
(24)

Now, since

changing p by r — / and q by 5 — m in the inner sums in (23) and (24) gives

" E-nF<r,,<nF (^HT)" + i t W W ^ ^ *

" m))]

and

Finally, we exchange the sums in /, m and r, 5 to obtain the Fourier series for the
right hand sides of (21) and (22). It is easily checked that

41m) = 0 if |<| > kF or \m\ > kF.

Thus, the sums over (/, m) can be restricted to — kF < l,m < kF and therefore
the sums in (r, $) reduce to sums for — nF < r, s < nF. Then, equating Fourier
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coefficients yields the recursive formulae

<& < ) C . ^ , (25)
_ / f V \n-* J2,-

) V *7/,nJ aJb,(/,m)

and

fc=0 2-/=max(-/fcF,r-(n-A)F) 2-m=max(-fcF,»-(n-Jfc)F) [7/,mVl7/,my aJb,(/,m)

4 )"-fcarrfJ;J)m) + (-i%m)n-kar4^m) (26)

A similar calculation for the second and fourth equations in (17) gives

<<;,,) - <fc,<) = - (^(-«7)" + A^-nr-^iKrv)) CnM (27)
En-1 ^min(fcF,r+(n-fc)F) ^min(A:F^+(n-A:)F) [/. + xn-ibjl^H- / • - Xn-Ar^l,-

jfc=0 ^/=max(-JkF,r-(n-ib)F) ^m=max(-ibF,«-(n-A:)F) [V l7/,m/ a*,(/,m) "" V l 7 / , m / °ik,(/,m)

and

r - 0)] ^n-*,(r-^-TO) •

On the other hand, the equations (18) are equivalent to

*k, + 7i*^, = 0 (29)
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and

Thus, the six equations (25) to (30) allow us to compute the coefficients djj^)

in terms of dw/m\, k < n, and C;,(p,g), and therefore give us the desired recursive

formulae. Recursive formulae for a perfect conductor can be obtained from (25)-(30)

simply by setting

<*•;" m) = 0 for t = 1,2,3 and all Jfc, / and m.

4 Numerical Results

In this section we present the results produced by our algorithm in some numerical

experiments. The algorithm is fairly simple: it relies on the formulae (25)-(30) for

the computation of the Taylor coefficients of the Rayleigh amplitudes and on Pade

approximation (i.e. approximation by rational functions —see e.g. [1, 2, 3, 7, 13])

for the summation of the Taylor series, perhaps beyond their radii of convergence.

This procedure is entirely analogous to that of the singly periodic case; we refer

to [6] for details.

One point of interest in connection with our algorithm is that it produces the

diffraction efficiencies as functions of the height h/d. In other words, once the Taylor

coefficients and the Pade approximants for a particular wavelength and period have

been found, calculation of efficiencies for any particular height reduces to evaluation

of simple rational functions. This feature, of which we have taken advantage in the

examples that follow, is significant in design applications, in which many numerical

experiments must be performed in the search for a particular behavior of the device

under consideration.

As we have said, our algorithm can yield good performance with limited re-

quirements in terms of computing power. For a surface which can be represented

accurately by a double Fourier series of order mxm and if approximations of order

n are sought, the storage requirement is of the order of m2n3 locations. The cor-

responding computing time is of the order of n6. While the computing time could

seem quite elevated, it is not so in practice, as very good convergence can be ob-

tained for rather small values of n, see Tables 4 and 5. For example, a calculation
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with n = 13 for a bi-sinusoidal grating can be performed in about 20 to 30 seconds

in a Sparc station IPX. Corresponding times for n = 17, 21, 25, 29 and 33 in the

problem of Table 4 are 1.5 min, 5 min, 14.5 min, 34.5 min, and 75 min respectively.

For simplicity, we shall restrict ourselves to sinusoidal bigratings of the form

= — COS
(2itx
XT COS (31)

i.e. F = 1 in (20). In our first example, Table 1, we present the computed values

of the reflected efficiencies (cf. (7)), as a function of the height-to-period ratio,

for a perfectly conducting grating illuminated under normal incidence with light of

wavelength-to-period ratio X/d = 0.83. The number e denotes the defect in the

energy relation (8)

(In the case of a perfectly conducting grating we have, of course, er 8 = 0.)

h/d
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

e(-l,0)

0.018810
0.063551
0.110711
0.139786
0.134627
0.089612
0.036325
0.035293
0.097266
0.180165

e(0,-l)

0.059691
0.192968
0.308565
0.342547
0.283651
0.168376
0.068458
0.033719
0.040570
0.048574

e(0,0)

0.842996
0.486961
0.161448
0.035335
0.163443
0.484016
0.790359
0.862052
0.727476
0.557739

6

-6.6E-16
-2.5E-15
-6.0E-13
-9.2E-10
-1.6E-07
-7.1E-06
-7.1E-05
7.8E-05
3.1E-03
1.5E-02

Table 1: Efficiencies for the perfectly conducting sinusoidal grating (31) under

normal incidence with a wavelength-to-period ratio X/d = 0.83: [14/14] Pade

approximants.
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In the problem considered in Table 1 there are five propagating modes with
6(i,o) = e(-i,o) and e(o,i) = e(o,-i). We observe an excellent performance of the
method, with meaningful results for height-to-period ratios of up to h/d = 1.

