
PROxy Based Estimation
(PROBE) for Structured Query
Language (SQL)

Rob Schoedel, Microsoft Corporation

May 2006

Software Engineering Process Management

 Technical Note

CMU/SEI-2006-TN-017

Unlimited distribution subject to the copyright.

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and �No Warranty� statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Contents

Acknowledgements ..vii

Abstract... ix

1 Introduction..1

2 The PROBE Process..3
2.1 Introduction and Example ...3
2.2 Separations of Concern in SQL ..3
2.3 SQL Formatting ..4

3 PROBE: The Conceptual Design, and Estimating Parts Size5
3.1 Introduction...5
3.2 Number of Categories...5
3.3 Options for Further Consideration ..6
3.4 Example Conceptual Design for SQL...6

4 Building Historical Data ..7
4.1 Introduction...7
4.2 Automating the Gathering of Historical Data ..7
4.3 Basic Beginning-of-Statement Recognition ..7

5 Relative Size Table for SQL...9

6 Areas for Future Study..10

Appendix 1: Study of Stored Procedures .. 11

Appendix 2: PSP Student Study ...13

Appendix 3: Size Estimating Template Example...15

Appendix 4: Design for BOS Recognition ...16

CMU/SEI-2006-TN-017 i

Appendix 5: Design for Advanced BOS Recognition 18

References... 21

ii CMU/SEI-2006-TN-017

List of Figures

Figure 1: Regression Fit Line Plot of LOC in Keywords .. 12

Figure 2: Attributing Parentage to Line Containing Beginning-of-Statement SQL
Keyword ... 16

Figure 3: Example of INSERT Statement Containing a SELECT Clause.............. 17

Figure 4: Example of Relationship between Statement, Clause, and Delimiter 18

Figure 5: Logical Relationship between Statement, Clause, and Delimiter 19

CMU/SEI-2006-TN-017 iii

iv CMU/SEI-2006-TN-017

List of Tables

Table 1: Sample Lists for finding BOS Keywords... 8

Table 2: Data Table Obtained Through Relative Size Table Process..................... 9

Table 3: LOC in Keywords Correlated to Overall LOC... 11

Table 4: PROBE Statistics – Coming in to Program 10.. 13

Table 5: PROBE Statistics – Post Program 10... 14

Table 6: Example – Size Estimation Template ... 15

CMU/SEI-2006-TN-017 v

vi CMU/SEI-2006-TN-017

Acknowledgements

Many people influenced the creation of this relatively short paper. To begin with, the Personal
Software Process (PSP) at Microsoft would not have been possible without the strong and
ever-present management support of Aidan Waine. After successfully deploying the Team
Software Process (TSP) throughout his organization, he skillfully influenced his peers to
follow his lead. I�d like to thank the instructors who taught me the PSP and TSP skills: Dan
Burton, Julia Mullaney, Bob Musson, and Jim Over. I�d also like to thank several students
from my early PSP courses whose names I can no longer remember. Their questions and
occasional frustration using SQL in the class assignments led me to look for a better way. I�d
also like to thank Eric Woo for trying this technique during a recent PSP course and
subsequently letting me publish his data.

Regarding this paper, I wish to thank Watts Humphrey not only for documenting the PROxy
Based Estimation (PROBE) technique in the first place, but for taking the time to review my
paper and providing comments. Claire Dixon provided wonderful editorial support,
masterfully and gently turning mangled sentences into something that others would actually
understand!

And finally, this paper wouldn�t have come about had it not been for Noopur Davis. I had
presented on this topic at an annual TSP conference, and Noopur encouraged me to publish a
paper based upon the data. When I actually took her up on it a few months later, she made the
publishing aspect very easy � personally reviewing the paper, and then guiding it through all
the necessary reviewing and editorial support.

