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Abstract 

Beyond manual and automated post-
editing, we describe an approach that takes 
post-editing information to automatically 
improve the underlying rules and lexical 
entries of a transfer-based Machine Trans-
lation (MT) system. This process can be 
divided into two main steps. In the first 
step, an online post-editing tool allows for 
easy error diagnosis and implicit error 
categorization. In the second step, an Auto-
matic Rule Refiner performs error remedia-
tion, by tracking errors and suggesting 
repairs that are mostly lexical and morpho-
syntactic in nature (such as word-order or 
incorrect agreement in transfer rules). This 
approach directly improves the intelligibil-
ity of corrected MT output and, more inter-
estingly, it generalizes over unseen data, 
providing improved MT output for similar 
sentences that have not been corrected. 
Hence our approach is an alternative to 
fully-automated Post-Editing. 

1 Introduction 

Achieving high translation quality remains the big-
gest challenge for Machine Translation research-
ers. Currently, the two main directions towards this 
objective are improving the MT system itself or 
improving the result of the system, namely the MT 
output, commonly known as post-editing. 

The first direction is by far the most popular, 
and involves different solutions depending on the 
different MT approaches. Statistical MT systems, 

after starting to plateau by adding more training 
data, are now turning to ways of incorporating syn-
tactic knowledge to guide or inform their transla-
tion algorithms.   

Traditional solutions to improve Transfer-
Based MT systems are costly and time-consuming, 
since they involve the work of many computational 
linguists over extended periods of time to develop 
new rules and refine old ones. Moreover, in any 
MT system, out-of-vocabulary words are con-
stantly jeopardizing translation quality. 

On the other hand, improving MT output has 
been limited to manually correcting the output and, 
in the best-case scenario, to some automated post-
processing to alleviate the tedious task of manual 
post-editing by correcting the most frequent errors 
beforehand (Allen & Hogan, 2000; Knight & 
Chander, 1994). However, to this day, there exists 
no solution to fully automate the post-editing proc-
ess. 

In order to fully automate the post-editing proc-
ess, one could try to learn post-editing rules auto-
matically from concrete corrections. This has the 
main advantage of being system independent. With 
this approach, however, one cannot generalize to 
correct the same structural error with a different 
surface realization, namely a different word. Fur-
thermore, several thousands of sentences might 
need to be corrected for the same error.  

Additionally, it seems reasonable to want to up-
date one’s underlying MT system to adapt to the 
evolution of language and knowledge processing.  

This paper describes an alternative to Auto-
mated Post-Editing (APE) that attacks the root of 
the problem by fixing the source of the error in the 
MT system, as opposed to automatically fixing MT 
output. Our approach uses post-editing informa-
tion, collected through an online tool, to automati-



cally detect incorrect lexical and grammar rules 
responsible for the errors and propose concrete 
fixes to such rules. Once the grammar and lexicon 
have been refined, the MT system not only pro-
duces the correct translation result of the post-
editing process, but is also able to generalize and 
correctly translate unseen sentences. With the goal 
of maximizing the degree of reliable generaliza-
tion, our research focuses on an intermediate step 
of relatively safe generalization. 

This approach naturally requires access to trans-
lation rules, which can be manually written or 
automatically created (Font-Llitjós et al., 2004), 
and thus is mostly relevant to transfer-based sys-
tems, even though we believe it could also be ex-
tended to improve Statistical systems. Such 
extension would require a different approach that 
would have to take into account a very large num-
ber of rules and their interactions as well as tuning 
of their weights.1

2 Related Work 

Post-editing has often been defined as the correc-
tion of MT output by human linguists or editors. 
However, many MT errors can be corrected with 
high accuracy by bilingual speakers who are not 
linguists, editors or translators, as shown in an ini-
tial set of user studies (Font Llitjós & Carbonell, 
2004). 

Our approach was originally motivated by the 
problem of improving inaccurate or partial MT 
systems in resource-scarce scenarios, where ex-
perts who can improve MT systems or even MT 
output are often not available. For this reason, our 
approach does not require experts to provide post-
editing feedback nor post-editing rules to be ap-
plied automatically.  

