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3. MAGNETOSTRICTION

Certain iron/rare earth alloys display both frustration and a huge magnetostriction. There are cubic Laves

phase RFe2 (R = rare earth) compounds, for example, where magnetically induced strains "overwhelm the

conventional thermal expansion of the material", Clark [12]. TbDyFe2 (terfenol) solidifies from the melt with a

complex highly mobile domains consisting of structural domains and magnetic domains. Typical growth habits

result in configurations with parallel twinned layers, cf. Figure 2, that persist in the magnetostrictive process. We

have been studying this with a theory of magnetoelastic interactions based on the micromagnetics of W. F.

Brown, Jr. [7,8,9] and the symmetry considerations introduced by Ericksen [21,22,23]. For a complete

discussion, we refer to James and Kinderlehrer [32]. It has some similarities with Toupin's theory of the elastic

dielectric [54]. We then apply it to the equilibrium microstructure of TbDyFe2. The primary mechanism of

magnetostriction appears to be an exhange of stability of mechanical variants under the influence of a change in the

magnetic field. This material is the topic of discussion in, for example, [1,2,13,14,15,41].

For relatively rigid materials one may assume the free energy to depend on magnetization alone, [28,29].

The theory in this case gives good qualitative agreement with experiment, explaining why cubic magnets have a

few large domains and why uniaxial ones have a fine structure. Domain refinement at the boundary is also

predicted when the normal to the boundary has a suitable orientation relative to the crystal axes, in agreement with

observations.
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Figure 2. Schematic depiction of the microstructure in a sample of TbDyFe2 illustrating the
herringbone structure of two sets of laminar fine structures. Crystallographic directions are with
reference to the high temperature nonmagnetic phase.

We assign to the material a stored energy density which depends on the deformation gradient F e M, 3 x

3 matrices, magnetization (per unit mass) m € R3, and temperature 6 e R. In what follows, dependence on

temperature will be depressed. We suppose it given by a nonnegative function

W(F, m), F € M, m € R3, (3.1)

subject to the condition of frame indifference
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W(QFjnQT) = W(F,m), Q e S0(3), (3.2)

and a condition of material symmetry

W(FP,m) = W(F,m), P € P, (3.3)

where P is an appropriate crystallographic point group. The saturation constraint, for our purposes, leads to the

constraint

Iml s f(9) = 1 in the body. (3.4)

Requiring W to depend on the deformation gradient F = Vy and magnetization m but not on V2y

and Vm indicates that any energy associated with mechanical twin walls and Bloch walls is neglected. In this

formulation, there may be infinitely fine twins or infinitely fine magnetic domains, as we have suggested earlier.

Since on a macroscopic level, the materials of interest display highly mobile domain configurations, any wall

energies need be very small. The analytical benefit is that in the limit of infinite fineness we are able to determine

rather accurately the arrangement and location of variants within the material, although not their dimensions.

In Terfenol-D, onset of ferromagnetism is associated with a stretch of the high temperature unit cell along a

main diagonal parallel to the magnetization. W achieves its minimum energy on the eight pairs (Ui, ±mO,

Ui = Till + (Tl2-i1i)mi0mi» l = 1,2,3,4, and

mi = -p ( l . l . l ) . m2 = -p ( l , - l , - l ) , m3 = -p ( - l , l , - l ) , nu = 7= (-1.-1.1). (3.5)
\ 3 \ 3 \ 3 \ 3

From Al-Jiboory and Lord [1], we deduce that r\\ = 0.9992 (±0.0001) and T|2 = 1.0016 (±0.0002).

According to the frame indifference, W also achieves its minimum on the eight potential wells

(RUi,miRT), (RUi,-miRT), R € SO(3), i = 1,2,3,4. (3.6)

An orbit of the form (RUijniR'1), R e SO(3), will be called a variant by analogy to martensitic transformations.

We regard the coordinates chosen so that this represents the upper laminate in Figure 1.