CMU/SEI-2006-TN-017 vii

viii CMU/SEI-2006-TN-017

Abstract

This paper presents a method for applying the PROxy Based Estimation (PROBE) technique
to Structured Query Language (SQL). Estimating program size is a critical component of
successful software project effort estimation and cost estimation. The PROBE technique is a
simple estimation method that can be used for estimating program size and effort. To date,
PROBE has been used more often to estimate programs written in third-generation
programming languages (3GL) such as C, C++, and Java. Its application to IT development
has been inhibited by the lack of demonstrated applicability to database work. For data
storage, most IT departments have transitioned from file-oriented storage (accessed by
traditional 3GL languages) to relational database server software, which uses an
implementation of 4GL languages such as SQL to manipulate data. SQL�s logic encapsulation
properties differ dramatically from those of traditional 3GL languages, so it is not clear to
most developers how to effectively apply the PROBE techniques to SQL. The method
presented here enables a level of estimation detail similar to the application of PROBE to
traditional 3GL languages.

CMU/SEI-2006-TN-017 ix

x CMU/SEI-2006-TN-017

1 Introduction

It is the mark of an instructed mind to rest satisfied with the degree of
precision to which the nature of the subject admits and not to seek exactness
when only an approximation of the truth is possible.
-- Aristotle, 350 B.C.

In the beginning God created Heaven and Earth, Gen. 1, v. 1. Which
beginning of time, according to our Chronologie, fell upon the entrance of
the night preceding the twenty third day of Octob[er] in the year of the Julian
[Period] 710. The year before Christ 4004.
-- Archbishop Ussher of Ireland, A.D. 1658

While historic scholars such as Aristotle and Archbishop Ussher may have grappled with the
applicability of estimating precision, many software teams avoid discussing the subject.
Estimating is a critical aspect of successful software projects, yet few teams are equipped to
produce precise estimates, let alone accurate ones. The Personal Software Process (PSPSM)
teaches developers a simple estimation method which can be applied at the time of
conceptual design,1 the PROxy Based Estimation (PROBE) technique. The PROBE
technique estimates program size by applying historical size data to a conceptual design, and
then applying statistical techniques to adjust the estimate based upon past estimating
accuracy. By its very nature, the PROBE technique produces precise estimates. The evidence
shows that PROBE improves estimation accuracy for developers writing programs in
traditional compiled languages such as C++ [Humphrey 02, 05].

However, the comprehensive application of PROBE to Information Technology (IT)
development has been inhibited by the lack of demonstrated applicability to database work.
During the last 10 years, most IT departments have transitioned their data storage
mechanisms from file-oriented storage (accessed by traditional compiled languages) to
relational database server software, such as Microsoft SQL Server, IBM DB2, and Oracle
Database. To manipulate the data in these servers, each of these products use an
implementation of Structured Query Language (SQL). While SQL can be used to create
powerful programs, its logic encapsulation properties differ dramatically from those of

1 Conceptual design is typically performed after the system has been specified functionally, but

prior to any detailed technical design. The conceptual design is not intended to be the final
design; rather it�s a statement from the developer ��if I had this list of components/objects, I
could implement the functionality specified.�

CMU/SEI-2006-TN-017 1

traditional compiled languages. Thus it is not clear to most developers how to effectively
apply the PROBE techniques using SQL.

This paper will present one method of applying the PROBE technique to SQL, at a level of
estimation detail similar to the application of PROBE to traditional compiled languages. It is
assumed that the reader is familiar with the PSP and with the PROBE estimation method.

2 CMU/SEI-2006-TN-017

2 The PROBE Process

2.1 Introduction and Example
The PROBE technique inherently relies upon a computer science principle called separations
of concerns.2 Over time, a PSP developer will cultivate a categorization of the most
frequently used concerns, and collate actual historical size data for those concerns. When
making a new estimate, the developer will base his or her estimate on the type of concern
being implemented, and the corresponding relative size.