Therefore, the intended users of the online post-
editing tool, known as the Translation Correction 
Tool (TCTool), are non-expert bilingual speakers, 
and their goal is to evaluate and minimally correct 
MT output, in a way that is similar to what has 
been referred to as minimal post-editing in the lit-
erature (Allen, 2003). The minimal correction 

                                                           
1 Statistical MT systems need exponentially more data to im-
prove by very small amounts, and for most language pairs 
such a brute force approach will simply not work. System-
relevant post-editing information provides a great way to ob-
tain annotated data, for which new smarter training algorithms 
can be developed. 

method we are proposing for the task of rule re-
finement involves grammar correctness and flu-
ency, in addition to meaning preservation. Stylistic 
changes are not considered minimal post-editing. 

Besides being useful for resource-scarce con-
texts, having a method to accurately elicit post-
editing information from non-trained bilingual 
speakers is a revolutionary idea. One that can lead 
to the collection of large amounts of MT output 
feedback, which can be used to improve all kinds 
of MT systems. 

For languages with more presence on the Inter-
net, we envision the use of TCTool as an online 
game, which would allow bilingual speakers to 
correct MT output and get rewards for making 
good corrections, and compare their scores and 
speed with other users (Font Llitjós 2006). The use 
of online games with a purpose has already been 
implemented and has been shown to work for la-
beling images, a difficult problem that current 
computer vision algorithms can still not accurately 
solve (Von Ahn et al. 2006). 

Back in 1988, Nishida and colleagues described 
a Post-Editing Correction information Feedback 
system (PECOF) in its early stages, which attempts 
to improve a Transfer-based MT system. There are 
many differences between their approach and the 
one described here, but the main ones are: 1) the 
use of expert post-editors, whose work is not only 
to correct MT output but also to formulate correct-
ing procedures corresponding to unseen error pat-
terns, which are then executed by the PECOF 
system, and 2) the use of two MT systems in order 
to detect discrepancies between intermediate repre-
sentations of the source language and the target 
language side, namely an original MT system 
(Japanese to English) and a reverse MT system 
(English to Japanese) which is applied to the post-
edited English translation.  

Our transfer-based MT system is particular in 
the sense that its rules integrate information from 
the three components of a typical transfer system, 
namely syntactic analysis (parsing), transfer and 
generation. And thus, in comparison with the 
PECOF system, blame assignment and correction 
become highly simplified. 

 More recently, some researchers have looked at 
other ways of including user feedback in the MT 
loop. Phaholphinyo and colleagues (2005) pro-
posed adding post-editing rules to their English-
Thai MT system with the use of a post-editing tool. 



However, they use context sensitive pattern-
matching rules, which make it impossible to fix 
errors involving missing words. Unlike our ap-
proach, in their system, the rules are created by 
experienced linguists and their approach requires a 
large corpus. They mention an experiment with 
6,000 bilingual sentences but report no results due 
to data sparseness. 

Su et al. (1995) have explored the possibility of 
using feedback for a corpus-based MT system to 
adjust the system parameters so that the user style 
could be respected in the translation output. They 
proposed that the distance between the translation 
output of the system and the translation preferred 
by the user should be proportional to the amount of 
adjustment to the parameters involved in the score 
evaluation function, and should be minimized over 
time. 

In the case of languages with limited data, such 
a system is not feasible, though, since there is not 
enough data to estimate and train system parame-
ters. Moreover, we are interested in improving the 
translation rules themselves, which in the case of 
automatically learned grammars typically lack 
some of the feature constraints required for the 
correct application of the rule, rather than just 
tweaking the evaluation parameters, which in their 
system are conditional probabilities and their 
weights. 

Menezes and Richardson (2001) and Imamura et 
al. (2003) have proposed the use of reference trans-
lations to “clean” incorrect or redundant rules after 
automatic acquisition. The method of Imamura and 
colleagues consists of selecting or removing trans-
lation rules to increase the BLEU score of an 
evaluation corpus. In contrast to filtering out incor-
rect or redundant rules, we propose to actually re-
fine the translation rules themselves, by editing 
valid but inaccurate rules that might be lacking a 
constraint, for example. 

3 Eliciting Post-Editing Information 

The first step of the Automatic Rule Refinement 
approach is the correction of MT errors with an 
online tool. The main challenge of the error elicita-
tion process is how to elicit minimal post-editing 
information from non-expert bilingual speakers.  

