
Carnegie Mellon University
Research Showcase

Institute for Software Research School of Computer Science

1-1-2006

Automating Post-Editing to Improve MT Systems
Ariadna Font Llitjós
Carnegie Mellon University

Jaime G. Carbonell
Carnegie Mellon University, jgc@cs.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/isr

This Working Paper is brought to you for free and open access by the School of Computer Science at Research Showcase. It has been accepted for
inclusion in Institute for Software Research by an authorized administrator of Research Showcase. For more information, please contact research-
showcase@andrew.cmu.edu.

Recommended Citation
Llitjós, Ariadna Font and Carbonell, Jaime G., "Automating Post-Editing to Improve MT Systems" (2006). Institute for Software
Research. Paper 395.
http://repository.cmu.edu/isr/395

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fisr%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/isr?utm_source=repository.cmu.edu%2Fisr%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fisr%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/isr?utm_source=repository.cmu.edu%2Fisr%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/isr/395?utm_source=repository.cmu.edu%2Fisr%2F395&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu
mailto:research-showcase@andrew.cmu.edu

Automating Post-Editing To Improve MT Systems

Ariadna Font Llitjós Jaime G. Carbonell
Language Technologies Institute Language Technologies Institute

Carnegie Mellon University Carnegie Mellon University
Pittsburgh, 15217 Pittsburgh, 15217

aria@cs.cmu.edu jgc@cs.cmu.edu

Abstract

Beyond manual and automated post-
editing, we describe an approach that takes
post-editing information to automatically
improve the underlying rules and lexical
entries of a transfer-based Machine Trans-
lation (MT) system. This process can be
divided into two main steps. In the first
step, an online post-editing tool allows for
easy error diagnosis and implicit error
categorization. In the second step, an Auto-
matic Rule Refiner performs error remedia-
tion, by tracking errors and suggesting
repairs that are mostly lexical and morpho-
syntactic in nature (such as word-order or
incorrect agreement in transfer rules). This
approach directly improves the intelligibil-
ity of corrected MT output and, more inter-
estingly, it generalizes over unseen data,
providing improved MT output for similar
sentences that have not been corrected.
Hence our approach is an alternative to
fully-automated Post-Editing.

1 Introduction

Achieving high translation quality remains the big-
gest challenge for Machine Translation research-
ers. Currently, the two main directions towards this
objective are improving the MT system itself or
improving the result of the system, namely the MT
output, commonly known as post-editing.

The first direction is by far the most popular,
and involves different solutions depending on the
different MT approaches. Statistical MT systems,

after starting to plateau by adding more training
data, are now turning to ways of incorporating syn-
tactic knowledge to guide or inform their transla-
tion algorithms.

Traditional solutions to improve Transfer-
Based MT systems are costly and time-consuming,
since they involve the work of many computational
linguists over extended periods of time to develop
new rules and refine old ones. Moreover, in any
MT system, out-of-vocabulary words are con-
stantly jeopardizing translation quality.

On the other hand, improving MT output has
been limited to manually correcting the output and,
in the best-case scenario, to some automated post-
processing to alleviate the tedious task of manual
post-editing by correcting the most frequent errors
beforehand (Allen & Hogan, 2000; Knight &
Chander, 1994). However, to this day, there exists
no solution to fully automate the post-editing proc-
ess.

In order to fully automate the post-editing proc-
ess, one could try to learn post-editing rules auto-
matically from concrete corrections. This has the
main advantage of being system independent. With
this approach, however, one cannot generalize to
correct the same structural error with a different
surface realization, namely a different word. Fur-
thermore, several thousands of sentences might
need to be corrected for the same error.

Additionally, it seems reasonable to want to up-
date one’s underlying MT system to adapt to the
evolution of language and knowledge processing.

This paper describes an alternative to Auto-
mated Post-Editing (APE) that attacks the root of
the problem by fixing the source of the error in the
MT system, as opposed to automatically fixing MT
output. Our approach uses post-editing informa-
tion, collected through an online tool, to automati-

cally detect incorrect lexical and grammar rules
responsible for the errors and propose concrete
fixes to such rules. Once the grammar and lexicon
have been refined, the MT system not only pro-
duces the correct translation result of the post-
editing process, but is also able to generalize and
correctly translate unseen sentences. With the goal
of maximizing the degree of reliable generaliza-
tion, our research focuses on an intermediate step
of relatively safe generalization.

