1987

Information storage capacity of connectionist systems: the linear associator

Dean C. Mumme
Carnegie Mellon University

Walter Schneider
Artificial Intelligence and Psychology Project.

Follow this and additional works at: http://repository.cmu.edu/psychology
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
INFORMATION STORAGE CAPACITY
OF CONNECTIONIST SYSTEMS:
THE LINEAR ASSOCIATOR

Technical Report AIP - 25 }

Dean C. Mumme & Walter Schneider

Learning Research and Development Center
University of Pittsburgh
Pittsburgh, PA 15260

29 September 1987

This research was supported by the Computer Sciences Division, Office of Naval Research
and DARPA under Contract Number N00014-86-K-0678. Reproduction in whole or in part
is permitted for purposes of the United States Government. Approved for public release;
distribution unlimited.
006.3
C18a
No. 25
c. 2
Information Storage Capacity of Connectionist Systems: The Linear Associator

The information-storage capacity of hetero-associative memory systems is addressed. The associator can be treated as an M-ary symmetric channel when M associations are stored. The maximum number of associations storable is bounded asymptotically by N/2 where N is the number of connection weights. Storage efficiency is bounded by M/N so that it never exceeds 1/2. Information capacity degrades as inter-vector correlations increase and also when classification tasks are performed. The correlation effect is most pronounced in high-dimensional systems storing a large number of associations.
Information Storage Capacity of Connectionist Systems:
The Linear Associator.¹,²

Dean C. Mumme
and
Walter Schneider

Learning Research and Development Center
University of Pittsburgh

Abstract

Information theory is applied to determine the number of items storable in a linear associator. An ensemble of association matrices is treated as an M-ary symmetric information channel where M is the number of associations stored via the outer-product rule. The entropy of the ensemble under the outer-product learning rule is derived and used to bound the number of usefully-storable items for the ensemble. In particular, if the ensemble has input dimensionality \(n_I \) and output dimensionality \(n_O \), and M associations between vectors of \(\pm 1 \)'s are stored, then the entropy of each weight is \(\frac{1}{2} \log_2 \frac{M}{2} \).

Assuming independent weights gives the upper bound \(\frac{1}{2} n_I n_O \log_2 \frac{M}{2} \) for the entropy of the ensemble. The task of the ensemble as an M-ary symmetric channel is correct identification of which output-prototype corresponds to the prototype presented at the input. The corresponding task entropy or task load for M stored items is \(M \log_2 M \) which leads to the upper bound

\[
\frac{M}{n_I n_O} \leq \frac{1}{2} + \frac{1}{\log_2 M}
\]

for the ratio of the number of associations storable to the number of weights in the system. Asymptotically, large matrices can store at most half as many associations as there are weights in the system. Storage efficiency is defined as the number of bits stored in the ensemble divided by the number of bits needed to specify the ensemble itself. The efficiency can be shown to be less than \(\frac{M}{n_I n_O} \).

Performance degradation due to storage of correlated vectors is addressed. A performance merit parameter, \(d' \), is derived as a function of matrix size, number of items stored, and correlation between stored prototypes. This parameter is shown to decrease with the square-root of M if the vectors are uncorrelated, otherwise it decreases with M. This indicates a marked capacity decline in the correlated case and reveals quantitatively the sensitivity of large systems to prototype correlation. In order for correlation effects to be negligible, the probability \(p \) that a 1 occurs should be very nearly 1/2 as M gets large. A sufficient condition is that \(|p - 1/2| < \frac{2}{\sqrt{3}} M^{-1/4} \). A sufficient condition for correlation effects

¹Paper is based on a thesis by the first author for the doctoral degree in Computer Science at the University of Illinois at Urbana-Champaign.

²This research is funded by a grant from the Office of Naval Research.
to be prevalent is $|p - 1/2| > 2\cdot\sqrt{3} \cdot M^{-1/4}$. This reflects the sensitivity of large systems vector correlation.

More generally, performance limits are derived by evaluating the task-entropy and using information theoretical relations between input, memory, and output random-variables. This has implications for memory-classification of input vectors. This task can be viewed as a retrieval on information-degraded inputs (e.g. retrieval on partial or noisy input vectors). Performance is limited by the amount of information the input vector provides about the correct input prototype. The amount of information provided by the input decreases as more classification "fan-in" is allowed. The amount of information the input provides and its relation to memory storage and classification can be derived analytically in certain interesting cases.

Numerical evaluation of derived relations and simulations are included to verify the theory. The intent of this investigation is to provide a basis for the eventual development of an information-theory of memory.
Information Storage and Classification in Connectionist Systems: The Linear Associator

Introduction

The systems under consideration are an outgrowth of work done on self-organizing automata and perceptrons [26, 30] and later work in parallel associative memories, e.g. [15, 31]. Minsky and Papert in [26] had carried out rather extensive mathematical analysis on perceptrons revealing inherent limitations in the classes of problems they could solve. These systems were "learning" automata expected to classify input "stimuli" based on their past experience on "training" inputs. Minsky and Papert showed that multiple-stages of perceptrons were required for many problems of interest yet no training algorithm was known at the time for multi-level systems. They concluded in their book that the systems held little promise and subsequent investigation of perceptrons evaporated.

