will not know their duration, so the system must predict it.

Because the accuracy of the predicted duration has an impact on the type of progress
feedback that should be given, the designer must consider it carefully. If a prediction is
accurate to within 20%, it should be shown to the end user; if it is not accurate to within 20%,
a form of progress feedback other than time should be used (e.g., percent complete or number
of items processed).

CMU/SEI-2005-TN-030 5

4 Pieces of a Reasoning Framework and the Process of

Developing a Reasoning Framework

We have previously defined the reasoning framework concept and described its core in a
fashion useful for several different contexts, including ArchE [Bass 05]. Different contexts
are accommodated by extending the core, and this technical note, which focuses on an ArchE
reasoning framework, includes the ArchE-specific extensions only.

An ArchE reasoning framework has four sections:

1. preparation

This section ensures that all information required for the interpretation is available. It
does this by questioning the architect or acquiring and transforming architecture
properties.

2. interpretation

This section constructs the quality attribute model from information available in the
current architecture, the current set of responsibilities, and the scenarios.

3. evaluation

This section evaluates the quality attribute model to determine the response measure.

4. tactics

This section suggests modifications to the current architecture, the current set of
responsibilities, or the scenarios to improve the quality attribute response.

Creating an ArchE reasoning framework is a four-step process: (1) define the scenario, (2)
organize responsibilities using a graph that shows the dependencies among the
responsibilities as well as their sequence, (3) develop an English-language description of the
sequence of activities (this serves as the specification of the ARL code), and (4) develop the
code.

Sections 5 and 6 are organized to reflect this sequence of steps and show how the ArchE
sections are realized by the progress feedback and cancellation frameworks.

6 CMU/SEI-2005-TN-030

5 Progress Feedback Reasoning Framework

In this section, we describe the implementation of the progress feedback reasoning
framework. We follow the sequence described at the end of Section 4: focus on scenarios,
organize responsibilities, derive an English description of the activities, and develop the code.

First, we present the general scenario for progress feedback. Next, we describe how the user
interface (UI) of ArchE is modified so that the architect can specify the progress feedback
scenario. Finally, we describe the ARL implementation, including general responsibilities
from the progress feedback USAP and implementation structure and description. The code
for the UI portion and the reasoning framework are presented in Appendices A and B.

5.1 General Scenarios
The base scenario for progress feedback is The user initiates a long-running task. The system
provides feedback by (1) changing the cursor shape and (2) indicating how much of the task
has been accomplished and how much remains.

Each reasoning framework is triggered by some set of scenarios. The scenario’s type
categorizes it so that the framework can be triggered by its existence or by a change in one of
its implied responsibilities. We currently view the progress feedback reasoning framework as
independent and define its type as progress feedback. It is also possible that the progress
feedback is part of a larger usability reasoning framework of the type usability.

CMU/SEI-2005-TN-030 7

The architect must input the scenario in a structured form because ArchE does not use any
natural language-parsing techniques. We used the six-part scenario formulation [Bass 03, Ch.
4] included in Table 1. Initially, we use a response measure of whether the scenario is
satisfied. A response measure of partial success (i.e., the number of responsibilities satisfied)
could also be used, and we explore that concept for the cancellation reasoning framework.

Table 1: Six-Part Scenario Formulation for Progress Feedback

Element Description

Stimulus Long-running task is initiated (e.g., download file
from a Web site).

Stimulus
Source

End user

Environment At runtime

Artifact System

Responses • System shows progress indicator to the end
user with estimated time to complete or with
information about the current operations.

• Calculate the number of operations and show
the current operations, the number of
completed operations, and the number of
operations to be done.

• System changes the cursor shape.

Response
Measure

Boolean (Yes/No)

• Does the system contain the functionality of
showing the time to complete?

• Does the system provide an explanation about
operations on which the system is working?

• Does the system provide the number of
completed operations and operations to be
done?

• Does the system change the cursor shape
appropriately?

The UI that the architect uses to input the scenario is described in the next section.

8 CMU/SEI-2005-TN-030

5.2 Create the UI Configuration File for ArchE

ArchE derives the following information from a configuration file named rfconfig.xml:

• scenario type

• relationship type

• parameter type

• model elements

The rfconfig.xml file should be created using the ArchE Configurator tool. Each element in
the general scenario can have specific types and units if the elements are used in the
reasoning framework. For this progress feedback reasoning framework, the following
elements may have some limited types and units as shown in Table 2.

Table 2: Element Types and Units for Progress Feedback

Element Type Units Default Type Default
Value

Stimulus Task N/A Task N/A

Stimulus source End user, system N/A End user N/A

Environment Runtime N/A Runtime N/A

Artifact System N/A System N/A

Responses Responsibilities N/A Responsibilities N/A

Response
measure

Progress
indicator, cursor
shape

Boolean
(yes/no)

Progress
indicator

Yes

CMU/SEI-2005-TN-030 9

If the new rfconfig.xml file is loaded by ArchE, the scenario wizard displays the screen shown
in Figure 2 to users.

Figure 2: Creating a Concrete Scenario in ArchE

For the complete rfconfig.xml file for this reasoning framework, see Appendix B.

5.3 Responsibilities

The progress feedback USAP contains 14 general responsibilities based on the following
criteria:

• If the initiated task takes between 2 and 10 seconds, the cursor shape should be changed.

• If the initiated task takes longer than 10 seconds, a progress indicator should be
displayed.

• If the estimated time remaining is accurate to within 20%, the progress indicator should
display the time remaining.

• If it is not, the indicator should show the number of items processed, number left to
process, % completion, and so forth.

A progress indicator must be updated periodically.

10 CMU/SEI-2005-TN-030

As shown in Table 3, 14 general responsibilities implement the progress feedback.

Table 3: General Responsibilities for Progress Feedback

Responsibility Description

R01 Estimate elapsed time of the task.

R02 Determine the type of progress indicator.

R03 Change the cursor shape to busy.

R04 Calculate the accuracy of any time estimate.

R05 Show time-based progress feedback.

R06 Show non-time-based progress feedback.

R07 Show time remaining to complete.

R08 Calculate and display the number of operations to be done.

R09 Show information about the current working operation.

R10 Update progress information periodically.

R11 Change the cursor to a normal indicator.

R12 Leave the progress dialog and show the completion of the task.

R13 Hide the progress dialog if the task is completed.

R14 Detect that the task is complete.

5.4 Workflow Description

5.4.1 Background

When an architect specifies a progress feedback type for a scenario, one of the scenario
elements is the task for which progress feedback must be provided. This task translates into a
responsibility within ArchE and, subsequently, is assigned to various elements of the
architecture. We assume that the architect determines which tasks are long running, but an
alternative to be explored assumes that ArchE determines long-running tasks.

The primary function of the progress feedback reasoning framework is to manipulate the
responsibilities within ArchE. This manipulation consists of adding the necessary
responsibilities (or ensuring that they are included). How the manipulated responsibilities are
assigned to architectural elements is outside of the framework’s scope.

In addition to manipulating responsibilities, the progress feedback reasoning framework also
generates (in certain cases) a performance scenario for updating the display within a certain
time period.

CMU/SEI-2005-TN-030 11

5.4.2 Identifying Unknowns

During preparation, any possible unknowns that affect the quality attribute model must be
addressed. For the progress feedback reasoning framework, the possible unknowns are

1. Has a responsibility been linked to the task described in the scenario?

If not, the architect must be prompted to make that linkage.

2. Is the duration of the task known, or does the system compute it? If it’s the latter, is the
accuracy of the estimate known?

3. Is progress feedback necessary?

If it is, it must be updated periodically, and the update period must be determined.

5.4.3 Construct the Quality Attribute Model

The next step in a reasoning framework is to construct the quality attribute model. For the
progress feedback reasoning framework, the quality attribute model uses the answers to the
timing questions to determine whether all responsibilities are already included. If they are,
the evaluation says that the scenario is satisfied. If they are not, the tactic section proposes—
or in this case, performs—adding the necessary responsibilities to the responsibility graph
within ArchE.

5.5 Implementation

This section elaborates the basic workflow described in Section 5.4. A reasoning framework
is triggered whenever something (the adjustment of a responsibility, the addition of a new
scenario, or the response to one of the questions that affects it) is changed. We describe the
activities as if they are executed sequentially. However, they may not occur sequentially:
their order may be determined by changes in the state of the design or requirements.

The reasoning framework operates primarily on the responsibility graph, and responsibilities
within ArchE are maintained as a directed acyclic graph. Figure 3 shows the responsibility
graph before the actions of the reasoning framework, and Figure 4 shows the graph after the
additional responsibilities associated with progress feedback are added.

12 CMU/SEI-2005-TN-030

Scenario

B C

A

D E

Scenario

Affected Responsibility

Other Responsibility

Affects
Depends On

Figure 3: Responsibility Graph Linked to Scenario Before the Actions of the
Reasoning Framework

Scenario

B C

A

D E

Affected Responsibility

Other Responsibility

Scenario

Affects

Depends On

New Dependencies

Progress Feedback Responsibilities

Figure 4: Responsibility Graph After Adding Progress Feedback Responsibilities

CMU/SEI-2005-TN-030 13

The scenario is assumed to be connected to some responsibilities that act as a root for the new
responsibilities associated with the progress feedback.

The progress feedback reasoning framework will not remove or modify any current
responsibilities, but it will link new ones to those responsibilities affected by the scenario.
Also, even though a scenario affects a responsibility that has children, the progress feedback
reasoning framework does not affect those children.

5.5.1 Preparation

During preparation, the reasoning framework determines if it has the information necessary
to proceed. Activities flow as follows:

1. Retrieve the task and relevant responsibilities from the usability scenario.

• Several responsibilities of the target system might be affected by the task that is a
stimulus of the scenario. The progress feedback reasoning framework gets the
responsibilities that are affected by the task defined in the usability scenario. If the
scenario is not linked to any responsibilities, the architect is queried to determine
this linkage.

2. Determine whether the system will have the functionality needed to estimate the elapsed
time to complete the initiated task.