This approach naturally requires access to trans-
lation rules, which can be manually written or
automatically created (Font-Llitjós et al., 2004),
and thus is mostly relevant to transfer-based sys-
tems, even though we believe it could also be ex-
tended to improve Statistical systems. Such
extension would require a different approach that
would have to take into account a very large num-
ber of rules and their interactions as well as tuning
of their weights.1

2 Related Work

Post-editing has often been defined as the correc-
tion of MT output by human linguists or editors.
However, many MT errors can be corrected with
high accuracy by bilingual speakers who are not
linguists, editors or translators, as shown in an ini-
tial set of user studies (Font Llitjós & Carbonell,
2004).

Our approach was originally motivated by the
problem of improving inaccurate or partial MT
systems in resource-scarce scenarios, where ex-
perts who can improve MT systems or even MT
output are often not available. For this reason, our
approach does not require experts to provide post-
editing feedback nor post-editing rules to be ap-
plied automatically.

Therefore, the intended users of the online post-
editing tool, known as the Translation Correction
Tool (TCTool), are non-expert bilingual speakers,
and their goal is to evaluate and minimally correct
MT output, in a way that is similar to what has
been referred to as minimal post-editing in the lit-
erature (Allen, 2003). The minimal correction

1 Statistical MT systems need exponentially more data to im-
prove by very small amounts, and for most language pairs
such a brute force approach will simply not work. System-
relevant post-editing information provides a great way to ob-
tain annotated data, for which new smarter training algorithms
can be developed.

method we are proposing for the task of rule re-
finement involves grammar correctness and flu-
ency, in addition to meaning preservation. Stylistic
changes are not considered minimal post-editing.

Besides being useful for resource-scarce con-
texts, having a method to accurately elicit post-
editing information from non-trained bilingual
speakers is a revolutionary idea. One that can lead
to the collection of large amounts of MT output
feedback, which can be used to improve all kinds
of MT systems.

For languages with more presence on the Inter-
net, we envision the use of TCTool as an online
game, which would allow bilingual speakers to
correct MT output and get rewards for making
good corrections, and compare their scores and
speed with other users (Font Llitjós 2006). The use
of online games with a purpose has already been
implemented and has been shown to work for la-
beling images, a difficult problem that current
computer vision algorithms can still not accurately
solve (Von Ahn et al. 2006).

Back in 1988, Nishida and colleagues described
a Post-Editing Correction information Feedback
system (PECOF) in its early stages, which attempts
to improve a Transfer-based MT system. There are
many differences between their approach and the
one described here, but the main ones are: 1) the
use of expert post-editors, whose work is not only
to correct MT output but also to formulate correct-
ing procedures corresponding to unseen error pat-
terns, which are then executed by the PECOF
system, and 2) the use of two MT systems in order
to detect discrepancies between intermediate repre-
sentations of the source language and the target
language side, namely an original MT system
(Japanese to English) and a reverse MT system
(English to Japanese) which is applied to the post-
edited English translation.

Our transfer-based MT system is particular in
the sense that its rules integrate information from
the three components of a typical transfer system,
namely syntactic analysis (parsing), transfer and
generation. And thus, in comparison with the
PECOF system, blame assignment and correction
become highly simplified.

 More recently, some researchers have looked at
other ways of including user feedback in the MT
loop. Phaholphinyo and colleagues (2005) pro-
posed adding post-editing rules to their English-
Thai MT system with the use of a post-editing tool.

However, they use context sensitive pattern-
matching rules, which make it impossible to fix
errors involving missing words. Unlike our ap-
proach, in their system, the rules are created by
experienced linguists and their approach requires a
large corpus. They mention an experiment with
6,000 bilingual sentences but report no results due
to data sparseness.

Su et al. (1995) have explored the possibility of
using feedback for a corpus-based MT system to
adjust the system parameters so that the user style
could be respected in the translation output. They
proposed that the distance between the translation
output of the system and the translation preferred
by the user should be proportional to the amount of
adjustment to the parameters involved in the score
evaluation function, and should be minimized over
time.

