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Abstract

We present an approach to the recognition of complex-
shaped objects in cluttered environments based on edge
cues. We first use example images of the desired object
in typical backgrounds to train a classifier cascade which
determines whether edge pixels in an image belong to an
instance of the object or the clutter. Presented with a novel
image, we use the cascade to discard clutter edge pixels.
The features used for this classification are localized, sparse
edge density operations. Experiments validate the effective-
ness of the technique for recognition of complex objects in
cluttered indoor scenes under arbitrary out-of-image-plane
rotation. 1

1. Introduction

This paper addresses the recognition of objects which
consist mainly of elongated, thin, stick-like components
connected together into complex structures; we will refer
to these as wiry objects. Man-made objects in this category
are common; for example the chair, cart, tables, and lamps
in Figure 1 contain a significant amount of wiry structure.
We focus on the problem of recognizing specific instances
of objects, for example the specific chair in Figure 1, rather
than the more general problem of detecting chairs of all dif-
ferent shapes and sizes.

In recent years, several authors have made significant
progress toward the recognition of certain objects, such as
faces, buildings, and cars; examples include [21] and [24].
Typically, these approaches formalize the recognition prob-
lem as one of modeling the appearance of rectangular im-
age patches circumscribing the object or its parts, across
changes in pose[17], lighting[4], or other conditions. This
reduces the recognition problem to examining a rectangu-
lar image template and using its appearance to determine
whether or not it is the image of some section of the target

1This research was supported by a grant from Honda Corporation.

Figure 1. We address the recognition of objects like chairs(top)
and carts(bottom) based on edge cues. Top Row: Example
input image (left) and edge filtering result (right). Bottom Row:
Example image with detected edges overlaid (left) and edge
filtering result (right). See Section 1 for an overview and Section
3 for details on experiments.

object.

Since appearance-based techniques formulate the prob-
lem in terms of rectangular image windows, they tend to
work well when applied to target objects (or object parts)
whose projection into the image fills a rectangular region.
The objects we consider produce images that are poorly
approximated by rectangles; for objects such as the chair,
table, and lamps in Figure 1, a bounding box around the
object or any substantial section of it will contain a high
percentage of pixels which map to the background or other
objects. Most successful appearance-based approaches can
handle the variation in template appearance induced by a
small number of background pixels in the patch, but when
most of the template consists of clutter its appearance can
vary widely due to a modification of the background or ob-
ject pose. This in turn can make it difficult to model the
appearance of the object or object part based on the entire
template.

Furthermore, since most appearance-based recognition



Figure 2. Input image of the ladder in the kitchen environment
(top left), edges detected in the scene (top right), result of the
edge filtering technique described in Section 2(bottom left),
results of edge grouping described in Section 3.3(bottom right).

techniques rely on greylevel or color texture patterns as
cues, they may face exceptional difficulty with wiry objects.
The ladder (Figure 2), for example, has very little in the way
of appreciable visual texture. Therefore, while appearance-
based approaches to recognition are effective for certain ob-
jects, we suggest that for wiry objects, shape can be a more
illuminating cue. It may ultimately be appropriate to recog-
nize these objects from a combination of cues; here, how-
ever, we concentrate on the use of shape features for recog-
nition.

In an earlier paper [8], we described a discriminative
technique for using shape cues to filter clutter edge pixels
from images containing a wiry target object. First, we train
a cascade of classifiers based on example images in which
edge pixels have been labeled as belonging to the target ob-
ject or the background. Given a novel image, we apply our
classifier cascade to each edge pixel in the image to de-
termine which of those edge points project onto the target
object. The classifiers in the cascade calculate simple, lo-
calized edge density features called “edge probes” to make
their decisions. Experiments showed that in composite im-
ages of target objects in cluttered scenes (Figure 1), it is
possible to use the classifier cascade to discard most edge
pixels on the clutter, resulting in a set of edge points which
isolate the target object from the background.