If an MT-produced translation is incorrect, the 
assumption is that a bilingual speaker can diagnose 
the presence of an error reliably using the online 

Translation Correction Tool. An example of an 
English-Spanish sentence pair generated by our 
MT system is “Gaudí was a great artist - Gaudí 
era un artista grande”. Using the online tool, bi-
lingual speakers had not trouble modifying the in-
correct translation to obtain a correct one: “Gaudí 
era un gran artista”.  

Bilingual speakers, however, cannot be expected 
to diagnose which complex translation rules pro-
duced the error, and even less, determine how to 
improve those rules. And so the Translation Cor-
rection Tool effectively abstracts away from any 
complexity of the underlying representation, leav-
ing the inference of which correction actions to 
perform to the Automatic Rule Refiner. In this 
case, the Rule Refiner will add the special case rule 
for Spanish pre-nominal adjectives to the grammar. 

3.1. Translation Correction Tool 

The Translation Correction Tool (TCTool) is a 
user-friendly online tool that allows both error de-
tection and error remediation, as well as an implicit 
error categorization with four top-level categories, 
which correspond to the different correction ac-
tions: add, delete and modify words (and align-
ments),  as well as change word order. 

The error typology in Figure 1 shows the four 
classes into which users implicitly classify the er-
rors, simply by correcting the MT output with the 
TCTool, followed by finer grained classes that are 
inferred by the Automatic Rule Refiner in order to 
fix the rules accordingly. 
 

 
Figure 1: Error Typology given by user post-editing 
actions (on the left), and inferred by the Automatic Rule 
Refiner to fix the incorrect rules (on the right). 
 

A set of user studies was conducted to discover 
the right amount of error information that non-



expert bilingual speakers can detect reliably when 
using the TCTool. These studies showed that a 
simple variation of traditional post-editing (error 
classes on the left of Figure 1) can be elicited much 
more reliably (F1 0.89) than error type information 
(error classes on the right of Figure 1; F1 0.72) 
(Font Llitjós and Carbonell, 2004). Most impor-
tantly, it became apparent that the list of correction 
actions with information about error and correction 
words and their alignments is sufficient for Auto-
matic Rule Refinement purposes. 
 

 
Figure 2. TCTool snapshot with initial translation pair 
 

Building on the example introduced above, Fig-
ure 2 shows the initial state of the TCTool, once 
the user has decided that the translation produced 
by the MT system is not correct.   

In this case, the bilingual speaker changed 
‘grande’ to ‘gran’ and dragged ‘gran(de)’ in front 
of ‘artista’, effectively flipping the order of these 
two words.  
 

 
Figure 3. TCTool snapshot after user has corrected the 
translation.  

Figure 3 shows the state of the TCTool after the 
user corrections. Given user post-editing2, the real 
challenge is how to perform blame assignments on 
lexical entries and transfer rules, and then to auto-
matically edit these in the most general feasible 
way to avoid repetitions of the same error. 

3.2. Extracting Error Information 

User correction actions are registered into a log 
file. The Automatic Rule Refiner (RR) extracts all 
the relevant information from the TCTool log files 
and stores it into a Correction Instance (Figure 4). 

The RR module processes one action at a time. 
So in this approach, the order in which users cor-
rect a sentence does have an impact on the order in 
which refinements apply. 
 

SL: Gaudí was a great artist  
TL: Gaudí era un artista grande 

 AL: ((1,1),(2,2),(3,3),(4,5),(5,4))  
 
 Action 1: edit (grande  gran) 
 Temp CTL: Gaudi era un artista gran  
 

Action 2: change word order  
(gran artista) 
 
CTL: Gaudí era un gran artista 

 AL: ((1,1),(2,2),(3,3),(4,4),(5,5)) 
 
Figure 4. A Correction Instance stores the source lan-
guage sentence (SL), the target language sentence (TL) 
and the initial alignments (AL), as well as all the correc-
tion actions done by the user. It also provides the cor-
rected translation (CTL) and final alignments.  

4 Automatic Rule Refinement 

After having extracted and stored the location of 
the error in the translated sentence (error-locus) 
and error-type information from non-expert bilin-
gual speakers, the Automatic Rule Refiner can 
trace the errors back to incorrect lexical and 
grammar rules responsible for the errors and pro-
pose concrete fixes to such rules. 

