




The internal variable II is used to incorporate the past history of the independent variables
into our constitutive laws in a very simple way. We will use the notation

IR+ := [0,oo) 3 C ~ A*(x,C) := A(x,t-Q (2.18)

for the past history of the function A(x, •) up to time t. In this paper we assume that U
and II are smooth, more precisely they lie in the space

«:=C1(lR+,C6
1(n)). (2.19)

We assume that the evolution of II is governed by an ordinary differential equation of
the form

ri(x, t) = «(u*(x> •), n((x, -))M(u(x, t), n(x, *»u(x, t). (2.20)
Here the constitutive function M is a linear transformation such that

M(U(x,*),n(x,t))U(x,<) = ME(U(x,t),n(x,t))E(x,<)
+Me(U(x,*),n(x,*))0(x,i) (2.21)
+M«(U(x,t),n(x,O)g(x,t).

This assumption follows from the treatment of classical plasticity by Antman and Szymczak
[1]. The more interesting part of this theory is the specification of the plastic switching
function

(U<(x,.),n*(xr)) » ^ ( x , . ) , ^ ^ . ) ) € {0,1}. (2.22)

We will assume that the switching function is rate-independent; i.e., for any smooth
function a : IR+ —» IR+ satisfying

a1 > 0, or(O) = 0, and lim a(() = 00, (2.23)
C->oo

we have
s(U'(x, *(•)), n«(x, a(-))) = -(U1 (x, •), n*(x, •)) (2.24)

We say that at time t, the material particle x, with state history U^x, •) and II^x, •), is
in the

• plastic mode if s(U*(x,-),II*(x,-)) = 1, and in the

• elastic mode if s(U*(x, -),n<(x, •)) = 0.

Note that this terminology does not agree with many of the traditional notions of plastic-
ity. For instance, the types of behavior described in [1] as plastic neutral loading, plastic
unloading, and elastic are all contained in what we call the elastic mode.

In Section 3, we give more detailed descriptions of switching functions for one-dimensional,
isothermal pseudo-elastic materials. We make a few preliminary comments at this time.

1. Our hypotheses are more general than the constitutive hypotheses for hypoelastic ma-
terials (cf. [12]), which are a special case of the theory addressed in this section.



2. The elasto-plasticity theory described in [1] is also a special case of the theory de-
scribed here. However, the materials considered in [1] can only be in plastic mode on
a surface in the (U,I1) state space described by a level surface of a yield function. In
a one-dimensional analysis of such a model, the most natural assumption (and the one
explored in [1]) is that plastic yielding can take place only on the upper and lower
branches of the hysteresis loop. This is a good model for many types of materials; and
in fact, similar assumptions are sometimes made in modeling shape memory alloys.
However, as we have indicated in the introduction, the experimental evidence strongly
indicates that pseudo-elastic materials can have yield curves at all points within the
hysteresis loop, and this is the behavior that we attempt to model below.

2*3 Constitutive restrictions
We assume that the following two restrictions on our constitutive equations hold. We first
assume that the constitutive relations are such that the balance of angular momentum is
satisfied automatically. This is accomplished by assuming that the constitutive function S
always yields a symmetric tensor.

Second, we adopt the view of Coleman and Noll [3] that our constitutive laws must satisfy
the Clausius-Duhem inequality

- V>t - fi0t + S : Et + 1 - q • g > 0 (2.25)

for all admissible past histories of the state variables.
Substituting our constitutive equations into (2.25) yields

0 < ^-^E-^nsME + S]:Et + [--^e-i>nsMe - rj]Ot

+[-^g-0n*M«]-gt-iq.g

Note that because the switching function s depends on the histories of the state variables,
we cannot assume that one can construct histories such that E t , 6t and gt are independent
of the value of the quantities in the brackets. Thus, we cannot deduce that the quantities in
the brackets are zero. The specific constitutive equations below are constructed so that the
plastic mode is locally irreversible and the elastic mode locally reversible. Local reversibil-
ity will allow us to use the Clausius-Duhem inequality to derive some restrictions on our
constitutive equations.

Definition 2.1 We say that a state (U(x,i),II(x,i)) is elastically reversible at (x,<) if
for every E*(x,i), 0t(xyt), gt(x,i) there exist histories U*(x, •) and nf(x, •) such that

5(U<(x,.),nt(x,.)) = 0, (2.27)

(ut(x,o),n<(x,o)) = (u(x,o,n(x,<)), (2.28)
U*(x,0) = (E«(x,i),0t(x,t),gt(x,t)) (2.29)

Applying this definition to the Clausius-Duhem inequality leads to the following result.



Lemma 2.2 At any elastically reversible state (U(x,i),Il(x,<)) the following hold

,<),n(x,<),x), (2.30)
<),n(x,i),x), (2.31)

^g(U(x,O,n(x,t),x) = 0, (2.32)

and
q - g < 0 . (2.33)

3 One-dimensional isothermal motions

We now write some more specific constitutive relations for one-dimensional materials. Our
equations are purely phenomenological and we make no attempt to justify them by referring
to three-dimensional theories. The current literature on microstructure has influenced our
hypotheses, but we cannot give a rigorous justification of our one-dimensional models in
terms of more fundamental theories at this time.