• The designer can determine whether the system must perform the estimation.
• If the system estimates, it will have additional responsibilities for estimating the

elapsed time and calculating its accuracy. If the system does not estimate, no
additional responsibilities are required, but a simple non-time-based progress
indicator will be inserted into the design.

3. Determine who will provide the functionality to calculate the accuracy of the elapsed
time and if the accuracy will be within 20%.

• The designer determines whether the system will have the functionality to calculate
accuracy.

• The designer can guarantee that the system will estimate the execution time with
good accuracy.

• For example, if the system will not provide the functionality but the accuracy is
guaranteed by the designer, the system may have a time-based progress bar.

4. Determine who will decide whether the progress feedback dialog is left visible after a
long-running task is completed.

• The system can show that the task is done and leave the progress dialog displayed.
• The designer can determine whether to show the dialog when the task is complete.
• The end user can specify (e.g., through a checkbox) that the dialog box is removed

(or kept) when the task is complete.

14 CMU/SEI-2005-TN-030

5. Create two parameters: (1) P_EstimatedExecutionTime and (2) P_Accuracy.

• Two parameters apply to subsequent steps: (1) elapsed time and (2) its accuracy.
• The responsibilities of the progress USAP are the owners of the two parameters.
• These two parameters are generated by estimation responsibilities as output.
• For example, the R06 responsibility (show non-time-based progress feedback) will

be executed only when the elapsed time is greater than 10 seconds and its accuracy
is worse than 20%. All decisions to execute the responsibility will depend on these
two parameters.

5.5.2 Instantiation and Evaluation

Instantiation refers to creating a quality attribute model from the architecture. The quality
attribute model for progress feedback has no parameters that depend on the elements of the
architecture design. The parameters of that model depend on the responsibilities in the
responsibility graph instead of the design elements. Evaluating the quality attribute model,
therefore, consists of verifying that the required responsibilities are included in the
responsibility graph. If they are, the scenario is satisfied; if they are not, they are added to the
responsibility graph as described below.

5.5.3 Apply Tactics

In this section, we describe how the responsibility graph is modified to reflect the progress
feedback USAP. The general form was given in Figure 2 on page 10. The task considered in
the scenario is linked to one or more responsibilities (parent responsibilities) in the
responsibility graph. We identify three cases and distinguish them based on the architect’s
responses to the preparation questions. We assume that the architect will know (1) whether
the elapsed time is less than 10 seconds and (2) the accuracy of any calculated estimate
greater than 10 seconds.

1. The elapsed time for the task is between 2 and 10 seconds as specified by the architect.

In this case, we add two responsibilities to the parent responsibilities: (1) R03 (change
the cursor shape to busy) and (2) R11 (change the cursor to a normal indicator).

CMU/SEI-2005-TN-030 15

2. The elapsed time for the task will be greater than 10 seconds, and the remaining time
can be estimated within an accuracy of 20%.

In this case, the responsibility graph is modified to contain the responsibilities shown in
Figure 5. The R10 responsibility (update progress information periodically) is
accompanied by the generation of a performance scenario that has a stimulus of the
period for updating the progress information (not identified as a separate responsibility)
and a response of updating progress information.

R03: Change the cursor
shape to busy.

R05: Show time-based progress
feedback.

R07: Show time remaining
to complete.

R10: Update progress information
periodically.

R01: Estimate elapsed time of
the task.

Task (a stimulus)

R11: Change the cursor to
a normal indicator.

R12: Leave the progress
dialog and show the
completion of the task.

R13: Hide the progress
dialog if the task is
completed.

R14: Detect that the
task is complete.

R01

R14

R13 R12

R11 R03

R05

R07 R10

Affects
Depends On

Figure 5: Responsibility Graph After Adding Time-Based Progress Feedback
Responsibilities

16 CMU/SEI-2005-TN-030

3. The elapsed time for the task will be greater than 10 seconds, and the remaining time
cannot be estimated within an accuracy of 20%.

In this case, the responsibility graph is modified to contain the responsibilities shown in
Figure 6. The R10 responsibility (update progress information periodically) is
accompanied by the generation of a performance scenario that has a stimulus of the
update period of time and a response of updating progress information.

R03: Change the
cursor shape to busy.

R06: Show non-time-based
progress feedback.

R08: Calculate and display the
number of operations to be
done.

R09: Show information
about the current working
operation.

R10: Update progress
information periodically.

Task (a stimulus)

R11: Change the cursor
to a normal indicator.

R12: Leave the progress
dialog and show the
completion of the task.

R13: Hide the progress
dialog if the task is
completed.

Empty node (which
doesn’t have any
responsibilities)

R14: Detect that the
task is complete.

R11 R03

R14

R12 R13

R06

R08 R09 R10

Affects
Depends On

Figure 6: Responsibility Graph After Adding Non-Time-Based Progress Feedback
Responsibilities

5.6 Summary
The complete ARL specification for the progress feedback USAP is given in Appendix A. It
includes the preparation (determining what type of progress feedback should be shown) and
the addition of the progress feedback responsibilities to the responsibility graph.

CMU/SEI-2005-TN-030 17

6 Cancellation Reasoning Framework

In this section, we describe the implementation of the cancellation reasoning framework. We
follow the sequence described at the end of Section 4: focus on scenarios, organize
responsibilities, derive an English description of the activities, and develop the code.

First, we present the general scenario for cancellation. Next, we describe how the ArchE UI is
modified to enable the architect to specify the cancellation scenario. Finally, we describe the
ARL implementation, including general responsibilities from the cancellation USAP and the
implementation structure and description. The code for the UI portion and the reasoning
framework are presented in Appendices C and D.

6.1 General Scenarios
The base scenario for cancellation is The user initiates a long-running command, changes
his/her mind, and wishes to terminate the command and restore the system to its state prior to
invoking the command.

A coupling exists between cancellation and progress feedback: because the ability to cancel
should be provided for any command whose execution takes longer than two seconds,
cancellation and progress feedback apply to the same set of commands. Typically, a cancel
button is associated with various forms of progress feedback. We do not embed the coupling
into the scenarios, but their trigger conditions are identical except for the case where the
cancellation itself is a long-running task. In this case, there are two options:

1. The user is presented with progress feedback about the state of the cancel operation.

2. The progress feedback is embedded into the cancel operation either explicitly (by having
it generate a progress scenario) or implicitly (by copying the progress feedback activities
into the cancel operation).

Because there is no evidence that combining cancellation and progress feedback is more
useful than separating them, we chose to do the latter.

18 CMU/SEI-2005-TN-030

The cancellation scenario allows for a partial implementation of the cancel operation and can
use a response measure of the percentage of responsibilities satisfied by the design. The six-
part scenario formulation for cancellation is shown in Table 4.

Table 4: Six-Part Scenario Formulation for Cancellation

Element Description

Stimulus Long-running task is initiated (e.g., cancel during file download
from a Web site).

Stimulus Source End user

Environment At runtime

Artifact System

Responses • System provides the ability to cancel.

• System shows progress feedback to the user while the system
rolls back changes.

• System provides feedback to the user that the cancellation is
done.

Response Measure Percentage of implemented responsibilities

• Does the system implement above a certain percentage of
total cancellation responsibilities?

6.2 Create the UI Configuration File for ArchE
ArchE derives the following information from a configuration file named rfconfig.xml:

• scenario type

• relationship type

• parameter type

• model elements

CMU/SEI-2005-TN-030 19

The rfconfig.xml file should be created using the ArchE Configurator tool. Each element in
the general scenario can have specific types and units if the elements are used in the
reasoning framework. For this cancellation reasoning framework, the elements may have
limited types and units as shown in Table 5.

Table 5: Element Types and Units for Cancellation

Element Type Default Type Default Value

Stimulus Long-running task Long-running task N/A

Stimulus source End user End user N/A

Environment Runtime Runtime N/A

Artifact System System N/A

Responses Ability to cancel,
progress feedback

Ability to cancel N/A

Response measure Boolean (yes/no)
Percentage
complete

Boolean (yes/no)
Decimal

Yes
100%

If the new rfconfig.xml file is loaded by ArchE, the scenario wizard displays a screen similar
to the one shown in Figure 2 on page 10.

For the complete rfconfig.xml file for this reasoning framework, see Appendix D.

6.3 Responsibilities
The cancellation USAP has 18 general responsibilities. If the command being cancelled can
cancel itself, it performs many of the responsibilities. If it cannot cancel itself, the
infrastructure must cancel it, and there must be some communication between the active
command and the infrastructure. If the command has collaborating processes, they must be
notified of the cancellation request.

20 CMU/SEI-2005-TN-030

The system should have the responsibilities shown in Table 6 to support a command being
cancelled. The full cancellation USAP has been described by John [John 04].

Table 6: General Responsibilities for Cancellation

Responsibility Description

R01 Expose a cancellation button or menu to the user.

R02 Listen for the cancel command or changes in the system environment.

R03 Save the initial state of the system.

R04 Show the user the response message that can prove the cancellation
command is received immediately (within 150 milliseconds).

R05 Check if the active command can be cancelled directly at the time of
cancellation.

R06 Cancel the active command directly.

R07 Ask the infrastructure to cancel the command.

R08 Check if the command has invoked any collaborating processes.

R09 Inform the collaborating processes of the invoking command’s
cancellation.

R10 Check if the system is capable of rolling back all changes to the previous
state.

R11 Restore the system state to its previous state right before the current
operation.

R12 Restore the system state to its last saved state.

R13 Inform the user of any differences between the prior and restored states.

R14 Free all the resources the system used to run the cancelled command.

R15 Report to the user if the resource is not fully restored.

R16 Keep track of the resources that can be freed.

R17 Keep track of collaborating processes.

R18 Cancel the command using features of the infrastructure (e.g., Windows
Task Manager).

CMU/SEI-2005-TN-030 21

6.4 Workflow Description

6.4.1 Background

When an architect specifies a cancellation type for a scenario, one of the scenario elements is
the task for which cancellation must be provided. This task translates into a responsibility
within ArchE and, subsequently, is assigned to various elements of the architecture.

