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Abstract

A finite data set is consistent with infinitely many alternative theories. Scientific realists
recommend that we prefer the simplest one. Anti-realists ask how a fixed simplicity bias
could track the truth when the truth might be complex. It is no solution to impose a prior
probability distribution biased toward simplicity, for such a distribution merely embodies
the bias at issue without explaining its efficacy. In this note, I argue, on the basis of
computational learning theory, that a fixed simplicity bias is necessary if inquiry is to
converge to the right answer efficiently, whatever the right answer might be. Efficiency is
understood in the sense of minimizing the least fixed bound on retractions or errors prior
to convergence.
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1 Introduction

There are infinitely many alternative theories compatible with any finite amount of
experience, so choosing the right one on the basis of the evidence alone seems hopeless.
Scientfic realists “justify” such choices by invoking other methodological virtues like
simplicity, unity, uniformity of nature, or minimal causal entanglement to narrow the field.
These appeals to “Ockham’s razor” smack of wishful thinking, however, for how could a fixed
bias toward simple theories possibly facilitate finding the right answer? A fixed bias of any
kind can no more indicate the right answer than a stopped clock can indicate the time. This
concern is a principal motive for anti-realism.
Here is a bad explanation: impose a prior probability distribution biased toward simplicity
and then argue, on the basis of this distribution, that a simplicity bias probably leads to the
right answer. Whatever this tight circle “justifies”, it does not explain how such a bias could
facilitate finding the right answer because it presupposes the very bias to be explained.1 My

1Sometimes this bias is hidden by the Bayesian apparatus. For example, the realist’s “miracle” argument
amounts to this. “Surely an open-minded anti-realist who keeps the door open to all the skeptical possibilities
should ‘leave the door open’ to the unified theory when choosing between a unified theory and a disunified one.
But since the disunified theory has more parameters to set in order to yield the predictions, the likelihood of
the data given the disunified theory is infinitesimal with respect to the likelihood with respect to the unified
theory. Since the priors of the two theories are real- valued, by Bayes theorem, the posterior of the disunified
theory is infinitesimal compared to that of the unified theory. So it would be a ‘miracle’ if the disunified theory
were true.” The trick is that the “fair-minded” distribution over the two theories forces an infinite bias against
disunified worlds, so the anti-realist is actually offered a sucker’s choice between a dogmatic bias against the
unified theory and a dogmatic bias against disunified worlds (in which only the former bias is explicit). The
story I am about to tell does not refer to prior probability at all, so there is no place for such a bias to hide.
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aim in this note is to provide the anti-realist with a fairly generally applicable explanation
that does not beg the question by presupposing a simplicity bias.

2 The Main Results

Let’s review the scientific realist’s options. One can’t explain how Ockham’s razor helps us
find the truth by presupposing a bias toward simplicity, since Ockham’s razor is just such a
bias: it would be like explaining how opium works in terms of a “dormative virtue”. Nor can
one argue, without presupposing such a bias, that simplicity points at the truth, because it
points in the wrong direction in complex worlds. Hence, the realist must show how simplicity
could help us find the truth without pointing at the truth.
So what could such “help” amount to? Here is an analogy. The ideal automobile may not be
as fast or as beautiful as we would like, but any increase in one direction would entail a more
than compensating loss elsewhere. Maybe Ockham’s razor is like that: deviating from it may
reduce epistemic costs (e.g., errors or retractions) in some complex worlds, but the
improvement may entail still greater numbers of errors and retractions in other worlds,
reducing one’s efficiency overall. In other words, it may turn out that violating Ockham’s
razor reduces one’s overall epistemic efficiency, which requires that one achieve the least
achievable, fixed bound on epistemic costs over all possible worlds satisfying the
presuppositions of the empirical problem at hand.2

An anti-realist should be impressed to learn that commitment to Ockham’s razor in one’s
inductive strategy minimizes errors and retractions prior to convergence to the right answer.
She should be still more impressed to see it explained how such a bias is also necessary for
retraction or error efficiency. That is just what I claim. Readers who prefer examples to
principles may prefer to skim section 3 at this point.
An empirical problem consists of a set of mutually exclusive possible answers that jointly
exhaust the problem’s presupposition, which is the set of possible worlds over which a
corrrect answer must be given. Each world affords a potentially infinite sequence of inputs to
the learner. A learning method responds to each finite sequence of inputs with a potential
answer or with ‘?’, which indicates “not ready to choose”. A method solves an empirical
problem just in case it stabilizes, eventually, to a correct answer to the question in each
possibility compatible with the problem’s presupposition. R. Freivalds and C. Smith (1993)
have devised an ingenious definition of solving a problem under a transfinite retraction
bound that is much more general than the more obvious concept of success with finitely
bounded retractions introduced in (Putnam 1965). The following results are based on a
refinement of Freivalds and Smith’s idea.
The notion of an Ockham answer relative to the current inputs can be defined in a
language-invariant manner that reflects intuitive simplicity in particular cases (cf. section 3
below for examples) so that the following are mathematical theorems.3

Proposition 1 A solution to a problem is uniformly efficient with respect to errors just in
case it never outputs an informative answer other than the (unique) Ockham answer for the
current data.