Eventually however, with more powerful computers to carry out simulations, and the development of several multi-level learning algorithms [32, 16, 27, 5] descendant offshoots of the perceptron have regained interest. Currently a variety of these automata exist and are known by names such as "Neural-nets", "Parallel Distributed Processors" (PDP networks), "Associative Memories". They are collectively called "Connectionist Architectures" and have been studied as self-organizing memories of perception [21] content-addressable memories, hierarchical knowledge bases, and classification systems [3, 2] models of human "neural-computation" [13, 3] of human task performance and attentional learning [37, 35] speech performance and natural language understanding [36, 33, 11].

These and other efforts have led to guarded optimism for the future of Connectionist architectures as knowledge engines or as models of human intelligence. Capabilities and limitations of both task learning and performance have been demonstrated. However, with the exception of a few mathematical investigations [21, 13, 14, 5, 12] these structures are understood primarily in a qualitative sense.

In this paper, we utilize concepts from information theory to study a simple matrix model of distributed memory. Its information-storage capacity and efficiency are evaluated allowing definition of a matrix's storage load factor. Memory performance in problems such as pattern completion can then be

\[\text{This research supported by a grant from the Office of Naval Research} \]
viewed as a function of matrix loading. Degradation of storage capacity with inter-stimulus correlation and noise at the input are also addressed.

This work is motivated by a simulation-model of human attentional learning developed by the authors [35]. Though these results are specifically intended for fuller understanding of the model, they apply to a much broader class of "Connectionist" systems.

Neural-based systems

Matrix models of parallel distributed memories were derived as a simplistic model of brain cell computation. In the model, the output of each cell is a real number, \(y \) representing the deviation of the cell's firing frequency from some reference frequency. As such, \(y \) can be negative as well as positive. The inputs \(\{x_1, x_2, \ldots, x_n\} \) to the cell are similarly real valued and each input, \(x_i \), has an associated coupling strength \(w_{ij} \) to the cell which determines the effectiveness of that input on the cell output. The cell determines its output by taking the weighted average of the inputs,

\[
y = \frac{1}{n} \sum_{i=1}^{n} w_{ij} x_i
\]

The matrix memory is constructed from a collection of these cells, each sampling the same set of inputs. If \(n_i \) is the number of inputs to the memory and \(n_O \) is the number of cells in the memory, the vector \(\mathbf{x} \equiv (x_1, x_2, \ldots, x_n) \) of inputs when presented to the input of the system produces an output vector \(\mathbf{y} \equiv (y_1, y_2, \ldots, y_n) \) given by the relation:

\[
y = \frac{1}{n} \mathbf{Ax}
\]

where \(A \) is the matrix of coupling weights \(w_{ij} \) connecting the \(i \)th input to the \(j \)th cell [15, 21].

To store information in this system, two sets of vectors called the input prototypes \(\{f_1, f_2, \ldots, f_M\} \) and the output prototypes \(\{g_1, g_2, \ldots, g_M\} \) are used. For each input prototype \(f_m \), the weights of the system are adjusted so that the \(g_m \) vector results at the system output when \(f_m \) is presented at the input. The system is then said to associate \(f_m \) with \(g_m \). For each \(m = 1, 2, \ldots, M \), the matrix that is used to associate \(f_m \) with \(g_m \) (called the \(m \)th association) is the outer-product \(g_m^T f_m \) [15, p. 18]. To store the associations, these \(M \) matrices are added to obtain:

\[
A = \sum_{m=1}^{M} g_m^T f_m
\]

The information for each association is distributed over the whole of \(A \) and therefore is overlaid with the information for the other associations. The resulting interference between associations increases with \(M \), and ultimately limits the number of associations storable in the system.

In the case that \(f_1, f_2, \ldots, f_M \) are mutually orthogonal, no interference exists. When \(f_k \) is input to the...
system, we have:

$$Af_m = \frac{1}{n_f} \sum_{k=1}^{M} g_m f_m^T f_k$$

$$= \frac{1}{n_f} g_k f_k^T f_k$$

$$= \frac{1}{n_f} ||f_k||^2 g_k$$

$$k = 1, 2, \ldots, M.$$

The matrix produces a multiple of g_k when f_k is present at the input. If the f_k are chosen so that $||f_k||^2 = n_1$, then g_k is reproduced exactly [3, p. 804].

The synopsis is concerned primarily with the case that $M > n_1$, so that the input vectors are linearly dependent and interference effects must be accounted for. In this case the output vector is only an approximation of the proper prototype output. Our concern is the number M of associations that can be stored in a matrix of a given size before the output becomes unrecognizable.

Characterizing Storage Capacity

To estimate the storage capacity of the matrix, we examine a system that has stored M associations (f_m, g_m), $m = 1, 2, \ldots, M$ for some M. The input-prototype vectors are n_1-dimensional and the output-prototypes are n_0-dimensional. Initially, the values allowed for the components are ± 1. All input-prototypes will then have $||f_m||^2 = n_1$ and all output-prototypes $||g_m||^2 = n_0$. Later we can generalize but this case is interesting in itself as these values represent saturation extremes of the inputs/outputs. A value of 1 represents a cell firing at its maximum rate and a value of -1 represents the minimum rate. Storing prototypes of this limited form corresponds to the cells each producing a "polarized" response to an input vector that itself is the result of a previous stage of saturated cells. The vectors are assumed to have an unbiased distribution of ± 1's as explained later.