The primary responsibility of the cancellation reasoning framework is to manipulate the
responsibilities within ArchE. This manipulation consists of adding the necessary
responsibilities (or ensuring that they are included). How the manipulated responsibilities are
assigned to architectural elements is outside of the cancellation reasoning framework.

6.4.2 Identifying Unknowns

During preparation, any possible unknowns that affect the quality attribute model must be
addressed. For cancellation, the possible unknowns are

1. Has a responsibility been linked to the task described in the scenario?

If not, the architect must be prompted to make that linkage.

2. Is the infrastructure going to be involved in the cancellation?

If the active command is blocked in some fashion, it may not be able to participate in its
cancellation. In this case, the infrastructure will perform the cancellation. If the
infrastructure has facilities to collaborate with the command being cancelled, they
should be used. The architect is asked during preparation whether the infrastructure has
such facilities.

3. Are the collaborating processes known to the designer, or does the system itself need to
maintain a list?

If the designer knows the collaborating processes, they can be hard-coded; if not, the
system must detect the use of collaborating processes and maintain a list of them for
notification.

6.4.3 Construct the Quality Attribute Model

The next step in a reasoning framework is to construct the quality attribute model. For the
cancellation reasoning framework, the quality attribute model uses the answers to any
possible unknowns to determine whether all responsibilities are already included. If they are,
the evaluation says the scenario is satisfied. If they are not, the tactic section proposes—or in
this case, performs—adding the necessary responsibilities to ArchE.

22 CMU/SEI-2005-TN-030

6.5 Implementation
This section elaborates the basic workflow described in Section 6.4. The responsibilities
associated with cancellation are attached to the responsibility graph in the same fashion as
progress feedback. That is, the scenario defines a task to be cancelled, that task must be
linked to a responsibility (or responsibilities) in the responsibility graph, and the
responsibilities that they are linked to become the parent responsibilities for any
responsibility associated with the cancellation command.

6.5.1 Preparation

During preparation, the reasoning framework determines if it has the information necessary
to proceed. Activities flow as follows:

1. Retrieve the task and the relevant responsibilities from the usability scenario.

Several responsibilities of the target system might be affected by the task that is a
stimulus of the scenario. The cancellation reasoning framework gets the responsibilities
affected by the task defined in the usability scenario. If the scenario is not linked to any
responsibilities, the architect is queried to determine this linkage.

2. Determine the assumed capabilities of the infrastructure.

If a command cannot cancel itself because it is blocked on some resource or in an
infinite loop, the infrastructure must act to cancel the command. Two problems could
arise: (1) unless the infrastructure is informed of the resources being used by the
cancelled command, it cannot free them and (2) the infrastructure must be informed of
collaborating processes so that it can inform them in the event of a cancellation. If the
infrastructure has such capabilities, the responsibilities of the command must include
informing the infrastructure of any changes in resource utilization and collaborating
processes.

3. Determine the extent of the designer’s knowledge of collaborating processes.

If the designer knows the identity of collaborating processes a priori, the list can be
hard-coded. Otherwise, the system must collect this list during execution.

The information collected during preparation is made available so that tactics can be applied.

6.5.2 Instantiation and Evaluation

Instantiation refers to the creation of a quality attribute model from the architecture. The
quality attribute model for cancellation has no parameters that depend on the elements of the
architecture design. Evaluating the quality attribute model, therefore, consists of verifying
that the required responsibilities are included in the responsibility graph. If they are, the
scenario is satisfied; if they are not, they are added to the responsibility graph as described
below.

CMU/SEI-2005-TN-030 23

6.5.3 Apply Tactics

In this section, we describe how the responsibility graph is modified to reflect the
cancellation USAP. The general form was given in Figure 2 on page 10. The task considered
in the scenario is linked to one or more responsibilities (parent responsibilities) in the
responsibility graph. We identify three cases and distinguish them based on the architect’s
responses to the preparation questions. We assume that the designer (1) will know the
capabilities of the infrastructure and (2) will not know the list of collaborating processes: the
command must record them (R17: Keep track of collaborating processes). (Note that
collaborating processes are not the processes inside the application: they are the processes
that enable the application to execute the current command. For example, when downloading
a file in a browser, the Web server process and an Internet connection program can be
collaborating processes.)

1. The application can cancel the command.

In this case, only application-level cancellation responsibilities are included, and the
responsibility graph is modified to contain the responsibilities shown in Figure 7.

24 CMU/SEI-2005-TN-030

R01

R02

R03R04 R05

R08

R09

R02: Listen for the cancel
commmand or changes in
the system environment.

R03: Save the
initial state of
the system.

R04: Show the user
the response message
that can prove the
cancellation
command is received
immediately (within
150 milliseconds).

R05: Check if the
active command can
be cancelled directly
at the time of
cancellation.

R08: Check if
the command
has invoked any
collaborating
processes.

R06: Cancel the
active command
directly.

R09: Inform the
collaborating processes
of the invoking
command’s cancellation.

R10

R11 R12

R13

R14

R15

R16R17

R10: Check if the
system is capable
of rolling back all
changes to the
previous state.

R11: Restore the
system state to its
previous state right
before the current
operation runs.

R12: Restore the
system state to its
last saved state.

R13: Inform the user of
any differences between
the prior and restored
states.

R14: Free all
the resources
the system
used to run
the cancelled
command.

R16: Keep track
of the resources
that can be freed.

R15: Report to the
user if the resource is
not fully restored.

R17: Keep track
of collaborating
processes.

R06

Task (a stimulus)

R01: Expose a
cancellation button
or menu to the user.

Affects

Depends On

Figure 7: Responsibility Graph After Adding Application-Level Cancellation
Responsibilities

CMU/SEI-2005-TN-030 25

2. The application cannot cancel the command directly and asks the infrastructure to cancel
it by force.

In this case, application- and infrastructure-level responsibilities must be included, and
the responsibilities shown in Figure 8 are added as children to the task to which
cancellation is being added.

R01

R02

R03R04 R05

R08

R09

R01: Expose a
cancellation button
or menu to the user.

R02: Listen for the cancel
commmand or changes in
the system environment.

R03: Save the
initial state of
the system.

R04: Show the user
the response message
that can prove the
cancellation
command is received
immediately (within
150 milliseconds).

R05: Check if the
active command can
be cancelled directly
at the time of
cancellation.

R08: Check if
the command
has invoked any
collaborating
processes.

R07: Ask the
infrastructure to
cancel the command.

R09: Inform the
collaborating
processes of the
invoking command’s
cancellation.

R10

R11 R12

R13

R14

R15

R16R17

R10: Check if the
system is capable
of rolling back all
changes to the
previous state.

R11: Restore the system
state to its previous state
right before the current
operation runs.

R12: Restore the
system state to its
last saved state.

R13: Inform the user of
any differences between the
prior and restored states.

R14: Free all
the resources
the system
used to run
the cancelled
command.

R16: Keep
track of
resources that
can be freed.

R15: Report to the
user if the resource is
not fully restored.

R17: Keep track
of collaborating
processes.

R07

Task (a stimulus)

R06
R06: Cancel the
active command
directly.

R18

R18: Cancel
the command
using the
features of the
infrastructure.

Affects

Depends On

Figure 8: Responsibility Graph After Adding Infrastructure-Level Cancellation
Responsibilities

26 CMU/SEI-2005-TN-030

3. The cancellation itself is long running.

In this case, the cancellation task requires progress feedback. A progress feedback
scenario is generated, and the necessary responsibilities are added as shown in Figure 9.

R06

Progress
Feedback
Scenario

R03

R01

Progress Feedback
Responsibilities

Cancellation
Responsibilities

Empty NodeC

A

B

D E

Cancellation
Scenario

R06: Cancel the
active command
directly.

Affects

Depends On

New Dependencies

Scenario

Affected Responsibility

Other Responsibility

Progress Feedback and Cancellation
Responsibilities

Figure 9: Responsibility Graph After Adding Progress Feedback Responsibilities

CMU/SEI-2005-TN-030 27

6.6 Summary of Cancellation
Adding a cancellation reasoning framework to ArchE is very much like adding the progress
feedback reasoning framework: it mainly manipulates the responsibility graph of the system
being designed. The exception is the creation of a progress feedback scenario if the
cancellation itself is a long-running task.

The ARL code for cancellation is given in Appendices C and D.

28 CMU/SEI-2005-TN-030

7 Summary

In this technical note, we presented the incorporation of several aspects of a usability
reasoning framework into ArchE using a specialized language, the ARL.

Incorporating a new reasoning framework involves specifying preparation, interpretation,
evaluation, and tactics application steps. Once it is known how to specify these steps, the
reasoning framework can be coded in the ARL.

The two reasoning frameworks described in this note do not employ the interpretation and
evaluation steps. Therefore, we have emphasized manipulating the responsibility graph.

To complete the usability reasoning framework, additional scenarios would need to be
implemented. We are driven in this work by the actual projects with which we interact, and
completion of the usability reasoning framework will likely depend on finding a project for
which it is useful.

CMU/SEI-2005-TN-030 29

30 CMU/SEI-2005-TN-030

Appendix A ARL Implementation for Progress

Feedback

The progress feedback reasoning framework consists of four ARL files. Figure 10 shows the
ARL namespaces that contain sets of rules that must execute in a predefined sequence. The
ARL namespaces typically are also mapped one-to-one on Jess files with the extension .clp.
The progress feedback reasoning framework does not need to suggest and try several tactics.
Therefore, two namespaces—SuggestProgressTactics and TryProgressTactics—are empty.