2The idea of counting retractions prior to convergence was appealed to for purely logical ends by Hilary
Putnam in (1965). Counting retractions as a definition of the intrinsic difficulty or complexity of an empirical
problem has seen a great deal of study in computational learning theory. A good reference and bibliography may
be found in (Jain et al. 1999). What follows is heavily indebted to (Freivalds and Smith 1993) and generalizes
the topological perspective on learning developed in (Kelly 1996).

3The proofs are based on what I call “surprise complexity”: a topological invariant that generalizes both
Cantor-Bendixson rank and Kuratowski’s (transfinite) difference hierarchy (Kechris 1991).
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Proposition 2 A solution to a problem is uniformly efficient with respect to retractions or
errors only if it never outputs an informative answer other than the (unique) Ockham answer
for the current data.

It is familiar wisdom that convergence in the limit is compatible with any crazy behavior in
the short run (e.g., Earman 1992). The results in this paper show that the wisdom is wrong
(with a vengeance) when we require efficient convergence, for then one’s only choice is to
accept the unique, Ockham answer or to hold one’s tongue.
The conditions for retraction efficiency impose even tighter restrictions on short-run
acceptance behavior. Skeptical retreat from an informative answer to ‘?’ counts as a
retraction, but not as an error. So minimizing retractions must impose some restriction on
skeptical retreats as well as on which informative answer one chooses. It is possible to define
the notion of an anomaly so that the following is a mathematical theorem.

Proposition 3 A solution to a problem is uniformly efficient in terms of retractions just in
case it never retracts an informative answer until a corresponding anomaly has occurred.

Proposition 3 provides an anti-realist explanation of another methodological reflection of
realist attitudes: never drop an accepted theory unless there is a concrete, empirical anomaly.
Propositions 3 and 2 have a surprising corollary.

Proposition 4 If a solution to a problem never retracts an informative answer unless an
anomaly occcurs, then it never outputs any informative answer other than the (unique)
Ockham answer.

The surprise is that a constraint on when to drop what you accepted could entail a constraint
on what to accept in the first place. The explanation is that if you accept a needlessly
complex answer , the constraint on retraction will prevent you from ever dropping it, so you
won’t converge to the right answer. Thus, simplicity and resolution are essentially bound to
one another by the concept of convergent success.
There is an escape hatch for the anti-realist: if efficiency is not achievable at all, then
efficiency implies Ockham’s razor only in the trivial sense that it implies everything. But the
escape comes with a cost, for it is available only if the presuppositions of the problem are
empirically inscrutable even in the ideal limit of inquiry.

Proposition 5 If a problem has a solution that also converges in the limit to ‘?’ when the
presupposition of the problem is false, then the problem has error-efficient and
retraction-efficient solutions.

3 Some Illustrations

The exact definitions underlying the preceding results cannot be motivated in this brief note.
Instead, I will illustrate the results with some examples. Suppose that, for whatever reason,
the possibilities on the table are worlds in which all inputs are green and in which all inputs
are gruet, where a gruet observation is green up to and including t and blue thereafter. The
question is which kind of world we are in. The “natural” approach is to eventually become
sure that the world is “uniformly” green and to retract to gruet only after a blue input is
received at t. This approach retracts at most once (when the first blue input is received). But
if one were ever to project gruet prior to receipt of a blue input, Nature would be free to
continue presenting green inputs until one retracts to “all inputs are green”, on pain of
converging to the wrong answer when all inputs are green. Thereafter, Nature could present
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all blue inputs, exacting two retractions in a problem that could be solved under a unit
retraction bound. By a similar argument, projecting “forever green” minimizes errors, but the
least feasible error bound is ω. The results generalize if we add worlds of type gruet,t′ whose
inputs are green through t, blue through t′ and then green thereafter, gruet,t′,t′′ , and so forth,
as long as there is a finite bound on the number of “surprises” (Schulte 1999a, b).
The point of Nelson Goodman’s (1983) gruet construction was to show that uniformity is
relative to description and that perfect definitional symmetry blocks any attempt to favor one
description over another on syntactic grounds. The preceding argument does not appeal to
uniformity relative to a description or to syntactic definitional form, however. It hinges on a
topological asymmetry in the underlying branching structure of the problem, for the “forever
green” input stream is the unique input stream for which distinct input streams compatible
with the problem “veer off” infinitely often (no input streams compatible with the problem
veer off of “forever gruet” after stage t). This property is preserved under translation into the
gruet/bleent language, for the translation is just a one-to-one relabeling of the inputs along
each input stream, which evidently leaves branching structure of the problem intact.4 This
conception of simplicity is contextual, in the sense that the same world can be simple or
complex, depending on the problem we face (Chart 2000). For example, we can make the
“forever grue9” world into the spine by considering only the worlds “forever grue1”, . . .,
“forever grue9”, “forever green”, and “forever grue9,t”, for all t > 9. Why should one say that
“forever grue′′