3.1 General equations
We begin by describing some general stress-strain relations for an isothermal material.

We consider the following representation of longitudinal motions of a slender elastic body
which we will refer to as a wire. The reference configuration is taken to be the interval [0, L]
and admissible deformations are represented by real-valued functions of the form

[0, L) x IR+ 3 (x, t) h-> p(x, t) e IR. (3.34)

We write the deformation p in terms of the displacement u using

p(x,t)=:x + u(x,t). (3.35)

We define the longitudinal strain

e(z,<):=ux(z,i). (3.36)

(The function e is identified with E in the three-dimensional case.) The requirement of local
invertibility translates to the constraint

e ( z , t ) > - l . (3.37)

In this paper we consider only tensile motions (e > 0) since these are the only type of motions
that we can make any pretense of understanding.

We let
r : [0 ,L ]x lR + -+ IR (3.38)

be the longitudinal stress, and for an internal variable we use

] (3.39)



which we call the phase fraction. (The function ft is identified with II in the three-
dimensional case.) We are motivated by the interpretation of ft as the fraction of austenite
and martensite phases of the crystal within the cross section of the wire.

If we let v(x, t) := pt(x, t) be the velocity, then the balance of mass and momentum can
be written as the first order system

e, = »„ (3.40)
vt = Tx. (3.41)

The evolution of the phase fraction is governed by

(3.42)

where M : IR"1" x [0,1] —> IR+ is a constitutive function which characterizes the plastic
evolution of the phase fraction and s is a switching function (cf. (2.21) and (2.22)).

When the body is in elastic mode at a point, ft is constant in time. When the body is in
plastic mode (s = 1) we see from (3.42) that e and ft evolve along a family of curves in the
(e, ft) plane described by the ordinary differential equation

^ /?). (3.43)

The solution of this equation with initial condition

ft(to) = 0 (3.44)

will be denoted by ft(e; €o). We will refer to this family as the phase-strain curves. We make
the following assumption.

Hypothesis 3.1 For every to € [eo\co~] there is solution of the equation

j§(e;eo) = l. (3.45)

In other words, each of the phase-strain curves intersects both the line ft = 0 and the line
ft = 1. Of course, we could give sufficient conditions on M to ensure that this hypothesis is
satisfied (e.g., we might require M to be bounded below by a positive constant). We now
define ef to be the solutions of

respectively. In Figure 4 we have depicted a typical family of phase-strain curves.
The system of three evolution equations (3.40-3.42), is supplemented with a constitutive

law
T{x,t) = f{c(x,t),ft{x,t)). (3.47)

We call the family of curves

f



Figure 4: Phase-strain curves

(a) (b)

Figure 5: (a) Elastic stress-strain curves, (b) Plastic yield curves.

parameterized by /? € [0,1] the elastic stress-strain curves (cf. Figure 5a); The plastic
yield curves are the curves formed by composing the phase-strain function /3 with T:

where the parameter is e0 G [e0 ,e£] (cf. Figure 5b). (We have yet to restrict the direction
of plastic yielding.)

Note that the elastic stress-strain curves corresponding to /3 = 0 and /3 = 1 and the plastic
yield curves corresponding to c0 = e^ determine the outermost hysteresis loop. Subloops
are formed when we switch between elastic and plastic modes within the outermost loop.
This switching is governed by the function s. We now give a more complete description of
the dependence of s on the histories of e and /?. To do this we first introduce a switching
curve in the (e, /3) plane defined by the function

(3.48)
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We assume

= 4 (3.49)

(3.50)

We also assume that at each point the switching curve intersects one (and only one) of the
phase-strain curves (cf. Figure 6a). By composing e with T we obtain the corresponding
curve in the stress-strain plane (cf Figure 6b).

Figure 6: (a) Switching curve superimposed on phase-strain curves, (b) Switching curve in
stress-strain plane.

With the switching curve thus defined we can now describe the switching function s. We
give the definition in terms of a set of rules for switching between elastic and plastic modes.

Definition 3.2 /. If the body is in the elastic mode at a point, it will remain in the elastic
mode until (e(z,<),/?(:r,t)) intersects either

(a) the switching curve e = e(ft),

(b) 0 = fa;$),or
(c) /? = /3(e;e+).

2. If the body is in the plastic mode at a point, it will remain in the plastic mode until

(a) /9(x,f) = 0,

(b)fi{x,t) = l,

(c) et(x,t)[e{x,t)-e(/3(x,t))}<0.

Note that the sign condition on et(e — e) means that we stay in the plastic mode as long as
we are "moving away" from the switching curve along the plastic yield curves. Hence the
direction of irreversible motion is now determined.

11



4 Comments

1. If we assume that M(e(/9), /?) = 0 we ensure that the transition from elastic to plastic
mode at the switching curve is smooth. (The data in [7] seems to indicate that this
should be the case.)

2. One can certainly question the validity of designing a local model based on macroscopic
observations (especially when the microstructure is as complicated as it is in shape
memory alloys). However, we take some comfort in the fact that the experiments in
[7] were conducted using single crystals.

3. In this work we have restricted our attention to smooth processes. There is a vigorous
ongoing debate on the proper way to extend physical systems that are not in conserva-
tion form to allow for the formation of discontinuities such as shocks. This discussion
involves not only our model but numerous other theories such as plasticity, hypoelas-
ticity, Cattaneo's model for heat flow, hysteresis models for ferromagnetic materials,
etc. While some progress has been made in very specific cases (cf. Renardy [10], Plohr
[9]) this remains a very difficult problem in general.
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