ApplyProgressTactics.
arl

TryProgressTactics.arl SuggestProgressTactics.
arl

ProgressAnalysis.arl

ARL namespace

Rule set

Sequence

ExecuteProgressFeedbackRF

1
2 3 4

1, 2, 3, 4

Progress
ReasoningFramework.arl

Figure 10: ARL Namespaces for Progress Feedback

ProgressReasoningFramework.arl
namespace ProgressReasoningFramework;

import MAIN;

/**
* Parameter: P_ExecutionTime
* This parameter defines the estimation of execution time for the long-running task
*/

CMU/SEI-2005-TN-030 31

type P_ExecutionTime {
 property int value;
 property String owner; // Id of the owner of the property
 property String source; // Origin of the property value: ArchE, User
 property String status; // Indicators for the property:nil, conflict
}

/**
* Parameter: P_Accuracy
* This parameter defines the accuracy of estimated time compared to previous
* esitmation
*/
type P_Accuracy {
 property int value;
 property String owner; // Id of the owner of the property
 property String source; // Origin of the property value: ArchE, User
 property String status; // Indicators for the property:nil, conflict
}

/*
 Fact: Keep track of what responsibilities are affected by a scenario
*/
type Node_affected {
 property MAIN::Scenarios scenario;
 property int responsibilityId;
 property int nodeId;
)

/*
 Fact: Kept track of what is the type of assigned pattern for the long running task
*/
type FeedbackType{
 property String type;
}
/**
* The information about the tasks that users will initiate.
*/
type LongTask {
 property String name; // name of the initiated task
 property MAIN::Scenarios scenario; // parent scenario
 property int executiontime; // estimated elapsetime to be complete
 property int priority; // the priority of the task
 property int estimateaccuracy; // the accuracy of the estimated time
 property int responsibilityId;
}

/*
* The information about the answer by users
* This fact will be asserted when users answer for the question that ArchE asked.
*/
type AnswerFromUser {
 property String questionId;
 property boolean answerAvailable;
 property List answer;
}

/*
* main function to execute this usability reasoning framework.
*/
rule ExecuteProgressRF{
 description: "rule to execute this reasoning framework";
 queries {
 exists (MAIN::Scenarios sc = getall MAIN::Scenarios where (quality ==
"Usability"));
 }
 actions {
 focus (ApplyProgressTactics, ProgressAnalysis, SuggestProgressTactics
TryProgressTactics);
 }
}

32 CMU/SEI-2005-TN-030

ApplyProgressTactics.arl
namespace ApplyProgressReasoningFramework;

import MAIN;
import ProgressReasoningFramework;

order ControlModelExecution {
 "initial" : DetermineAffectedNodes, CreateLongTaskFromScenario;
 "askquestion" : QEstimationAbilityOfSystem, QAccuracyCalculationAbilityOfSystem,
QGuaranteeAccuracyOfEstimation, QDetermineIfTheTaskCompletionShown;
 "applytactics" : ApplyWholeProgressFeedback, ApplyTaskBasedProgressFeedback,
ApplyTimeBasedProgressFeedback ;
}

rule DetermineAffectedNodes {
 description: "find which responsibilities are affected by the usability scenario";
 queries {
 MAIN::Scenarios sc = getall MAIN::Scenarios where quality == "Usability";
 MAIN::TranslationRelation tr = getall MAIN::TranslationRelation where parent ==
sc;
 }
 actions {
 new ProgressReasoningFramework::Node_affected (scenario = sc;
 responsibilityId = tr.child;
 nodeId = getFactId(tr.child);
);
 }
}

rule CreateLongTaskFromScenario{
 description: "create all longtasks affected by usability scenario";
 queries {
 MAIN::Scenarios sc = getall MAIN::Scenarios

where quality == "usability" && stimulusType == "longrunning";

 ProgressReasoningFramework::Node_affected nodes =

getall ProgressReasoningFramework::Node_affected
 where scenario == sc ;
 }
 actions {
 new ProgressReasoningFramework::LongTask (
 name = sc.stimulusText;
 scenario = sc;
 responsibilityId = nodes.responsibilityID;
);
 }
 }
}

// question rule for asking designers the estimation ability of system
question QEstimationAbilityOfSystem {

description: "ask designer if the system would have the estimation
responsibility for long running task.";

 queries {
 logical (MAIN::Scenarios sc = getall MAIN::Scenarios where quality ==
“Usability”);
 Responsibilities rr = GetDependentResponsibilities(sc);
 logical (getall MAIN::TranslationRelation where parent == sc);
 }
 asking {
 MAIN::AskQuestion q = new MAIN::AskQuestion (
 questionId = "estimateElapsedTime";
 parent = sc;
 defaultAnswers = "yes";
 parameters = rr;
 affectedFacts = create$(sc, rr);
 log = nil;
);
 }
 actions {
 // assert new fact named AnswerFromUser

CMU/SEI-2005-TN-030 33

 new ProgressReasoningFramework::AnswerFromUser(
 questionId = q.questionId;
 answerAvailable = q.answerAvailable;
 answer = q.answer;
);

 // assign the type of progress feedback
 // if the system doesn't have estimation features, task based pattern will be
applied
 if (q.answerAvailable == true && q.answer == "no") {
 new ProgressReasoningFramework::FeedbackType(
 type = "taskbased";
);
 }
 q.log = true;
 }
}

// question rule for asking designers the estimation ability of system
question QAccuracyCalculationAbilityOfSystem {
 description: "ask designer if the system can calculate the accuracy of estimation or
if the estimation is always accurate or inaccurate. ";
 queries {
 logical (MAIN::Scenarios sc = getall MAIN::Scenarios where quality ==
"Usability");
 Responsibilities rr = GetDependentResponsibilities(sc);
 logical (getall MAIN::TranslationRelation where parent == sc);

 // check if the designer answered yes for the question - estimateElapsedTime
 exists (getall ProgressReasoningFramework::AnswerFromUser
 where questionId =="estimateElapsedTime" && answerAvailable == true && answer ==
"yes");
 }
 questions {
 MAIN::AskQuestion q = new MAIN::AskQuestion (
 questionId = "calculateAccuarcy";
 parent = sc;
 defaultAnswers = "yes";
 parameters = rr;
 affectedFacts = create$(sc, rr);
 log = nil;
);
 }
 actions {
 // assert new fact named AnswerFromUser
 new ProgressReasoningFramework::AnswerFromUser(
 questionId = q.questionId;
 answerAvailable = q.answerAvailable;
 answers = q.answer;
);

// assign the type of progress feedback
// if the system has both estimation and accuracy calculation features,
// full pattern will be applied

 if (q.answerAvailable == true && q.answer == "yes") {
 new ProgressReasoningFramework::FeedbackType(
 type = "fullpattern";
);
 }
 q.log = true;
 }
}

// question rule for asking designers the accuracy of the estimation is under 20% or
not
question QGuaranteeAccuracyOfEstimation{
 description: "ask designer the accuracy of estimation done by the system whether it
is guaranteed as accurate or not ";
 queries {
 logical (MAIN::Scenarios sc = getall MAIN::Scenarios where quality ==
"Usability");
 Responsibilities rr = GetDependentResponsibilities(sc);
 logical (getall MAIN::TranslationRelation where parent == sc);

34 CMU/SEI-2005-TN-030

 // check if the designer answered yes for the question - estimateElapsedTime
 exists (getall ProgressReasoningFramework::AnswerFromUser
 where questionId =="estimateElapsedTime" && answerAvailable == true && answer ==
"yes");
 // check if the desginer answered no for the question - calculateAccuarcy
 exists (getall ProgressReasoningFramework::AnswerFromUser
 where questionId =="calculateAccuarcy" && answerAvailable == true && answer ==
"no");
 }
 questions {
 MAIN::AskQuestion q = new MAIN::AskQuestion (
 questionId = "guaranteeAccuarcy";
 parent = sc;
 defaultAnswers = "yes";
 parameters = rr;
 affectedFacts = create$(sc, rr);
 log = nil;
);
 }
 actions {
 // assert new fact named AnswerFromUser
 new ProgressReasoningFramework::AnswerFromUser(
 questionId = q.questionId;
 answerAvailable = q.answerAvailable;
 answers = q.answer;
);

 // assign the type of progress feedback
 // if the system has estimation but doesn't have accuracy calculation features,
 // if the accuracy is guaranteed under 20%, time-based pattern will be applied
 if (q.answerAvailable == true && q.answer == "yes") {
 new ProgressReasoningFramework::FeedbackType(
 type = "timebased";
);
 }
 // if the accuracy is not guaranteed under 20%, time-based pattern will be
applied
 else if (q.answerAvailable == true && q.answer == "yes") {
 new ProgressReasoningFramework::FeedbackType(
 type = "taskbased";
);
 }
 q.log = true;
 }
}

// question rule for asking designers if the designer or end user
// will determine that the system show the task completion dialog
question QDetermineIfTheTaskCompletionShown {
 description: "ask designer who would determine if system shows the task completion
dialog. ";
 queries {
 logical (MAIN::Scenarios sc = getall MAIN::Scenarios where quality ==
"Usability");
 Responsibilities rr = GetDependentResponsibilities(sc);
 logical (getall MAIN::TranslationRelation where parent == sc);
 }
 questions {
 MAIN::AskQuestion q = new MAIN::AskQuestion (
 questionId = "showTaskcompletion";
 parent = sc;
 defaultAnswers = "enduser";
 parameters = rr;
 affectedFacts = create$(sc, rr);
 log = nil;
);
 }
 actions {
 // assert new fact named AnswerFromUser
 new ProgressReasoningFramework::AnswerFromUser(
 questionId = q.questionId;

CMU/SEI-2005-TN-030 35

 answerAvailable = q.answerAvailable;
 answers = q.answer;
);
 q.log = true;
 }
}

rule ApplyWholeProgressFeedback{
 description: "Apply whole feedback pattern if the designer answers yes for the
estimating elapsed time and the calculation of accuracy";
 queries {
 exists (MAIN::AskQuestion q = getall MAIN::AskQuestion
 where questionId == "estimateElapsedTime" && answer == "yes");
 MAIN::Responsibilities r = getall MAIN::Responsibilities;
 test (r = q.parent);

 // get affected nodes
 ProgressReasoningFramework::Node_affected nodes =

getall ProgressReasoningFramework::Node_affected
 where scenario = sc;

 }
 actions{
 // create the whole progress feedback and get the topmost node from the feedback
graphs.
 MAIN::Responsibilities topmost = GenerateWholeProgressResponsibilities();

 /* for each affected responsibility, create a relation between the affected
responsibility
 and the topmost node of the feedback graph */
 foreach (singlenode in nodes) {
 // create relation
 MAIN::ResponsibilityToResponsibilityRelation rel =

new MAIN::ResponsibilityToResponsibilityRelation(
 source = "ArchE";

parent = singlenode.responsibilityId;
 child = topmost;