The typical configuration of TbDyFe2 rods consists of parallel growth twins. To model these, we assume
that the entire rod is a composite for which we must introduce an inhomogeneous energy W(F,m,x), x e Q, cf.

[32]. The lower lamellar structure arises from a rotation of 180° about the mi = -7= (1.1,1) axis of the
V3

original upper lattice. Denoting by Ro this rotation, the energy of the lower portion is given by W(FRo4n).
Assuming coordinates to have been arranged so that the two regimes are separated by x-mi = 0, we arrive at an
energy density for the composite given by
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The Phase Transition in TbDyFe2
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Figure 3 The phase transition in terfenol.

W(Fon,x) =
W(F,m)

W(FRo4n)
x-mi > 0
x m i < 0 (3.7)

Note that Ro is not a symmetry operation of the original energy and, although holding invariant the well of
), gives a different set of wells with transformation strains and magnetizations
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Ui = Till + Cn2-iH)mi®mi, ±mi\ with mi = miR0,1 = U,3,4. (3.8)

Maxwell's Equations are introduced into this framework by

divy(-Vyv + — - — m) = 0 in R3. (3.9)
det Vy

where v is a potential for the magnetic field.

In this fashion we may write the virtual energy of the configuration y = y(x), m = m(x) in the mixed

reference/spatial form

E(yon) = fw(Vyjn,x)dx + \ f l V y v | 2 d y (3.10)

subject to the constraints,

v +
det Vy

divy(-Vyv + — - — m) = 0 in R3. (3.11)
J 3 d t V

Iml = 1 in y(Q).

From (3.9), we may also write the energy in the form

E(yjn) = Jw(Vy,m,x)dx + \ f 7 -^— m V y v dy . (3.12)
CL l J detVy

y(Q)

Both for computational and analytical reasons, it is useful to express this in terms of reference variables

alone. For this, introduce u(x) = v(y(x)), so Vu(x) = Vyv(y(x))F(x), F(x) = Vy(x). With C = F ^ , the

constraint equation (3.9) becomes

div(-VuC-*de^F + mF-T) = 0 in R3. (3.13)

The virtual energy of y = y(x), m = m(x) in reference form is

E(y,m) = fw(Vy,m,x)dx + \ [ Vu C^-Vu det F dxt (3.14)

subject to (3.10) and (3.11). Analogous to (3.12), we may also write (3.14) as

E(y,m) = fw(Vyon^)dx + \ fVu-mF-Tdx. (3.15)

Our idea of a variational principle is to find a pair (yon) such that
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E(yan) = inf{E(TuO: (tut) subject to (3.11)}.

However, in our situation, with the material, in essence, uniaxial, this will not be possible. Instead we

must content ourselves with this result, whose verification relies on an explicit construction:

infE = minWIQL (3.16)

4. THE VARIATIONAL CONTEXT

4.1 The variational context: energetics

Consider the minimization question associated to (3.16) subject to (3.11). By choosing a special

sequence of magnetizations, one may show that

infE(y,m) = minWIQI , (4.1)

as discussed at the end of §3. However, because of the competition between the field energy and the stored

energy, there cannot be any pair (y*,m*) with y* affine and

E(y*,m*) = m i n W I Q I . (4.2)

We are led in this manner to consider a sequence of deformation fields and magnetizations (yk,mk)

subject to (3.9) for which

E(yk,mk) -* minWIQI, Vyk -> Vy and mk -> m, (4.3)

where the convergence is in the sense of (2.4), or equivalently, (2.7).

The only way for (4.3) to occur is if

W(ykank) -+ minW and \ f lV y v k | 2dy -> 0. (4.4)

Since

W(yk,mk) -> W(x), for x € O,

W(x) =

we must have that the set of (A,}i) charged by v, that is the support of the measure v, is contained in the

minimum energy wells described by (3.17). In analytical terms we write

suppv c {(A,*i): W(A^) = minW} = X. (4.5)
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In addition, (4.4) provides via the constraint equation in (3.9) that

• * v y — ^ ~ Z m k -> 0 in iHOR3). (4.6)

(4.5) and (4.6) place severe constraints on the possible forms of Vy and m.

