Synthesis of Resource Invariants for Concurrent Programs

Edmund M. Clarke
Harvard University

Follow this and additional works at: http://repository.cmu.edu/compsci
Synthesis of Resource Invariants for Concurrent Programs

Edmund Melson Clarke, Jr.
Aiken Computation Laboratory
Harvard University
Cambridge, Mass. 02138

Abstract

Owicki and Gries have developed a proof system for conditional critical regions. In their system logically related variables accessed by more than one process are grouped together as resources, and processes are allowed access to a resource only in a critical region for that resource. Proofs of synchronization properties are constructed by devising predicates called resource invariants which describe relationships among the variables of a resource when no process is in a critical region for the resource. In constructing proofs using the system of Owicki and Gries, the programmer is required to supply the resource invariants. We investigate the possibility of automatically synthesizing resource invariants for a simple concurrent programming language (SCL) in which processes access shared data via conditional critical regions. We consider only invariance [PN77] or safety properties [LM77] of SCL programs. This class of properties includes mutual exclusion and absence of deadlock and is analogous to partial correctness for sequential programs. Correctness proofs of SCL programs are expressed in a proof system similar to that of Owicki and Gries.

We show that convexity plays a key role in the derivation of strong resource invariants. We also develop methods for automatically synthesizing resource invariants. Specifically, we characterize the resource invariants of a concurrent program as least fixpoints of a functional which can be obtained from the text of the program. By using this fixpoint characterization and a widening operator which exploits our observation on the importance of convexity, good approximations may be obtained for the resource invariants of many concurrent programs.

1. Introduction

Owicki and Gries [OW76] have developed a proof system for conditional critical regions. In their system logically related variables accessed by more than one process are grouped together as resources, and processes are allowed access to a resource only in a critical region for that resource. Proofs of synchronization properties are constructed by devising predicates called resource invariants. These predicates describe relationships among the variables of a resource when no process is in a critical region for the resource. Related methods for verifying concurrent programs have been discussed by Lamport [LM77] and Pnueli [PN77].

In constructing proofs using the system of Owicki and Gries, the programmer is required to supply the resource invariants. We investigate the possibility of automatically synthesizing resource invariants for a simple concurrent programming language (SCL) in which processes access shared data via conditional critical regions. We consider only invariance [PN77] or safety properties [LM77] of SCL programs. This class of properties includes mutual exclusion and absence of deadlock and is analogous to partial correctness for sequential programs. Correctness proofs of SCL programs are expressed in a proof system similar to that of Owicki and Gries.

To gain insight on the synthesis of resource invariants we restrict the SCL language so that all processes are nonterminating loops, and the only statements allowed in a process are P and V operations on semaphores. We call this class of SCL programs P V programs. For P V programs there is a simple method for generating resource invariants, i.e., the semaphore invariant method of Habermann [HA72] which expresses the current value of a semaphore in terms of its initial value and the number of P and V operations which have been executed. Although the semaphore invariant method is simple to state, it is a powerful technique for proving P V programs; we show that it is as powerful as the reduction method of Lipton [L175] for proving freedom from deadlock.

The semaphore invariant method, however, is not complete for proving either absence of deadlock or mutual exclusion of P V programs. We show that there exist P V programs for which deadlock (mutual exclusion) is impossible, but the semaphore invariant method is insufficiently powerful to establish this fact. This incompleteness result is important because it demonstrates the role of convexity in the generation of powerful resource invariants. We also give a characterization of the class of P V programs for which the semaphore invariant method is complete for proving absence of deadlock (mutual exclusion).

The semaphore invariant method is generalized to the class of linear SCL programs in which solutions to many synchronization problems can be expressed. Although the generalized semaphore invariant also fails to be complete, it is sufficiently powerful to permit proofs of mutual exclusion and absence of deadlock for a significant class of concurrent programs. When the generalized semaphore invariant is insufficiently powerful to prove some desired property of an SCL program, is
it possible to synthesize a stronger resource invariant? We argue that resource invariants are fixpoints, and that by viewing them as fixpoints it is possible to generate invariants which are stronger than the semaphore invariants previously described. We show that the resource invariants of an SCL program are fixpoints of a functional F_C which can be obtained from the text of program C and that the least fixpoint $\mu(F_C)$ of F_C is the "strongest" such resource invariant. Since the functional F_C is continuous, the least fixpoint $\mu(F_C)$ may be expressed as the limit

$$\mu(F_C) = \bigcup_{j=1}^{\infty} F_C^j(\text{false}).$$

Clearly, this characterization of $\mu(F_C)$ cannot be used directly to compute $\mu(F_C)$ unless C has only a finite number of different states or unless a good initial approximation is available for $\mu(F_C)$.

By using the notion of widening of Cousot [C077] however, we are able to speed up the convergence of the chain $F_C^j(\text{false})$ and obtain a close approximation to $\mu(F_C)$ in a finite number of steps. The widening operator which we use exploits our observation on the importance of convexity in the generation of resource invariants. Although fixpoint techniques have been previously used in the study of resource invariants ([LA76], [FL77]), we believe that this is the first research on methods for speeding up the convergence of the sequence of approximations to $\mu(F_C)$. Examples are given in the text to illustrate the power of this new technique.

The SCL language and its semantics are discussed in Sections 2 and 3 of this paper. Sections 4 and 5 contain a description of the semaphore invariant method and a discussion of why it is incomplete. Section 6 introduces the class of linear SCL programs and briefly describes how the semaphore invariant can be generalized to this class of programs. The fixpoint theory of resource invariants is presented in Section 7. Section 8 contains an account of Cousot's widening operator and how it can be used in approximating resource invariants. The paper concludes with a discussion of the results and some remaining open problems.