More specifically, the RR can automatically add 
missing lexical entries and detect incomplete or 
incorrect rules (both manually written and auto-
matically learned) that applied during the genera-
tion of MT output.  
                                                           
2  This could also be the result of automated post-editing if 
properly instrumented to capture each edit step. 



4.1. REFINE vs. BIFURCATE 

There are two main refinement operations that can 
be applied to both grammar rules and lexical en-
tries, with some minor differences: REFINE and 
BIFURCATE. 

The REFINE operation consists of modifying an 
existing rule (R0), effectively replacing it with a 
more specific, correct rule (R1). Sometimes a rule 
is mostly correct, but is missing an agreement con-
straint, for an example see Figure 5. 

 

 
Figure 5: The resulting rule from the REFINE operation 
(R1) is like the original rule (R0) but with an additional 
agreement constraint. Even though the rules in this fig-
ure appear lexicalized, this is just for illustration pur-
poses and the rules in our grammar are at the POS level. 

 
In the REFINE case, the new refined rule needs 

to translate the same sentences as before plus the 
corrected sentence. 

The BIFURCATE operation makes a copy of 
the original rule (R0) and refines the copy (R1) so 
that it covers an exception to the general rule. In 
the BIFURCATE case both the original rule and 
the refined rule coexist in the grammar (Figure 6). 

 

 
Figure 6: R1 is the result of BIFURCATing the gen-
eral rule for nouns and adjectives in Spanish (R0) to 
cover the pre-nominal order. 
 
This is appropriate for cases when the general 

rule has correctly applied before, for example in 
translating a nice house – una casa bonita, the 
grammar already contains the general rule to deal 
with nouns and adjectives in Spanish , and we want 

the grammar to also account for an exception to the 
general rule, namely pre-nominal adjectives. 

4.2. Formalizing Error Information 

The RR represents TL sentences as vectors of 
words from 1 to n (sentence length), indexed from 
1 to m (corpus length)  
and the corrected sentences (CTL) as follows: 

),...,,...,( 1 nim WWWTL =

         ),...,,...,',...,( '1 nclueim WWWWCTL =
where Wi represents the error, namely the word 

or multiword phrase that needs to be modified, de-
leted or dragged into a different position by the 
user to correct the sentence; and Wi’ represents the 
correction, namely the user modification of Wi or 
the word that needs to be added by the user in or-
der for the sentence to be correct.  

The clue word (Wclue) represents a word that 
provides a clue with respect to what triggered the 
correction: the cause of the error. For example, in 
the case of lack of agreement between a noun and 
the adjective that modifies it, as in *el coche roja 
(the red car), Wclue should be instantiated to coche, 
as it is the word that gives us the clue about what 
the gender agreement feature value of Wi should 
be. In this case, masculine (rojo). 

 Wclue can also be a phrase or constituent like a 
plural subject (eg. *[Juan y Maria] cayó, where the 
plural is implied by the conjoined NP). 

Wclue is not always present and it can be before 
or after Wi. They can be contiguous or separated 
by one or more words. 

For more information about the theoretical 
framework of the Rule Refiner, refer to Font-
Llitjós et al. (2005). 

5 From Post-Editing Actions To Rule Re-
finements 

One of the biggest challenges of this work is 
how to map simple post-editing actions onto com-
plex refinements to the appropriate rules.  

The core component of the rule refinement proc-
ess is the one that decides what rule refinement 
operations need to apply to address a specific error 
correction. This is also the component that is most 
sensitive to the set of correction actions currently 
allowed by the TCTool. The reason for this is that 
the rule refinement operations that are applied by 



the system crucially depend on what types of cor-
rection actions were chosen by users.  

Given the correction action type (add, edit, de-
lete and change_word_order) and the error and 
correction words, the RR applies the appropriate 
refinement algorithm. In general, the Rule Refiner 
addresses lexical refinements first and then moves 
on to refinements of the grammar rules, if it is still 
necessary.  

The following subsections describe a simplified 
version of algorithm underlying the Rule Refiner 
illustrated with a few examples. 

5.1 Add Word 

When users add a word (by clicking on the [New 
Word] button on the TCTool interface and then by 
writing the word in the newly created box), there is 
no error word per se, however the RR can reliably 
identify a correction word (W’), namely the newly 
added word (in this case ‘se’). See Figure 7. 

 

 
Figure 7. TCTool snapshot after having created a new 
word (se). 
 

                
Figure 8. TCTool snapshot after having added the newly 
created word into the right position (Action 1). 
 