However, this preliminary study raised a number of ques-
tions regarding the applicability of the technique to the
recognition of arbitrary wiry objects in real-world scenes.
First, since the experiments used composite images of the
object superimposed on independent images of a back-
ground, it is unclear whether the technique would be effec-
tive on real images of objects in their environment. Second,
while filtering clutter pixels is certainly a useful step in the

recognition process, it does not perform “recognition” of
the overall object per se since the output of filtering is a
set of individual edge pixels. In particular, it is not clear
how our scheme for clutter edge pixel removal relates to a
higher-level determination of the 3D pose or 2D image lo-
cation of the overall object. Third, since our algorithm for
filtering edge pixels is tuned to specific background images,
we would like to know how well it performs when presented
with a test image whose background, lighting, or other en-
vironmental characteristics vary from those of the training
images. Fourth, our experiments applied the technique to
views of the target object at arbitrary out-of-image-plane ro-
tation, but with only small variations in scale and in-plane
rotation; for real applications we wish to recognize the ob-
ject over a wider range of poses.

This paper addresses the first three of these points empir-
ically. Specifically, in Section 3 we supplement our initial
results on recognition of a chair and cart with a quantita-
tive set of experiments on the filtering of clutter edge pixels
from images of a common wiry object (a ladder) in a va-
riety of real indoor environments. Furthermore, in Section
3.3 we show examples of how a simple post-processing step
can group individual edge pixels into object-level descrip-
tions of the contents of the image. Also, in Section 3.2 we
present an experiment in which a classifier cascade is ap-
plied to test images taken in an environment whose char-
acteristics vary significantly from those of training images.
Finally, in Sections 3.5 and 3.4 we describe complexity is-
sues and show a sensitivity analysis of our approach with
respect to a user-set parameter of our algorithm. Related
approaches to edge-based object recognition are discussed
in 1.1, our algorithm for recognition is reviewed in Section
2, and closing comments are in Section 4.

1.1. Related Work

While appearance-based approaches to object recogni-
tion are dominant in the current computer vision literature,
techniques based on analysis of edges have a long history,
and were studied extensively in the 1980s. Algorithms de-
veloped during this period, such as interpretation trees[11],
could recognize occluded, 2D, non-convex shapes from
noisy, binary edge images. Unfortunately, many of these ap-
proaches rely on a tree search through the space of all pos-
sible correspondences between edge features in the image
and edge features on an object model, and thus can become
computationally expensive if the image or the model con-
tains a large number of features. Indexing techniques such
as geometric hashing[16] bypass the tree search by having
each k-tuple of image features cast votes for the identities
and/or poses of objects in the image; however if the im-
age contains significant noise[12] or clutter, the votes cast
by sets of clutter features will overwhelm the votes cast by



the object, making it difficult to draw any conclusions about
what objects are there.

Early indexing techniques computed very simple de-
scriptors from sets of 3, 4, or 5 image features; more re-
cently, several authors have proposed the use of more rich
descriptions of local image shape in conjunction with in-
dexing for edge-based recognition. Conspicuous group-
ings of edge segments [3], edges in a rectangular image
patch [22], and histograms of local edge distributions [5] are
all examples of more advanced local edge features which
have been applied to shape-based recognition problems. In
each of these approaches, various parameters controlling
the characteristics of the edge descriptor (histogram bin
sizes, grouping thresholds, and so on) must be provided by
the user; the goal of our approach is to use training examples
of the object in typical backgrounds to estimate feature pa-
rameters in such a way that the edge features computed on
a test image effectively discriminate the target object from
the background.

Belongie et al[5] calculate a histogram, or "shape con-
text," at each edge point in an image; each bin in the his-
togram counts the number of edge pixels in a neighborhood
near the point. Our approach is similar in that both use the
distribution of edges in a local section of the image sur-
rounding a point (which we call the aperture around the
point) as the fundamental feature for recognition. However,
the shape context uses a “dense” set of edge features for
recognition; in other words, the bins in the histogram ex-
haustively cover the aperture. Our approach only computes
edge features at isolated image locations deemed likely to
discriminate the edge point in question as object or clutter,
so the features we use are spatially “sparse.” Section 3.5
contains an experiment which helps to quantify how sparse
our shape features are in practice.