For example, suppose Deborah is a C# developer. She has been tasked to develop a program
to read the current location of a train from a database, and then update a display screen based
upon the data. After separating the concerns of data access and screen update, and then
enumerating the number of methods needed for each class, Deborah concludes that she will
need three methods to access the database, and seven methods to update the screen.
Consulting her PROBE relative size table for C#, Deborah finds that the average size of a
data access method is 8 lines of code, while the average size of an animation method is 19
lines of code. Deborah then uses the PROBE procedure to apply some statistics based upon
her past estimation accuracy, and arrives at an estimated program size, including a confidence
interval for the estimate.

2.2 Separations of Concern in SQL
The difficulty that development groups have experienced in applying the PROBE technique
to SQL is not endemic to PROBE, but rather to SQL. With SQL, the traditional approaches to
separation of concerns do not generally apply; the techniques available in popular languages
such as classes and methods are largely unavailable in SQL. Thus many SQL developers may
conclude that the only way to separate concerns properly and apply PROBE is to create a
small stored procedure for each logical concern, which has the undesirable effect of
potentially cluttering the database with thousands of stored procedures.

2 The term separation of concerns is credited to Edsger Dijkstra. It is the process of breaking a

program into distinct features that overlap in functionality as little as possible. A concern is any
piece of interest or focus in a program. Typically, concerns are synonymous with features or
behaviors. All programming paradigms aid developers in the process of separation of concerns.
For example, object-oriented programming languages such as the Java programming language can
separate concerns into classes and methods. Procedural programming languages such as C and
Pascal can separate concerns into procedures. For more information, see
http://en.wikipedia.org/wiki/Separation_of_concerns [Wikipedia 06].

CMU/SEI-2006-TN-017 3

http://en.wikipedia.org/wiki/Separation_of_concerns

In actuality, the SQL language is structured such that each statement can be considered a
concern. The logic for retrieving data is encapsulated within a SELECT statement, for
removing data in a DELETE statement, and so forth. Thus a stored procedure is itself a
separation of concern, and each data manipulation statement with the procedure can be
considered a separation of concern as well.

2.3 SQL Formatting
The formatting of a SQL statement is important to the success of the PROBE method. For
ease of reading and maintenance, it is generally recommended that SQL developers format a
single statement across many lines.3 An example of a T-SQL SELECT statement is shown
below. Note that by using such a standard, the statement will grow as more columns are
added, or as more tables are joined, or as more filtering conditions are specified. Thus it�s
possible for a developer to conceptualize the relative size of a SELECT statement (small,
medium, or large) after considering how many fields of data are involved, which tables are
involved, and the conditions required for the query.

 SELECT C.Name
 , E.NameLast
 , E.NameFirst
 , E.Number
 , ISNULL(I.Description,'NA') AS Description
 FROM tblCompany AS C
 JOIN tblEmployee AS E
 ON C.CompanyID = E.CompanyID
 LEFT JOIN tblCoverage AS V
 ON E.EmployeeID = V.EmployeeID
 LEFT JOIN tblInsurance AS I
 ON V.InsuranceID = I.InsuranceID
 WHERE C.Name LIKE @Name
 AND V.CreateDate > CONVERT(smalldatetime,
 '01/01/2000')
 ORDER BY C.Name
 , E.NameLast
 , E.NameFirst
 , E.Number
 , ISNULL(I.Description,'NA')

Figure 1: Example of a T-SQL SELECT Statement

3 For Transact-SQL formatting recommendations, see Microsoft SQL Server Professional, December

2004, �T-SQL Coding Standards,� available online
http://msdn.microsoft.com/sql/default.aspx?pull=/library/en-us/dnsqlpro04/html/sp04l9.asp.

 For PL/SQL recommendations, see Purdue University�s Web site,
http://www.itap.purdue.edu/ea/data/standards/plsql.cfm.