To motivate the method of storage measurement, we make an analogy with digital memory. The address to the memory can be viewed as an input vector and the retrieved data as the output vector. A particular address vector and the data vector stored at the address location can be regarded as a vector-association pair. The number of bits represented by the data vector is the information the system provides upon performing the input-to-output association. For digital memory, the number of bits represented is the same as the number of bit-locations in the data vector and so is identical with the dimensionality of the data vector. **Storage** is defined as the amount of information per association multiplied by the number of associations stored in memory. **Storage capacity** is the maximum storage the system can provide. In this case, the storage capacity is limited by the number of storage locations of

2 The norm $|||$ refers to the euclidean norm.
the memory. Though the dimensionality of both the input and output vectors is specified in advance, the
data items are not. That is, the number of items that can be stored is not determined by what they are.

For the matrix memory, the storage is likewise given by the information per association multiplied
by the number of associations stored. The dimensionality of the input and output prototypes are specified
in advance, but the prototypes themselves are not. For this reason, the storage of the memory is not
defined for a particular matrix but rather for a class of matrices all of the same size. The class of outer-
product matrix-associators of a given size is the set of all matrices that can be generated from vectors of
±1's via equation (1). An association is not considered to be stored in a particular matrix of the class
unless it is explicitly included in the sum, (1) that determines the matrix.

Unlike digital memory, the information per association can be characterized in two ways. The first
is to present for arbitrary \(k \in \{1, 2, \ldots, M\} \) the \(k \)th input prototype to the system, and regard the matrix-
output as a probabilistic rendition of the \(k \)th output prototype. On the average, (over all matrices of the
class) given \(M \), the matrix-output will provide a certain amount of information about the prototype
output and this is taken as the information provided by the association.

The second method is to consider the matrix as an information channel. The \(k \)th input is presented
to the system and an output is generated. The latter is compared with each prototype-output vector via
a similarity measure and the best prototype match is chosen. This is called an output decision. If the
\(i \)th output prototype is chosen, an error is identified with \(i \neq k \). The probability of error averaged over
the matrix-class is taken as the error probability for the associator as an \(M \)-ary symmetric channel. The
average mutual information between the output and input is thus defined. This average is considered as
the information per association.

In either case, the storage is the product of \(M \) and the information represented by a single
association. Initially, the storage of the matrix increases proportionally with \(M \). The error probability
increases with \(M \) as well so that the information per association gradually decreases. For some value \(M^* \)
of \(M \), the information per association begins to diminish more rapidly than \(M \) increases. At this point,
storing more associations decreases total information storage of the system. The system has reached its
storage capacity.

For the second case, we define for each matrix-size, \(N \), the matrix channel of size \(N \) on \(M \)
associations. It consists of the ensemble of all possible matrices with \(n_1 n_0 = N \) that can be constructed
from a set of \(M \) prototype-pairs \((f_m, g_m) \). Once a set of associations is chosen for storage, a particular
matrix is selected from the ensemble via equation (1). This matrix is deterministic and therefore is not a
channel in the usual sense. The storage for a particular matrix constructed from \(M \) associations is defined
as the storage of the matrix channel from which it was selected.
The matrix-channel does not require that the system reconstruct the appropriate output response as does the first storage characterization. The matrix channel merely selects the best match from among the M prototype-outputs. Therefore one would expect the number of associations storable in the matrix-channel to be larger than in the first type of associator. The storage capacity of the matrix-channel identifies the maximum number of useable associations that can be stored. Use of the channel for input-classification will require storage at some fraction of this maximal figure. Our objective is to quantify the maximal figure as a function of channel-size and use it to determine memory requirements for particular classification tasks. For this purpose, matrix-channel will considered in what follows.

Bounds on Storage Capacity

Assumptions and Notation

This analysis assumes important relative magnitudes among the parameters. We assume \(n_i \geq 100, \ i=1,2 \). The number of associations, \(M \) satisfies \(n_i \ll M \ll 2^{n_i} \ i=1,2 \). The upper bound in this case is assumed to exceed \(M \) by many orders of magnitude. This assures that sampling without replacement is virtually identical to sampling with replacement and simplifies the analysis. An optimal value \(M^* \) of \(M \) will be shown to exist that is less than the net-size, \(n_p n_O \). Therefore, as long as the net-size is insignificant compared with \(2^{n_i} \ i=1,2 \) the assumption on \(M \) is justified.

The vector-prototypes are chosen by independently assigning values \(\pm 1 \) to the components. The probability that either value is taken is 1/2. Random vectors will be referred to with bold capitols (e.g. \(\mathbf{X} \)) whereas specific vector-outcomes are denoted in bold lower-case. For \(m=1,2,...,M \), the input-prototypes are \(\mathbf{F}_m \) and the output-prototypes are \(\mathbf{G}_m \) when considered as random vectors. The components of the input vectors will be indexed by \(^*i \) (e.g. \(F_{ki} \)) and the output vectors will be indexed by \(^*j \). The range of \(i \) is 1,2,...,\(n_1 \) and that of \(j \) is 1,2,...,\(n_O \).