2. A Simple Concurrent Programming Language (SCL)

An SCL program will consist of two parts:

1. Initialization part "R:=" in which initial values are assigned to the synchronization variables R, and
2. a concurrent execution part

```
resource R(R): cobegin P1/P2/.../Pn coend
```

which permits the simultaneous or interleaved execution of the statements in the processes P_1, P_2, \ldots, P_n. All variables accessed by more than one process must appear in the prefix $R(R)$ of the concurrent execution part. Processes have the form

```
P1: cycle $S_1^1 S_1^2 \ldots S_1^{k_1}$ end
```

where "$S_1^1 S_1^2 \ldots S_1^{k_1}$" is a list of conditional critical regions. The cycle construct is a non-terminating loop with the property that the next statement to be executed after $S_1^{k_1}$ is the first statement S_1^1 of the loop. Although the cycle statement simplifies the generation of loop invariants, the results of this paper also apply to terminating loops (e.g., while loops). The extension of SCL to allow multiple resources is straightforward and will not be treated in this paper.

Conditional critical regions have the form with R when b do A od. Only variables listed in R can appear in the boolean expression b and the body A of the conditional critical region. When execution of a process reaches the conditional critical region with R when b do A od, the process is delayed until no other process is using R and the condition b is satisfied. Then the statement A is executed as an indivisible action.

Let C be an SCL program with the format described above; a program state σ is a ordered list $(pc_1, pc_2, \ldots, pc_n; s)$, where

1. pc_i is the program counter for process P_i and is in the range $1 \leq pc_i \leq k_i$.
2. s maps the set of synchronization variables to the set Z of integers and is called the program store.

We will write $b(s)$ to denote the value of predicate b in store s. $A(s)$ will be the new store resulting when the sequential statement A is executed in store s.

A computation of an SCL program C is a sequence of program states $\sigma_0, \sigma_1, \ldots, \sigma_j, \ldots$. The initial state σ_0 has the form $(1, 1, \ldots, 1, s_0)$ where s_0 reflects the assignments made in the initialization part of C. Consecutive states σ_j are related as follows: There exists an m_j with $1 \leq m_j \leq n$ such that

1. $pc_i^{m+1} = pc_i^j$ if $i \neq m$.
2. $pc_m^{j+1} = \begin{cases} pc_m + 1 & \text{if } pc_j < k_m \\ 1 & \text{otherwise} \end{cases}$
3. if statement pc_m^j in process m is with R when b do A od, then $b(s_j) = true$ and $s_{j+1} = A(s_j)$.

Note that concurrency in the execution of an SCL program is modeled by nondeterminism in the selection of successor states.

If there exists a computation $\sigma_0, \sigma_1, \ldots, \sigma_j, \ldots$ of program C, then we say that state σ_j is reachable from the initial state σ_0 of C and write $\sigma_0 \leq \sigma_j$. Note that the next statement to be executed by process P_i in state $\sigma = (pc_1, \ldots, pc_n; s)$ is always pc_i^1. We say that program C is blocked in state σ if the condition of the next statement to be executed in each process is false in state σ. A state σ of C is a deadlock state if σ is reachable from the initial state of C and C is blocked in state σ. Two states s_1 and s_2 in different processes of C are mutually exclusive if there does not exist a state σ, reachable from the initial state of C, in which s_1 and s_2 are next to execute in their respective processes.
Frequently it will be convenient to identify a predicate \(U \) with the set of program states which make \(U \) true. If \(\Sigma \) is the set of all program states, then \(2^\Sigma \) will be the set of all possible predicates. \(\text{false} \) will correspond to the empty state set, and \(\text{true} \) will correspond to the set \(\Sigma \) of all program states. Also logical operations on predicates can be interpreted as set theoretic operations on subsets of \(\Sigma \) i.e., "or" becomes "union", "and" becomes "intersection", "not" becomes "complement", and "implies" becomes "is a subset of".

\[\text{SP}[A](U) \] will denote the strongest postcondition corresponding to the sequential statement \(A \) and the precondition \(U \). If the predicate \(U \) is identified with the set of states which satisfy it, then \(\text{SP}[A](U) \) may be defined by \(\text{SP}[A](U) = \{ (PC_1, \ldots, PC_n; A(s_1), \ldots, A(s_n) ; s) \in U \} \)

Theorem 2.1. Let \(A \) be a sequential statement.

\(A \) (Monotonicity) if \(U, V \subseteq \Sigma \) and \(U \subseteq V \), then \(\text{SP}[A](U) \subseteq \text{SP}[A](V). \)

\(A \) (Additivity) if \(\{U_i\}, i \geq 0 \) is a family of predicates, then \(\text{SP}[A](U) = \text{SP}[A](U_i) \).

Proof: See [CL77].

3. Resource Invariant Proofs

In this section we adapt the proof system of Owicki and Gries to SCL programs. We use the standard notation \(\{P\} A \{Q\} \) of Hoare to express the correctness of sequential statements. To prove mutual exclusion of statements \(S_1 \) and \(S_2 \) in \(C \) it is sufficient to give a resource invariant system \(\mathcal{R}_C \) for \(C \) such that \(\text{M}(\mathcal{R}_C) = \text{pre}(S_1) \wedge \text{pre}(S_2) \wedge \text{IR} \) is unsatisfiable. To prove that it is impossible for \(C \) to become deadlocked it is sufficient to exhibit a resource invariant system \(\mathcal{R}_C \) such that the predicate \(\{P\} A \{Q\} \).

Theorem 3.1. Let \(\mathcal{R}_C \) be a resource invariant system for the SCL program \(C \). If \(a \) is reachable in \(C \) and \(S^j \) is the next statement of process \(P_i \) to execute in state \(\sigma \), then \(\sigma \in \text{pre}(S^j) \).

Proof: See [OW76].

Resource invariant systems may be used to prove absence of deadlock and mutual exclusion of an SCL program \(C \). To prove mutual exclusion of statements \(S_1 \) and \(S_2 \) in \(C \) it is sufficient to give a resource invariant system \(\mathcal{R}_C \) for \(C \) such that

\[\text{M}(\mathcal{R}_C) = \text{pre}(S_1) \wedge \text{pre}(S_2) \wedge \text{IR} \]

is unsatisfiable. To prove that it is impossible for \(C \) to become deadlocked it is sufficient to exhibit a resource invariant system \(\mathcal{R}_C \) such that the predicate

\[\{P\} A \{Q\} \]

is unsatisfiable. Local deadlock, in which only a subset of the processes are blocked, may be handled in a similar manner.