After having added the new word, users drag it 
to the right position in the translation. This opera-
tion allows the system to instantiate the new word 
with a specific position in the Corrected Target 
Language (CTL) vector, Wi’ (Figure 8), the next 
step is to check if the user added any alignments 

from any word(s) in the SL sentence to the cor-
rected word Wi’, and if so, to extract them (Figure 
9). 

Alignment information is required to retrieve the 
relevant lexical entries and determine the necessary 
refinements.  

In our example, [fell se] and [fell se cayeron] 
are not in the lexicon, however [fell cayeron] is 
there. 

               
Figure 9. TCTool snapshot showing Action 2: Adding 
manual alignment.  

 
At this point, the RR BIFURCATES the lexical 

entry [fell cayeron] creating a copy of it and 
REFINES it by replacing the TL side with Wi’ plus 
the other word aligned to the SL word: [fell se 
cayeron]. The resulting refined entry is displayed 
below: 

V::V |: [fell] -> ["se cayeron"] 
  ((x0 form) = fall) 
  ((x0 actform) = fell) 
  ((x0 tense) = past) 
  ((y0 agr pers) = 3) 
  ((y0 agr num) = pl) 

 
The new lexical entry is added to the Lexicon 

and the Refined Lexicon is loaded to the MT sys-
tem to assess the effect of the rule refinement. 

The translation alternatives output by the system 
are now checked against the CTL sentence as cor-
rected by the user. If the RR finds that CTL sen-
tence is being generated by the MT system, it 
stops, otherwise, it proceeds to grammar refine-
ments. For this example, the algorithm described 
above successfully refined the lexicon and the out-
put of the refined MT system already contains the 
CTL sentence. 

If the word added (Wi’) is not aligned to any 
word in the SL sentence, then there is nothing to be 
done at the lexical level and the algorithm proceeds 
to grammar refinements. 

The first step is to search the grammar for rules 
with a TL side that contain the new Word/POS 



sequence. If the sequence suggested by the user’s 
refinement is not in the grammar, the RR adds Wi’ 
in the position indicated by the user to the appro-
priate incorrect rule. 

For example, given the translation pair you saw 
the woman − viste la mujer and the user correction 
of adding the word “a” in front of mujer, the RR 
will detect that ‘a’ is not aligned to any words in 
the SL sentence and will proceed to look for the 
following sequences [“a” NP] and [“a” DET N] in 
the TL grammar. Since such a sequence does not 
exist, the refiner has three candidate rules for re-
finement, namely V, NP and VP: 

               (S      (VP   (VP (V  'viste'))  
   “a” 

                (NP   (DET  'la')  
                                      (N  'mujer') ) ) ) 

 
Adding an ‘a’ in the right position to either of 

these three rules (VP[V “a”], VP[VP “a” NP]) and 
NP[“a” DET N] would result into the desired final 
output, and even though from a linguistics perspec-
tive the second and third are better options for this 
example, there will be cases when adding a spe-
cific preposition to the preceding verb is the lin-
guistically motivated thing to do (eg. “preocupado 
por”). 

In general, the RR algorithm will choose to re-
fine the rule that better generalizes over a regres-
sion test set, as estimated by automatic evaluation 
metrics (Section 7). 

5.2 Edit Word 

When users modify a word (Wi) into a related form 
or sense (Wi’), there are two possible scenarios. 
The one most favorable to generalization is that the 
lexicon already discriminates between these two 
forms, usually by giving them a different value for 
the same feature attribute (example: [red-roja gen-
der: fem] and [red-rojo gender: masc]). The one 
with less immediate impact is that the two words 
are identically defined in the lexicon, namely they 
have the same POS and the same feature attributes 
and values (e.g. [women-mujer] and [guitar-
guitarra] are both singular feminine nouns in Span-
ish). 

If the lexicon already discriminates between the 
two lexical entries, the RR extracts the grammar 
rule for the immediate common parent of Wi and 
Wclue (as identified by the user or guessed by the 
system) and adds an agreement constraint with the 

triggering feature3 between the constituents corre-
sponding to Wi and Wclue.  

 
 

SL: I see the red car  
TL: veo el auto roja  
Alignments: ((2,1),(3,2),(4,4),(5,3)) 
 
  Action 1: edit (Wi=roja  Wi’=rojo; Wclue=auto)  
 
CTL: veo el auto rojo  
Alignments: ((2,1),(3,2),(4,4),(5,3)) 

 
Figure 10. Correction Instance for edit action.  