Applications of other numerical methods for crossed gratings have been re-
stricted, due to constraints in computing time and storage, to cases in which only
a few non-evanescent modes occur. Our method does not seem to be affected by
such problems, and it remains accurate even in the presence of a large number of
diffracted modes. To illustrate this point, we present in Table 2 results correspond-
ing to normal incidence of light with X/d = 0.4368 (a case which has been used
repeatedly in the literature in tests of numerical methods for singly periodic grat-
ings). In this case there are 21 diffracted modes, and we have chosen to display the
efficiency in the (0,0) order only. A very good performance is still observed.

h/d
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

eo,o
0.583991
0.086946
0.000351
0.006391
0.065342
0.087383
0.164344
0.150834

€

5.9E-15
2.1E-14
5.5E-13
1.4E-08
2.9E-06
-2.8E-04
-6.0E-03
2.6E-02

Table 2: Efficiency of order (0,0) for the perfectly conducting grating (31) under
normal incidence with a wavelength-to-period ratio X/d = 0.4368: [14/14] Pade

approximants.

In order to gain an insight on the performance of the method in transmission
problems, we present, in Table 3, data corresponding to the same case as in Table 1
except that now the grating is made from a material with a real refractive index
i/o = 2. Only the values of the efficiencies corresponding to reflected orders are
shown. We see that the accuracy in this loseless transmission problem is at most
one order of magnitude worse than in the perfect conductor case.
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h/d
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

e(-l,0)
3.27740E-03
1.04422E-02
1.59870E-02
1.62416E-02
1.17477E-02
5.95943E-03
1.99679E-03
6.48092E-04
1.02779E-03
2.17608E-03

c(0,-l)
3.72963E-03
1.18396E-02
1.82072E-02
1.90710E-02
1.50841E-02
9.39648E-03
4.60557E-03
1.78457E-03
3.79257E-04
5.75382E-05

e(0,0)
9.62746E-02
6.17586E-02
2.77715E-02
7.76777E-03
1.97567E-03
2.96947E-03
4.12865E-03
3.45135E-03
2.02366E-03
1.05870E-03

6

1.8E-14
1.5E-14

-1.0E-11
-7.1E-09
1.7E-07
6.4E-05
1.0E-03
8.8E-03
3.8E-02
1.1E-01

Table 3: Efficiencies for the sinusoidal grating (31) with index of refraction vo = 2,

under normal incidence with a wavelength-to-period ratio X/d = 0.83: [14/14]

Pade approximants.

For comparison purposes, we now give three examples that correspond to the

lossy gratings treated in [18]. The values for the refractive indices of metals we

used were taken from [21]. The first two cases below (Figures 1 and 2) were ob-

tained in [18] as a result of a search for totally absorbing gratings. For this, the

authors considered first a bi-sinusoidal grating in gold and studied the zeroth-order

reflectance as a function of the period d (see [18, Fig. 7.17]). Only the zero order

efficiency is non-evanescent in this case.

In Figure 1 we show the results given in this case by our algorithm. Qualitative

agreement with the results in [8, 18] is observed. However, some discrepancies do

occur. For example, in contrast with Figure 7.17 of [18], our curves 2 and 3 coincide

at d = 0.62/zm. This prompted us to analyze the accuracy of our results. We found

that, for this range of parameters, our method yields extremely accurate results,

with errors in the reflected energy ("E. R.") which are better than 10~14. This

can be seen in Table 4, which contains a convergence study for the values of the

reflected energy at d = 0.62//m for the curves labeled 2 and 3 in Figure 1. We see

that, as claimed, an accuracy better than 8 digits is obtained by an approximation

of order 13. To demonstrate the range of parameters in which our method can be

applied, we include a third column in Table 4 showing the values of E. R. for a

much deeper grating profile of height h = 0.500/xm, for which h/d = 0.806. We see
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E.R.

0.61 0.62 0.63

Figure 1: Energy reflected by a sinusoidal grating in gold used with normally incident
light of wavelength 0.65/zm. 1. h = 0.040/zm; 2. h = 0.055/im; 3. h = 0.070/zm:
[6/6] Pade approximants

that even in this case, the results are quite accurate: the errors are of the order

of 10~4 for a [6/6] approximant (n = 13) and of 10~6 for a [14/14] approximant

(n = 29) (Pade approximants with n=15, 19, 23, 27 and 31 are singular for this

problem.) The computing time used for the calculation of the Taylor coefficients

and the corresponding Pade approximants with n = 13 was of about twenty seconds

in a Sparc station IPX. As pointed out above, particular calculations for several

values of the height take virtually no computer time once the Pade approximants

have been found. We find the results in the first row of Table 4 rather satisfactory,

and even more so taking into account the limited computer power they required.