In the case of languages with limited data, such
a system is not feasible, though, since there is not
enough data to estimate and train system parame-
ters. Moreover, we are interested in improving the
translation rules themselves, which in the case of
automatically learned grammars typically lack
some of the feature constraints required for the
correct application of the rule, rather than just
tweaking the evaluation parameters, which in their
system are conditional probabilities and their
weights.

Menezes and Richardson (2001) and Imamura et
al. (2003) have proposed the use of reference trans-
lations to “clean” incorrect or redundant rules after
automatic acquisition. The method of Imamura and
colleagues consists of selecting or removing trans-
lation rules to increase the BLEU score of an
evaluation corpus. In contrast to filtering out incor-
rect or redundant rules, we propose to actually re-
fine the translation rules themselves, by editing
valid but inaccurate rules that might be lacking a
constraint, for example.

3 Eliciting Post-Editing Information

The first step of the Automatic Rule Refinement
approach is the correction of MT errors with an
online tool. The main challenge of the error elicita-
tion process is how to elicit minimal post-editing
information from non-expert bilingual speakers.

If an MT-produced translation is incorrect, the
assumption is that a bilingual speaker can diagnose
the presence of an error reliably using the online

Translation Correction Tool. An example of an
English-Spanish sentence pair generated by our
MT system is “Gaudí was a great artist - Gaudí
era un artista grande”. Using the online tool, bi-
lingual speakers had not trouble modifying the in-
correct translation to obtain a correct one: “Gaudí
era un gran artista”.

Bilingual speakers, however, cannot be expected
to diagnose which complex translation rules pro-
duced the error, and even less, determine how to
improve those rules. And so the Translation Cor-
rection Tool effectively abstracts away from any
complexity of the underlying representation, leav-
ing the inference of which correction actions to
perform to the Automatic Rule Refiner. In this
case, the Rule Refiner will add the special case rule
for Spanish pre-nominal adjectives to the grammar.

3.1. Translation Correction Tool

The Translation Correction Tool (TCTool) is a
user-friendly online tool that allows both error de-
tection and error remediation, as well as an implicit
error categorization with four top-level categories,
which correspond to the different correction ac-
tions: add, delete and modify words (and align-
ments), as well as change word order.

The error typology in Figure 1 shows the four
classes into which users implicitly classify the er-
rors, simply by correcting the MT output with the
TCTool, followed by finer grained classes that are
inferred by the Automatic Rule Refiner in order to
fix the rules accordingly.

Figure 1: Error Typology given by user post-editing
actions (on the left), and inferred by the Automatic Rule
Refiner to fix the incorrect rules (on the right).

A set of user studies was conducted to discover
the right amount of error information that non-

expert bilingual speakers can detect reliably when
using the TCTool. These studies showed that a
simple variation of traditional post-editing (error
classes on the left of Figure 1) can be elicited much
more reliably (F1 0.89) than error type information
(error classes on the right of Figure 1; F1 0.72)
(Font Llitjós and Carbonell, 2004). Most impor-
tantly, it became apparent that the list of correction
actions with information about error and correction
words and their alignments is sufficient for Auto-
matic Rule Refinement purposes.

Figure 2. TCTool snapshot with initial translation pair

Building on the example introduced above, Fig-
ure 2 shows the initial state of the TCTool, once
the user has decided that the translation produced
by the MT system is not correct.

In this case, the bilingual speaker changed
‘grande’ to ‘gran’ and dragged ‘gran(de)’ in front
of ‘artista’, effectively flipping the order of these
two words.

Figure 3. TCTool snapshot after user has corrected the
translation.

Figure 3 shows the state of the TCTool after the
user corrections. Given user post-editing2, the real
challenge is how to perform blame assignments on
lexical entries and transfer rules, and then to auto-
matically edit these in the most general feasible
way to avoid repetitions of the same error.

3.2. Extracting Error Information

User correction actions are registered into a log
file. The Automatic Rule Refiner (RR) extracts all
the relevant information from the TCTool log files
and stores it into a Correction Instance (Figure 4).

The RR module processes one action at a time.
So in this approach, the order in which users cor-
rect a sentence does have an impact on the order in
which refinements apply.