2. Approach

Given a novel image of the target object in a cluttered
background, we extract edges and wish to apply a filter to
the image to determine which edge pixels belong to an in-
stance of the target object and which edge pixels belong
to the clutter. To optimize this filter, we assume we pos-
sess a set of example images containing the object in typical
scenes; edges in the example images have been marked as
belonging to the object or to the background. This section
explains our approach for training and testing in detail.

Our edge filter computes localized edge features at im-
age locations near the edge pixel under consideration. An
edge probe at probe center p over a list of edge pixels L is
defined as

EP (p, L) =
∑

t∈L

exp

(

−
‖p − t‖2

σ2

)

(a) (b)

Figure 3. 3(a): Edge probes are evaluated in a circular re-
gion surrounding a query edge point. The query edge point is
marked “X,” and edge probes are evaluated at locations marked
“+.” 3(b) Each edge probe measures edge density in some im-
age neighborhood. Here an edge probe is evaluated at shifted
probe center q + δ for a query edge point q.

where t and p are 2-vectors of [x, y] image coordinates.
An edge probe can be thought of as a Gaussian receptive
field with variance σ2, centered at point p in an edge image
whose edge pixels are contained in the list L. Edge probes
measure the density of edge pixels in some neighborhood
in the image; in this sense, each edge probe is analogous
to a bin in a shape context histogram[5]. The variance σ 2

is a user-set parameter; however an experiment reported in
Section 3.4 suggests that our edge filtering results are not
highly sensitive to its setting.

Consider a set of relative probe centers ∆ =
{δ1, δ2, · · · , δk}, δi = [xδi

, yδi
], laid out over a 2D grid

centered at the origin. To classify a novel edge pixel q,
we shift the relative probe centers so that they surround
q and compute a subset of edge probes EP (q, ∆, L) =
{EP (q + δ1, L), · · · EP (q + δk, L)} at shifted probe cen-
ters {q + δ1, · · · , q + δk}.An illustration is shown in Figure
3.

Given a fixed σ, we space the relative probe centers
evenly over a circular aperture as in Figure 3(a) so that
each pixel in the aperture contributes to one or more edge
probes. But how large should the aperture be? 2 We want the
shifted probe centers to cover a large enough neighborhood
surrounding q that the edge probes will contain sufficient
information to discriminate object pixels from background
pixels. At the same time, however, if the aperture is too
large (covering the entire image, for example), an unfeasi-
ble amount of computation will be required at training time
to evaluate edge probes that might not be crucial for classi-
fication. Worse, if the aperture is so large that most of the
edge probes at shifted probe centers are totally irrelevant to
the category of the query edge point, error-prone classifiers
could be trained[14][1]. Thus, we are presented with “the
aperture problem” which appears in many computer vision

2We emphasize that σ determines the spatial support of a single edge
feature while the aperture size controls the size of the neighborhood over
which all edge features are computed for a given query point.



Figure 4. Results of edge filtering and edge grouping for cascades trained on various environments. For each pair of images, the
left-hand image shows results of the edge filtering operation described in Section 2, and the right-hand image shows results of edge
grouping as described in 3.3. Top row: The lab (left) and cubicle (right). Middle row: The classroom (left) and conference room
(right). Bottom row: the warehouse (left) and living room (right).

problems– when attempting to induce information about a
particular location in the image we want to incorporate im-
age data from a large enough surrounding area that the in-
formation can be induced, but not so large that we introduce
irrelevant data or useless computation.

Consider a set of relative probe centers ∆ which cover a
circular aperture as in Figure 3(a). Define A(∆) to be the
radius of the circle. Our approach is to train a series of clas-
sifiers f1, f2, · · · , fk which evaluate edge probes according
to sets of relative probe centers ∆1, ∆2, · · · , ∆k such that
A(∆1) < A(∆2) < · · · < A(∆k). The first classifier in the
series, f1, is trained to classify edge points based on edge
probes taken from a small radius surrounding them; f 2 clas-
sifies based on edge probes over a slightly larger radius, and
so on. Edge points labeled “object” by f1are classified by
f2; points labeled “background” by f1are discarded. Edge
points labeled “object” by f2 are passed to f3, and so on.

Thus, we solve our aperture problem in phases– we
first identify those edge points whose class is discriminable
based on very nearby features, then identify points that are
made discriminable by features slightly farther away, and
continue to do so until the aperture covers the entire object
in question.