4. The Semaphore Invariant Method

P and V operations on a semaphore can be treated as conditional critical regions: \(P(x) \) is equivalent to \(\text{with } R \text{ when } x>0 \text{ do } x:=x-1 \text{ od} \) and \(V(x) \) to \(\text{with } R \text{ when } x>0 \text{ do } x:=x+1 \text{ od} \). In this section we restrict the class of SCL programs so that the only statements allowed within processes are \(P \) and \(V \) operations on semaphores; we call such programs PV programs.

The semaphore invariant method [HA72] is based on the use of auxiliary variables. Let \(a \) be a semaphore with initial value \(m \) occurring in a PV program \(C \). For each statement \(S_i \) corresponding to a \(P \) operation we introduce an auxiliary variable \(a^i_1 \) which is incremented each time the \(P \) operation is executed. Similarly for each statement \(S_i \) corresponding to a \(V \) operation we introduce a variable \(a^i_2 \). All auxiliary variables are initialized to zero at the beginning of the program \(C \). The semaphore invariant states that the predicate

\[I_a = \{a=m+a^2_1-a^1_1 \wedge a^1_1 > 0 \} \]

must be satisfied by \(C \) whenever \(C \) is not executing a \(P \) or \(V \) operation on the semaphore \(a \).

When auxiliary variables are added to \(C \) in this manner, there is a simple method of generating appropriate \(\text{pre} \) and \(\text{post} \) functions for \(C \). Let

\(Pi: \text{cycle } S^i_1, \ldots, S^i_k \text{ end} \) be the \(i \)th process in the program \(C \), and let \(d^i_1, \ldots, d^i_k \) be the auxiliary variables for this process. The \(\text{pre} \) and \(\text{post} \) functions for process \(Pi \) will be defined inductively:

\(\text{pre}(S^i_j) \equiv \text{post}(S^i_{j-1}) \equiv \{a^1_1=d^i_1=\ldots=d^i_{k_j}\} \)

\(\text{post}(S^i_j) = \text{pre}(S^i_{j+1}) \equiv \{a^1_1=(d^i_j-1)/d^i_{j+1}\} \)

We refer to the resource invariant system consisting of the conjunction of the semaphore invariants \(I_a \) and
and the annotation obtained by the above procedure as the semaphore invariant system (SIC) corresponding to C.

Consider, for example, the PV program C
\[
a := 1
\]
\[
\begin{align*}
& A: \text{cycle } P(a); S_A; V(a) \text{ end} \\
& B: \text{cycle } P(a); S_B; V(a) \text{ end}
\end{align*}
\]
SA and SB represent the bodies of the critical regions established by the P and V operations and will be treated as null statements in the analysis which follows. Annotating C as described in the previous paragraph we obtain:
\[
\{ a_1 = 0 \land a_2 = 0 \land a_1^2 = 0 \land a_2^2 = 0 \land a = 1 \}
\]
resource R(a, a_1^2, a_2^2):
\[
\begin{align*}
&A: \text{cycle} \\
&\{ a_1^2 = a_2^2 \} \\
&\text{with R when } a > 0 \text{ do } \{ a_1 = a_1 + 1; a := a - 1 \text{ od} \} \\
&\{ a_1^2 - 1 = a_2^2 \}
\end{align*}
\]
SA;
\[
\begin{align*}
&B: \text{cycle} \\
&\{ a_2^2 = a_1^2 \} \\
&\text{with R when } a > 0 \text{ do } \{ a_2 = a_2 + 1; a := a + 1 \text{ od} \} \\
&\{ a_2^2 - 1 = a_1^2 \}
\end{align*}
\]
end

The invariant I_a for semaphore a is
\[
I_a = \{ a = 1 + a_2^2 - a_1^2 - a_1 \land a \geq 0 \} .
\]
Since the predicate M(SIC) = pre(SA) A pre(SB) A I_a is unsatisfiable, it follows that statements SA and SB are mutually exclusive. Similarly we see that C is free from deadlock, since the predicate D(SIC) is also unsatisfiable.

5. Incompleteness of the Semaphore Invariant Method

The incompleteness of the semaphore invariant method is best explained by means of progress graphs [B776]. The progress graph is a graphical method for representing the feasible states of a PV program. Consider, for example, the program C:
\[
\begin{align*}
A: \text{cycle } P(a); P(b); P(d); V(a); V(c); V(b); V(c); V(d) \text{ end} \\
& B: \text{cycle } P(a); P(c); V(b); P(d); V(a); V(c); V(d) \text{ end}
\end{align*}
\]
coend
The progress graph for C is shown on the next page. Feasible computations of this program can be represented by a graph in which the number of instructions executed by a process is used as a measure of the progress of the process, e.g.,

The dashed line represents a computation of the program C in which process B executes P(b) and process A executes P(a). The shaded region of the graph represents those program states which fail to satisfy the semaphore invariants for a or b; such states are called unfeasible states. The point labeled X in the graph is a deadlock state; the state X is reachable from the initial state of C but further progress for either process A or process B would violate one of the semaphore invariants (i.e., both processes are blocked). Those points in the graph (states of C) which are not reachable from the origin (initial state) by a polygonal path composed of horizontal and vertical line segments which never cross an unfeasible region (by a valid computation sequence of C) are called unreachable points (states). All unreachable points are unreachable. The point labeled Y in the graph is an example of an unreachable feasible point; if the program C were started in state Y, the semaphore invariants would not be violated.