4 CMU/SEI-2006-TN-017

http://msdn.microsoft.com/sql/default.aspx?pull=/library/en-us/dnsqlpro04/html/sp04l9.asp
http://www.itap.purdue.edu/ea/data/standards/plsql.cfm

3 PROBE: The Conceptual Design, and Estimating
Parts Size

3.1 Introduction
The completed conceptual design drives the developer�s estimate for designing, coding, and
testing a given component. Creating an accurate size estimate relies upon having relevant
historical data. The developer creates this historical data by categorizing the types of code
produced over time. After applying some statistics, the developer has a table of the types of
code written, along with a spread of typical sizes for the code. This table is referred to as the
relative size table.

When a developer creates an estimate, he or she lists out all of the parts which will be
necessary to create a fully functioning program. The parts are then refined until they match a
category in the relative size table.

3.2 Number of Categories
You can have any number of categories in your database, but it is best to keep the number
relatively small�just enough to represent the work you do. The Software Engineering
Institute recommends starting with a small set of categories, and only making a new category
when your data show that you need one. Experience shows that fewer than 10 categories
works best. More granularity than that tends to make conceptual design too time consuming
and the resulting design over specified. Remember that PROBE aims for broad categories
and quick calls on statement types. Further specifying of the design is best left to the detailed
design phase.

For SQL, keeping to a small number of categories is fairly simple. There are four major data
manipulation commands (SELECT, INSERT, UPDATE, DELETE) plus a handful of other
commands that typically span several lines, such as DECLARE.

There are also many commands which typically span only a single line, such as SET
statements or control-of-flow language. Should a developer try to count all of the single-line
statements as well? With PROBE, I recommend using the 80/20 rule. Focus on those
statements which make up 80% of the code, and don�t worry so much about getting the other
20% (which would take a lot more effort to tally). Over time, the statistical methods in the
PROBE technique will adjust for the missing 20%. For more on the viability of this
approach, see Appendix 1: Study of Stored Procedures.

CMU/SEI-2006-TN-017 5

3.3 Options for Further Consideration
There are a few ways to improve on the 80/20 rule suggested above. If your code counter is
sufficiently sophisticated, one option is to make generic PROBE categories for such things as
control of flow language (COFL). Certain types of procedures require looping or
sophisticated branching logic, while others have none of this. If your LOC counter can tell
COFL from regular SQL statements, then you can estimate the number of blocks of COFL
statements a particular procedure is going to have, and what size those might be (apart from
the SQL statements that may be contained within). However, it�s worth noting that the
relatively successful results of a limited study discussed later in the paper did not go the extra
effort of trying to predict COFL.

3.4 Example Conceptual Design for SQL
Suppose the requirements arrived for a change to an inventory report as follows:

• a new column for the description for Part Type Code
• an update to the way on-hand inventory is calculated
• removal of parts of the report that have not sold in more than one year

The developer would review the requirements for each of these areas, and would spend a few
minutes to envision the SQL statements necessary to code the solution.

• A new column for the description for Part Type Code

Need 1 SELECT (small) from the part_type domain table

• An update to the way on-hand inventory is calculated
1 UPDATE (medium)

• Remove parts from the report that have not sold in more than one year
1 INSERT (medium) � into a working table
1 DELETE (large) � from the actual table

The partially completed size estimation template to accompany this example is shown in
Appendix 3: Size Estimating Template Example

6 CMU/SEI-2006-TN-017

4 Building Historical Data

4.1 Introduction
Applying PROBE to SQL is fairly simple. The more difficult task is obtaining the historical
data used to build the relative size table. One way to obtain the historical data would be to
simply start having developers make estimates using this approach, and record their findings.
Once there is sufficient data, its use as historical data can begin.

However, given that the categorization in PROBE for SQL is objective rather than subjective,
we can develop a program to scan the stored procedures and extract statement blocks from
these scripts.

4.2 Automating the Gathering of Historical Data
There are a few options for gathering historical data. Conceivably, we could

• build a really smart LOC counter with custom code for each statement type. While this is
a viable approach, it would require a significant amount of custom code to handle the
multiple variations of the targeted SQL statements.

• build a parser for each script language to recognize statement begin and end. This is a
more technically complex, but cleaner approach to recognizing SQL statements. Again a
great deal of code would be involved.