Besides providing a solution to our aperture problem,
the classifier cascade allows fast screening of image lo-
cations that are easily discriminable from the object of
interest based on information in a small window, leav-

ing the bulk of the computation to more ambiguous sec-
tions of the image. Similar cascade strategies have re-
cently achieved significant speedups for template-based ap-
proaches to recognition[24][13].

The classifiers in our cascade are decision trees trained
using a two-step process of tree generation and pruning, fol-
lowing the reduced-error pruning approach of Quinlan[19].
In this framework, the training data is split into two sub-
sets, which we will refer to as the tree-growing set and
the holdout set. The tree-growing set is recursively parti-
tioned based on the values of features selected by a greedy
information-theoretic criterion; the resulting tree has high
classification accuracy on the tree-growing set but is prone
to overfitting. Subtrees are then pruned from the tree when
doing so improves a global accuracy criterion on the hold-
out set[19][6][7]. Our pruning criterion is shaped by the
fact that the classifiers are applied in a cascade. Specifi-
cally, consider an edge pixel q which corresponds to a point
on the object. If a classifier mistakenly classifies q as clutter
(i.e. a “false negative”), then the edge point is permanently
removed from consideration by further classifiers in the cas-
cade; however, if a clutter edge pixel q is mistakenly classi-
fied as belonging to the object (a “false positive”), then the
edge point is passed on to later phases in the cascade, which
may in turn re-classify it correctly based on edge informa-
tion in a larger aperture. We therefore optimize a Neyman-
Pearson criterion [9] during pruning; specifically, we prune



Environment # train # test mean
TP

mean
FP

var
TP

var
FP

Classroom 120 48 0.778 0.102 0.008 0.008
Kitchen 120 43 0.712 0.111 0.038 0.038
Cubicle 120 54 0.718 0.080 0.039 0.039

Conf. Rm 120 63 0.775 0.089 0.018 0.018
Warehouse 120 51 0.755 0.094 0.021 0.021
Living Rm 120 54 0.779 0.064 0.017 0.017

Lab 110 12 0.739 0.210 0.010 0.010

Table 1. Edge pixel filtering results for classifier cascades
trained on individual environments. First column: Each row
corresponds to edge filtering results for a classifier cascade
trained on images taken in the environment indicated in the
first column. Second column: Total number of images in the
tree-growing and holdout sets together. Third column: Num-
ber of independent test images used for evaluation. Fourth
and fifth columns: Average true positive (TP) and false posi-
tive (FP) rates over all test images. Sixth and seventh columns:
Variance in TP and FP rates across all test images.

subtrees whenever doing so improves the false positive rate
of the classifier while keeping the false negative rate below
a low, fixed threshold θ. Depending on the arrangement of
edges in the training images, it is possible that the decision
tree trained for a particular cascade may not significantly re-
duce the number of false positives on the holdout set; in this
case we simply skip this cascade phase and train a classifier
for the next phase. For each edge pixel q in each image in
the tree-growing set, we compute edge probes at all shifted
probe centers {q + δ1, · · · , q + δk} corresponding to the
relative probe centers {δ1, · · · , δk} in the smallest aperture
∆1. Decision tree induction then iteratively splits the edge
points into subsets according to the values of edge probes
corresponding to selected relative probe centers. Each edge
pixel in the holdout set images is then classified by the re-
sulting tree, and subtrees are removed if the pruned tree re-
duces the number of background edge pixels classified as
object edge pixels while keeping the percentage of object
edge pixels correctly classified (the “true positive” rate) to
1-θ. Edge pixels from the tree-growing and holdout sets
classified as object edge pixels by the pruned tree then pass
to the training of the second phase in the classifier cascade:
for each of these edge pixels, edge probes are computed
at all shifted probe centers corresponding to relative probe
centers in ∆2, and so on.

Given a test image, we apply the trained classifiers to
each of its edge pixels in turn. An edge pixel classified as
“object” by the first classifier is passed to the second clas-
sifier; the second classifier classifies the point again, and so
on until the point is labeled as “clutter” or the cascade ends.