If \(X_1, X_2, \ldots, X_n \) are independent identically distributed (i.i.d.) random variables (r.v.'s) on \{ -1,1 \} with \(p \equiv \Pr(X_i=1) \) and \(S \) is their sum, then \(S \) is binomial with parameters \(p \). We denote this by \(S \sim Bin(\pm 1,n,p) \). Similarly, if \(X \) is a normal r.v., with mean \(\mu \), and variance \(\sigma^2 \), we put \(X \sim N(\mu,\sigma) \).

The matrix-associator will be referred to as \(A^* \). Whether a random matrix or a particular outcome is being discussed should be clear from context. To be consistent with the \(^*i, ^*j \) indexing of input and output vectors, \(^*i \) will refer to the column and \(^*j \) to the row of a matrix entry, e.g. \(A_{ij} \). We define the \(k^{th} \) matrix-output as

\[
q^k_i \equiv Af_k
\]

\(^3 \) for the purposes of input-classification

\(^4 \) For positive parameters, \(y >> x \) indicates that \(y \) is minimally 10\(x \) and is typically much larger.
(The constant \(1/n_1\) is dropped) and write the corresponding random vector as \(G^k\). The dot-product of the \(k^{th}\) matrix-output and the \(l^{th}\) prototype-output is \(D_{kl}\) with outcome \(d_{kl}\).

Parameters that take values in \([-1,1]\) are referred to as "bits" with \(-1\) acting as the logical "0". Logical operations on these parameters are defined in this context as are terms "parity", "compliment" (logical), etc.

Derivation of Storage Limits

Given the \(M\) input-output prototype-pairs \((f_m, g_m)\), the matrix defined by equation (1) is seen as the sum of \(M\) outer-product matrices. The \(m^{th}\) outer-product or association-plane is completely determined by the \(n_1+n_O\) bits of \(f_m\) and \(g_m\). Its \(ji^{th}\) component, \(m_{ji}\), is the product \(f_m g_{mj}\), which takes values in \([-1,1]\). The \(m^{th}\) association-plane is not changed if both \(f_m\) and \(g_m\) are multiplied by \(-1\). This indicates that the \(m^{th}\) plane represents at most \(n_1+n_O-1\) bits of information. The \(n_1+n_O-1\) entries that make up a particular row and column, are easily seen to be independent, so that \(n_1+n_O-1\) is also the lower bound. In fact, the entries of the row and column are enough to determine every other entry in the plane. To illustrate, examine the \(k^{th}\) row and \(l^{th}\) column and the entry \(m_{ji}=f_m g_{mj}\). The three entries (bits) \(m_{ki}\), \(m_{kl}\), and \(m_{jl}\) determine \(m_{ji}\) so that the parity of these four numbers is even. Therefore each association-plane represents exactly \(n_1+n_O-1\) bits.

When the association-planes are summed information is lost. Storage is bounded above by the information contained in the weights (entries) of the associator. An assessment of the matrix entropy provides a bound on the number of association pairs storable. To begin, it can be shown that the entropy or self-information of a r.v. \(X \sim Bin(\pm 1,n,1/2)\) is virtually identical to that of a normal r.v. with variance \(n\). The \(A_{ji}\) are Bin(\pm 1,M,1/2) so each has entropy \(H(A_{ji}) = \frac{1}{2} \log_2 2\pi eM\). An upper bound on the matrix entropy can be obtained by assuming independence of the individual weights. One multiplies the weight-entropy by the number of weights in the system to get \(H(A) = \frac{1}{2} n_1 n_O \log_2 2\pi eM\).

For \(M\) stored associations, there are \(M!\) ways to map the \(M\) (distinct) inputs to the \(M\) (distinct) outputs. To produce an output vector for each input prototype that results in a correct output-decision, the matrix entropy must exceed \(\log_2 M! \approx M[\log_2 M - \log_2 e]\).\(^5\) For \(M < M^*\) we must have

\[
\frac{1}{2} n_1 n_O \log_2 2\pi eM > M[\log_2 M - \log_2 e]
\]

which leads to

\[^5\]Therefore exactly half of the 16 conceivable configurations of these four bits are possible.

\[^6\]For \(M > 2.2 \times 10^4, \log_2 M \gg \log_2 e\) so that the \(\log_2 e\) term can be ignored. Even for \(M\) as small as 3000 however, the approximation \(\log_2 M! \approx \log_2 M\) is reasonably accurate.
\[
\frac{M}{n_1n_0} < \frac{1}{2} \frac{\log_2 M + \log_2 2\pi e}{\log_2 M - \log_2 e}
\]

Generally we can ignore the term \(\log_2 e\) and since \(\log_2 2\pi e \approx 4\), an approximate bound is

\[
\frac{M}{n_1n_0} < \frac{1}{2} \frac{2}{\log_2 M}
\]

For the systems considered, the right side of the inequality will not exceed 1 for \(M\) near \(M^*\). As the net-size approaches infinity, \(M^*\) is seen to lie beneath one-half the net-size. An important observation here is that though one row and one column are enough to specify the bits in each association-plane, the other bits act to preserve information stored in the plane when the planes are summed together. Without the additional bits, the entropy of the row and column alone becomes \(\frac{1}{2}(n_1 + n_0)\log_2 2\pi e M\). This is much smaller than the entropy calculated above and will serve as a lower bound. The assumption of independent weights is false for individual association-planes but should be accurate for \(M\) near \(M^*\) since the inter-correlations between bits in a given plane should be "washed out" by "counter-correlations" in the other (independent) planes in the sum.