);
 // assign affected responsibilities to parent responsibilties of pattern nodes
 topmost.parent = singlenode.responsibilityID;

 // create parameters and assign owners of these two parameters to each affected
node
 new ProgressReasoningFramework::P_EstimatedElapsedTime (
 owner = singlenode; value = 10; /* 10sec */ source = "System";
);
 new ProgressReasoningFramework::P_Accuracy(
 owner = singlenode; value = 10; // 10 percents
 source = "System";
);
 }
 }
}

/*
* populate the full progress responsibilities graph
*/
function MAIN::Responsibilities GenerateWholeProgressResponsibilities (){
 // create the progress pattern
 // create responsibilities 01
 String res01 = "Estimate elapsed time of the task";
 MAIN::Responsibilities r01 = new MAIN::Responsibilities(
 name = "progress"; description = res01;
 source = "ArchE";
);

 // create responsibilities 04
 String res04 = "Calculate the accuracy of the time estimate";
 MAIN::Responsibilities r04 = new MAIN::Responsibilities(
 name = res04; description = res04; source = "ArchE";
);
 // connect it to the parent responsibilities

36 CMU/SEI-2005-TN-030

 MAIN::ResponsibilityToResponsibilityRelation rel0104 =
 new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r01; child = r04; source = "ArchE";
);
 // create responsibilities 03
 String res03 = "Change the cursor shape to busy";
 MAIN::Responsibilities r03 = new MAIN::Responsibilities(
 name = res03; description = res03; source = "ArchE";
);
 // create responsibilities 11
 String res11 = "Change the cursor shape to busy";
 MAIN::Responsibilities r11 = new MAIN::Responsibilities(
 name = res11; description = res11; source = "ArchE";
);

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0403 =
 new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r04; child = r03; source = "ArchE";
);
 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0411 =
 new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r04; child = r11; source = "ArchE";
);

 // create responsibilities 02
 String res02 = "Determine the type of the progress indicator";
 MAIN::Responsibilities r02 = new MAIN::Responsibilities(
 name = res02; description = res02; source = "ArchE";
);

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0402 =
 new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r04; child = r02; source = "ArchE";
);

 // create responsibilities 05
 String res05 = "Show time-based progress feedback";
 MAIN::Responsibilities r05 = new MAIN::Responsibilities(
 name = res05; description = res05; source = "ArchE";
);

 // create responsibilities 06
 String res06 = "Show task-based progress feedback";
 MAIN::Responsibilities r06 = new MAIN::Responsibilities(
 name = res06; description = res06; source = "ArchE";
);

 // create responsibilities 14
 String res14 = "Detect that the task is complete";
 MAIN::Responsibilities r14 = new MAIN::Responsibilities(
 name = res14; description = res14; source = "ArchE";
);

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0205 =
 new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r02; child = r05; source = "ArchE";
);

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0206 =
 new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r02; child = r06; source = "ArchE";
);

CMU/SEI-2005-TN-030 37

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0214 =
 new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r02; child = r14; source = "ArchE";
);

 // create responsibilities 12
 String res12 = "Leave the progress dialog and show the completion of the task";
 MAIN::Responsibilities r12 = new MAIN::Responsibilities(
 name = res12; description = res12; source = "ArchE";
);

 // create responsibilities 13
 String res13 = "Hide the progress dialog if the task is completed";
 MAIN::Responsibilities r13 = new MAIN::Responsibilities(
 name = res13; description = res13; source = "ArchE";
);

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel1412 =

new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r14; child = r12; source = "ArchE";
);

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel1413 =

new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r14; child = r13; source = "ArchE";
);

 // create responsibilities 7
 String res7 = "Show time remaining to complete";
 MAIN::Responsibilities r7 = new MAIN::Responsibilities(
 name = res7; description = res7; source = "ArchE";
);

 // create responsibilities 10
 String res10 = "Update progress information periodically";
 MAIN::Responsibilities r10 = new MAIN::Responsibilities(
 name = res10; description = res10; source = "ArchE";
);

 // create responsibilities 08
 String res08 = "Calculate and display the number of operations to be done";
 MAIN::Responsibilities r08 = new MAIN::Responsibilities(
 name = res08; description = res08; source = "ArchE";
);

 // create responsibilities 09
 String res09 = "Show the information of current working operation";
 MAIN::Responsibilities r09 = new MAIN::Responsibilities(
 name = res09; description = res09; source = "ArchE";
);

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0507 =

new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r05; child = r07; source = "ArchE";
);

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0510 =

new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r05; child = r10;
 source = "ArchE";
);

38 CMU/SEI-2005-TN-030

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0610 =
 new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r06; child = r10;
 source = "ArchE";
);

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0608 =
 new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r06; child = r08;
 source = "ArchE";
);

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0609 =
 new MAIN::ResponsibilityToResponsibilityRelation(
 parent = r06; child = r09;
 source = "ArchE";
);
 return r01;
}

rule ApplyTaskBasedProgressFeedback {
 description: "Apply Taskbased feedback pattern if the designer answers

(1) no for the estimating elapsed time or
 (2) yes for the estimation, no for calculating accuracy,

and the accuracy is worse than 20%,";
 queries {
 exists (ProgressReasoningFramework::AnswerFromUser an1 =

getall ProgressReasoningFramework::AnswerFromUser
 where questionId == "estimateElapsedTime");

 ProgressReasoningFramework::AnswerFromUser an2 =

getall ProgressReasoningFramework::AnswerFromUser
 where questionId == "calculateAccuarcy";
 answerAvailable = q.answerAvailable;
 answers = q.answer;

 (exists (MAIN::AskQuestion q = getall MAIN::AskQuestion
 where questionId == "estimateElapsedTime" && answer == "no") ||
 exists(MAIN::AskQuestion q = getall MAIN::AskQuestion
 where questionId == "estimateElapsedTime" && answer == "yes";
 MAIN::Responsibilities r = getall MAIN::Responsibilities;
 test (r = q.parent);

 // get affected nodes
 ProgressReasoningFramework::Node_affected nodes =

getall ProgressReasoningFramework::Node_affected
 where scenario = sc;
 }
 actions{
 // create the whole progress feedback and get the topmost node from the feedback
graphs.
 MAIN::Responsibilities topmost = GenerateTaskBasedProgressResponsibilities();

 /* for each affected responsibility,

create a relation between the affected responsibility
 and the topmost node of the feedback graph */
 foreach (singlenode in nodes) {
 // create relation
 MAIN::ResponsibilityToResponsibilityRelation rel =

new MAIN::ResponsibilityToResponsibilityRelation(
 source = "ArchE"

 parent = singlenode.responsibilityId;
 child = topmost;
);

CMU/SEI-2005-TN-030 39

 // assign affected responsibilities to parent responsibilties of pattern nodes
 topmost.parent = singlenode.responsibilityID;

 // create parameters and assign owners of these two parameters to each affected
node
 new ProgressReasoningFramework::P_EstimatedElapsedTime (
 owner = singlenode; value = 10; /* 10sec */ source = "System";
);
 }
 }
}

/*
* populate the task based progress responsibilities graph
*/
function MAIN::Responsibilities GenerateTaskBasedProgressResponsibilities (){
 ...
}

rule ApplyTimeBasedProgressFeedback {
 description: "";
 queries {
 exists (ProgressReasoningFramework::AnswerFromUser an1 =

getall ProgressReasoningFramework::AnswerFromUser
 where questionId == "estimateElapsedTime");

 ProgressReasoningFramework::AnswerFromUser an2 =

getall ProgressReasoningFramework::AnswerFromUser
 where questionId == "calculateAccuarcy";
 answerAvailable = q.answerAvailable;
 answers = q.answer;

 (exists (MAIN::AskQuestion q = getall MAIN::AskQuestion
 where questionId == "estimateElapsedTime" && answer == "yes") ||
 exists(MAIN::AskQuestion q = getall MAIN::AskQuestion
 where questionId == "estimateElapsedTime" && answer == "yes";
 MAIN::Responsibilities r = getall MAIN::Responsibilities;
 test (r = q.parent);

 // get affected nodes
 ProgressReasoningFramework::Node_affected nodes =

getall ProgressReasoningFramework::Node_affected
 where scenario = sc;
 }
 actions{
 // create the whole progress feedback and get the topmost node from the feedback
graphs.
 MAIN::Responsibilities topmost = GenerateTimeBasedProgressResponsibilities();

 /* for each affected responsibility,

create a relation between the affected responsibility
 and the topmost node of the feedback graph */
 foreach (singlenode in nodes) {
 // create relation
 MAIN::ResponsibilityToResponsibilityRelation rel =

new MAIN::ResponsibilityToResponsibilityRelation(

 source = "ArchE";
 parent = singlenode.responsibilityId;
 child = topmost;
);

 // assign affected responsibilities to parent responsibilties of pattern nodes
 topmost.parent = singlenode.responsibilityID;

 // create parameters and assign owners of these two parameters to each affected
node
 new ProgressReasoningFramework::P_EstimatedElapsedTime (
 owner = singlenode; value = 10; /* 10sec */ source = "System";
);
 new ProgressReasoningFramework::P_Accuracy(
 owner = singlenode; value = 10; // 10 percents

40 CMU/SEI-2005-TN-030

 source = "System";);
 }
 }
}
/*
* populate the time based progress responsibilities graph
*/
function MAIN::Responsibilities GenerateTimeBasedProgressResponsibilities (){
 ...
}