• employ a simpler approach, which I�ve called beginning-of-statement recognition. This
method is described in the following section.

4.3 Basic Beginning-of-Statement Recognition
Rather than write a parser, you can employ a simple method to recognize SQL commands
within a script, and count the number of lines within each command.

The first step is to consider a SQL stored procedure as a series of lines of code. Consider that
only some of the lines will start with a word that is a valid word for beginning a statement.
There are a finite number of keywords in the SQL language, and an even smaller number of
those keywords represent valid beginning words for a SQL command. So essentially, we can
write a line counter in SQL, which looks for statements beginning with certain keywords,
such as INSERT, UPDATE, and SELECT. Upon seeing one of these statements we begin
counting, and stop counting when we see another valid word which begins another statement.
This method is called basic beginning-of-statement (BOS) recognition.

CMU/SEI-2006-TN-017 7

The steps in BOS recognition are as follows:

1. Form a list of words that begin a statement (i.e., BOS keywords).

2. Break the script into a list of lines.

3. Iterate through the list until you find a BOS keyword.

4. Begin counting and continue iterating until you find any other BOS keyword.

Table 1: Sample Lists for finding BOS Keywords

The design for building an automated BOS counter is detailed in Appendix 4: Design for
BOS Recognition. The BOS recognition method requires adherence to code formatting
standards. The best statistics resulting from use of basic BOS recognition will come from
code that is similarly formatted, and to agreed-upon standards. As this requirement may be
unrealistic for many organizations, a more advanced version of BOS recognition is
conceptualized in Appendix 5: Design for Advanced BOS Recognition.

8 CMU/SEI-2006-TN-017

5 Relative Size Table for SQL

The procedure for constructing a data table is detailed in both of the PSP textbooks for
engineers. In the study I conducted with one Microsoft business unit (see Appendix 1: Study
of Stored Procedures) I used the relative size table process to obtain the following data table.

Table 2: Data Table Obtained Through Relative Size Table Process

11.405.172.351.060.48DECLARE

12.037.845.123.342.18EXECUTE

17.908.764.292.101.03DELETE

25.7213.096.663.391.73UPDATE

33.2017.509.234.872.57SELECT

34.7713.965.602.250.90INSERT

VLLMSVSKeyword

11.405.172.351.060.48DECLARE

12.037.845.123.342.18EXECUTE

17.908.764.292.101.03DELETE

25.7213.096.663.391.73UPDATE

33.2017.509.234.872.57SELECT

34.7713.965.602.250.90INSERT

VLLMSVSKeyword

This table is suitable for students in PSP who wish to use SQL to complete the construction
procedure detailed in the textbooks. This table may also be a good place for Team Software
Process team members to start as well. However, because formatting conventions vary, as do
database vendor implementation details, I recommend constructing your own table when
possible.

CMU/SEI-2006-TN-017 9

6 Areas for Future Study

I have some limited data (see Appendix 2: PSP Student Study) which show good correlation
between program size and development time. I�d like to continue to build upon this data, and
request that readers of this document who implement PROBE with SQL share their results
with me. I can be reached at rob.schoedel@microsoft.com.

One point raised by developers is that the time necessary to develop stored procedures may
better correlate to complexity rather than to number of lines of code. For example, a query
which involves a join between eight tables would require more care and consideration (and
thus time) than a query from a single table which returns 30 columns. Each of these two
might have approximately the same number of lines of code. I would encourage further study
of this concept. While the LOC method shown here has produced good results in limited
usage, it might be true that a multi-factored estimation procedure could produce better
estimates for complex code. When piloting an estimation technique, it�s important to observe
whether developers can use the technique to quickly produce estimates. If in using the
technique, the developers spend considerable time in detailed study, then the technique may
not be appropriate for conceptual design.

One way to study which elements of a query most contribute to development size and time
could be through implementation of the design shown in Appendix 5: Design for Advanced
BOS Recognition.

