On the length of the longest monotone subsequence in a random permutation

Frieze
Carnegie Mellon University
ON THE LENGTH OF THE LONGEST MONOTONE SUBSEQUENCE IN A RANDOM PERMUTATION

by

A. M. Frieze
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 90-74
February 1990
On the length of the longest monotone subsequence in a random permutation

Alan Frieze*
Department of Mathematics, Carnegie-Mellon University, Pittsburgh, U.S.A.

December 15, 1989

In this short note we prove a concentration result for the length L_n of the longest monotone increasing subsequence of a random permutation of the set \{1, 2, ..., n\}. It is known, Logan and Shepp [4], Vershik and Kerov [7] that
\[
\lim_{n \to \infty} \frac{E L_n}{\sqrt{n}} = 2
\]

but less is known about the concentration of L_n around its mean. Our aim here is to prove the following.

Theorem 1 Suppose that $\alpha > \frac{1}{3}$. Then there exists $\beta = \beta(\alpha) > 0$ such that for n sufficiently large
\[
\text{Pr}(|L_n - EL_n| \geq n^\alpha) \leq \exp\{-n^\beta\}
\]

*Supported by NSF grant CCR-8900112
Our main tool in the proof of this theorem is a simple inequality arising from the theory of martingales. It is often referred to as Azuma’s inequality. See Bollobas [2] and McDiarmid [5] for surveys on its use in random graphs, probabilistic analysis of algorithms etc., and Azuma [1] for the original result. A similar stronger inequality can be read out from Hoeffding [3]. We will use the result in the following form.

Suppose we have a random variable $Z = Z(U), U = U_1, U_2, ..., U_m$ where $U_1, U_2, ..., U_m$ are chosen independently from probability spaces $\Omega_1, \Omega_2, ..., \Omega_m$, i.e. $U \in \Omega = \Omega_1 \times \Omega_2 \times ... \times \Omega_m$. Assume next that Z is does not change by much if U does not change by much. More precisely write $U \sim V$ for $U, V \in \Omega$ when U, V differ in at most one component i.e. $|\{i : U_i \neq V_i\}| = 1$. We state the inequality we need as a theorem.

Theorem 2 Suppose Z above satisfies the following inequality;

$$U \sim V \text{ implies } |Z(U) - Z(V)| \leq 1$$

then

$$\Pr(|Z - EZ| \geq u) \leq 2\exp\{-\frac{2u^2}{m}\},$$

for any real $u \geq 0$.

\[\square \]

The value m is the width of the inequality and to obtain sharp concentration of measure we need $m = o((EZ)^2)$.

Proof (of Theorem 1) Let $X = (X_1, X_2, ..., X_n)$ be a sequence of independent uniform $[0,1]$ random variables. We can clearly assume that L_n is the length of the longest monotone increasing subsequence of X.

2
Before getting on with the proof proper observe that although changing one X_i only changes L_n by at most 1, the width n is too large in relation to the mean $2\sqrt{n}$ for us to obtain a sharp concentration result. It therefore appears that to use the theorem in this case requires us to reduce the width by a more careful choice for Z.

For a set $I = \{i_1 < i_2 < \ldots < i_k\} \subseteq [n]$ we let $\lambda(I)$ denote the longest increasing subsequence of $X_{i_1}, X_{i_2}, \ldots X_{i_k}$. So for example $\lambda([n]) = L_n$.

Let $m = \lfloor n^b \rfloor$, $0 < b < 1$ where a range for b will be given later. Let $\nu = \lfloor n/m \rfloor$ and $\mu = n - m\nu$ Let $I_1, I_2, \ldots I_m$ be the following partition of $[n] = \{1, 2, \ldots, n\}$: $I_j = \{k_j + 1, k_j + 2, \ldots k_{j+1}\}$, $j = 1, 2, \ldots, m$ where $k_j = j(\nu + 1)$ for $j = 0, 1, \ldots \mu$ and $k_j = j\nu + \mu$ for $j = \mu + 1, \ldots, m$. For $S \subseteq [m]$ we let $I_S = \bigcup_{j \in S} I_j$.

