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Fig. 17. Achieved resolution. We compare the achieved spatial resolution of the recovered video
for a static target. For visual comparison, we artificially downsample the static image. It is clear
that CS-MUVI recovers spatial resolution higher than a 2� downsampling but slightly worse than
the full resolution static image.
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Fig. 18. Performance for varying speed of motion. We slowed down the operating speed of the
SPC to indirectly increase object speed. The operating speed of the SPC is overlaid on top of the
recovered video. Shown is a single frame from each recovered video; the instant corresponding to the
pendulum swinging at maximum speed.
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Fig. 19. Performance for varying scene illumination levels. We controlled the total light level
in the scene by controlling the light throughput of the illumination sources. Shown above are results
at different scene light levels—each case calibrated by the multiple of the minimum light level. In
each case, we show one frame of the recovered video; the instant corresponding to the pendulum
swinging at maximum speed. The performance degradation of the algorithm is graceful with only
little artifacts.

Fig. 20. Performance for varying size of dynamic object. For a wide range of object size, rang-
ing from a quarter to half of the entire field-of-view of the camera, we obtain stable reconstructions.

information about high spatial frequencies. We have developed a DSS matrix having a
fast transform, which enables us to compute instantaneous preview images of the scene
at low cost. The preview computation supports a large number of novel applications
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for SMC-based devices, such as providing a digital viewfinder, enabling human-camera
interaction, or triggering adaptive sensing strategies.

Limitations. Since CS-MUVI relies on optical-flow estimates obtained from low-
resolution images, it can fail to recover small objects with rapid motion. More specif-
ically, moving objects that are of sub-pixel size in the preview mode are lost. Figure 9
shows an example of this limitation: The cars are moved using fine strings, which are
visible in Fig. 9(a) but not in Fig. 9(b). Increasing the spatial resolution of the pre-
view images eliminates this problem at the cost of more motion blur. To avoid these
limitations altogether, one must increase the sampling rate of the SMC. In addition,
reducing the complexity of solving (PV) is of paramount importance for practical
implementations of CS-MUVI.

Faster implementations. Current implementation of CS-MUVI take in the order
of hours for high-resolution videos with a large number of frames. This large run-time
can be attributed to the DSS matrix lacking a fast transform as well as the inherent
complexity associated with high-resolution signals. Faster implementations of the
recovery algorithm is an interesting research directions.

Multi-scale preview. A drawback of our approach is the need to specify the reso-
lution at which preview frames are recovered; this requires prior knowledge of object
speed. An important direction for future work is to relax this requirement via the
construction of multi-scale sensing matrices that go beyond the DSS matrices pro-
posed here. The recently proposed sum-to-one (short STOne) transform [10] provides
such a multi-scale sensing matrix. Specifically, the STOne transform is a carefully de-
signed Hadamard transform that remains a Hadamard transform of a lower-resolution
when downsampled. Using the STOne transform in place of the DSS matrix could
potentially provide previews of various spatial resolutions.

Multi-frame optical flow. The majority of the artifacts in the reconstructions
stem from inaccurate optical-flow estimates—a result of residual noise in the preview
images. It is worth noting, however, that we are using an off-the-shelf optical-flow
estimation algorithm; such an approach ignores the continuity of motion across mul-
tiple frames. We envision significant performance improvements if we use multi-frame
optical-flow estimation [34]. Such an approach could potentially alleviate some of the
challenges faced in pairwise optical flow including the inability to recover precise flow
estimates for both slow-moving and fast-moving targets.

Towards high-resolution imagers. The spatial resolution of an SMC is limited by
the resolution of the spatial light modulator. Commerically available DMDs, LCDs
and LCoSs have a spatial resolution of 1–2 megapixels. An important direction for
future research is the design of imaging architectures, signal models and recovery
algorithms to obtain videos at this spatial resolution (and say, 30 fps temporal reso-
lution). The key stumbling block for an SPC-based approach for solving this is the
measurement bandwidth which, for the SPC, is limited by the operating rate of DMD.
A potential approach to increasing the measurement rate is by using a multi-pixel ar-
chitecture such as the P2C2 [32]. While the design and solution in [32] was tuned
towards temporal multiplexing, the underlying architecture can be build to perform
spatial multiplexing with appropriate choice of optics. One way to interpret such an
imager is to think of each pixel on the sensor as an SPC. Hence, with the successful
128× demonstrated in this paper, megapixel videos could potentially be achieved with
the use of an 8× 8 photodetector array.
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Comptes rendus-Mathématique, 346 (2008), pp. 589–592.