Measuring Similarity

The output decisions of a matrix-associator depend on the similarity measure used at the output. A given system will perform differently under different similarity measures. Therefore, the performance of a system must be defined with respect to a particular similarity measure. The general definition of similarity measure follows from the Hamming distance function. Defining \([-1,1]^n\) to be \(\{x \in \mathbb{R}^n \mid x_i \in \{-1,1\}, i=1,2,...,n\}\), the Hamming Distance is the function \(HD: [-1,1]^n \times [-1,1]^n \to \mathbb{R}\) given by \(HD(x,y) = \frac{1}{2} \sum_{i=1}^{n} |x_i - y_i|\). The Hamming Distance is the number of components at which \(x\) and \(y\) disagree. Its negative is a similarity measure on \([-1,1]\). If \(V\) is an \(n\)-dimensional vector-space, then a similarity measure is a function \(S: V \times V \to \mathbb{R}\) such that for \(x, y \in V\),

1. \(S(x,y) = S(y,x)\)
2. For \(x, y \in \{x \in V \mid \|x\|=1\}\), \(S(x,y)\) is maximized by \(x=y\).
3. For \(x, y, w, z \in [-1,1]^n\). \(HD(x,y) < HD(w,z)\) implies \(S(x,y) \leq S(w,z)\)

Under this type of similarity, \(x\) and \(y\) are to said to be more similar than \(w, z\) whenever \(S(x,y) < S(w,z)\). The function is **maximal** for similar vectors. Condition 3 requires the similarity measure to be consistent with the negative Hamming distance similarity, \(-HD(x,y)\) on \([-1,1]^n\).

We allow the word "minimized" to be replaced by "maximized" in 2 with the reversal of the inequality in 3. This results in a function that is **minimal** for similar vectors. The negative of a similarity function is therefore also a similarity function.
Examples of similarity measures include those based on Minkowski Metrics. For instance, either of the forms $S(x, y) = \sum_{i=1}^{n} |x_i - y_i|^p$ or $S(x, y) = \sum_{i=1}^{n} |x_i + y_i|^p$, $p > 0$ or their negatives can be used. An inner-product can also be used, e.g. the dot-product, $S(x, y) = \sum_{i=1}^{n} x_i y_i$. The dot-product has several advantages the first of which is the relative ease of analysis it provides. The dot-product detection distributions are readily identified. Additionally, the dot-product similarity criterion should be a good benchmark for the expected performance of systems that are connected to the output of the matrix-associator. This is because an associator often determines its output by comparing the matrix-input with its stored input-prototypes via the dot-product similarity measure. The resultant output is constructed as a weighted sum of the output-prototypes according to how similar their respective input-prototypes are to the matrix-input. If an associator of this form is connected to the output of a first-stage matrix-associator, it will function best if the first stage always produces a vector that is close to the "correct" input-prototype of the second stage with respect to dot-product similarity.

Detection

The dot-product will be the subject of the analysis, so that $S(x, y)$ will represent this function. Detection will consist of placing f_k at the input of the matrix, determining the output g'_k and calculating $S(g'_k; g_m)$ for $m = 1, 2, ..., M$. The value of m for which this quantity is largest will be chosen as the best match. Since the vectors were originally chosen randomly, the dot-products produced are random variables. The distribution of $S(g'_k; g_m)$ varies according to whether $m = k$. The condition $m = k$ is the match condition and defines the match distribution for the system. The condition $m \neq k$ is the no-match condition defining the no-match distribution. Determination of the distributions will allow evaluation of the probability P_e of an incorrect output-decision.

The dot product is $D_{kl} \equiv G'_k G_i$, $k = 1, 2, ..., M$ where $G'_k = AF_k$, and A is given by (1). More explicitly,

$$G'_k = AF_k$$

$$= \sum_{m=1}^{M} G_m F_m^T F_k$$

$$= \sum_{m=1}^{M} (F_m F_k^T) G_m$$

(3)

From this D_{kl} is seen to be,

$$D_{kl} = G'_k G_i$$

$$= \sum_{m=1}^{M} (F_m F_k^T) (G_m G_i)$$

(4)