SL: Gaudí was a great artist
TL: Gaudí era un artista grande

 AL: ((1,1),(2,2),(3,3),(4,5),(5,4))

 Action 1: edit (grande gran)
 Temp CTL: Gaudi era un artista gran

Action 2: change word order
(gran artista)

CTL: Gaudí era un gran artista

 AL: ((1,1),(2,2),(3,3),(4,4),(5,5))

Figure 4. A Correction Instance stores the source lan-
guage sentence (SL), the target language sentence (TL)
and the initial alignments (AL), as well as all the correc-
tion actions done by the user. It also provides the cor-
rected translation (CTL) and final alignments.

4 Automatic Rule Refinement

After having extracted and stored the location of
the error in the translated sentence (error-locus)
and error-type information from non-expert bilin-
gual speakers, the Automatic Rule Refiner can
trace the errors back to incorrect lexical and
grammar rules responsible for the errors and pro-
pose concrete fixes to such rules.

More specifically, the RR can automatically add
missing lexical entries and detect incomplete or
incorrect rules (both manually written and auto-
matically learned) that applied during the genera-
tion of MT output.

2 This could also be the result of automated post-editing if
properly instrumented to capture each edit step.

4.1. REFINE vs. BIFURCATE

There are two main refinement operations that can
be applied to both grammar rules and lexical en-
tries, with some minor differences: REFINE and
BIFURCATE.

The REFINE operation consists of modifying an
existing rule (R0), effectively replacing it with a
more specific, correct rule (R1). Sometimes a rule
is mostly correct, but is missing an agreement con-
straint, for an example see Figure 5.

Figure 5: The resulting rule from the REFINE operation
(R1) is like the original rule (R0) but with an additional
agreement constraint. Even though the rules in this fig-
ure appear lexicalized, this is just for illustration pur-
poses and the rules in our grammar are at the POS level.

In the REFINE case, the new refined rule needs

to translate the same sentences as before plus the
corrected sentence.

The BIFURCATE operation makes a copy of
the original rule (R0) and refines the copy (R1) so
that it covers an exception to the general rule. In
the BIFURCATE case both the original rule and
the refined rule coexist in the grammar (Figure 6).

Figure 6: R1 is the result of BIFURCATing the gen-
eral rule for nouns and adjectives in Spanish (R0) to
cover the pre-nominal order.

This is appropriate for cases when the general

rule has correctly applied before, for example in
translating a nice house – una casa bonita, the
grammar already contains the general rule to deal
with nouns and adjectives in Spanish , and we want

the grammar to also account for an exception to the
general rule, namely pre-nominal adjectives.

4.2. Formalizing Error Information

The RR represents TL sentences as vectors of
words from 1 to n (sentence length), indexed from
1 to m (corpus length)
and the corrected sentences (CTL) as follows:

),...,,...,(1 nim WWWTL =

),...,,...,',...,('1 nclueim WWWWCTL =
where Wi represents the error, namely the word

or multiword phrase that needs to be modified, de-
leted or dragged into a different position by the
user to correct the sentence; and Wi’ represents the
correction, namely the user modification of Wi or
the word that needs to be added by the user in or-
der for the sentence to be correct.

The clue word (Wclue) represents a word that
provides a clue with respect to what triggered the
correction: the cause of the error. For example, in
the case of lack of agreement between a noun and
the adjective that modifies it, as in *el coche roja
(the red car), Wclue should be instantiated to coche,
as it is the word that gives us the clue about what
the gender agreement feature value of Wi should
be. In this case, masculine (rojo).

 Wclue can also be a phrase or constituent like a
plural subject (eg. *[Juan y Maria] cayó, where the
plural is implied by the conjoined NP).

Wclue is not always present and it can be before
or after Wi. They can be contiguous or separated
by one or more words.

For more information about the theoretical
framework of the Rule Refiner, refer to Font-
Llitjós et al. (2005).

5 From Post-Editing Actions To Rule Re-
finements

One of the biggest challenges of this work is
how to map simple post-editing actions onto com-
plex refinements to the appropriate rules.

The core component of the rule refinement proc-
ess is the one that decides what rule refinement
operations need to apply to address a specific error
correction. This is also the component that is most
sensitive to the set of correction actions currently
allowed by the TCTool. The reason for this is that
the rule refinement operations that are applied by

the system crucially depend on what types of cor-
rection actions were chosen by users.