10 CMU/SEI-2006-TN-017

mailto:schoedel@microsoft.com

Appendix 1: Study of Stored Procedures

To build a PROBE table for SQL, I analyzed 1314 stored procedures in a transaction-oriented
SQL Server database. Because many of the procedures were long enough to exceed one
database page, I analyzed a total number of 1817 pages of procedure text.

The PROBE technique is used to predict total program size. However, with this method,
we�re only measuring the lines of code found within the chosen SQL statements. There are
other types of code which will be added, such as control of flow language, which would not
fall into our estimate.

For this approach to be valid, it seems necessary to demonstrate that the number of LOC in
the key statements does correlate to the number of overall LOC. For the 1817 entries, the
number of LOC in SQL keywords is predictive of the total LOC, with the correlation
coefficient r2 ≈ 0.58, with high significance (p=3.8 x 10-308).

Table 3: LOC in Keywords Correlated to Overall LOC

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.760389973
R Square 0.57819291
Adjusted R
Square 0.57796051
Standard Error 14.83638343
Observations 1817

 Coefficients P-value
Lower
95%

Upper
95%

Intercept 30.11932849 3.2E-308 28.83913 31.39953
LOC_in_Keywords 0.935617501 0 0.898828 0.972407

Total LOC = 0.935617501 * LOC_in_Keywords + 30.11932849

The regression-fit plot for this data is shown in the diagram below.

CMU/SEI-2006-TN-017 11

LOC_in_Keywords Line Fit Plot

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

LOC_in_Keywords

To
ta

l_
LO

C

Figure 2: Regression Fit Line Plot of LOC in Keywords

12 CMU/SEI-2006-TN-017

Appendix 2: PSP Student Study

In July 2005, I conducted a PSP course in Beijing, China. One of the developers used the
Relative Size Table for SQL to estimate his 10 programs with excellent results for size
prediction, and good results for time prediction, illustrated below.

Table 4: PROBE Statistics – Coming in to Program 10

PROBE
Method A B

 Size Time Size Time
Estimate 139 327 148 348

R-Squared 0.99 0.76 0.92 0.67
Beta0 5.93 57.30 2.23 66.75
Beta1 0.85 1.73 0.94 1.80

Range (70%) 5 75 17 77
UPI 144 402 166 425
LPI 134 252 131 271

Variance 6.76 1577.56 78.86 1603.16
Std. Deviation 2.60 39.72 8.88 40.04

CMU/SEI-2006-TN-017 13

Table 5: PROBE Statistics – Post Program 10

PROBE
Method A B

 Size Time Size Time
R-Squared 0.99 0.72 0.96 0.67

Beta0 8.19 79.80 2.67 86.00
Beta1 0.81 1.27 0.93 1.36

Variance 10.77 1796.36 67.76 1693.36
Std. Deviation 3.28 42.38 8.23 41.15

Method A Est. vs. Act. Size

0

20

40

60

80

100

120

140

0 50 100 150 200

Est. Size

A
ct

ua
l S

iz
e

Method A Est. Size vs. Act. Time

0

50

100

150

200

250

300

0 50 100 150 200

Est. Size

A
ct

ua
l T

im
e

Historical Data

Prog
Est.

(N&C)
Actual
(N&C)

Actual
Min.

Est.
(E)

1 20 80
2 50 30 200
3 40 38 123.6
4 19 27 157.4 25
5 38 39 90.55 42
6 115 113 279.3 126
7 34 36 79.9 34
8 68 67 184.2 74
9 59 64 180.8 63

10 139 131 245.1 156

14 CMU/SEI-2006-TN-017

Appendix 3: Size Estimating Template Example

The size estimation template below reflects the exercise data.