3. Experiments

We took 1157 1600-by-1200 images of a ladder in 7 dif-
ferent indoor environments: a classroom, conference room,

Figure 5. Left: Example of scanning an edge density filter for the
ladder over a raw edge image (left) and an edge image which
has been filtered using the technique described in Section 2
(right). See section 3.3 for details.

office, lab, living room, warehouse, and kitchen (Figures 2
and 4). For each image, the camera was approximately 3m
from the objects in the scene; the elevation of the camera
varied between 1.6m and 1.75m; the set of all images of a
particular scene covered about 60 degrees of rotation with
respect to the scene objects in the plane parallel to the floor.
The camera was moved between each view, and once ev-
ery five views the ladder was rotated to an arbitrary angle
with respect to the ground and the poses and configurations
of clutter objects were randomly modified. The depth of
the ladder with respect to the camera varied by a total of
approximately 20% across all views. Edges were detected
in these images using the Vista line finder[18]; edges were
hand-labeled as belonging to the ladder, or to the clutter ob-
jects.

For each experiment, we selected some number of im-
ages for tree-growing and holdout sets, and trained cas-
cades of classifiers to filter out background edge pixels as
described above. For the experiments in Sections 3.1 and
3.2, the edge probe variance parameter σ was set to 20 pix-
els; the decision tree pruning parameter θ was set to 2%,
and a cascade phase was skipped if it failed to reduce the
false positive rate by 5% or more. Trees were induced with
the MLC++ package [15].

The relative probe centers were arranged as a set of con-
centric rings; specifically, the relative probe centers in the
nth ring were positioned in a circle of distance n ∗ σ from
the origin, with a σ-pixel spacing between adjacent relative
probe centers on the circle. The set of relative probe centers
∆n corresponding to the nth aperture in the cascade is the
union of all relative probe centers in rings 1 through n. Note
that uniformly tiling the aperture with a set of edge features
of equal spatial support is in contrast to techniques which
aim for a “foveal” layout of edge features, for example [5].

3.1. Training And Testing On A Single Environment

In our first set of experiments we considered training in-
dividual classifier cascades for each environment separately.
For each environment, we randomly split the set of all im-
ages of the object in that environment into a tree-growing



Environment # test mean
TP

mean
FP

var
TP

var
FP

Classroom 169 0.661 0.072 0.050 0.050
Conf. Rm 183 0.779 0.110 0.013 0.013

Table 2. Edge pixel filtering results for classifier cascades
trained on a different set of environments than the test images.
See Table 1 for an explanation of notation.

set of 60 images, a holdout set of 60 images, and a test set
containing the remainder of the images. Then the proce-
dure described above was used to train a 20-phase classi-
fier cascade, and run each of the test images through the
resulting filter. For each test image, we measured the true
positive (TP) and false positive (FP) rates, i.e. what per-
centage of edge pixels on our target object and background
were ultimately classified as object edge pixels by the cas-
cade. Results are summarized in Table 1; examples are
shown in Figures 2 and 4. Each classifier cascade retained
a high percentage of edge points on the object (roughly
70%-80%), while discarding most background edge pixels
(roughly 90%). We emphasize that the reported true posi-
tive and false positive rates refer to the percentage of object
edge pixels retained by the edge filter, not the percentage of
times the overall object was correctly or incorrectly identi-
fied in all test images. However, as explained in Section 3.3
and indicated in Figures 2 and 4, the filtered edge image is
an encouraging starting point for recognition processes that
operate at the object level, such as 3D pose estimation or
localizing the object in the image.

3.2. Distinct Training and Testing Environments

Next we address the address the training of a classifier
cascade across a particular set of environments and apply-
ing the resulting filter to images of the same object in front
of entirely distinct environments. To suggest that the per-
formance of our classifier cascades degrades gracefully ac-
cording to the deviation between training image character-
istics and test image characteristics, we trained a classifier
cascade on a set of images of the ladder in five of the en-
vironments (kitchen, cubicle, warehouse, living room, and
lab), and tested it on images of the other two environments
(classroom and conference room). We randomly selected a
total of 120 images from the set of all images of the object
in the training environments, using 60 of them for the tree-
growing set and 60 for the holdout set. A classifier cascade
was computed from these training images and applied to all
images of the object in the test environments, i.e. environ-
ments not present in the training data. Edge pixel classifica-
tion results are summarized in Table 2, using the same no-
tation as Table 1. Comparing the corresponding lines in Ta-
bles 1 and 2, it appears that filtering performance decreases
slightly in some aspects: the true positive rate on the class-
room images drops somewhat when the classroom images