Given the correction action type (add, edit, de-
lete and change_word_order) and the error and
correction words, the RR applies the appropriate
refinement algorithm. In general, the Rule Refiner
addresses lexical refinements first and then moves
on to refinements of the grammar rules, if it is still
necessary.

The following subsections describe a simplified
version of algorithm underlying the Rule Refiner
illustrated with a few examples.

5.1 Add Word

When users add a word (by clicking on the [New
Word] button on the TCTool interface and then by
writing the word in the newly created box), there is
no error word per se, however the RR can reliably
identify a correction word (W’), namely the newly
added word (in this case ‘se’). See Figure 7.

Figure 7. TCTool snapshot after having created a new
word (se).

Figure 8. TCTool snapshot after having added the newly
created word into the right position (Action 1).

After having added the new word, users drag it
to the right position in the translation. This opera-
tion allows the system to instantiate the new word
with a specific position in the Corrected Target
Language (CTL) vector, Wi’ (Figure 8), the next
step is to check if the user added any alignments

from any word(s) in the SL sentence to the cor-
rected word Wi’, and if so, to extract them (Figure
9).

Alignment information is required to retrieve the
relevant lexical entries and determine the necessary
refinements.

In our example, [fell se] and [fell se cayeron]
are not in the lexicon, however [fell cayeron] is
there.

Figure 9. TCTool snapshot showing Action 2: Adding
manual alignment.

At this point, the RR BIFURCATES the lexical

entry [fell cayeron] creating a copy of it and
REFINES it by replacing the TL side with Wi’ plus
the other word aligned to the SL word: [fell se
cayeron]. The resulting refined entry is displayed
below:

V::V |: [fell] -> ["se cayeron"]
 ((x0 form) = fall)
 ((x0 actform) = fell)
 ((x0 tense) = past)
 ((y0 agr pers) = 3)
 ((y0 agr num) = pl)

The new lexical entry is added to the Lexicon

and the Refined Lexicon is loaded to the MT sys-
tem to assess the effect of the rule refinement.

The translation alternatives output by the system
are now checked against the CTL sentence as cor-
rected by the user. If the RR finds that CTL sen-
tence is being generated by the MT system, it
stops, otherwise, it proceeds to grammar refine-
ments. For this example, the algorithm described
above successfully refined the lexicon and the out-
put of the refined MT system already contains the
CTL sentence.

If the word added (Wi’) is not aligned to any
word in the SL sentence, then there is nothing to be
done at the lexical level and the algorithm proceeds
to grammar refinements.

The first step is to search the grammar for rules
with a TL side that contain the new Word/POS

sequence. If the sequence suggested by the user’s
refinement is not in the grammar, the RR adds Wi’
in the position indicated by the user to the appro-
priate incorrect rule.

For example, given the translation pair you saw
the woman − viste la mujer and the user correction
of adding the word “a” in front of mujer, the RR
will detect that ‘a’ is not aligned to any words in
the SL sentence and will proceed to look for the
following sequences [“a” NP] and [“a” DET N] in
the TL grammar. Since such a sequence does not
exist, the refiner has three candidate rules for re-
finement, namely V, NP and VP:

 (S (VP (VP (V 'viste'))
 “a”

 (NP (DET 'la')
 (N 'mujer'))))

Adding an ‘a’ in the right position to either of

these three rules (VP[V “a”], VP[VP “a” NP]) and
NP[“a” DET N] would result into the desired final
output, and even though from a linguistics perspec-
tive the second and third are better options for this
example, there will be cases when adding a spe-
cific preposition to the preceding verb is the lin-
guistically motivated thing to do (eg. “preocupado
por”).

In general, the RR algorithm will choose to re-
fine the rule that better generalizes over a regres-
sion test set, as estimated by automatic evaluation
metrics (Section 7).

5.2 Edit Word

When users modify a word (Wi) into a related form
or sense (Wi’), there are two possible scenarios.
The one most favorable to generalization is that the
lexicon already discriminates between these two
forms, usually by giving them a different value for
the same feature attribute (example: [red-roja gen-
der: fem] and [red-rojo gender: masc]). The one
with less immediate impact is that the two words
are identically defined in the lexicon, namely they
have the same POS and the same feature attributes
and values (e.g. [women-mujer] and [guitar-
guitarra] are both singular feminine nouns in Span-
ish).