4.2 The variational context: kinematics

The minors of Vyk are special functions y(A) which are continuous with respect to weak convergence.

They are, of course, the null-Lagrangians. The Young measure relation also holds. So, in the present situation,

combining (4.5) with the Young measure representation gives

Vy(x) = | A d v x ( A , n ) , (4.7)

adjVy(x) = f adj A dvx(A,*i) , and (4.8)

detVy(x) = fdetAdv x(A,j i ) , (4.9)• I
where adj A stands for the classical adjoint of A and det A stands for the determinant of A. Formula (4.7)

is simply a restatement of (3.4) in this case and is included to provide a complete list of null-lagrangians. We

refer to (4.7) - (4.9) as the minors relations. They are among the most useful tools in analyzing microstructure.

Analogous formulas hold for any problem in thermoelasticity, but in magnetostriction we also have a

relation about magnetization owing to (4.6). This relation is most useful in reference coordinates. Recall that

m(x) = Udvx(A,|0. (4.10)• i
The new relation is that

m(x)V7(x)-T = UA-Tdv x (A,n) , (4.11)

with

div (m(Vy)-T) = 0 in R*. (4.12)
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These relations place extremely strong restrictions on the nature of possible equilibrium configurations

because they assert that the limit statistics of equilibrium configurations must be compatible with the potential

well structure of the macroscopic bulk energy.

5. EQUILIBRIUM STRUCTURES IN TERFENOL

To ascertain the equilibrium configurations of Terfenol, we describe how deformation gradients chosen

from the potential wells (3.5) and (3.8) give rise to coherent fine phase and exactly coherent minimum energy

laminates and composites. At the conclusion of this section we report on the implications of these configurations

for the magnetostrictive properties of Terfenol. We focus, for brevity, on the mechanical deformation. We refer

to [30,32] where magnetic domains and the role of (4.12) are discussed. A deformation y with gradient Vy

which assumes exactly two values in some domain Q, say,

Vy(x) = Mi or M2 in fl,

Mi and M2 3 x 3 matrices, must have the property

M2 - Mi = cc®n » rank one. (5.1)

In addition, there is a function f(t) which assumes only the values 0 and 1 such that

Vy(x) = Mi + f (x -n )a®n = (1 - f(x-n))Mi + f(x-n)M2.

We refer to y as a (coherent) laminate. The { Mj} may represent the deformation gradients of twin related

variants with normal n.

Similarly, if a sequence ( y k ) of deformations with yk -> y weakly generates a Young measure v =

(Vx)x€Q such that

I 6(x)v(M2), (5.2)

where 0 < 0(x) < 1, the minors relations imply that

M 2 - M 1 = a ® n = Mi a ® n = rank one, (5.3)

and there is a function f(t) such that

6(x) = f(x-n).

The average or limit deformation gradient is

Vy(x) = (l-9((x))Mi + 0(x)M2 = Mi + 9(x)ct®n. (5.4)
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We consider v to determine a fine phase laminate.

We may construct a sequence ( y k ) which gives rise to (4.14), for example, in the case of constant 6

€ (0,1) by setting

x € £2, (5.5)

where f*(t) = fo(kt) and

a N J i o < z < e
UZ) M O G < z < 1

and is extended periodically on the line. Specifically,

Vy(x) = F = (l-G)Mi + 6M2 (5.6)

When Mi lie in minimum energy wells for an energy W(F), then yk is a sequence of minimum energy

laminates whose limit is the fine phase laminate Young measure v of (5.2). If we require the sequence yk to

satisfy a boundary condition or, as will occur in the present situation, a matching sequence of deformations

defined in an adjacent region, a small transition layer will generally arise in which the Vyk will have small but

not minimum energy.

Neglecting for the present the role of magnetization, we show how minimum energy laminates may be

found. Laminates and fine phase laminates may be constructed from any pair of energy wells SO(3)Ui where

I el < 1 and

Ui = 1 + e £ i ® £ i and U2 = 1 + e^2®^2, l&l = 1, £1 and £2 independent. (5.7)

The twins and reciprocal twins have normals

n+ = ^=<Si + $2) and n- = ^=<Si-fc).