Next consider the PV program C:
\[
\begin{align*}
A: \text{cycle } P(a); P(b); c := d := 1 \\
& \text{cobegin} \\
& A: \text{cycle } P(a); P(b); P(d); V(a); V(c); V(b); V(c); V(d) \text{ end} \\
& B: \text{cycle } P(a); P(c); V(b); P(d); V(a); V(c); V(d) \text{ end}
\end{align*}
\]
coend
The progress graph for C is shown on the next page. Note that deadlock can never occur during execution of program C. Let SIC be the semaphore invariant system for the program C. Thus, if auxiliary variables are added as described in Section 4,
the invariant I will be given by

$$I = \{a = l + a_1 + a_2 + a_3 - a_1^2 - a_2^2 - a_3^2 \geq 0$$

$$\land b = l + b_1 + b_2 - b_1^2 - b_2^2 \geq 0$$

$$\land c = l + c_1 + c_2 - c_1^2 - c_2^2 \geq 0$$

$$\land d = l + d_1 + d_2 - d_1^2 - d_2^2 \geq 0$$

$$\land a_1^2 + a_2^2 + a_3^2 - a_1 - a_2 - a_3 - a_4 \geq 0$$

$$\land b_1^2 + b_2^2 + b_3^2 - b_1 - b_2 - b_3 - b_4 \geq 0$$

$$\land c_1^2 + c_2^2 + c_3^2 - c_1 - c_2 - c_3 - c_4 \geq 0$$

$$\land d_1^2 + d_2^2 + d_3^2 - d_1 - d_2 - d_3 - d_4 \geq 0$$

It is not difficult to show that the condition $D(SIC)$ for absence of deadlock is satisfied by the state Z in which

$$a = 0, a_1^2 = l, a_2^2 = 0, a_3^2 = 1$$

$$b = 0, b_1^2 = 0, b_2^2 = 1, b_3^2 = 1$$

$$c = 0, c_1^2 = 0, c_2^2 = 0, c_3^2 = 1$$

$$d = 0, d_1^2 = 0, d_2^2 = 0, d_3^2 = 1$$

Thus absence of deadlock cannot be proven by means of the semaphore invariant method. The state Z which satisfies $D(SIC)$ is an example of an unreachable feasible state in which each process is blocked; we will call such states trap states.

Theorem 5.1. The semaphore invariant method is complete for proving deadlock freedom for those PV programs whose progress graphs do not contain any trap states.

Proof: Let C be a PV program whose progress graph does not contain any trap states. Thus any state of C in which all processes are blocked must be reachable from C's initial state. Let SI_C be the semaphore invariant system for C. We show that the condition $D(SIC)$ is unsatisfiable if and only if deadlock is impossible for the program C. Clearly, if $D(SIC)$ is unsatisfiable then deadlock is impossible. Thus assume that $D(SIC)$ is satisfied by some state Z. By construction of the predicate D all processes are blocked in state Z. Since Z is reachable from the initial state of C, it is a deadlock state.

A similar characterization may be given for mutual exclusion. How can the semaphore invariant method be strengthened to handle trap states? Since trap states correspond to "holes" in the unfeasible region of a progress graph, a method based on convexity is worthy of investigation. We return to this question in Section 8.

Although the semaphore invariant method is not complete for proving absence of deadlock or mutual exclusion of PV programs, it is a powerful tool for proving correctness of PV programs which occur in practice as the examples of [HA72] demonstrate. Additional evidence for the power of the semaphore invariant method may be obtained by comparing it to other methods which have been proposed for proving deadlock freedom of PV programs. We prove, for example, that the semaphore invariant method is as powerful as the reduction method of Lipton [L74]:

If a PV program has a reduction proof of deadlock freedom, then it also has a proof using the semaphore invariant method.

Reduction is a technique for decreasing the number of interleavings of statements which must be considered in the proof of a concurrent program. Let C be a concurrent program and S a statement contained in C. The reduction C/S is the concurrent program obtained from C by making S into a single indivisible (i.e., uninterruptible) action. To prove that program C has some property U, it is sufficient to produce a sequence of programs $C = C_1, C_2, \ldots, C_n$ and statements S_1, S_2, \ldots, S_n such that

1. $C_{i+1} = C_i/S_i$ for $i = 1, \ldots, n-1$,
2. If C_i has property U, then C_i/S_i also has property U,
3. C_n trivially has property U.

Lipton gives a class of statements called D-reductions with the property that if C is a concurrent program and S is a D-reduction, then C is deadlock-free iff C/S is deadlock free. For PV programs D-reductions have the form $S = S_1, S_2, \ldots, S_n$ where S_1, \ldots, S_{i-1} are P operations, S_i is V operations and S_2, \ldots, S_n can always execute. In view of condition (3) above we will assume that the progress graph of the final program C_n in a reduction proof of deadlock freedom does not contain any trap states.

Lemma 5.2. If the progress graph of a PV program C contains a trap state, then the progress graph of the D-reduction C/S also contains a trap state.

Proof: Let σ be a trap state for the PV program C. By definition, σ is an unreachable feasible state of C in which every process is blocked. Let C/S be a D-reduction where $S = S_1, S_2, \ldots, S_n$ has the form described above. Assume that σ is not a trap state for C/S. If
were a feasible state of C/S, then it would be a trap state of C/S since every computation of C/S is a computation of C. Thus, σ must not be a feasible state of C/S. Since S = S_1, S_2, ..., S_n must be executed as an atomic statement in C/S, the process containing S must be blocked in state σ while attempting to execute one of the statements S_2, S_3, ..., S_n. Since by definition of a D-reduction the statements S_2, S_3, ..., S_n can always execute, this is a contradiction.

THEOREM 5.3. If a PV program has a proof of deadlock freedom using the reduction method, then it also has a proof of deadlock freedom using the semaphore invariant method.

Proof: Assume that C_0 has a proof of deadlock freedom using the reduction method. Then there exists a sequence of D-reductions C_1 = C_0/S_0, ..., C_n = C_{n-1}/S_{n-1} where C_n is free from deadlock and does not contain any trap states. By Lemma 5.2 C_0 must also be free from deadlock and not contain any trap states. By Theorem 5.1, it is possible to prove that C_0 is free from deadlock by means of the semaphore invariant method.