Table 6: Example – Size Estimation Template

Size Estimating Template (partial)

BASE PROGRAM LOC ESTIMATE ACTUAL
 BASE SIZE (B) => => => => => => => => => => 490
 LOC DELETED (D) => => => => => => => => =>
 LOC MODIFIED (M) => => => => => => => => => 2
OBJECT LOC
 BASE ADDITIONS TYPE METHODS REL. SIZE LOC LOC

 TOTAL BASE ADDITIONS (BA) => => => => => => =>
 NEW OBJECTS TYPE METHODS REL. SIZE LOC (New Reused*)

Part type domain SELECT 1 S 5

On hand inventory UPDATE 1 M 7

Remove parts INSERT 1 M 6

 � DELETE 1 L 9

 TOTAL NEW OBJECTS (NO) => => => => => => => 27
REUSED OBJECTS

 REUSED TOTAL (R) => => => => => => => => =>
 SIZE TIME
Estimated Object LOC (E): E = BA + NO + M 29 n/a
Regression Parameters: β0 (size and time) 30.12 n/a
Regression Parameters: β1 (size and time) 0.94 n/a
Estimated New and Changed LOC (N): N = β0 + β1 * E 57.38 n/a
Estimated Total LOC: T = N + B − D − M + R 547.38

CMU/SEI-2006-TN-017 15

Appendix 4: Design for BOS Recognition

After a few iterations, I found that the simplest design method is to attribute parentage to the
line which contains the beginning-of-statement SQL keyword. The pseudo-code for this
design is shown below.

LineID=0
For each procedure in the database
 Begin
 For each line in the procedure
 Begin
 LineID++
 If not (line is blank or line is a comment) then
 Begin
 If the first word is a SQL Keyword
 Begin
 Set ParentID = LineID
 Set SQL_Keyword = the first word
 End
 Insert into work table
 Procedure Name,
 LineID,
 ParentID,
 SQL_Keyword,
 Line Text
 End
 End
 End

Figure 3: Attributing Parentage to Line Containing Beginning-of-Statement SQL
Keyword

At this point, the work table contains every non-blank line of every stored procedure. Every
line refers to its parent line, and also to the SQL keyword it belongs to. From this point, you
can query the work table to get summary statistics on each SELECT, INSERT, DELETE,
UPDATE, or other SQL keyword in which you�re interested.

One note on this design: INSERT statements that contain a SELECT clause may involve
more coding. Consider the example below.

INSERT CoverageSummary
 (CompanyName
 , EmployeeLastName
 , EmployeeFirstName
 , EmployeeNumber

16 CMU/SEI-2006-TN-017

 , InsuranceDescription)
SELECT C.Name
 , E.NameLast
 , E.NameFirst
 , E.Number
 , ISNULL(I.Description,'NA') AS Description
 FROM tblCompany AS C
 JOIN tblEmployee AS E
 ON C.CompanyID = E.CompanyID
 LEFT JOIN tblCoverage AS V
 ON E.EmployeeID = V.EmployeeID
 LEFT JOIN tblInsurance AS I
 ON V.InsuranceID = I.InsuranceID
 WHERE C.Name LIKE @Name
 AND V.Active = 1

Figure 4: Example of INSERT Statement Containing a SELECT Clause

In this example, the design will attribute 6 lines to the INSERT statement and 14 lines to a

do-

new SELECT statement. To avoid this and properly attribute 20 lines to the SELECT
statement, you can add some additional logic to either the scanning portion of the pseu
code above, or to the query that is used to summarize the counts.

CMU/SEI-2006-TN-017 17

Appendix 5: Design for Advanced BOS Recognition

My original thought on how to design for counting lines of code in SQL is now affectionately
referred to as �advanced BOS recognition,� which simply means that the implementation
would have taken too long for my study! The idea is to implement a pseudo-parser, by
coding certain elements about the structure of the SQL language into relational entities. If
your SQL code base is not formatted uniformly (most are not), this method will produce good
results because it is independent of formatting. Instead, it looks for syntax cues regardless of
line formatting. The hierarchical command structure can be stored in relational tables. An
example of the relationship between statement, clause, and delimiter are shown below, as
well as a logical relationship diagram of these entities.