If the lexicon already discriminates between the
two lexical entries, the RR extracts the grammar
rule for the immediate common parent of Wi and
Wclue (as identified by the user or guessed by the
system) and adds an agreement constraint with the

triggering feature3 between the constituents corre-
sponding to Wi and Wclue.

SL: I see the red car
TL: veo el auto roja
Alignments: ((2,1),(3,2),(4,4),(5,3))

 Action 1: edit (Wi=roja Wi’=rojo; Wclue=auto)

CTL: veo el auto rojo
Alignments: ((2,1),(3,2),(4,4),(5,3))

Figure 10. Correction Instance for edit action.

For the correction instance represented in Figure

10 (I see the red car), the user edits roja into rojo
(by clicking on the word and changing ‘a’ into ‘o’),
and the system finds that the difference (delta set)
between the lexical entry for roja and rojo is [agr
gen].

At this point, the RR moves on to the Grammar
Refinement.

Figure 11. Edit Word window eliciting for clue word
information.

Since the user identified ‘auto’ as being the clue

word as shown in Figure 11, the RR algorithm can
now instantiate what variables do Wi and Wclue cor-
respond to in the relevant rule (NP,8: ADJ N N
ADJ), namely the system internal variables that
represent the TL adjective and noun.4

Next, the Rule Refiner adds an [agr gen] con-
straint to rule NP,8 between the noun and the ad-
jective: NP,8: ADJ N N ADJ

 [(N agr gen) = (ADJ agr gen)]

However, if the lexicon does not already dis-

criminate between the two lexical entries (Wi and
Wi’), the RR postulates a new feature attribute and
adds a binary value constraint to each lexical entry,

3 The triggering feature is the attribute name for which the two
lexical entries have a different value.
4 The relevant rule is extracted from the translation tree output
by the MT system, making blame assignment straightforward.

in order to allow the grammar to distinguish be-
tween the two forms/senses of the same SL word
automatically.

For example, given the sentence Mary plays gui-
tar and its translation as produced by our MT sys-
tem, *María juega guitarra, the user will edit
juega into toca, and since this new sense is not
listed in the lexicon, the RR will BIFURCATE the
original lexical entry [play juega] and REFINE it
by replacing the TL side. Naturally, [play toca] is
otherwise an exact copy of [play juega] (with the
same POS and features), and so the system postu-
lates a new feature (feat_0) to distinguish between
the two and adds the following constraints to the
lexical entries:

[play toca((feat_0) = +)] [play juega((feat_0) = −)]

Note that in the absence of a semantically anno-

tated lexicon, our approach will only be able to
solve such errors on a case by case basis.

5.3 Delete Word

 If a user deletes a word, first the RR algorithm
needs to make sure this is not followed by a word
being added in the same position, which is the
equivalent to editing a word.

After making sure it is really a delete case, the
RR algorithm checks if there were any alignments
from the deleted word (Wi) to one or more SL
words, and if so, it looks ahead to see if there was
any other word in the TL sentence that was aligned
to the SL word(s) at a later point in the session. If
there is a TL word aligned to any of the relevant
SL words, then the RR algorithm checks if it’s al-
ready in the lexicon, and if it isn’t, it adds it.

If no alignment is added to the relevant SL
word(s), the RR algorithm adds a new lexical entry
for the SL word with an empty TL side ([SL word

 “”]), which results into the MT system not
translating the SL word.

5.4 Word Order Change

To change the order of the TL words, users can
drag and drop words into a different position in the
TL sentence using the TCTool.

The Rule Refiner detects which word(s) were
moved to a different position and extracts what
were their initial (i) and final (i’) positions. The
Rule Refiner can only reliably execute refinement
operations iff, given a word that has moved (Wi),

both the initial and final positions fall inside the
scope of one of the rules in the grammar. If a word
undergoes a long-distance move and thus is placed
at the beginning or the end of the sentence far from
its original position, automatic refinements become
less reliable.

If the initial and final positions are contained
within a rule in the grammar, then the RR algo-
rithm can extract the rule that immediately sub-
sumes the constituents in both positions and
BIFURCATE it in order to change the constituents
on the target language side of the rule copy.