ProgressAnalysis.arl
namespace ProgressAnalysis;

import MAIN;
import Planner;
import ProgressReasoningFramework;

order ControlModelExecution {
 "initial": RemoveUnansweredProgressQuestions, DeleteOldResults;
 "check": ProgressAnalysisCalculateScenario;
 "addperfsc": CreatePerfScenario;
}

rule RemoveUnansweredProgressQuestions {
 description: "Remove all unanswered questions related to progress feedback";
 queries {
 exists (MAIN::AskQuestion q = getall MAIN::AskQuestion
 where (questionId == "estimateElapsedTime" || questionId ==
"calculateAccuarcy"
 || questionId =="showTaskcompletion" || questionId ==
"guaranteeAccuarcy")
 && answerAvailable ==
null);
 }
 actions {
 delete q;
 }
}

rule DeleteOldResults {
 description: "delete old analysis results facts from memory";
 queries {
 MAIN::P_AnalysisResult r = getall MAIN::P_AnalysisResult where
 quality == "Usability" && reasoningFramework ==
"ProgressFeedback";
 }
 actions {
 delete r;
 }
}

rule ProgressAnalysisCalculateScenario {
 description: "execute the analysis model to check the progress feedback
scenario is satisfied";
 queries {
 MAIN::Scenarios sc = getall MAIN::Scenarios

where quality =="Usability" && measureType == boolean;
 MAIN::TranslationRelation tr = getall MAIN::TranslationRelation

where parent == sc;
 ProgressReasoningFramework::Node_affected affected =

getall ProgressReasoningFramework::Node_affected
 where scenario == sc && responsibilityId == tr.child

&& nodeId == etFactId(tr.child);

 }

CMU/SEI-2005-TN-030 41

actions {
 // check the scenario is satisfied
 boolean res = CheckProgressFeedback(affected);
 new MAIN::P_AnalysisResult (
 owner = sc; value = res; source ="ArchE"; quality =
"Usability";
 reasoningFramework = "ProgressFeedback";
 isSatisfied = true;
);
 }
}

function boolean CheckProgressFeedback(ProgressReasoningFramework::Node_affected af) [
 foreach (singlenode in af) {
 MAIN::Responsibilities res = getall MAIN::Responsibilities

where parent == af.responsibilityID && name ==
"Progress";

 if (res.size <= 0) {
 return false;
 }
 }
 return true;
}

rule CreatePerfScenario{
 description: "Create new performance scenario if there is no scenario related
to performance";
 queries {
 notexists (MAIN::Scenarios sc = getall MAIN::Scenarios
 where quality =="Performance" &&
reasoningFramework == "RMA");
 }
 actions {
 new Planner::C_AddScenario (
 state = "final"; description = sc.description; quality ==
"Performance" ;
 stimulusText = ""; stimulusType =""; stimulusUnit ="";
stimulusValue ="";
 sourceText = ""; sourceType =""; sourceUnit =""; sourceValue
="";
 artifactText = ""; artifactType =""; artifactUnit ="";
artifactValue ="";
 environmentText = ""; environmentType =""; environmentUnit
=""; environmentValue ="";
 responseText = ""; responseType =""; responseUnit ="";
responseValue ="";
 measureText = ""; measureType =""; measureUnit ="";
measureValue ="";
);
 }
}

SuggestProgressTactics.arl
Blank

TryProgressTactics.arl
Blank

42 CMU/SEI-2005-TN-030

Appendix B rfconfig.xml for Progress Feedback

This configuration file will be used in the ArchE application to create a new quality attribute
scenario.

<?xml version="1.0" encoding="utf-8"?>
<rf id="progress" name="Usability RF v0.1" version="0.1">
 <scenarioTypes>
 <scenarioType desc="Tooltip/help for usability scenario type"
 name="Progress feedback pattern" tID="Usability">
 <parts>
 <part defaultText="Type stimulus here"
 defaultTypeId="Task"
 defaultUnitId="" defaultValue="" partType="STIMULUS">
 <types>
 <type name="Task" tID="Task"/>
 </types>
 <units />
 </part>
 <part defaultText="Type source of stimulus here"
 defaultTypeId="Enduser" defaultUnitId=""
 defaultValue="" partType="SOURCE_OF_STIMULUS">
 <types>
 <type name="System" tID="System"/>
 <type name="End user" tID="Enduser"/>
 </types>
 <units/>
 </part>
 <part defaultText="Type environment here"
 defaultTypeId="Runtime" defaultUnitId=""
 defaultValue="" partType="ENVIRONMENT">
 <types>
 <type name="Runtime" tID="Runtime"/>
 </types>
 <units/>
 </part>
 <part defaultText="Type artifact here"
 defaultTypeId="System" defaultUnitId=""
 defaultValue="" partType="ARTIFACT">
 <types>
 <type name="System" tID="System"/>
 </types>
 <units/>
 </part>
 <part defaultText="Type response here"
 defaultTypeId="Responsibilities" defaultUnitId=""
 defaultValue="" partType="RESPONSE">
 <types>
 <type name="Responsibilities" tID="Responsibilities"/>
 </types>
 <units/>
 </part>
 <part defaultText="Type response measure here"
 defaultTypeId="ProgressIndicator"
 defaultUnitId="boolean" defaultValue="yes"
 partType="RESPONSE_MEASURE">
 <types>
 <type name="Progress Indicator" tID="ProgressIndicator"/>
 <type name="Cursor Shape" tID="CursorShape"/>
 </types>

CMU/SEI-2005-TN-030 43

 <units>
 <unit name="boolean" tID="boolean"/>
 </units>
 </part>
 </parts>
 </scenarioType>
 </scenarioTypes>
 <relationshipTypes/>
 <parameterTypes>

<parameterType dataType="double" defaultValue="10" desc="Tooltip/help for
estimated exec time" name="Elapsed time (sec)"
tID="ProgressFeedbackReasoningFrameworks::P_ElapsedExecutionTime"/>
<parameterType dataType="double" defaultValue="15" desc="Tooltip/help for
accuracy of estimated exec time" name="Percentage (%)"
tID="ProgressFeedbackReasoningFrameworks::P_Accuracy"/>

 </parameterTypes>
 <responsibilityParameters>
 <parameterType tID="
ProgressFeedbackReasoningFrameworks::P_ElapsedExecutionTime"/>

<parameterType tID=" ProgressFeedbackReasoningFrameworks::P_Accuracy"/>
 </responsibilityParameters>
<model />
</rf>

44 CMU/SEI-2005-TN-030

Appendix C ARL Implementation for Cancellation

The cancellation reasoning framework consists of five ARL files. Figure 11 shows the ARL
namespaces that contain sets of rules that must execute in a predefined sequence. The ARL
namespaces typically are also mapped one-to-one on Jess files with the extension .clp. The
reasoning framework does not have to consider the initial design because it does not affect
the current design and responsibilities of the system. In addition, it does not need to suggest
and try several tactics. Therefore, three namespaces—InitialCancelDesign,
SuggestCancelTactics, and TryCancelTactics—are empty.

ApplyCancelTactics.
arl

TryCancelTactics.arl SuggestCancelTactics.
arl

CancelAnalysis.arl

ARL namespace

Rule set

Sequence

ExecuteCancelRF
1

2 3 4

1, 2, 3, 4

Cancel
ReasoningFramework.arl

InitialCancelDesign.
arl

Figure 11: ARL Namespaces for Cancellation

CancelReasoningFramework.arl

type Node_affected {
 MAIN::Scenarios scenario;
 String responsibilityId;
 String nodeId;
}

type P_LevelOfCancel {
 String value;
}

CMU/SEI-2005-TN-030 45

type P_AbilityToTraceCollaboratingProcesses {
 String value;
}

type P_ListOfCollaboratingProcesses {
 List responsibilties;
}

/**
* The information about the tasks that users will initiate.
*/
type LongTask {
 String name; // name of the initiated task
 MAIN::Scenarios scenario; // parent scenario
 int executiontime; // estimated elapsetime to be complete
 int priority; // the priority of the task
 int estimateaccuracy; // the accuracy of the estimated time
 String responsibilityId;
}

/*
* The information about the answer by users
* This fact will be asserted when users answer for the question that ArchE asked.
*/
type AnswerFromUser {
 String questionId;
 boolean answerAvailable;
 List answer;
}

/*
* main function to execute this usability reasoning framework.
*/
rule ExecuteCancelRF{
 comment: "rule to execute this reasoning framework";
 queries {
 exists (getall MAIN::Scenarios where (quality == "Cancellation"));
 }
 actions {
 focus ("ApplyCancelTactics", "CancelAnalysis", "SuggestCancelTactics",

"TryCancelTactics");
 }
}

ApplyCancelTactics.arl

rule DetermineAffectedNodes {
 comment: "find which responsibilities are affected by the usability scenario";
 queries {
 MAIN::Scenarios sc = getall MAIN::Scenarios where (quality ==
"Cancellation");
 MAIN::TranslationRelation tr = getall MAIN::TranslationRelation

where (parent == sc);
 }
 actions {
 new CancelReasoningFramework::Node_affected (scenario = sc,
 responsibilityId = tr.child,
 nodeId = tr.child);
 }
}

46 CMU/SEI-2005-TN-030

rule CreateTaskFromScenario{
 comment: "create all task to be cancelled ";
 queries {
 MAIN::Scenarios sc = getall MAIN::Scenarios
 where(quality == "Cancellation")&& (stimulusType ==
"longrunning");

 CancelReasoningFramework::Node_affected nodes =

getall CancelReasoningFramework::Node_affected where (scenario == sc);
 }
 actions {
 new CancelReasoningFramework::LongTask (
 name = sc.stimulusText,
 scenario = sc,
 responsibilityId = nodes.responsibilityId);
 }
}

// question rule for asking designers the estimation ability of system
rule AskLevelOfCancel{
 comment: "ask designer if the system would have only application level
cancellation.";
 queries {
 logical (MAIN::Scenarios sc = getall MAIN::Scenarios

where (quality == "Cancellation"));
 MAIN::TranslationRelation tr = getall MAIN::TranslationRelation

where (parent == sc);
 logical (getall MAIN::TranslationRelation where (parent == tr.child));
 }
 actions {
 MAIN::AskQuestion q = new MAIN::AskQuestion (
 questionId = "LevelOfCancellation",
 parent = sc,
 default = "Application",
 parameters = tr.child,
 log = null);
 }
}

rule getAnswerOfLevelFromUser {
 comment: "handle answer from user";
 queries {

 MAIN::AskQuestion q = getall MAIN::AskQuestion

where (answerAvailable == true) && (log == null);
 }
 actions {
 // assert new fact named AnswerFromUser
 new CancelReasoningFramework::AnswerFromUser(
 questionId = q.questionId,
 answerAvailable = q.answerAvailable,
 answer = q.answer
);