 
For the correction instance represented in Figure 

10 (I see the red car), the user edits roja into rojo 
(by clicking on the word and changing ‘a’ into ‘o’), 
and the system finds that the difference (delta set) 
between the lexical entry for roja and rojo is [agr 
gen]. 

At this point, the RR moves on to the Grammar 
Refinement. 
 

 
Figure 11. Edit Word window eliciting for clue word 
information. 

 
Since the user identified ‘auto’ as being the clue 

word as shown in Figure 11, the RR algorithm can 
now instantiate what variables do Wi and Wclue cor-
respond to in the relevant rule (NP,8: ADJ N  N 
ADJ), namely the system internal variables that 
represent the TL adjective and noun.4

Next, the Rule Refiner adds an [agr gen] con-
straint to rule NP,8 between the noun and the ad-
jective: NP,8:  ADJ N  N ADJ  

 [(N agr gen) = (ADJ agr gen)] 
 
However, if the lexicon does not already dis-

criminate between the two lexical entries (Wi and 
Wi’), the RR postulates a new feature attribute and 
adds a binary value constraint to each lexical entry, 

                                                           
3 The triggering feature is the attribute name for which the two 
lexical entries have a different value. 
4 The relevant rule is extracted from the translation tree output 
by the MT system, making blame assignment straightforward. 



in order to allow the grammar to distinguish be-
tween the two forms/senses of the same SL word 
automatically. 

For example, given the sentence Mary plays gui-
tar and its translation as produced by our MT sys-
tem, *María juega guitarra, the user will edit 
juega into toca, and since this new sense is not 
listed in the lexicon, the RR will BIFURCATE the 
original lexical entry [play juega] and REFINE it 
by replacing the TL side. Naturally, [play toca] is 
otherwise an exact copy of [play juega] (with the 
same POS and features), and so the system postu-
lates a new feature (feat_0) to distinguish between 
the two and adds the following constraints to the 
lexical entries:  

[play toca((feat_0) = +)]      [play juega((feat_0) = −)] 
  
Note that in the absence of a semantically anno-

tated lexicon, our approach will only be able to 
solve such errors on a case by case basis. 

5.3 Delete Word 

 If a user deletes a word, first the RR algorithm 
needs to make sure this is not followed by a word 
being added in the same position, which is the 
equivalent to editing a word.  

After making sure it is really a delete case, the 
RR algorithm checks if there were any alignments 
from the deleted word (Wi) to one or more SL 
words, and if so, it looks ahead to see if there was 
any other word in the TL sentence that was aligned 
to the SL word(s) at a later point in the session. If 
there is a TL word aligned to any of the relevant 
SL words, then the RR algorithm checks if it’s al-
ready in the lexicon, and if it isn’t, it adds it. 

If no alignment is added to the relevant SL 
word(s), the RR algorithm adds a new lexical entry 
for the SL word with an empty TL side ([SL word 

 “”]), which results into the MT system not 
translating the SL word. 

5.4 Word Order Change 

To change the order of the TL words, users can 
drag and drop words into a different position in the 
TL sentence using the TCTool.  

The Rule Refiner detects which word(s) were 
moved to a different position and extracts what 
were their initial (i) and final (i’) positions. The 
Rule Refiner can only reliably execute refinement 
operations iff, given a word that has moved (Wi), 

both the initial and final positions fall inside the 
scope of one of the rules in the grammar. If a word 
undergoes a long-distance move and thus is placed 
at the beginning or the end of the sentence far from 
its original position, automatic refinements become 
less reliable.  

If the initial and final positions are contained 
within a rule in the grammar, then the RR algo-
rithm can extract the rule that immediately sub-
sumes the constituents in both positions and 
BIFURCATE it in order to change the constituents 
on the target language side of the rule copy. 

For example, if the grammar already has a gen-
eral NP rule that reverses the order of the adjec-
tives and nouns in Spanish, but is lacking a specific 
rule for pre-nominal adjectives, like in the Gaudi 
was a great artist example introduced in section 3, 
given relevant correction feedback, the RR can 
extract the general NP rule and flip the order of N 
and ADJ on the TL side of the rule (Figure 12). 

 

 
Figure 12: The RR applies the BIFURCATE operation 
to rule NP,8, by which the order of the noun and adjec-
tive constituents is flipped. 
 