Since $F_m F_k = \sum_{i=1}^{n_f} F_m F_{ki}$ and similarly for $G_m G_i$, the sum for D_{kl} expands to
The components of the prototype-vectors are chosen independently over \{-1, 1\} with each of these two values occurring with probability 1/2. This implies that the terms in (5) are 'bits' by our definition so that \(D_{kl} \sim \text{Bin}(\pm 1, M \frac{n_i n_O}{n})\) when \(k \neq l\). For \(k = l\),

\[
D_{kk} = (F_k F_k') (G_k G_k') + \sum_{m=1}^{M} \sum_{i=1}^{n_l} \sum_{j=1}^{n_O} F_{mi} F_{m'i} G_{mj} G_{m'j}
\]

and \(D_{kk} \sim \text{Bin}(\pm 1, (M - 1) \frac{n_i n_O}{n})\). For the assumed range of \(M\), \(M - 1 \approx M\) so that \(D_{kk}\) and \(D_{kl}\) have the same variance, \(\sigma_D = M \frac{n_i n_O}{n}\). The two distributions are identical except for the difference in the means. The mean of the sums in (6) and (5) are zero. The first term in (6) however, is the constant \(n_i n_O\). The match distribution then, has mean \(\mu_1 = n_i n_O\) and the no-match has mean \(\mu_2 = 0\).

The separation, \(d'\) of the two distributions is defined as the absolute difference of the means divided by the geometric mean of the standard-deviations. Since the same standard-deviation is common to both distributions, \(d'\) is the difference between the means measured in standard-deviation-length units:

\[
d' = \frac{|\mu_1 - \mu_2|}{\sigma_D} = \frac{n_i n_O}{\sqrt{M n_i n_O}} = \sqrt{n_i n_O / M}
\]

The larger the relative separation between between the distributions, the smaller the probability that an outcome from one distribution will be found near typical outcomes from the other distribution. As we will see, a large \(d'\) will afford a low error-rate. From (7), \(d'\) increases with increasing net-size and decreases with \(M\) as would be expected.\(^7\)

Evaluation of Error Probability

In order to determine the Information storage for a system whose net-size is \(n_i n_O\) with \(M\) stored associations, \(P_e\) must be determined as a function of \(M\). An error on the \(k\)th input, \(P_{e,k}\) occurs if there is an \(l \in \{1, 2, ..., M\}\), \(l \neq k\) such that \(D_{kl} \geq D_{kk}\). The average over \(k\) of \(P_{e,k}\) is \(P_e\).

Let \(R_k\) denote the range of possible values of \(D_{kk}\). One minus the probability that an error occurs is the probability that \(D_{kl} \geq D_{kk}\), i.e.

\[\text{A matrix with a large number of stored associations should poorly discriminate between match v.s. no-match output-prototype vectors} \]
\[1 - P_{e,k} = \sum_{a \in R_k} P(D_{kl} < a, D_{k2} < a, \ldots, D_{kk} < a, D_{kk+1} < a, \ldots, D_{km} < a) \]

Since \(D_{kl} = G'_k G_l \) and \(D_{kkl} = G'_k G_k \), the two r.v.'s both contain information from \(G'_k \) and are not strictly independent. However, the dot-products are independent given \(G'_k \) and they each provide very little information about its components. We assume then that they are very nearly independent. This allows approximation of \(P_{e,k} \) by

\[P_{e,k} = 1 - \sum_{a \in R_k} P(D_k = a) \prod_{i=1}^{M} P(D_{ik} < a). \]

The \(D_{kl}, k \neq l \) are identically distributed as no-matches, so letting \(D_k \) be a r.v. with the no-match distribution gives

\[P_{e,k} = 1 - \sum_{a \in R_k} P(D_k = a)^{M-1} P(D_{kk} = a) \quad (8) \]

If we define \(F' \) as the distribution \(Bin(\pm 1, Mn^2/O, 1/2) \) with mean of zero, and \(f' \) as the corresponding density function, then (8) can be written,

\[P_{e,k} = 1 - \sum_{a \in R_k} f'(a) f'(a - \mu) \quad (9) \]

where the argument to \(f' \) must be displaced by the mean of \(D_{kk} \). The distribution, \(F' \) can be *normalized* by dividing all dot-product r.v.'s by \(\sigma_D = \sqrt{Mn^2/O} \) to obtain the distribution \(F \sim Bin(\pm 1/\sqrt{Mn^2/O}, 1/2) \) with mean of zero. The error \(P_{e,k} \) becomes

\[P_{e,k} = 1 - \sum_{a \in R_k} F(a)^{M-1} f(a - d') \quad (10) \]

where \(f \) is the density of the normalized distribution \(F \).

The expression above is not dependent on \(k \), so the average probability \(P_e \) that an input will produce an error at the output is given by equation (10); the matrix-channel has been shown to be M-ary symmetric. If \(X \) represents the input vector r.v. and \(Y \) the subsequent output vector r.v., then the information per association is given by

\[I(X;Y) = \log_2 M - P_e \log_2 (M-1) - H_b(P_e) \quad (11) \]

where \(H_b(z) \equiv z \log_2 z - (1-z) \log_2 (1-z), 0 \leq z \leq 1 \) is the binary entropy function.

For a given matrix-class, we evaluate the storage \(M I(X;Y) \) for increasing \(M \) until the maximum storage is found. The maximum is called the storage capacity of the net. The value \(M^* \) of \(M \) that produces the maximum is called the **storage addressability** of the system under this storage.