 // assign the type of progress feedback
 // if the system doesn't have estimation features,
 // task based pattern will be applied
 if (q.answerAvailable == true) {
 new CancelReasoningFramework::P_LevelOfCancel(
 value = q.answer);
 }
 q.log = true;
 }
}

CMU/SEI-2005-TN-030 47

rule AskAbilityToTraceCollaboratingProcess{
 comment: "ask designer about the collaborating system.";
 queries{
 logical(MAIN::Scenarios sc = getall MAIN::Scenarios

where (quality == "Cancellation"));
 MAIN::TranslationRelation tr = getall MAIN::TranslationRelation

where (parent == sc);
 logical(getall MAIN::TranslationRelation where (parent == tr.child));
 }
 actions{
 MAIN::AskQuestion q = new MAIN::AskQuestion (
 questionId = "AbilityOfTracingCollaboration",
 parent = sc,
 default = "yes",parameters = tr.child, log = null);
 }
}

rule getAnswerOfAbilityToTraceCollaboration {
 comment: "handle answer from user";
 queries {
 MAIN::AskQuestion q = getall MAIN::AskQuestion

where (answerAvailable == true) && (log == null);
 }
 actions {
 // assert new fact named AnswerFromUser
 new CancelReasoningFramework::AnswerFromUser(
 questionId = q.questionId,
 answerAvailable = q.answerAvailable,
 answer = q.answer);

 // assign the type of progress feedback
 // if the system doesn't have estimation features,
 // task based pattern will be applied
 if (q.answerAvailable == true) {
 new
CancelReasoningFramework::P_AbilityToTraceCollaboratingProcesses(
 value = q.answer);
 }
 q.log = true;
 }
}

rule AskListOfollaboratingProcess{
 comment: "ask designer about the list of collaborating processes.";
 queries {
 logical (MAIN::Scenarios sc = getall MAIN::Scenarios

where (quality == "Cancellation"));
 MAIN::TranslationRelation tr = getall MAIN::TranslationRelation

where (parent == sc);
 logical (getall MAIN::TranslationRelation where (parent == tr.child));
 exists(getall
CancelReasoningFramework::P_AbilityToTraceCollaboratingProcesses
 where (value == "no"));
 }
 actions {
 MAIN::AskQuestion q = new MAIN::AskQuestion (
 questionId = "ListOfCollaborationProcesses",
 parent = sc,
 default = null,
 parameters = tr.child,
 log = null);
 }
}

48 CMU/SEI-2005-TN-030

rule getAnswerOfListOfCollaborationProcesses {
 comment: "handle answer from user";
 queries{
 MAIN::AskQuestion q = getall MAIN::AskQuestion

where (answerAvailable == true) && (log == null);
 }
 actions{
 // assert new fact named AnswerFromUser
 new CancelReasoningFramework::AnswerFromUser(
 questionId = q.questionId,
 answerAvailable = q.answerAvailable,
 answer = q.answer);

 // assign the type of progress feedback
 // if the system doesn't have estimation features,
 // task based pattern will be applied
 if (q.answerAvailable == true) {
 new CancelReasoningFramework::P_ListOfCollaboratingProcesses(
 responsibilties = q.answer);
 }
 q.log = true;
 }
}

rule ApplyApplicationCancelWithAbilityTracing{
 comment: "Apply application-level pattern if the designer answered
application";
 queries{

 exists(getall CancelReasoningFramework::P_LevelOfCancel

where (value == "Application"));
 MAIN::AskQuestion q = getall MAIN::AskQuestion
 where (questionId == "LevelOfCancellation") &&

(answer == "Application");
 MAIN::Responsibilities r = getall MAIN::Responsibilities;
 test (r == q.parent);

 exists(getall
CancelReasoningFramework::P_AbilityToTraceCollaboratingProcesses

where (value =="yes"));
 // get affected nodes
 CancelReasoningFramework::Node_affected nodes =

getall CancelReasoningFramework::Node_affected;
 }
 actions{
 // create the cancellation pattern and get the topmost node from the
graphs.
 MAIN::Responsibilities topmost =
GenerateApplicationCancelWithCollaboration();

 /* for each affected responsibility,
 create a relation between the affected responsibility
 and the topmost node of the feedback graph */

 // create relation
 MAIN::ResponsibilityToResponsibilityRelation rel =

new MAIN::ResponsibilityToResponsibilityRelation
 (source = "ArchE", parent = nodes.responsibilityId,
 child = topmost);
 }
}

CMU/SEI-2005-TN-030 49

rule ApplyApplicationCancelWithoutAbilityTracing{
 comment: "Apply application-level pattern if the designer answered
application";
 queries {
 exists(getall CancelReasoningFramework::P_LevelOfCancel

where (value == "Application"));
 MAIN::AskQuestion q = getall MAIN::AskQuestion
 where (questionId == "LevelOfCancellation")

&& (answer == "Application");
 MAIN::Responsibilities r = getall MAIN::Responsibilities;
 test (r == q.parent);

 exists(getall
CancelReasoningFramework::P_AbilityToTraceCollaboratingProcesses

where(value =="no"));
 // get affected nodes
 CancelReasoningFramework::Node_affected nodes =

getall CancelReasoningFramework::Node_affected;
 }
 actions{
 // create the cancellation pattern and get the topmost node from the
graphs.
 MAIN::Responsibilities topmost =

GenerateApplicationCancelWithoutCollaboration();

 // create relation
 MAIN::ResponsibilityToResponsibilityRelation rel = new
MAIN::ResponsibilityToResponsibilityRelation
 (source = "ArchE", parent = nodes.responsibilityId, child = topmost);
 }
}

rule ApplyInfrastructureCancelWithAbilityTracing{
 comment: "Apply system-level pattern if the designer answered application";
 queries{
 exists(getall CancelReasoningFramework::P_LevelOfCancel

where (value <> "Application"));
 MAIN::AskQuestion q = getall MAIN::AskQuestion
 where (questionId == "LevelOfCancellation")

&& (answer <> "Application");
 MAIN::Responsibilities r = getall MAIN::Responsibilities;
 test (r == q.parent);

 exists(getall
CancelReasoningFramework::P_AbilityToTraceCollaboratingProcesses

where (value =="no"));
 // get affected nodes
 CancelReasoningFramework::Node_affected nodes =

getall CancelReasoningFramework::Node_affected;
 }
 actions{
 // create the cancellation pattern and get the topmost node from the
graphs.
 MAIN::Responsibilities topmost =

GenerateInfrastructureCancelWithCollaboration();

 /* for each affected responsibility,
 create a relation between the affected responsibility
 and the topmost node of the graph */
 // create relation
 MAIN::ResponsibilityToResponsibilityRelation rel =

new MAIN::ResponsibilityToResponsibilityRelation
 (source = "ArchE", parent = nodes.responsibilityId,
 child = topmost);
 }
}

50 CMU/SEI-2005-TN-030

rule ApplyInfrastructureCancelWithoutAbilityTracing{
 comment: "Apply system-level pattern if the designer answered application";
 queries{
 exists(getall CancelReasoningFramework::P_LevelOfCancel

where (value <> "Application"));
 MAIN::AskQuestion q = getall MAIN::AskQuestion
 where (questionId == "LevelOfCancellation")

&& (answer <> "Application");
 MAIN::Responsibilities r = getall MAIN::Responsibilities;
 test (r == q.parent);

 exists(getall
CancelReasoningFramework::P_AbilityToTraceCollaboratingProcesses

where (value =="no"));
 // get affected nodes
 CancelReasoningFramework::Node_affected nodes =

getall CancelReasoningFramework::Node_affected;
 }
 actions{
 // create the cancellation pattern and get the topmost node from the
graphs.
 MAIN::Responsibilities topmost =

GenerateInfrastructureCancelWithoutCollaboration();

 // create relation
 MAIN::ResponsibilityToResponsibilityRelation rel =

new MAIN::ResponsibilityToResponsibilityRelation
 (source = "ArchE", parent = nodes.responsibilityId,child =
topmost);
 }
}

function MAIN::Responsibilities GenerateApplicationCancelWithCollaboration(){
 // create responsibilities 01
 String res01 = "Expose a button or menu to cancel the current operation to
user";
 MAIN::Responsibilities r01 = new MAIN::Responsibilities(
 name = "Cancellation", description = res01, source = "ArchE");

 String res02 = "Listen for the cancel command in the system environment ";
 MAIN::Responsibilities r02 = new MAIN::Responsibilities(
 name = res02, description = res02, source = "ArchE");

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0102 =
 new
MAIN::ResponsibilityToResponsibilityRelation(
 parent = r01, child = r02, source = "ArchE");

 String res04 = "Show the user the response message that can prove the
cancellation command is received immediately";
 MAIN::Responsibilities r04 = new MAIN::Responsibilities(
 name = res04, description = res04, source = "ArchE");

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0204 = new
 MAIN::ResponsibilityToResponsibilityRelation(
 parent = r02, child = r04,source = "ArchE");

 String res05 = "Check if the active command can be cancelled directly at the
time of cancellation";
 MAIN::Responsibilities r05 = new MAIN::Responsibilities(
 name = res05, description = res05, source = "ArchE");

CMU/SEI-2005-TN-030 51

 // connect it to the parent responsibilities

 MAIN::ResponsibilityToResponsibilityRelation rel0205 =
 new
MAIN::ResponsibilityToResponsibilityRelation(
 parent = r02, child = r05,source = "ArchE");

 return r01;

}

order ControlModelExecution {
 initial : DetermineAffectedNodes, CreateTaskFromScenario;
 askquestions : AskLevelOfCancel, getAnswerOfLevelFromUser,
 AskAbilityToTraceCollaboratingProcess,
 getAnswerOfAbilityToTraceCollaboration,
 AskListOfollaboratingProcess,
 getAnswerOfListOfCollaborationProcesses ;
 applytactics : ApplyApplicationCancelWithAbilityTracing,
 ApplyApplicationCancelWithoutAbilityTracing,
 ApplyInfrastructureCancelWithAbilityTracing,
 ApplyInfrastructureCancelWithoutAbilityTracing;
}