The next step is to further constrain the newly 
created rule so that it only applies in the right con-
text, namely to ‘gran’ but not to ‘grande’. Again 
this can be done in a general way if the lexicon 
already distinguishes between the lexical entries 
that are affected by this change and the general 
cases. A constraint with the appropriate feature 
attribute is added to the specific rule and a block-
ing constraint is added to the general rule. 

If there is no current feature attribute to distin-
guish between the special case and the general 
case, the RR postulates a new binary feature and 
REFINES both the grammar rules (Figure 13) as 
well as the appropriate lexical entries by adding a 
value constraint (Figure 14). 

In the Gaudi example, [great gran] and 
[great grande] are identical at the feature level,  



and so the RR module postulates a new binary fea-
ture, say feat15, which serves the purpose of distin-
guishing between two words that are otherwise 
identical according to our lexicon.  

 

 
 

Figure 13: The bifurcated rule NP,8’ is further RE-
FINEd by the RR by adding a value constraint for the 
adjective indicating that it will only apply to adjectives 
with (feat1 = +). 
 

 
 

Figure 14: Lexical entries for grande and gran 
REFINED with a value constraint for feat1, so that the 
RR can discriminate them. 
 

These two refinements result in the MT system 
generating the desired translation, namely “Gaudí 
era un gran artista” and not the previous incorrect 
translation. 

But can the system also eliminate other incorrect 
translations automatically? In addition to generat-
ing the correct translation, we would also like the 
RR module to produce a refined grammar that is as 
tight as possible, given the data that is available. 
Since the system already has the information that 
“un artista gran” is not a correct sequence in Span-
ish, the grammar can be further refined to also rule 
out this incorrect translation. This can be done by 
restricting the application of the general rule 
(NP,8) to just post-nominal adjectives, like 
‘grande’, which in this example are marked in the 
lexicon with (feat1 = − ). 

                                                           
5 A more mnemonic name for feat1 would be pre-nominal. 

6 Generalization power 

The difference between this approach and mere 
post-editing is that the resulting refinements affect 
not only to the translation instance corrected by the 
user, but also to other similar sentences where the 
same error would manifest. After the above re-
finements have been applied to the grammar for 
the Gaudi example sentence, sentences like “Irina 
is a great friend” and “the young professor is a 
great person” will now correctly translate as “Irina 
es una gran amiga” and “el profesor joven es una 
gran persona”, instead of “*Irina es una amiga 
grande” and “*el professor joven es una persona 
grande”. As shown by the last example, generali-
zation goes beyond just lexical variation, and ap-
plies to constituent generalization. Moreover, the 
generalization power of this approach is greater 
when the refinements involve information that is 
already encoded in the lexicon and the grammar. In 
our lexicon, this means mostly errors of lexical and 
morpho-syntactic nature.  

7 Automatic Evaluation Methods 

In order to fully close the feedback loop and make 
sure that automatic refinements lead to real im-
provements of the MT system and therefore its 
output, the Rule Refiner uses different methods to 
evaluate the refined MT output and guide its deci-
sions. The first one is a simplification of recall 
which tells us whether the corrected translation, as 
provided by the user post-editing actions, is cur-
rently being generated by the system as one of the 
alternatives or not. Since users implicitly also give 
information about which translations are not cor-
rect, we also want to measure if refinements man-
aged to eliminate such incorrect translations 
(precision at rank k). At the same time, we are in-
terested in knowing whether the number of alterna-
tives produced by the system has decreased. This 
indicates that the refinements effectively reduced 
the ambiguity of the grammar (reduction ratio). 

On the other hand, we want to evaluate the ef-
fect of refinements on test data, to make sure re-
finements generalize well. For this, we can also 
rely on standard metrics to evaluate MT output 
before and after refinement on a test set. Initial 
experiments have shown that both modified BLEU 
and METEOR [Lavie et al., 2004] can automati-
cally distinguish between raw MT output and cor-



rected MT output, even for a small set of sen-
tences. Such metrics can automatically calculate 
the ngram overlap between the output generated by 
the refined MT system and the user-corrected 
translation, namely the reference translation. 
Unlike most evaluation settings that rely on inde-
pendent reference translations, this approach has 
the great advantage that reference translations are 
guaranteed to be relevant to the system. 