[2] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal re-
construction from highly incomplete frequency information, IEEE Trans. Inf. Theory, 52
(2006), pp. 489–509.

[3] V. Cevher, A. C. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and
R. Chellappa, Compressive sensing for background subtraction, in Euro. Conf. Comp.
Vision, Marseille, France, Oct. 2008.

[4] A. Chambolle, An algorithm for total variation minimization and applications, J. Mathemat-
ical Imaging and Vision, 20 (2004), pp. 89–97.

[5] D. W. Davies, Spatially multiplexed infrared camera, 65 (1975), pp. 707–711.
[6] J. A. Decker and M. Harwit, Experimental operation of a hadamard spectrometer, Applied

Optics, 8 (1969), p. 2552.
[7] D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, 52 (2006), pp. 1289–1306.
[8] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G.

Baraniuk, Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag., 25
(2008), pp. 83–91.

[9] J. E. Fowler, S. Mun, E. W. Tramel, M. R. Gupta, Y. Chen, T. Wiegand, and
H. Schwarz, Block-based compressed sensing of images and video, Foundations and Trends
in Signal Processing, 4 (2010), pp. 297–416.

[10] T. Goldstein, L. Xu, K. F. Kelly, and R. G. Baraniuk, The STOne Transform:
Multi-resolution image enhancement and real-time compressive video, arXiv preprint
arXiv:1311.3405, (2013).

[11] J. Gu, Y. Hitomi, T. Mitsunaga, and S. Nayar, Coded rolling shutter photography: Flexible
space-time sampling, in IEEE Intl. Conf. Computational Photography, 2010.

[12] M. Gupta, A. Agrawal, A. Veeraraghavan, and S. Narasimhan, Flexible voxels for motion-
aware videography, in Euro. Conf. Comp. Vision, Crete, Greece, Sep. 2010.

[13] Z. T. Harmany, R. F. Marcia, and R. M. Willett, Compressive coded aperture keyed
exposure imaging with optical flow reconstruction, arXiv preprint arXiv:1306.6281, (2013).

[14] M. Harwit and N. J. Sloane, Hadamard transform optics, New York: Academic Press, 1979.
[15] J. Haupt and R. Nowak, Signal reconstruction from noisy random projections, IEEE Trans.

Inf. Theory, 52 (2006), pp. 4036–4048.
[16] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, Video from a single coded

exposure photograph using a learned over-complete dictionary, in IEEE Intl. Conf. Comp.
Vision, Barcelona, Spain, Nov. 2011.

[17] J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe, Flutter shut-
ter video camera for compressive sensing of videos, in IEEE Intl. Conf. Computational
Photography, 2012.

[18] B. K. P. Horn and B. G. Schunck, Determining optical flow, Artif. Intel., 17 (1981), pp. 185–
203.

[19] G. Huang, H. Jiang, K. Matthews, and P. Wilford, Lenless imaging by compressive sens-
ing, in IEEE Intl. Conf. Image Processing, 2013.

[20] R. N. Ibbett, D. Aspinall, and J. F. Grainger, Real-time multiplexing of dispersed spectra
in any wavelength region, Applied optics, 7 (1968), pp. 1089–1094.

[21] D. Le Gall, MPEG: A video compression standard for multimedia applications, Communica-
tions of the ACM, 34 (1991), pp. 46–58.

[22] C. Liu, Beyond Pixels: Exploring New Representations and Applications for Motion Analysis,
PhD thesis, Mass. Inst. Tech., 2009.

[23] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. Brady,
Coded aperture compressive temporal imaging, Optics express, 21 (2013), pp. 10526–10545.