6. Generalization of the Semaphore Invariant Method

Since a large class of synchronization techniques can be modeled by counting operations on shared variables, the class of linear SCL programs is of particular interest. The conditional critical regions of a linear SCL program have the form

with R when B(x_1, x_2, ..., x_n) do A(x_1, x_2, ..., x_n) od

where

1. the variables x_1, x_2, ..., x_n belong to resource R.
2. the condition B(x_1, x_2, ..., x_n) is a truth functional combination of atomic formulas of the form a_1 x_1 + a_2 x_2 + ... + a_n x_n + a_{n+1} ≤ 0
3. the body A(x_1, x_2, ..., x_n) is a series of assignment statements which increment the shared variables x_1, ..., x_n e.g.,
 \begin{align*}
 x_1 &:= x_1 + b_1 \\
 x_2 &:= x_2 + b_2 \\
 &\vdots \\
 x_n &:= x_n + b_n
 \end{align*}

Note that semaphores are special cases of linear SCL programs. Many other standard synchronization problems including the dining philosophers problem, the readers and writers problem, and the cigarette smoker's problem can all be expressed as linear SCL programs. Arguments are given in [SC76] and [AG74] that linear SCL programs are universal in their power to express synchronization constraints for concurrent programs. It is also possible to prove that mutual exclusion and deadlock freedom are undecidable for this class of programs.

We briefly outline how the semaphore invariant can be generalized to linear SCL programs. Let C be an SCL program. For each conditional critical region S_i in C we introduce a new auxiliary variable d_{S_i} which counts the number of times S_i has been executed. Thus, the algorithm of Section 4 may be used to generate pre and post functions for C; the resulting annotation of C will be called the canonical annotation.

Let \(H_i(x) = a_1 x_1 + a_2 x_2 + ... + a_n x_n + a_{n+1} \) be a linear form occurring in the condition of some critical region of C. We will use the notation \(\delta_{S_i}/\delta_{S_j} \) to denote the change in value of \(H_i \) caused by the execution of statement \(S_j \) note that \(\delta_{S_i}/\delta_{S_j} \) is given by

\[
\delta_{H_i}/\delta_{S_j} = \sum_{j=1}^{m} i_j \delta_j
\]

Let \(\delta H_i = H(R) - H(R_0) \) where \(R_0 \) gives the initial values of the synchronization variables. Then, the relationship

\[
\delta H_i = \sum_{j} \delta H_i/\delta_{S_j} \delta_{S_j}
\]

must hold if no process is executing a critical region for R.

Although the generalized semaphore invariant is sufficiently powerful to permit proofs of mutual exclusion and absence of deadlock for a significant class of linear SCL programs, it fails to complete for exactly the same reason as the original semaphore invariant.

7. A Fixpoint Theory of Resource Invariants

Let \(\Sigma \) be the set of program states and let \(F: \Sigma^2 \rightarrow \Sigma^2 \). If \(U \subseteq \Sigma \) and \(F(U) = U \), then \(U \) is a fixpoint for the functional \(F \). If \(U \) is a fixpoint of \(F \) and \(U \subseteq V \) for all other fixpoints \(V \) of \(F \), then \(U \) is the least fixpoint of \(F \). \(F \) is continuous if for every ascending chain \(U_0 \subseteq U_1 \subseteq ... \subseteq U_j \subseteq ... \) of subsets of \(\Sigma \),

\[
F \left(\bigcup_{j=0}^{\infty} U_j \right) = \bigcup_{j=0}^{\infty} F(U_j)
\]

If \(F \) is continuous, then \(F \) has a least fixpoint \(\mu(F) \) which is given by

\[
\mu(F) = \bigcup_{j=0}^{\infty} F^j(\text{false})
\]

where \(F^0(U) = U \) and \(F^{j+1} = F(F^j(U)) \).

The resource invariants of an SCL program C are fixpoints of a functional \(F_C \) which can be obtained from the text of C. Let C be the SCL program

\[
\begin{align*}
\text{X} &:= \text{e} \\
\text{resource } R &:= \text{R(e)} \\
&\text{cobegin P1/P2/.../Pn coend}
\end{align*}
\]

We assume that C contains K critical regions S_1, S_2, ..., S_K and that the ith critical region has the form \(S_i = \text{with R when b_1 do } A_1 \text{ od } \). The algorithm of Sections 4 and 6 will be used to generate the pre and post functions for C. Let \(\Sigma \) be the set of possible states of C and let \(F_C : \Sigma^2 \rightarrow \Sigma^2 \) be defined by

\[
F_C(J) = J_0 \lor J_1 \lor J_2 \lor SP[A_1](\text{pre}(S_1) \land b_1 \land J) \land \text{pre}(S_1) \land b_1 \land J)
\]

where the predicate \(J_0 = \{ x = I \} \) describes the initial state of C.
THEOREM 7.1. The function P_C is a continuous mapping on \mathcal{X}. Thus, P_C has a least fixpoint $\mu(P_C)$ which is given by

$$\mu(P_C) = \bigcup_{j=0}^{\infty} P_C^j(\text{false})$$

Proof: The continuity of P_C follows directly from the additivity of SP.

THEOREM 7.2. All resource invariants IR of C are fixpoints of P_C. Also $\mu(P_C)$ is a resource for C.

Proof: Let IR be a resource invariant for C. Clearly, $IR \subseteq P_C(IR)$. We must show that $P_C(IR) \subseteq IR$. By condition (a) in the definition of a resource invariant system $\{=\theta\} \subseteq IR$. By condition (e) we see that for $1 \leq i \leq K$,

$$\begin{align*}
&\{\text{pre}(S_i) \land A_i \land IR\} \land \{\text{post}(S_i) \land IR\}. \\
&\text{It follows that for } 1 \leq i \leq K,
&\quad SP[A_i](\text{pre}(S_i) \land A_i \land IR) \subseteq \text{post}(S_i) \land IR. \\
&\text{Hence,}
&\quad V_{i=1}^{K} SP[A_i](\text{pre}(S_i) \land A_i \land IR) \subseteq \text{post}(S_i) \land IR. \\
&\text{Thus, every resource invariant IR is a fixpoint of P_C. Since $\mu(P_C)$ is a fixpoint of P_C, we have}
&\quad \mu(P_C) = \bigcup_{j=0}^{\infty} P_C^j(\text{false}) \\
&\quad \text{And for } 1 \leq i \leq K,
&\quad SP[A_i](\text{pre}(S_i) \land A_i \land \mu(P_C)) \subseteq \text{post}(S_i). \\
&\text{It follows that for } 1 \leq i \leq K,
&\quad SP[A_i](\text{pre}(S_i) \land A_i \land \mu(P_C)) \subseteq \text{post}(S_i). \\
&\text{or, equivalently that}
&\quad \mu(P_C) \subseteq \mu(P_C) \\
&\text{Thus, $\mu(P_C)$ is a resource invariant corresponding to the canonical annotation given in Section 6.} \Box

THEOREM 7.3. $\mu(P_C) = \begin{cases} \sigma | \sigma_0 \subseteq C \sigma \end{cases}$

Proof: Let $IR = \{\sigma | \sigma_0 \subseteq C \sigma \}$. We show that IR is a fixpoint of P_C and that $IR \subseteq \mu(P_C)$.