The accuracy of the integral method in this problem (h = 0.055 and h = 0.070) has

been estimated to be of the order of two digits [8].
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n
13
17
21
25
29
33

h = 0.055/im
0.0227882361359963
0.0227882361334883
0.0227882361334891
0.0227882361334900
0.0227882361334896
0.0227882361334896

h = 0.070/xm
0.0226057361431067
0.0226057359874209
0.0226057359874838
0.0226057359874644
0.0226057359874220
0.0226057359874253

h = 0.500/wn
0.84146746
0.84202623
0.84219841
0.84260919
0.84197301
0.84197398

Table 4: Convergence study of the reflected energy for the example in Figure 1

(gold). The period is fixed at 0.62/xm and the wavelength at 0.65/mi.

Pade approximants.

(0,0)

0 ,65 0.75

Figure 2: Zeroth-order efficiency for a sinusoidal grating in gold having a groove
depth h = 0.080/im and a period of 0.60//m, used with normally incident light:
[6/6] Pade approximants

From Figure 1 we see that, as established in [8,18], the grating is highly absorbing

when the period d is close to d = 0.62/im. Indeed, when the period is fixed to

d = 0.62/xm our code reveals that the reflected energy attains a minimum at h =

0.0620±0.0001, where E. R.= 0.007. As mentioned above this value can be computed

with great accuracy. Such high accuracies are required in some applications [15, p.

46], [17, p. 218].

Similar values of the parameters were used to produce Figure 7.18 in [18]. The

groove depth was fixed at h = 0.080/im and the period at d = 0.60/im, while the

wavelength was varied between 0.55//m and 0.75/xm. In Figure 2 we display the

results given by our algorithm; our graph appears to coincide with [18, Fig. 7.18].
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Figure 3: The energy absorbed by a sinusoidal grating in copper having a groove
depth h = 0.20/xm as a function of the wavelength for normally incident light, (a)
d = 0.7071/im; (b) d = 0.50/im; (c) d = 0.35/im; (d) d = 0.20/zm: [6/6] Pade
approximants

Finally, Figure 3 is related to the study of the reduction of metallic reflectivity

given in [18]. The objective is to construct a solar selective grating which is highly

absorbing throughout the visible region and highly reflecting in the near infrared.

The results of our code for a sinusoidal grating in copper are plotted in Figure 3

(see [18, Fig. 7.19]). While the general features of these curves are similar to those

in [18, Fig. 7.19], comparison shows that our graphs differ from those there in a

number of important details. For example, in [18, Fig. 7.19] the absorbed energy

in Figures 3a,b is below our predictions, for the shortest wavelengths, by as much
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as 20%. This is probably due either to low accuracies in the results given by the

integral method, or to differences in the values used of the refractive index of copper.

The accuracy of our predictions is shown by the convergence study of Table 5.

n
13
17
21
25
29
33

d = 0.7071/iro
0.66407973570
0.66442364189
0.66442218058
0.66442216062
0.66442215270
0.66442215271

d = 0.5000/zm
0.73248902890
0.72911437001
0.72918754870
0.72919146502
0.72919155477
0.72919154229

Table 5: Convergence study of the absorbed energy for the example in Figures 3(a)

and 3(b) (copper). The wavelength is fixed at A = 0.3/im and the period at

d = 0.7071/xm for Figure 3(a) and at d = 0.5000/im for Figure 3(b).

I11^/21^] P&de approximants.

Conclusions:
We have introduced a new numerical method for the solution of problems of

diffraction in a doubly periodic, three dimensional structure. The method is based

on a rigorous high order perturbative technique which had proven successful in the

corresponding problems in the singly periodic case. If approximations of very high

order are sought, our method may become prohibitively expensive in terms of com-

puting time and storage. Fortunately, however, excellent convergence is observed

for approximations of relatively low orders. Furthermore, once the Pade approxi-

mants have been calculated for a particular set of parameters, the efficiencies can be

obtained for any number of different heights at virtually no cost. And, the perfor-

mance does not seem to be substantially affected by the presence of a large number

of non-evanescent modes.

We have shown through examples of varied nature that computation times of

about twenty to thirty seconds on a desk top computer suffice to give very accurate

results for bisinusoidal gratings. Generalization of our codes to surfaces other than

bi-sinusoidal is in principle immediate, but the full domain of applicability of our

algorithm is yet to be explored.
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We have compared our results with other theoretical results available in the liter-

ature. The most important features of the efficiency curves given by other methods,

such as total absorption, have been confirmed. Some rather marked differences have

been observed, however, between previous curves and ours. Thus we have performed

convergence studies which demonstrated the high accuracy of our results; graphical

differences can therefore be attributed to low accuracies of other methods, or to use

of different values for the refractive indices of the metals. In any case, the higher res-

olution of our method has been established. We believe that the improvement in the

numerical resolution given by our algorithm, accompanied by its low computational

cost, will prove significant in future design applications.
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