Once a procedure is separated into tables of statements, clauses, and delimiters, you could
apply more powerful analysis techniques to study which combination of factors drive the size
and development time of stored procedures. Examples of factors revealed in this type of
statement would be the number of

• joins in a query

• columns returned

• groupings

SELECT

FROM , JOIN

WHERE

HAVING

,

AND

ORDER BY

AND

SELECT StoreNumber,

JOIN Department on

AND Department.Code = ‘F’

,

AND

,

 Count(Location) …

FROM STORE
 …

WHERE Store.Country = ‘IN’

GROUP BY StoreNumber
 …

HAVING Count(Location) > 5
 …

ORDER BY StoreNumber
 …

Figure 5: Example of Relationship between Statement, Clause, and Delimiter

GROUP BY ,

,

18 CMU/SEI-2006-TN-017

Statement

Clause

Delimiter

SELECT
DELETE
UPDATE
. . .

FROM
HAVING
WHERE
. . .

,
JOIN
AND
. . .

Figure 6: Logical Relationship between Statement, Clause, and Delimiter

CMU/SEI-2006-TN-017 19

20 CMU/SEI-2006-TN-017

References

URLs are valid as of the publication date of this document.

[Humphrey 02] Humphrey, W. S. Winning with Software. Boston, MA: Addison-
Wesley, 2002.

[Humphrey 05] Humphrey, W. S. A Self-Improvement Process for Software
Engineers. Boston, MA: Addison-Wesley, 2005.

[Aristotle 350 B.C.] Aristotle, 350 B.C. �Aristotle,�
http://en.wikiquote.org/wiki/Aristotle.

[Ussher 1658] Ussher, James. The Annals of the World iv. 1658.
http://www.nwcreation.net/wiki/index.php?title=The_Annals_of_
the_World.

[Wikipedia 06] Wikipedia. �A Separation of Concerns,�
http://en.wikipedia.org/wiki/Separation_of_concerns (2006).

CMU/SEI-2006-TN-017 21

http://en.wikiquote.org/wiki/Aristotle
http://www.nwcreation.net/wiki/index.php?title=The_Annals_of_
http://en.wikipedia.org/wiki/Separation_of_concerns

22 CMU/SEI-2006-TN-017

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

May 2006
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

PROxy Based Estimation (PROBE) for SQL
5. FUNDING NUMBERS

FA8721-05-C-0003
6. AUTHOR(S)

Rob Schoedel
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2006-TN-017

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This paper presents a method for applying the PROxy Based Estimation (PROBE) technique to Structured
Query Language (SQL). Estimating program size is a critical component of successful software project effort
estimation and cost estimation. The PROBE technique is a simple estimation method that can be used for
estimating program size and effort. To date, PROBE has been used more often to estimate programs written
in third-generation programming languages (3GL) such as C, C++, and Java. Its application to IT
development has been inhibited by the lack of demonstrated applicability to database work. For data storage,
most IT departments have transitioned from file-oriented storage (accessed by traditional 3GL languages) to
relational database server software, which uses an implementation of 4GL languages such as SQL to
manipulate data. SQL’s logic encapsulation properties differ dramatically from those of traditional 3GL
languages, so it is not clear to most developers how to effectively apply the PROBE techniques to SQL. The
method presented here enables a level of estimation detail similar to the application of PROBE to traditional
3GL languages.

14. SUBJECT TERMS

estimation, estimate, PROBE statistics, SQL, structured query
language

15. NUMBER OF PAGES

35

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	PROxy Based Estimation (PROBE) for Structured Query Language (SQL)
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	1 Introduction
	2 The PROBE Process
	3 PROBE: The Conceptual Design, and Estimating Parts Size
	4 Building Historical Data
	5 Relative Size Table for SQL
	6 Areas for Future Study
	Appendix 1: Study of Stored Procedures
	Appendix 2: PSP Student Study
	Appendix 3: Size Estimating Template Example
	Appendix 4: Design for BOS Recognition
	Appendix 5: Design for Advanced BOS Recognition
	References