[24] D. Mahajan, F. C. Huang, W. Matusik, R. Ramamoorthi, and P. Belhumeur, Moving
gradients: A path-based method for plausible image interpolation, ACM Trans. Graph., 28



CS-MUVI 27

(2009), pp. 1–42.
[25] S. Mun and J. E. Fowler, Residual reconstruction for block-based compressed sensing of

video, in Data Comp. Conf., Snowbird, UT, USA, Apr. 2011.
[26] S. G. Narasimhan, S. J. Koppal, and S. Yamazaki, Temporal dithering of illumination for

fast active vision, in Euro. Conf. Computer Vision, 2008, pp. 830–844.
[27] E. D. Nelson and M. L. Fredman, Hadamard spectroscopy, 60 (1970), pp. 1664–1669.
[28] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method

for total variation-based image restoration, Multiscale Modeling and Simulation, 4 (2005),
pp. 460–489.

[29] J. Y. Park and M. B. Wakin, A multiscale framework for compressive sensing of video, in
Pict. Coding Symp., Chicago, IL, USA, May 2009.

[30] , Multiscale algorithm for reconstructing videos from streaming compressive measure-
ments, Journal of Electronic Imaging, 22 (2013), pp. 021001–021001.

[31] R. Raskar, A. Agrawal, and J. Tumblin, Coded exposure photography: Motion deblurring
using fluttered shutter, ACM Trans. Graphics, 25 (2006), pp. 795–804.

[32] D. Reddy, A. Veeraraghavan, and R. Chellappa, P2C2: Programmable pixel compressive
camera for high speed imaging, in IEEE Conf. Comp. Vision and Pattern Recog, Colorado
Springs, CO, USA, June 2011.

[33] I. E. Richardson, H.264 and MPEG-4 video compression: Video coding for next-generation
multimedia, John Wiley and Sons, 2004.

[34] M. Rubinstein, C. Liu, and W. T. Freeman, Towards longer long-range motion trajectories,
in British Machine Vision Conf., 2012.

[35] A. C. Sankaranarayanan, C. Studer, and R. G. Baraniuk, CS-MUVI: Video compressive
sensing for spatial-multiplexing cameras, in IEEE Intl. Conf. Computational Photography,
2012.

[36] A. C. Sankaranarayanan, P. Turaga, R. Baraniuk, and R. Chellappa, Compressive ac-
quisition of dynamic scenes, in Euro. Conf. Comp. Vision, Crete, Greece, Sep. 2010.

[37] A. C. Sankaranarayanan, P. K. Turaga, R. Chellappa, and R. G. Baraniuk, Compressive
acquisition of linear dynamical systems, SIAM Journal on Imaging Sciences, 6 (2013),
pp. 2109–2133.

[38] Y. Y. Schechner, S. K. Nayar, and P. N. Belhumeur, Multiplexing for optimal lighting,
IEEE Trans. Pattern Anal. Mach. Intell., 29 (2007), pp. 1339–1354.

[39] P. Sen and S. Darabi, Compressive dual photography, in Computer Graphics Forum, vol. 28,
2009, pp. 609–618.

[40] N. J. A. Sloane, T. Fine, P. G. Phillips, and M. Harwit, Codes for multiplex spectrometry,
Applied optics, 8 (1969), pp. 2103–2106.

[41] N. Vaswani, Kalman filtered compressed sensing, in IEEE Conf. Image Process., San Diego,
CA, USA, Oct. 2008.

[42] N. Vaswani and W. Lu, Modified-cs: Modifying compressive sensing for problems with partially
known support, IEEE Trans. Signal Processing,, 58 (2010), pp. 4595–4607.

[43] A. Veeraraghavan, D. Reddy, and R. Raskar, Coded strobing photography: Compressive
sensing of high speed periodic events, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011),
pp. 671–686.

[44] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. F.
Kelly, and R. G. Baraniuk, Compressive imaging for video representation and coding,
in Pict. Coding Symp., Beijing, China, Apr. 2006.

[45] A. E Waters, A. C. Sankaranarayanan, and R. G. Baraniuk, SpaRCS: Recovering low-
rank and sparse matrices from compressive measurements, in Adv. Neural Inf. Proc. Sys.,
Dec. 2011.

[46] Lina Xu, Aswin Sankaranarayanan, Christoph Studer, Yun Li, Richard G Baraniuk,
and Kevin F Kelly, Multi-scale compressive video acquisition, in Computational Optical
Sensing and Imaging, Optical Society of America, 2013, pp. CW2C–4.

[47] J. Yang, X. Yuan, X. Liao, P. Llull, D. J. Brady, G. Sapiro, and L. Carin, Video
compressive sensing using gaussian mixture models, IEEE Trans. Image Processing, (2014).