For example, if the grammar already has a gen-
eral NP rule that reverses the order of the adjec-
tives and nouns in Spanish, but is lacking a specific
rule for pre-nominal adjectives, like in the Gaudi
was a great artist example introduced in section 3,
given relevant correction feedback, the RR can
extract the general NP rule and flip the order of N
and ADJ on the TL side of the rule (Figure 12).

Figure 12: The RR applies the BIFURCATE operation
to rule NP,8, by which the order of the noun and adjec-
tive constituents is flipped.

The next step is to further constrain the newly
created rule so that it only applies in the right con-
text, namely to ‘gran’ but not to ‘grande’. Again
this can be done in a general way if the lexicon
already distinguishes between the lexical entries
that are affected by this change and the general
cases. A constraint with the appropriate feature
attribute is added to the specific rule and a block-
ing constraint is added to the general rule.

If there is no current feature attribute to distin-
guish between the special case and the general
case, the RR postulates a new binary feature and
REFINES both the grammar rules (Figure 13) as
well as the appropriate lexical entries by adding a
value constraint (Figure 14).

In the Gaudi example, [great gran] and
[great grande] are identical at the feature level,

and so the RR module postulates a new binary fea-
ture, say feat15, which serves the purpose of distin-
guishing between two words that are otherwise
identical according to our lexicon.

Figure 13: The bifurcated rule NP,8’ is further RE-
FINEd by the RR by adding a value constraint for the
adjective indicating that it will only apply to adjectives
with (feat1 = +).

Figure 14: Lexical entries for grande and gran
REFINED with a value constraint for feat1, so that the
RR can discriminate them.

These two refinements result in the MT system
generating the desired translation, namely “Gaudí
era un gran artista” and not the previous incorrect
translation.

But can the system also eliminate other incorrect
translations automatically? In addition to generat-
ing the correct translation, we would also like the
RR module to produce a refined grammar that is as
tight as possible, given the data that is available.
Since the system already has the information that
“un artista gran” is not a correct sequence in Span-
ish, the grammar can be further refined to also rule
out this incorrect translation. This can be done by
restricting the application of the general rule
(NP,8) to just post-nominal adjectives, like
‘grande’, which in this example are marked in the
lexicon with (feat1 = −).

5 A more mnemonic name for feat1 would be pre-nominal.

6 Generalization power

The difference between this approach and mere
post-editing is that the resulting refinements affect
not only to the translation instance corrected by the
user, but also to other similar sentences where the
same error would manifest. After the above re-
finements have been applied to the grammar for
the Gaudi example sentence, sentences like “Irina
is a great friend” and “the young professor is a
great person” will now correctly translate as “Irina
es una gran amiga” and “el profesor joven es una
gran persona”, instead of “*Irina es una amiga
grande” and “*el professor joven es una persona
grande”. As shown by the last example, generali-
zation goes beyond just lexical variation, and ap-
plies to constituent generalization. Moreover, the
generalization power of this approach is greater
when the refinements involve information that is
already encoded in the lexicon and the grammar. In
our lexicon, this means mostly errors of lexical and
morpho-syntactic nature.

7 Automatic Evaluation Methods

In order to fully close the feedback loop and make
sure that automatic refinements lead to real im-
provements of the MT system and therefore its
output, the Rule Refiner uses different methods to
evaluate the refined MT output and guide its deci-
sions. The first one is a simplification of recall
which tells us whether the corrected translation, as
provided by the user post-editing actions, is cur-
rently being generated by the system as one of the
alternatives or not. Since users implicitly also give
information about which translations are not cor-
rect, we also want to measure if refinements man-
aged to eliminate such incorrect translations
(precision at rank k). At the same time, we are in-
terested in knowing whether the number of alterna-
tives produced by the system has decreased. This
indicates that the refinements effectively reduced
the ambiguity of the grammar (reduction ratio).

On the other hand, we want to evaluate the ef-
fect of refinements on test data, to make sure re-
finements generalize well. For this, we can also
rely on standard metrics to evaluate MT output
before and after refinement on a test set. Initial
experiments have shown that both modified BLEU
and METEOR [Lavie et al., 2004] can automati-
cally distinguish between raw MT output and cor-

rected MT output, even for a small set of sen-
tences. Such metrics can automatically calculate
the ngram overlap between the output generated by
the refined MT system and the user-corrected
translation, namely the reference translation.
Unlike most evaluation settings that rely on inde-
pendent reference translations, this approach has
the great advantage that reference translations are
guaranteed to be relevant to the system.