There are rotations R*(£) with common axis parallel to £1 A £2 and vectors a±(e) with

Ui = R±D2<1 + tf^n*) (5.8)

A coherent laminate, as depicted in Figure 4 may be constructed from the deformation gradients Mi = Ui

and M2 as R+U2 or from the deformation gradients Ui and R-U2, cf. also (3.16) - (3.19). Finally, we may

select 0 i = Ui and U2 = Uj for any pair of the transformation strains described in (3.5). In this situation,

we may construct a compatible sequence of magnetizations mk with mk = ±mi in the Ui regions and mk =

± mj(R+)T in the R+Uj regions with the property that the limit average m = 0, but we omit the details of this,

so that
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= minWIQI.

Table 1 describes the twins and reciprocal twins obtained in this way.

t
(HI)

(-211)

U. u. J
Figure 4. The equilibrium microstructure of a laminate with parameters predicted by the
theory. The gray arrows represent directions of the magnetization within the mechanical
layers. In the Ui layers they are ± mi and in the shaded layers they are ± mj(R+)T.

Next, we describe how homogeneous defonnations can be kinematically compatible with rotated energy

wells, and hence can form composite laminates. Suppose that y(x) = Fx is a homogeneous deformation defined

in an upper region £l\ = { x € ft: x • m > 0 }, I m I = 1. Let R denote a rotation by 180° about the axis m.

Then there is a 180° rotation Q with axis mF"1 such that

QFR = F(l + c ® m). (5.9)

Thus there is a laminate with deformation gradient Mi = F and M2 = QFR which has normal m. In

particular, we may choose F of the form (5.6) to obtain a twinned herringbone structure like that depicted in

Figure 2.

However it is only under special circumstances that this is possible with (5.9) valid for each Vyk, for

this requires simultaneously choosing the same Q for both F = Mi and F = M2 in (5.9). In general, a small

transition layer is necessary in order that the sequence remain coherent. In [32] we determined the condition for

exact coherence, which is, in the notations of (5.3) and (5.9), that

a-m 0. (5.10)

This condition is fulfilled when m = mi as long as Ui is not among the choice of wells comprising the
laminate. It then becomes possible to have a more flexible structure. A depiction of some of the possible
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variants

12

13

14

23

34

24

twin planes

(100) twin

(Oil) reciprocal

(010) twin

(101) reciprocal

(001) twin

(110) reciprocal

(001) twin

(110) reciprocal

(-100) twin

(01-1) reciprocal

(0-10) twin

(10-1) reciprocal

intersection of twin

plane with (0-11)

<on>
(100)

(ioo>

(-111)

(ioo>

(-111)

(100)

(HI)

(OH)

parallel to (01-1)

(100)

am
Table 1. Twinning data for the compatible variants. The third column gives
the intersection of the twin plane with the (0-11) plane of observation

configurations is in Figure 6. They are both observed, cf. [2,41]. Zhang and Soffa [56] report on domain

structures in FePt and FePd which, by our condition (5.10) can occur only as fine phase laminate configurations.

To conclude this note, we wish to offer a few remarks about magnetostriction. Our computations suggest

that the fine phase laminate 12/12* has the largest magnetostriction and one which is approximately 90% of

maximum strain experienced by a line segment This suggests a transition between the possibly coarser exactly

coherent configuration and the fine phase configuration which is explained in [32].
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Figure 6. Comparison of fine phase and exact coherence of predicted laminates as viewed on the
(0-11) plane, i, j , k, i \ j 1 k* denote the potential wells from which the laminate is
constructed, cf. (3.5) and (3.8). a may be 12/1*2* fine phase or 34/3*4' exactly coherent
b, with three variants, must be 342/3*4*2* or 432/4*3*2* exactly coherent. Both a and b
are observed, [41] and [2] respectively.
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