Sigma mean
TP

mean
FP

var
TP

var
FP

15 0.827 0.094 0.009 0.009
20 0.775 0.089 0.018 0.018
25 0.715 0.074 0.017 0.017
30 0.775 0.125 0.014 0.014

Table 3. Edge pixel filtering on the conference room image set
for various settings of σ.

are not present in the training data, and the false positive rate
for the conference room images increases when the confer-
ence room images are absent from training. However, some
decrease in performance is to be expected when conditions
in training and test images vary significantly; the key point
here is that the experiment suggests that edge filtering per-
formance degrades gracefully with these variations.

3.3. Grouping Individual Edge Detections

As indicated in Section 1, the edge filtering procedure
does not solve object recognition at an object level; instead
it selects individual image pixels likely to project onto the
object. To give an example of how filtered edge images may
be used as an input to object-level recognition processes, we
implemented a simple density filter which scans the filtered
edge image with a rectangular template roughly the size of
the target object. At each image location, the number of
edge pixels falling inside the template is recorded, and im-
age locations with a large number of edge pixels inside the
template are noted as likely locations of the target object.

More specifically, we first run all training images
through the classifier cascade described above. For each
training image, we calculate the bounding box around the
remaining edges of the target object. Taking an average over
all resulting bounding box sizes gives us our characteristic
bounding box for the object; we will assume that our object
is well-approximated by a bounding box of this character-
istic size in all test images. We then scan test images with
this characteristic bounding box, recording the number of
edge pixels inside the box at each image location. Boxes
with a large amount of edge pixels are determined to be the
bounding box around an instance of the target object, and
non-maximum suppression is performed to arrive at final,
isolated boxes. Examples of images on which this density
filter have been applied are shown in Figures 2 and 4.

We emphasize that this density filter is in no way an opti-
mal procedure for recovering an object-level description of
the contents of the image; in particular, a variety of align-
ment algorithms[2][23] would be able to give a more pre-
cise correspondence between the test image and a reference
image or 3D model. Still, this experiment illustrates that the
edge filtering procedure can be a useful preprocessing step
to higher-level edge-based recognition processes that may
fail in extreme clutter. For example, Figure 5 shows a test



Phase # features # examples time

1 6 316338 0:04
5 92 213282 0:16

10 340 141120 0:44
15 746 111674 1:05
20 1309 107848 1:20

Table 4. Number of relative probe centers (second column),
number of training examples (third column), and decision tree
induction times (fourth column, hours:minutes) for various cas-
cade phases for the classroom image set.

image for which the density filter fails when applied to the
raw edge image, but is able to localize the object once the
clutter edges have been removed by the classifier cascade.

3.4. Sensitivity

The edge probe variance parameter σ is a free parameter
that critically affects the size of the spatial support region
for our basic edge features. Thus, it is natural to wonder
how the performance of our approach depends on the choice
of σ. To address this issue, we trained a set of 4 classifier
cascades on the conference room image set, corresponding
to σ values of 15,20,25, and 30 pixels. As in Sections 3.1
and 3.2, the relative probe centers were arranged in con-
centric rings at distances σ, 2 ∗ σ, · · · pixels from the origin.
However, in order to increase the aperture size at a simi-
lar rate for all values of σ, we added two rings of relative
probe centers per cascade phase for σ = 15. 60 images
of the conference room were randomly selected as a tree-
growing set, 60 images made up the holdout set,and the re-
maining 63 images were used for evaluation. Figure 3 sum-
marizes the results, using the same notation as described in
Table 1. While the true positive and false positive rates do
vary across settings of the parameter, in each case the fil-
ter retains a high percentage of edge pixels on the object
(roughly 70% to 80%) while removing roughly 90% of all
background edge pixels. Exactly how the setting of σ af-
fects true positive and false positive rates is complex and
depends on characteristics of the viewing environment, the
objects present, the classifiers in the cascade, and the pol-
icy for arranging the relative probe centers in the aperture.
Nonetheless, these results suggest that the classifier cascade
performs well over a range of reasonable values for this pa-
rameter.