9 is the simplest or most uniform answer in this problem when the answer
“forever green” is available? Because in either problem, the spine world is simpler or more
uniform in the methodological sense that the empirical problem one faces never gets easier, no
matter how much experience one receives. In all the alternative worlds, there is a time after
which some answer is determinately verified. This idea can be generalized by transfinite
recursion to yield non-trivial, infinite degrees of simplicity.
Ockham’s razor is (roughly) a matter of presuming that the actual world is among the
simplest worlds compatible with the current inputs. The principle accords with a surprising
variety of “simplicity” judgments. For example, a familiar policy in particle physics is to posit
the most restrictive conservation laws compatible with reactions that are known to have
occurred (Ford 1963). Here, the “spine” world is one in which only the known reactions are
possible and “veering” occurs when a new type of reaction that is not permitted by the earlier
conservation laws is observed. If there are at most n particles, all of which are observable,
then by an argument like the preceding one, achievement of the least feasible retraction
bound in each subproblem demands that one never choose a conservation theory compatible
with a non-observed reaction (cf. Schulte 2001).
In the context of curve fitting, simplicity is often identified with the polynomial degree of the
curve’s equation. Suppose we wish to know the degree of an empirical curve from evidence
gathered with error < ε and it is known that the true degree is n. If we were to guess a degree
higher than k when k is the least degree compatible with the inputs, Nature is free to make it
appear that the true degree is k until we take the bait (on pain of converging to the wrong
answer). Thereafter, Nature is free to choose a curve of properly higher degree that remains
compatible with the inputs presented so far and to present inputs from it until we retract.
Nature can force another retraction in this way for each further degree < n, for a total of
n− k + 1 when n− k would have sufficed.
Copernican astronomy, Newtonian physics, the wave theory of optics, evolutionary theory,
and chaos theory all won their respective revolutions by providing unified, low-parameter
explanations of phenomena for which their competitors required many. Suppose that there is

4In mathematical jargon, grue-like translations are just continuous automorphisms of the problem with
respect to the “branching” or Baire space topology restricted to the problem’s presupposition.
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a series of logically independent, empirical laws L0, . . . , Ln and a corresponding series of
mutually exclusive theories such that Ti entails L0, . . . , Li. Suppose we were to accept any
theory other than L0 a priori. Then by a similar argument, Nature could exact n + 1
retractions from us, whereas if we had always assumed the “most unified” theory compatible
with experience, and if Nature promises to show us evidence refuting any false law eventually,
then Nature could have exacted at most n retractions.5

Ockham’s razor is often understood as a bias toward fewer causes. Recent years have seen a
considerable increase in our understanding of causal inference (Spirtes et al. 2000, Pearl
2000). Instead of “reducing” causes to probabilistic or modal relations, the idea is to
axiomatize the connection between probability and causation. A consequence of these axioms
is that there is a direct, causal connection between two variables (one way or the other) just
in case the two variables are probabilistically dependent conditional on each subset of the
remaining variables. One then says that the two variables are d-connected. Otherwise, they
are d-separated. The methodological question is what to infer now, from the available data.
Spirtes et al. have proposed the following method (which I oversimplify). For each pair of
variables X, Y , perform a standard statistical test of independence of X and Y conditional on
each subset of the remaining variables. If every such test results in rejection of the null
hypothesis of independence, conclude that X and Y are d-connected and add a direct causal
link between X and Y (without specifying the direction). Otherwise, provisionally conclude
that there is no direct causal connection. In other words, assume the smallest number of
causes compatible with the outcomes of the tests. By an argument analogous to those already
given, one must follow such a procedure or Nature could elicit more retractions than
necessary (at most n retractions are required by the algorithm proposed by Spirtes et al., one
for each possible direct causal connection among the variables under consideration).6
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