8 Conclusions and Future Work 

We have described an alternative approach to tra-
ditional Automated Post-Editing that recycles post-
editing efforts back into the MT system, improving 
the system itself as new sentences are manually 
corrected by bilingual speakers. 

Guided by post-editing information, the RR 
module can decide to add a lexical entry, modify a 
current lexical entry, bifurcate a rule and modify 
the copy, usually making it into a more specific 
rule, or refine a rule that is too general, by adding a 
missing agreement constraint, for example.  

The Rule Refinement process is not invariable. 
It depends on the order in which refinement opera-
tions are applied. In batch mode, the RR module 
can rank correction instances in such a way as to 
maximize translation accuracy. 

In some cases, in order to determine the right 
level of granularity of the refinements proposed by 
the Automatic Rule Refiner, an implementation of 
the system with interactive mode as well as Active 
Learning techniques would be required.  

Finally, the TCTool can also be seen under a 
slightly different light, that of benefiting second 
language learners. For this purpose, we envision 
the TCTool as an interactive game that would 
bring together a native speaker of English who is 
learning Spanish, say, with a native speaker of 
Spanish who is learning English, and would allow 
them to interact until they agree on what is a 
minimal correction of any given translation, given 
the original sentence. 

9 Acknowledgements  

We thank Alon Lavie for theoretical discussion of 
this work, William Ridmann for his implementa-
tion work and Stephan Vogel for implementation 
discussion and for his support. This research was 
funded in part by NSF grant number IIS-0121-631. 

References  
Allen, J. (2003). Post-editing. ed. Harold Somers. Ben-

jamins Translation Library, 35. 

Allen, J. & Hogan C. (2000). Toward the Development 
of a Post editing Module for Raw Machine Transla-
tion Output: A Controlled Language Perspective. 
CLAW. 

Font Llitjós, A. (2006). Can the Internet help Improve 
Machine Translation. Doctoral Consortium at HLT-
NAACL. 

Font Llitjós, A.; J. Carbonell and A. Lavie (2005). A 
Framework for Interactive and Automatic Refinement 
of Transfer-based Machine Translation. EAMT. 

Font Llitjós, A. & J. Carbonell (2004). The Translation 
Correction Tool: English-Spanish user studies. 
LREC. 

Font Llitjós, A.; K. Probst and J. Carbonell (2004). Er-
ror Analysis of Two Types of Grammar for the Pur-
pose of Automatic Rule Refinement. AMTA. 

Imamura, K., E. Sumita and Y. Matsumoto (2003). 
Feedback cleaning of Machine Translation Rules Us-
ing Automatic Evaluation. ACL. 

Knight Kevin & Ishwar Chander (1994). Automated 
postediting of documents. In Proceedings of the 
twelfth national conference on Artificial intelligence. 

Lavie, A; K. Sagae and S. Jayaraman. 2004. The Sig-
nificance of Recall in Automatic Metrics for MT 
Evaluation. AMTA. 

Menezes, A, & Richardson, S. D. (2001). A best-first 
alignment algorithm for automatic extraction of 
transfer mappings from bilingual corpora. Workshop 
on Example-Based MT, in MT Summit VIII. 

Nishida, F.; S. Takamatsu, T. Tani and T. Doi (1988). 
Feedback of Correcting Information in Posteding to 
a Machine Translation System. COLING. 

Phaholphinyo, S.; T. Modhiran, N. Kritsuthikul and T. 
Supnithi (2005). A Practical of Memory-based Ap-
proach for Improving Accuracy of MT. MT Summit. 

Su, K.; J. Chang and Y. Hsu, (1995). A corpus-based 
statistics-oriented two-way design for parameterized 
MT systems. TMI. 

Von Ahn, Luis; S. Ginosar, M. Kedia, R. Liu and M. 
Blum (2006). Improving Accessibility of the Web 
with a Computer Game. In Notes at the International 
conference for human-computer interaction (CHI). 

http://www.cs.cmu.edu/~biglou/Phetch.pdf
http://www.cs.cmu.edu/~biglou/Phetch.pdf
http://www.cs.cmu.edu/~biglou/Phetch.pdf

	Carnegie Mellon University
	Research Showcase
	1-1-2006

	Automating Post-Editing to Improve MT Systems
	Ariadna Font Llitjós
	Jaime G. Carbonell
	Recommended Citation