*Since \(P(D_k = a) \equiv 0 \), no distinction between \(P(D_k < a) \) and \(P(D_k \leq a) \) is made.
characterization. Uniqueness of M^* depends upon the nature of $I(X;Y)$ as a function of M. This function is plotted in figure for a net-size of 10^5. The through-put addressability is the value M^0 of M at which the maximum is achieved. The function is believed to be unimodal, increasing to a maximum before M reaches the net-size and then decreasing rapidly thereafter. The storage should reach a maximum before M reaches the bound given by equation and remaining low for larger M as long as $M < 2^n i$, $i = 1, 2$ is satisfied. The numerical analysis carried out to date bears this out. However, a normal approximation to the distribution F in equation (10) was used and is highly inaccurate for large M. Presently, a more accurate approximation is being devised [29] Numerical methods based on the new approximation and actual simulations of associator matrices will be used to determine storage of the systems and the validity of the analysis.

Data-Dependence of Capacity

In the foregoing development, we assumed the vector-prototypes were chosen randomly. Random vectors' tendency toward pairwise orthogonality keeps interference among associations low. Subsequent sections examine suboptimal prototype storage and retrieval. The object will be to characterize deleterious effects of storing low-entropic associations.

Storage Efficiency

Storage efficiency of a matrix is the matrix-storage divided by the information required to represent a matrix associator on M associations. Examination of equation (1) reveals that each entry in an associator matrix is the sum of M bits. The range of values of each entry is the integers between -M and M. The extremes are realized whenever the bits for that entry all agree in value. Further, the entry will be even if and only if M is even. It follows that the number of values an entry can assume is $M+1$. This means that $n_i n_O$ weights will require $n_i n_O \log_2 (M + 1) = n_i n_O \log_2 M$ bits for storage. Letting $\Sigma = M I(X;Y)$ be the storage of the net, then we define the efficiency η by

$$\eta = \frac{\Sigma}{n_i n_O \log_2 M}$$

Since $I(X;Y) \leq \log_2 M$ by equation (11), it follows that $\Sigma \leq M \log_2 M$ and we have

$$\eta \leq \frac{M \log_2 M}{n_i n_O \log_2 M} = \frac{M}{n_i n_O}$$

From equation , the bound becomes

$$\eta \leq \frac{1}{2} + \frac{2}{\log_2 M}$$

If one could take advantage of the fact that each weight has entropy $1/2 \log_2 2 \pi e M$, the information required to implement the matrix becomes $1/2 \cdot n_i n_O \log_2 2 \pi e M$ as stated earlier. One could therefore define the efficiency by

$$\eta = \frac{\Sigma}{1/2 \cdot n_i n_O \log_2 2 \pi e M}$$

Equation stipulates the efficiency defined this way is less than unity.
The second of these efficiency definitions might be most appropriate if \(\frac{1}{2}n_i n_o \log_2 2\pi e M \) were the maximum achievable entropy of the weights. However, a method for achieving the matrix entropy \(n_i n_o \log_2 (M + 1) \) is being formulated through judicious choice of the associations to be learned. If successful, the maximum storage possible for a matrix would be shown to be \(n_i n_o \log_2 M \). The first definition of efficiency would then indicate the relation of random storage to optimal storage.

Sensitivity of Storage to Vector Correlation

Previously the vector-components of the prototype-vectors were independently selected from \(\{-1,1\} \) with probability 1/2 that either value was taken. If a bias is made in choosing the vectors so that the probability that the value 1 occurs is \(p \) for each vector component, then the storage capacity is adversely affected. In this sense, the unbiased selection was optimal. Two questions are important for the consideration of biased vector selection:

1. What does bias cost in terms of reduced memory capacity?
2. How nearly unbiased must the selection process be in order for the matrix to perform nearly optimally?

The first question addresses the severity of memory degradation with bias. The second relates to the practicality of achieving near optimal storage.

The analysis reveals capacity degradation as a consequence of reduced \(d' \) due to bias-induced vector-correlation. The bias, \(\Delta \) is defined as \(\Delta = |p - 1/2| \) where the bias-probability \(p \) is the probability that any vector component is assigned the value 1. The input may be selected with a different bias than the output so we let \(p_F \) be the bias-probability for the input prototypes and \(p_G \) be the bias-probability for the output.

To see how bias affects vector correlation, let \(U \) and \(V \) be \(n \)-dimensional vectors on \(\{-1,1\} \) with bias-probability \(p^* \). When the components are chosen independently, the probability that a component of \(U \) will agree with its counterpart in \(V \) is

\[
R(U_i = V_i) = R(U_i = 1, V_i = 1) + R(U_i = -1, V_i = -1)
\]

\[
= R(U_i = 1)R(V_i = 1) + R(U_i = -1)R(V_i = -1)
\]

\[
= p^*^2 + (1 - p^*)^2
\]

\[
= 2(p^* - 1/2)^2 + 1/2
\]

\[
= 1/2 + 2\Delta^2
\]

(12)

So \(R(U_i = V_i) \geq 1/2 \) with equality when \(p^* \) is 1/2 \((\Delta = 0)\).