3.5. Complexity

This section addresses concerns about the time and space
complexity of our approach, in terms of both the training
and test phases. In particular, we demonstrate that although
a potentially large number of edge features is considered by
our algorithm, and although we employ numerous classi-
fiers at training and test time, the amount of computation
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Figure 6. Left: histogram of the number of edge probes eval-
uated per edge point in 54 test images. Right: cumulative
distribution function for this histogram.

required to train the cascade and evaluate a novel image is
feasible.

Training Training the cascade of classifiers involves
computing edge probes and inducing a decision tree for
each phase of the cascade. At a particular cascade phase,
an exhaustive set of edge probes is computed over all edge
points in the training set; thus, space requirements at train-
ing time will be determined by the number of edge pixels in
the training set at each cascade phase, along with the num-
ber of relative probe centers in the aperture at each phase.
In Table 4 we show these numbers for a few phases of the
classifier cascade trained on the classroom image set as de-
scribed in Section 3.1, along with the approximate running
times of the decision tree inducer on a 1.67 GHz Athlon for
those cascade phases. On one hand, due to our strategy of
evenly spacing the relative probe centers in the aperture, the
dimensionality of the training data increases as the aperture
is grown; on the other hand, since we filter training exam-
ples out of the training set at each phase of cascade training,
the number of training examples decreases as the aperture
is grown. The total time required to train one classifier cas-
cade on a 1.67 GHz machine, including all decision tree
induction and edge probe calculation, is approximately one
day.

Testing When evaluating a novel image, some number of
edge probes are evaluated at each edge point in the image
until either the point is filtered out or the last phase of the
cascade is reached. Thus, the time complexity of evaluat-
ing a novel image will in large part be determined by the
number of edge probes required at its edge points. To get
a sense of the total number of edge probes computed at a
typical image point, we took the classifier cascade trained
on the living room image set, described in Section 3.1, and
counted the number of edge probes evaluated at each edge
pixel in each test image of the living room, over all cascade
phases. Figure 6 summarizes these edge probe counts in a
histogram and cumulative distribution. Note that roughly
23% of all edge pixels are classified from ten or fewer dis-
tinct edge probes, and 95% of all points in the test images



Figure 7. Left: The set of all relative probe centers for the
20th cascade phase, shifted to the point at the white circle,
are shown as black dots. Right: In order to classify the point,
edge probes are only evaluated at the probe centers shown in
black.

require evaluation of 50 or fewer edge probes. This is sig-
nificant since the total number of relative probe centers in
the largest aperture (Table 4, last row) is 1309. Thus, while
the training phase selects features from a large set of poten-
tial features, relatively few of these features are evaluated at
any given image point at run time. As an illustration, Fig-
ure 7 shows the set of all shifted probe centers for the 20th
cascade phase at a typical edge pixel (left) and the set of 65
shifted probe centers at which edge probes were computed
during the classification of the point by all phases of the
cascade. Note also that since an edge probe essentially con-
sists of convolution of a portion of the image with a small
gaussian kernel, it is fast to compute.

4. Conclusion

In this paper we have presented a discriminative tech-
nique for compensating for highly cluttered backgrounds in
edge-based object recognition. We substantiated its feasi-
bility and accuracy through detailed tests on a real object
in a variety of cluttered scenes. We show that since edge
feature extraction is automatically tuned to the object and
environments present at training time, we can effectively
address the discrimination of object edge points from back-
ground edge points while leaving few arbitrary parameters
for the user to estimate. Our experiments demonstrate that
the technique can be robust to out-of-image-plane rotation
of objects in the scene, variations between training and test
data, and changes in parameter settings. Also we give an ex-
ample of how our approach can serve as an effective prepro-
cessing step for object-level recognition processes in clut-
tered environments.

Future experiments will extend the variability between
training and test data to explore the robustness of the tech-
nique. Also, we will compare our approach to similar clas-
sifier cascades employed in other object recognition work,
for example [24].
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