Let $\theta = n^a$ and $\epsilon = 2e^{-\theta}$. Define l by

$$l = \max \{t : \Pr(L_n \leq t - 1) \leq \epsilon \}.$$

and

$$Z_n = \max \{|S| : S \subseteq [m] \text{ and } \lambda(I_S) \leq l\}.$$

It follows from these definitions that

$$\Pr(Z_n = m) > \epsilon \quad (2)$$

Note next that for any $j \in [m]$, changing the value of $U_j = \{X_i : i \in I_j\}$, can only change the value of Z_n by at most one. We can thus apply Theorem 2.
to obtain

\[\Pr(|Z_n - EZ_n| \geq u) \leq 2 \exp\left\{ -\frac{2u^2}{m} \right\} \]

(3)

Hence, putting \(u = \sqrt{m\theta} \) in (3) and comparing with (2) we see that

\[EZ_n \geq m - \sqrt{m\theta}. \]

Applying (3) once again with the same value for \(u \) we obtain

\[\Pr(Z_n \leq m - 2\sqrt{m\theta}) \leq \epsilon \]

(4)

We now need a crude probability inequality for \(L_s \), where \(s \) is an arbitrary (large) positive integer.

Lemma 1

\[\Pr(L_s \geq 2\epsilon \sqrt{s}) \leq e^{-2\epsilon \sqrt{s}} \]

Proof
Let \(s_0 = [\epsilon \sqrt{s}] \). Then

\[\Pr(L_s \geq s_0) \leq \binom{s}{s_0} / s_0! \]

\[\leq \left(\frac{se^2}{s_0^2} \right)^{s_0} \]

\[\leq e^{-2\epsilon \sqrt{s}} \]

\[\square \]

Let now \(s = [2\sqrt{m\theta}] \) and let \(E \) denote the event

\[\{ \exists S \subseteq [m] : |S| = s \text{ and } \lambda(S) \geq 6\sqrt{\frac{sn}{m}} \}. \]
Now if $|S| = s$ then $|I_s| = (1 + o(1))(sn/m)$ and so on applying the lemma above we get

$$\Pr(E) \leq \binom{m}{s} e^{-2e\sqrt{sn/m}} \leq \exp\{s \ln m - 2e\sqrt{sn/m} \} \leq \epsilon_1 = \exp\{e(n^{\frac{a+b}{2}} \ln m - 2n^{\frac{1}{2} + \frac{a}{4} - \frac{b}{4}})\}$$

Now if $Z_n > m - 2\sqrt{m\theta}$ and E does not occur then

$$L_n \leq l + 6\sqrt{\frac{sn}{m}}.$$

So

$$\Pr(L_n > l + 6\sqrt{\frac{sn}{m}}) \leq \epsilon + \epsilon_1. \quad (5)$$

Putting $l_0 = l + 3\sqrt{\frac{sn}{m}}$ and combining this with the definition of l we have

$$\Pr(|L_n - l_0| \geq 3\sqrt{\frac{sn}{m}}) \leq 2\epsilon + \epsilon_1 \quad (6)$$

The theorem follows by choosing any a, b, α, β such that

$$a + 3b < 2$$

and

$$\beta < \frac{1}{2} + \frac{a}{4} - \frac{b}{4} < \alpha$$

We remark finally that Steele [6] has generalised (1) in the following way: let now k be a fixed positive integer and given a random permutation let $L_{k,n}$ denote the length of the longest subsequence which can be decomposed into
$k+1$ successive monotone sequences, alternately increasing and decreasing. The monotone case above corresponds to $k=0$. In analogy to (1) Steele proves

$$\lim_{n \to \infty} \frac{\mathbb{E}L_{k,n}}{\sqrt{n}} = 2\sqrt{k+1}.$$

Theorem 1 generalises easily to include this problem. In fact we only need to change L_n to $L_{k,n}$ throughout. In order to avoid complicating the proof of Lemma 1, it suffices to prove

$$\Pr(L_s \geq 2(k+1)e\sqrt{s}) \leq e^{-2e\sqrt{s}}.$$

This follows from Lemma 1 since if the 'up and down' sequence is of length at least $2(k+1)e\sqrt{s}$ then one of the monotone pieces is at least $2e\sqrt{s}$ in length.

References