Since $\mu(P_C)$ is the least fixpoint of P_C, it follows that $\mu(P_C) = IR$.

(A) $P_C(IR) = IR$: Clearly $IR \subseteq P_C(IR)$. Let $\sigma \in P_C(IR)$.

$$\begin{align*}
&\sigma = \bigcup_{j=0}^{\infty} P_C^j(\text{false}) \\
&\text{then either } \sigma \in J_0 \subseteq IR \text{ or } \sigma \in IR \text{ or there exists } i_0 \text{ such that}
&\quad \sigma \in SP[\alpha_i](\text{pre}(S_i) \land A_i \land IR). \\
&\text{Only the third case is interesting. If}
&\quad \sigma \in SP[\alpha_i](\text{pre}(S_i) \land A_i \land IR),
&\text{then there is a state } \sigma' \in \text{pre}(S_i) \land A_i \land IR
&\text{such that } \alpha_i(\sigma') = \sigma. \\
&\quad \text{Since } \sigma' \in IR, \text{there is a computation } \sigma_0, \sigma_1, \ldots, \sigma_r
&\text{of } C \text{ with } \sigma = \sigma'. \text{ Because } \sigma' \in \text{pre}(S_i) \land A_i \land IR,
&\text{and } \alpha = \alpha(\sigma'), \sigma_0, \ldots, \sigma_r, \sigma \text{ is also a computation of } C \text{ and } \sigma \in IR.
\end{align*}$$

(B) $IR \subseteq \mu(P_C)$: Let $\sigma \in IR$ then there exists a computation $\sigma_0, \sigma_1, \ldots, \sigma_r$ in which $\sigma = \sigma_r$. We prove by induction on r that $\sigma_r \in P_C^{r+1}(\text{false})$.

Since $P_C^{r}(\text{false}) = J_0$, the basis case $\sigma_0 \in P_C^{1}(\text{false})$ is true. Assume that for all computations $\sigma_0, \sigma_1, \ldots, \sigma_{r-1}$ of C, $\sigma_r \subseteq P_C^{r}(\text{false})$. Let $\sigma_0, \sigma_1, \ldots, \sigma_{r-1}, \sigma_r$ be a computation of length r, then there exists and i_0 such that $\sigma_{r-1} \in \text{pre}(S_i) \land A_i \land \mu(P_C)$ and $\sigma_r = \alpha_i(\sigma_{r-1})$. Thus $\sigma_r \in \text{pre}(S_i) \land A_i \land \mu(P_C) \subseteq P_C^{r+1}(\text{false})$.

It follows that $\sigma = J_0 \cup \bigcup_{j=0}^{\infty} P_C^j(\text{false}) = \mu(P_C)$. \Box

THEOREM 7.4. The resource system RS_C consisting of $\mu(P_C)$ and the canonical annotation is relatively complete for proving absence of deadlock and mutual exclusion of SCL programs.

Proof: We prove that for the resource invariant system RS_C, the condition $D(RS_C)$ is unsatisfiable i.e. deadlock is impossible. Clearly, if $D(RS_C)$ is unsatisfiable then deadlock is impossible.

We must show that if $D(RS_C)$ is satisfiable, there exists a state σ_d which is reachable from the initial state of C in which every process of C is blocked. Let σ_d be a program state which satisfies $D(RS_C)$. Since σ_d satisfies $D(RS_C)$, it follows that $\sigma_d \in \mu(P_C)$ and also that each process of C is blocked in state σ_d. Since $\sigma_d \in \mu(P_C)$, σ_d is reachable from the initial state σ_0 of C. Thus, σ_d is a deadlock state for the program C. The proof of completeness for mutual exclusion is similar and will be left to the reader. \Box

Theorem 7.4 shows that $\mu(P_C)$ is the "strongest" resource invariant for program C. The next theorem is important because it gives a method for improving approximations to $\mu(P_C)$.

THEOREM 7.5. If L is a predicate such that $L \subseteq \mu(P_C)$, then

$$\mu(P_C) = \bigcup_{j=0}^{\infty} P_C^j(L).$$
Proof: It is easy to show that for all $j \geq 0$
\[P^j(\text{false}) \subseteq P^j(L) \subseteq P^j(\mu(F_C)) \]
Thus
\[\mu(F_C) = \bigcup_{j=0}^{\infty} P^j(\text{false}) \subseteq \bigcup_{j=0}^{\infty} P^j(L) \subseteq \bigcup_{j=0}^{\infty} P^j(\mu(F_C)) = \mu(F_C) \]

To illustrate theorems 7.1 - 7.5 we consider the following solution to the mutual exclusion problem:
\[
a := 0; b := 0;
\]
resource $R(a, b)$:
\[
\text{cobegin}
A: \text{cycle}
A1: \text{with } R \text{ when } b = 0 \text{ do } a := a + 1 \text{ od; } \text{SA;}
A2: \text{with } R \text{ when true do } a := a - 1 \text{ od}
\]
\[
B: \text{cycle}
B1: \text{with } R \text{ when } a = 0 \text{ do } b := b + 1 \text{ od; } \text{SB;}
B2: \text{with } R \text{ when true do } b := b - 1 \text{ od}
\text{coend}
\]

Adding auxiliary variables and using the algorithm of Section 6 to generate pre and post functions we obtain:
\[
\{a = 0 \land b = 0 \land a_1 = 0 \land a_2 = 0 \land b_1 = 0 \land b_2 = 0\}
\]
resource $(a, b, a_1, a_2, b_1, b_2)$:
\[
\text{cobegin}
A: \text{cycle} \{a_1 = a_2\}
A1: \text{with } R \text{ when } b = 0 \text{ do } a := a + 1; a_1 := a_1 + 1 \text{ od; } \text{SA;}
\{a_1 = a_2\}
A2: \text{with } R \text{ when true do } a := a - 1; a_2 := a_2 + 1 \text{ od}
\text{coend}
\]

Using the resource invariant $\mu(F_C)$ it is easy to show that the predicate $M = \text{pre}(SA) \land \text{pre}(SB) \land \mu(F_C)$ is unsatisfiable; thus the statements SA and SB are mutually exclusive.