We define \(p_F \equiv p_F^* + (1 - p_F^*)^2 \) to be the probability that \(F_{mi} = F_{m'i} \) for arbitrary
$m, m' \in \{1, 2, \ldots, M\}$ and $i \in \{1, 2, \ldots, n_i\}$. We say that the input prototypes are p_F-correlated. Similarly, the parameter p_G represents the correlation between pairs of output prototypes. The d' parameter can be evaluated for the system by determining the mean and variance of both the match and no-match distributions. The derivation of these is tedious and non-informative and so will be left to an appendix. Results pertinent to the discussion will be related here. For the match distribution, the mean μ_1 and variance σ_1^2 are

$$
\mu_1 = n_i n_O [1 + (M - 1)(2p_F - 1)(2p_G - 1)]
$$

$$
\sigma_1^2 = n_i n_O M [1 + M(2p_F - 1)(2p_G - 1)][1 - (2p_F - 1)(2p_G - 1)]
$$

(13)

The no-match parameters are

$$
\mu_2 = n_i n_O [(2p_F - 1) + (2p_G - 1) + M(2p_F - 1)(2p_G - 1)]
$$

$$
\sigma_2 = n_i n_O M [1 + M(2p_F - 1)(2p_G - 1)][1 - (2p_F - 1)(2p_G - 1)]
$$

(14)

If p_F and p_G are set to $1/2$ in the above equations, the mean and variance assume the values for the unbiased distributions considered earlier. On the other hand, if each bias is large enough (but not too close to 1) for the relation

$$
M(2p_F - 1)(2p_G - 1)(1 - (2p_F - 1)(2p_G - 1)) \geq 1
$$

(15)

to hold, then both the match and no-match variances can be approximated by

$$
n_i n_O M^2(2p_F - 1)(2p_G - 1)(1 - (2p_F - 1)(2p_G - 1)).
$$

The absolute difference between the means is

$$
4n_i n_O (p_F - 1)(p_G - 1)
$$

so that from the definition of d' in (7), we have

$$
d' = \frac{4\sqrt{n_i n_O}}{M} \cdot \frac{(1 - p_F)(1 - p_G)}{\sqrt{(2p_F - 1)(2p_G - 1)(1 - (2p_F - 1)(2p_G - 1))}}
$$

(16)

Whereas d' varied inversely as \sqrt{M} in the unbiased case, it varies inversely as M when a bias is present. Therefore, a bias is thought to severely limit the capacity of the associator. On the other hand, a bias must be present on both the input and output vectors for the effect to be present. Correlated vectors are not as nearly orthogonal as are uncorrelated vectors. Interference effects will not be present if the associator either maps correlated vectors to nearly orthogonal vectors or vice-versa. In particular, if correlated input vectors are associated to uncorrelated output vectors, no resulting capacity degradation is present. An associator could be used as a *front-end* to other associator units in order to translate correlated input vectors to uncorrelated outputs for further processing.

9 Notice the subtle difference between the match and no-match variances. This is not an error!

10 In this discussion, the correlations are considered as by-products of the bias so that the vector prototypes can be considered as mutually independent. However, calculation of the match/no-match mean and variances and that of d' was carried out without the assumption of independence between respective components of the prototype vectors.
In order for correlation effects not to be significant, the bias should be small enough so that the reverse of the conditions (15) should hold. One could ignore p_F and p_G in (14) and (13) if they satisfied\(^{11}\)

$$M(2p_F - 1)(2p_G - 1) \leq 1/9$$

Say for example, the bias of the input and the output prototypes were the same. We set both p_F and p_G equal to $1/2 \pm \Delta^2$ in accordance with (12). From condition, it follows that $M(2p_F - 1)(2p_G - 1) \gg 1$.

The bias, Δ would have to satisfy $|2(1/2 \pm 2\Delta^2) - 1|^2 \leq 1/9M$ so that Δ cannot exceed $\frac{1}{2\sqrt{3}}M^{-1/4}$.

Large associators with many stored associations will require small values of Δ to perform nearly optimally. It is the large systems that will suffer substantial capacity deterioration if care is not taken to insure that the vector prototypes are chosen with nearly even distribution of -1's and 1's.

When Δ is large enough to limit performance, it is desirable to substitute d' from equation (16) into (10) and (11) to estimate the reduced capacity. A large bias however will compromise the independence of the dot-products D_{kl}, $k,l \in \{1,2,\ldots,M\}$ that was assumed for the derivation of (10). At best, (10) might be accurate for the smallest values of Δ in the non-optimal range. If we assume p_F equals p_G, then the smallest non-optimal value for M associations is determined from (15) and so must satisfy

$$M(2p_F - 1)(2p_G - 1) \gg 1$$

We take "9" to be much greater than 1 and get

$$\Delta \approx \frac{\sqrt{3}}{2}M^{-1/4}$$

An upper bound on the capacity may be found by estimating the entropy of the matrix weights which will be distributed as $\text{Bin}(\pm 1,n,p)$ where p is determined from p_F and p_G. Again, only the smallest values of non-optimal Δ can be considered by this method since the weights will lose their independence as the bias becomes large.

\(^{11}\)The fraction "1/10" is $\ll 1$ but 9 is a perfect square so "1/9" is used.
References