8 Conclusions and Future Work

We have described an alternative approach to tra-
ditional Automated Post-Editing that recycles post-
editing efforts back into the MT system, improving
the system itself as new sentences are manually
corrected by bilingual speakers.

Guided by post-editing information, the RR
module can decide to add a lexical entry, modify a
current lexical entry, bifurcate a rule and modify
the copy, usually making it into a more specific
rule, or refine a rule that is too general, by adding a
missing agreement constraint, for example.

The Rule Refinement process is not invariable.
It depends on the order in which refinement opera-
tions are applied. In batch mode, the RR module
can rank correction instances in such a way as to
maximize translation accuracy.

In some cases, in order to determine the right
level of granularity of the refinements proposed by
the Automatic Rule Refiner, an implementation of
the system with interactive mode as well as Active
Learning techniques would be required.

Finally, the TCTool can also be seen under a
slightly different light, that of benefiting second
language learners. For this purpose, we envision
the TCTool as an interactive game that would
bring together a native speaker of English who is
learning Spanish, say, with a native speaker of
Spanish who is learning English, and would allow
them to interact until they agree on what is a
minimal correction of any given translation, given
the original sentence.

9 Acknowledgements

We thank Alon Lavie for theoretical discussion of
this work, William Ridmann for his implementa-
tion work and Stephan Vogel for implementation
discussion and for his support. This research was
funded in part by NSF grant number IIS-0121-631.

References
Allen, J. (2003). Post-editing. ed. Harold Somers. Ben-

jamins Translation Library, 35.

Allen, J. & Hogan C. (2000). Toward the Development
of a Post editing Module for Raw Machine Transla-
tion Output: A Controlled Language Perspective.
CLAW.

Font Llitjós, A. (2006). Can the Internet help Improve
Machine Translation. Doctoral Consortium at HLT-
NAACL.

Font Llitjós, A.; J. Carbonell and A. Lavie (2005). A
Framework for Interactive and Automatic Refinement
of Transfer-based Machine Translation. EAMT.

Font Llitjós, A. & J. Carbonell (2004). The Translation
Correction Tool: English-Spanish user studies.
LREC.

Font Llitjós, A.; K. Probst and J. Carbonell (2004). Er-
ror Analysis of Two Types of Grammar for the Pur-
pose of Automatic Rule Refinement. AMTA.

Imamura, K., E. Sumita and Y. Matsumoto (2003).
Feedback cleaning of Machine Translation Rules Us-
ing Automatic Evaluation. ACL.

Knight Kevin & Ishwar Chander (1994). Automated
postediting of documents. In Proceedings of the
twelfth national conference on Artificial intelligence.

Lavie, A; K. Sagae and S. Jayaraman. 2004. The Sig-
nificance of Recall in Automatic Metrics for MT
Evaluation. AMTA.

Menezes, A, & Richardson, S. D. (2001). A best-first
alignment algorithm for automatic extraction of
transfer mappings from bilingual corpora. Workshop
on Example-Based MT, in MT Summit VIII.

Nishida, F.; S. Takamatsu, T. Tani and T. Doi (1988).
Feedback of Correcting Information in Posteding to
a Machine Translation System. COLING.

Phaholphinyo, S.; T. Modhiran, N. Kritsuthikul and T.
Supnithi (2005). A Practical of Memory-based Ap-
proach for Improving Accuracy of MT. MT Summit.

Su, K.; J. Chang and Y. Hsu, (1995). A corpus-based
statistics-oriented two-way design for parameterized
MT systems. TMI.

Von Ahn, Luis; S. Ginosar, M. Kedia, R. Liu and M.
Blum (2006). Improving Accessibility of the Web
with a Computer Game. In Notes at the International
conference for human-computer interaction (CHI).

http://www.cs.cmu.edu/~biglou/Phetch.pdf
http://www.cs.cmu.edu/~biglou/Phetch.pdf
http://www.cs.cmu.edu/~biglou/Phetch.pdf

	Carnegie Mellon University
	Research Showcase
	1-1-2006

	Automating Post-Editing to Improve MT Systems
	Ariadna Font Llitjós
	Jaime G. Carbonell
	Recommended Citation