Note that Theorem 7.5 can only be used to obtain $\mu(F_C)$ if program C has a finite number of different possible states or unless a good approximation is already available to $\mu(F_C)$. In the next section we will examine more powerful techniques for obtaining strong resource invariants.

8. Speeding up the Convergence of Fixpoint Techniques for Approximating Resource Invariants

For linear SCL programs the notion of widening of Cousot [C077] may be used to speed up convergence to $\mu(F_C)$. The widening operator $*$ is characterized by the following two properties:

(a) for all admissible predicates U and V, $U \subseteq U*V$ and $V \subseteq U*V$
(b) for any ascending chain of admissible predicates $U_0 \subseteq U_1 \subseteq U_2 \subseteq \ldots$ the ascending chain defined by $V_0 = U_0, V_{i+1} = V_i * U_{i+1}$ is eventually stable i.e., there exists a $k \geq 0$ such that for $i \geq k, V_i = V_k$.

In this paper the admissible predicates are the polygonal convex sets of Q^m where Q is the set of rational numbers and m is the number of resource variables belonging to R. The widening operator $*$ that we use is a modification of the one used by Cousot [C078]. Let U and V be polygonal convex sets. Then U and V can be represented as conjunctions
\[U = \bigwedge_{j=1}^{\infty} \gamma_j \land V = \bigwedge_{k=1}^{\infty} \delta_k \]
where each conjunct is a linear inequality of the form $a_1 x_1 + \ldots + a_m x_m + a_{m+1} \leq 0$. We further assume that the representation of U and V is minimal, i.e., no conjunct can be dropped without changing U or V. We say that two linear inequalities γ_j and δ_k are equivalent if they determine the same
half space of \(Q^m \). \(U \cup V \) is the conjunction of all those \(Y_j \) in the representation of \(U \) for which there is an equivalent \(\delta_k \) in the representation of \(V \). Thus the widening operator "throws out" all those constraints in the representation of \(U \) which do not occur in the representation of \(V \).

We now describe the strategy for approximating \(\mu(F_C) \). Since the predicates \(F_0^C(\text{false}) \) in the chain \(F_0^C(\text{false}) \subseteq F_1^C(\text{false}) \subseteq \ldots \) may not be polygonal convex sets, let \(G_1 = CV[F_1^C(\text{false})] \) where \(CV \) is the convex hull operator. The sequence \(G_0 \subseteq G_1 \subseteq \ldots \) is a chain of polygonal convex sets. The sequence \(I^t \) will be used in obtaining a good approximation to the strongest resource invariant for \(R \) and is defined by

\[
I^t = \bigcup_{j=0}^{t} H^t_j
\]

where \(H^t_0 = G_t \) and \(H^t_{j+1} = H^t_j \cdot G_{t+j+1} \)

THEOREM 8.1.

(A) Each \(I^t \) can be computed in a finite number of steps.

(B) \(\mu(F_C) \subseteq I^t \) for \(t \geq 1 \).

(C) The sequence \(I^t \) is a decreasing chain in \(\Sigma \), i.e., \(I^t_i \supseteq I^t_j \supseteq I^t_k \).

Proof of (A): By condition 2 in the definition of a widening operator the sequence \(\{H^t_0, H^t_1, H^t_2, \ldots \} \) must eventually stabilize. Thus there exists a \(k \) such that

\[
I^t = \bigcup_{j=0}^{k} H^t_j
\]

Proof of (B):

\[
\mu(F_C) = \bigcup_{i=0}^{\infty} F_i(\text{false}) \subseteq CV[F_1^C(\text{false})] = I^t
\]

Proof of (C): Let \(U \) and \(V \) be polygonal convex sets, we write \(U \cup V \) if for every conjunct \(\delta \) in \(U \), there is an equivalent conjunct in \(V \). We prove by induction on \(k \) that \(H^t_k \subseteq I^t_k \).

1. **Basis step:**
 \[
 H^t_0 = G_{t+1} \subseteq H^t_0 \cdot G_{t+1} = H^t_1
 \]

2. **Induction step:**
 Assume \(H^t_k \subseteq I^t_{k+1} \) then

\[
H^t_{k+1} \subseteq I^t_{k+1} \subseteq H^t_k \cdot G_{t+k+2} \quad \text{and} \quad H^t_{k+1} \cdot G_{t+k+2} = H^t_{k+2}
\]

Note that \(H^t_{k+1} \subseteq I^t_{k+1} \) implies \(H^t_k \subseteq I^t_{k+1} \). Thus

\[
I^t_{k+1} = U H^t_k \subseteq U H^t_{k+1} = I^t_k \quad \text{and the sequence}
\]

\[
I^0 \supseteq I^1 \supseteq I^2 \supseteq \ldots \quad \text{is a decreasing chain in } \Sigma.
\]

In practice when computing \(I^t \) we stop generating the predicates \(H^t_0, H^t_1, \ldots \) as soon as a predicate \(H^t_k \) is found such that \(H^t_k = H^t_{k+1} \). If the limit

\[
\bigcup_{k=0}^{\infty} H^t_k
\]

of the truncated chain fails to be a resource invariant for \(C \), then additional predicates in the sequence \(H^t_j \) may have to be computed. Thus the construction of \(I^t \) provides a procedure which may be used to obtain successively better approximations to the strongest resource invariant \(\mu(F_C) \).