CancelAnalysis.arl

rule RemoveUnansweredQuestions {
 comment: "Remove all unanswered questions related to cancellation";
 queries {
 MAIN::AskQuestion q = getall MAIN::AskQuestion
 where (questionId == "LevelOfCancellation") &&
 (questionId == "ListOfCollaborationProcesses")
 && (questionId =="AbilityOfTracingCollaboration")
 && (answerAvailable == null);
 }
 actions {
 delete q;
 }
}

rule RemoveAnalysisResults {
 comment: "delete old analysis results facts from memory";
 queries{
 MAIN::P_AnalysisResult r = getall MAIN::P_AnalysisResult where
 (quality == "Cancellation") && (reasoningFramework ==
"Cancellation");
 }
 actions{
 delete r;
 }
}

rule CheckNodeHasFeatures {
 comment: "execute the analysis model to check the scenario is satisfied";
 queries{
 MAIN::Scenarios sc = getall MAIN::Scenarios
 where (quality =="Cancellation") && (measureType == "boolean");
 MAIN::TranslationRelation tr = getall MAIN::TranslationRelation
 where (parent == sc);
 CancelReasoningFramework::Node_affected affected =
 getall CancelReasoningFramework::Node_affected
 where (scenario == sc) && (responsibilityId == tr.child)
 && (nodeId == tr.child);

 }

52 CMU/SEI-2005-TN-030

 actions{
 // check the scenario is satisfied
 boolean res = CheckCancellationPattern(affected);
 new MAIN::P_AnalysisResult (
 owner = sc, value = res, source ="ArchE", quality =
 "Cancellation", reasoningFramework = "Cancellation",
 isSatisfied = true);
 }
}

function boolean CheckCancellationPattern(CancelReasoningFramework::Node_affected af){
 boolean bReturn = true;
 MAIN::Responsibilities res = af.responsibilityId;
 if (res.length <= 0) {
 bReturn = false;
 }
 return bReturn;
}

rule CreateProgressScenario{
 comment: "Create new scenario if there is no scenario related to progress";
 queries{
 notexists (getall MAIN::Scenarios
 where (quality =="ProgressFeedback"));
 }
 actions{
 new Planner::C_AddScenario (
 state = "final", description = "", quality = "Usability" ,
 stimulusText = "", stimulusType ="",

stimulusUnit ="", stimulusValue ="",
 sourceText = "", sourceType ="",

sourceUnit ="", sourceValue ="",
 artifactText = "", artifactType ="",

artifactUnit ="", artifactValue ="",
 environmentText = "", environmentType ="",

environmentUnit ="", environmentValue ="",
 responseText = "", responseType ="",

responseUnit ="", responseValue ="",
 measureText = "", measureType ="",

measureUnit ="", measureValue =""
);
 }
}

order ControlModelExecution {
 initial: RemoveUnansweredQuestions, RemoveAnalysisResults;
 check: CheckNodeHasFeatures;
 addnewsc: CreateProgressScenario;
}

SuggestCancelTactics.arl
Blank

TryCancelTactics.arl
 Blank

InitialCancelDesign.arl
Blank

CMU/SEI-2005-TN-030 53

54 CMU/SEI-2005-TN-030

Appendix D rfconfig.xml for Cancellation

This configuration file will be used in the ArchE application to create a new quality attribute
scenario.

<?xml version="1.0" encoding="utf-8"?>
<rf id="cancellation" name="Cancellation Usability RF v0.1" version="0.1">
 <scenarioTypes>
 <scenarioType desc="Tooltip/help for cancellation usability scenario type"
 name="Canceling a command pattern" tID="Cancel-Usability">
 <parts>
 <part defaultText="Type stimulus here"
 defaultTypeId="Task"
 defaultUnitId="" defaultValue="" partType="STIMULUS">
 <types>
 <type name="Task" tID="Task"/>
 </types>
 <units />
 </part>
 <part defaultText="Type source of stimulus here"
 defaultTypeId="Enduser" defaultUnitId=""
 defaultValue="" partType="SOURCE_OF_STIMULUS">
 <types>
 <type name="System" tID="System"/>
 <type name="End user" tID="Enduser"/>
 </types>
 <units/>
 </part>
 <part defaultText="Type environment here"
 defaultTypeId="Runtime" defaultUnitId=""
 defaultValue="" partType="ENVIRONMENT">
 <types>
 <type name="Runtime" tID="Runtime"/>
 </types>
 <units/>
 </part>
 <part defaultText="Type artifact here"
 defaultTypeId="System" defaultUnitId=""
 defaultValue="" partType="ARTIFACT">
 <types>
 <type name="System" tID="System"/>
 </types>
 <units/>
 </part>
 <part defaultText="Type response here"
 defaultTypeId="AbilitytoCancel" defaultUnitId=""
 defaultValue="" partType="RESPONSE">
 <types>
 <type name="Ability to cancel" tID="AbilitytoCancel "/>

 <type name="Progress feedback" tID="ProgressFeedback"/>
 </types>
 <units/>
 </part>
 <part defaultText="Type response measure here"
 defaultTypeId=" CommandCancelled"
 defaultUnitId="boolean" defaultValue="yes"

partType="RESPONSE_MEASURE">
 <types>
 <type name="Command is cancelled" tID="CommandCancelled"/>

CMU/SEI-2005-TN-030 55

 <type name="Showing progress indicator"
tID="ProgressIndicator"/>

 <type name="Showing cursor shapes" tID="CursorShape"/>
 </types>
 <units>
 <unit name="boolean" tID="boolean"/>
 </units>
 </part>
 </parts>
 </scenarioType>
 </scenarioTypes>
 <relationshipTypes/>
 <parameterTypes>

<parameterType dataType="double" defaultValue="10" desc="Tooltip/help for
cancellation level" name="Cancellation Level"
tID="CancelReasoningFrameworks::P_CancelLevel"/>
<parameterType dataType="List" defaultValue="15" desc="Tooltip/help for "
name="the list of responsibilities (%)"
tID="CancelReasoningFrameworks::P_ListOfCollaboratingProcess"/>

 </parameterTypes>
 <responsibilityParameters>
 <parameterType tID="CancelReasoningFrameworks::P_CancelLevel"/>

<parameterType tID="CancelReasoningFrameworks::P_
ListOfCollaboratingProcess"/>

 </responsibilityParameters>
<model />
</rf>

56 CMU/SEI-2005-TN-030

References

URLs are valid as of the publication date of this document.

[Bachmann 03] Bachmann, Felix; Bass, Len; & Klein, Mark. Preliminary Design of
ArchE: A Software Architecture Design Assistant (CMU/SEI-2003-TR-
021, ADA421618). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2003. http://www.sei.cmu.edu/publications
/documents/03.reports/03tr021.html

[Bachmann 05] Bachmann, F.; Bass, L.; Klein, M.; & Shelton, C. “Designing Software
Architectures to Achieve Quality Attribute Requirements.” IEE
Proceedings: Software 152, 4 (August 2005): 153-165.

[Bass 01] Bass, Len; John, Bonnie E.; & Kates, Jesse. Achieving Usability Through
Software Architecture (CMU/SEI-2001-TR-005, ADA393059).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2001. http://www.sei.cmu.edu/publications/documents
/01.reports/01tr005.html

[Bass 03] Bass, Len; Clements, Paul; & Kazman, Rick. Software Architecture in
Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

[Bass 05]

Bass, Len; Ivers, James; Klein, Mark; & Merson, Paulo. Reasoning
Frameworks (CMU/SEI-2005-TR-007). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tr007.html

[Buschmann 96] Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter;
& Stal, Michael. Pattern-Oriented Software Architecture: A System of
Patterns, Volume 1. West Sussex, England: John Wiley & Sons Ltd.,
1996.

[Friedman-Hill 03] Friedman-Hill, Ernest. Jess in Action: Java Rule-Based Systems.
Greenwich, CT: Manning Publishers, 2003.

CMU/SEI-2005-TN-030 57

[John 04] John, Bonnie E.; Bass, Len; Sanchez-Segura, Maria-Isabel; & Adams,
Rob J. “Bringing Usability Concerns to the Design of Software
Architecture,” 1-19. Engineering Human Computer Interaction and
Interactive Systems: Joint Working Conferences EHCI-DSVIS 2004.
Hamburg, Germany, July 11-13, 2004. New York, NY: Springer Verlag,
2004.

58 CMU/SEI-2005-TN-030

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

September 2005
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Elements of a Usability Reasoning Framework

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Jinhee Lee, Len Bass
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2005-TN-030

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This technical note brings together two different threads of work: (1) investigating the relationship between
usability and software architecture that has generated a number of usability scenarios with implications for
software architecture and (2) developing an architecture design assistant, Architecture Expert (ArchE). One
key element of ArchE is that quality attribute knowledge can be encapsulated into reasoning frameworks, and
a Carnegie Mellon University Master of Software Engineering project team has developed an ArchE
reasoning language (ARL) with which to specify the actions of reasoning frameworks within ArchE.

This note describes an ARL implementation of two usability scenarios: (1) displaying progress feedback and
(2) allowing cancel. These implementations begin to provide ArchE with the ability to reason about aspects of
usability that have software architecture implications.

14. SUBJECT TERMS

ArchE, ARL, usability, reasoning framework
15. NUMBER OF PAGES

68
16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Elements of a Usability Reasoning Framework
	Contents
	 List of Figures
	Abstract
	1 Introduction
	2 Usability and Software Architecture
	3 ARL and ArchE
	4 Pieces of a Reasoning Framework and the Process of Developing a Reasoning Framework
	5 Progress Feedback Reasoning Framework
	6 Cancellation Reasoning Framework
	7 Summary
	Appendix A ARL Implementation for Progress Feedback
	Appendix B rfconfig.xml for Progress Feedback
	Appendix C ARL Implementation for Cancellation
	Appendix D rfconfig.xml for Cancellation

	Elements of a Usability Reasoning Framework
	Jinhee LeeLen Bass