We demonstrate this method of synthesizing resource invariants by considering the program \(C \)

\[
a := 1\cobegin\coend
\]

\[
A : \text{cycle } P(a); S_A; V(a) \quad B : \text{cycle } P(a); S_B; V(a) \quad \text{//}
\]

We demonstrate this method of synthesizing resource invariants by considering the program \(C \) in this case is given by

\[
P_C(J) = a_1 := 0 \land a_2 := 0 \land a_1 := 0 \land a_2 := 0 \land a := 0 \quad \text{v J}
\]

\[
VSP[a_1 := a_1 + 1; a := a - 1] (a_1 := a_2 \land a > 0 \land J)
\]

\[
VSP[a_2 := a_2 + 1; a := a - 1] (a_1 = a_2 \land a > 0 \land J)
\]

\[
VSP[a_1 := a_1 + 1; a := a - 1] (a_2 = a_1 \land J)
\]

\[
VSP[a_2 := a_2 + 1; a := a - 1] (a_2 = a_1 \land J)
\]

While \(C \) is quite simple and can be handled by the methods of Section 4, there are potentially an infinite number of states and the chain \(F_0^C(\text{false}) \subseteq F_1^C(\text{false}) \subseteq \ldots \) does not converge. By computing the sequence of approximations \(I^t \) however, we obtain:

\[
I^1 = \{a_1^2 > 0 \land a_2^2 > 0\}
\]

\[
I^2 = \{a_1^2 > 0 \land a_2^2 > 0\}
\]

\[
I^3 = \{a_1^2 > 0 \land a_2^2 > 0 \land a_1 + a_2 - 2 \leq a_1^2 \land a_2^2\}
\]

\[
\land a + a_1^2 + a_2^2 - a_1 - a_2 = 1
\]

\[
I^4 = \{a_1^2 > 0 \land a_2^2 > 0 \land a_1 + a_2 - 2 \leq a_1^2 \land a_2^2\}
\]

\[
\land a + a_1^2 + a_2^2 - a_1 - a_2 = 1
\]

\[
I^5 = I^6 = \ldots
\]
Note that I^4 is a resource invariant for C and that I^4 implies the semaphore invariant I_a used in the proof of absence of deadlock and mutual exclusion in Section 4.

For the PV program used in Section 5 to illustrate the incompleteness of the semaphore invariant method, I^6 is strong enough to permit a proof of deadlock freedom. The trap state Z no longer causes a problem since I^6 contains the restraint $(b_2^2 - d_1^2)/(d_2^2 - b_2^2) \leq 1$ which is not satisfied by the unreachable feasible points in the progress graph of the program.

As a final example we consider the standard solution to the readers and writers problem with writer priority [BH73] where there are two reader processes and one writer process, e.g.,

```
rr:=0; rw:=0; aw:=0;
ai:=0; bi:=0;
a2:=0; b2:=0;
c:=0; d:=0; e:=0;
resource (rr, rw, aw, ai, bi, a2, b2, c, d, e):
cobegin
reader_1
//
reader_2
//
writer
coend
```

Each reader process has the form:

```
reader_i: cycle
Ai: with R when aw < 0 do ai := ai + 1;
rr := rr + 1 od;
read;
Bi: with R when true do bi := bi + 1;
rr := rr - 1 od;
end
```

The writer process is:

```
writer: cycle
C: with R when true do c := c + 1; aw := aw + 1 od;
D: with R when rr < 0 \&\& rw < 0 do d := d + 1;
rw := rw + 1 od;
E: with R when true do e := e + 1; aw := aw - 1;
rw := rw - 1 od;
end
```

Note that auxiliary variables a_1, b_1, a_2, b_2, c, d, and e have been added to the program to count the number of times critical regions A_1, B_1, A_2, B_2, C, D, and E are executed. The predicate I^5 generated by our approximation procedure is:

$$I^5 = \{\begin{array}{l}
aw - c + e = 0 \\
aw - d + e = 0 \\
arw - a_1 + b_1 - a_2 + b_2 = 0 \\
la 1 - b_1 + d - e \leq 1 \\
la 2 - b_2 + d - e \leq 1 \\
ac - e \leq 1
\end{array}\}$$

This predicate is a resource invariant for the program and is sufficiently strong to prove absence of deadlock and mutual exclusion of read and write statements.

9. Open Problems

If a concurrent program contains a large number of critical regions, then the combinatorial explosion in the number of possible states which must be considered by the approximation procedure of Section 8 may prevent convergence to a suitable resource invariant. We are currently investigating techniques for minimizing this combinatorial explosion. Two techniques which seem promising are:

(A) Preprocessing the program to obtain information about which states can follow a given state during a computation of the program. For example, in the readers and writers problem, assume that reader 1 is waiting for entry into critical region A_1 and that $aw > 0$. If reader 2 executes critical region B_2, it is unnecessary to check whether reader 1 is enabled to enter A_1 since execution of B_2 does not affect the value of aw. A similar analysis is currently used in obtaining efficient implementations of conditional critical regions [SC76].

(B) Construct the program and its correctness proof simultaneously. Although the programmer may not precisely know the resource invariant for the program he is writing, he may be able to deduce a first approximation to the invariant from the problem specification. In this case the technique of Sections 7 and 8 may be used to strengthen the approximation. Techniques for deriving correct concurrent programs have been investigated by van Lansweerde and Sintzoff [LA76].

A number of additional questions arise regarding the power of the generalized semaphore invariant of Section 6 and the fixpoint methods for generating resource invariants in Sections 7 and 8. It would be interesting to compare these proof techniques with other techniques which do not use resource invariants, e.g., the Church-Rosser approach of Rosen [RO76] and the reachability tree construction of Keller [KE77]. Also it is not clear how the techniques of this paper generalize to synchronization methods such as path expressions [HA75] for which linear restraints are not explicitly given.

Currently the author is building an automatic verification system for concurrent programs based on the ideas in this paper. This system will extract the "synchronization skeleton" of a concurrent program and use the techniques of Sections 6 and 8 to generate the appropriate resource invariants. The examples of Section 8 were all obtained with the aid of this system.
References

