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1 Justification as Truth-Finding Efficiency: How

2 Ockham’s Razor Works

3 KEVIN T. KELLY
4 College of Humanities & Social Sciences, Department of Philosophy, Carnegie Mellon

5 University, Baker Hall 135, Pittburgh, PA 15213, USA; E-mail: kk3n@andrew.cmu.edu

6 Abstract. I propose that empirical procedures, like computational procedures, are justified in
7 terms of truth-finding efficiency. I contrast the idea with more standard philosophies of science
8 and illustrate it by deriving Ockham’s razor from the aim of minimizing dramatic changes of

9 opinion en route to the truth.

10 Key words: confirmation, convergence, mind-changes, model-selection, naturalism, Ockham,
11 learning, simplicity

12 1. Introduction

13 The philosophy of science divides, roughly, into two schools. Confirmation
14 theorists seek to explicate the concept of empirical justification a priori by
15 systematizing intuitive reactions to various historical episodes and case
16 studies. Epistemological naturalists view scientific practice as an empirical
17 subject in its own right and seek to determine by empirical means which sorts
18 of methods are well-adapted to finding the truth. The two groups tend to
19 view the topic of this special journal issue – the relationship between com-
20 puter science and the philosophy of science – rather differently. According to
21 confirmation theorists, the job of explicating the concept of confirmation falls
22 primarily to philosophers; computer scientists are left to deal with the applied
23 task of determining which theories are confirmed or of searching for highly
24 confirmed theories. According to naturalists, computers can implement a
25 variety of inductive methods, which can then be applied to lots of computer-
26 generated problems in order to produce extensive evidence about the
27 empirical effectiveness of different inductive strategies. Either way, compu-
28 tational ideas seem peripheral, or merely auxiliary, to the topic of scientific
29 justification.
30 I advocate the opposite view, that justification is just truth-finding effi-
31 ciency and that the philosophy of science should look to the theories of
32 computability and computational complexity as models of how to study it
33 (Kelly, 1996). On my view, computer science is not merely a helpful assistant
34 to the philosophy of science; it is a valuable resource for deep and systematic
35 ideas about scientific justification itself. In this note, I describe the general

Minds and Machine 00: 1–21, 2004.

� 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Journal : MIND SPS Article No. : DO00000708 Dispatch : 28-6-2004 Pages : 21

PIPS No. : D000000708 h LE h TYPESET

MS Code : MIND MAM-4 h CP

A
U
T
H
O
R
’S

P
R
O
O
F
!

PDF-OUTPUT



UN
CO

RR
EC
TE
D
PR
OO

F

36 viewpoint just sketched and illustrate it by deriving Ockham’s razor from a
37 kind of truth-finding efficiency in both empirical and computational contexts,
38 without appealing, in the usual way, to a prior bias toward simplicity or to a
39 primitive concept of confirmation or empirical rationality.

40 2. Confirmation Theory

41 Scientific laws and theories have consequences that outrun the available
42 evidence, so the question of their justification naturally arises. A familiar
43 response to this skeptical challenge is confirmation theory: the view that
44 evidence partially justifies full belief (or fully justifies partial belief). The
45 focus, then, is to ‘explicate’ the underlying concept of ‘confirmation’, which
46 amounts to finding a simple, general rule or definition that more or less
47 agrees with our intuitions regarding evidential support in a wide range of
48 examples (e.g. Carnap, 1950; Hempel, 1965; DeFinetti, 1972; Glymour,
49 1980).
50 Confirmation theory is not merely a philosophical phenomenon. For
51 example, the DENDRAL program (Buchanan, 1974) optimized a kind of
52 confirmation score over possible molecular hypotheses and contemporary
53 machine learning programs optimize such scores as the Bayes’ information
54 criterion or the Akaike information criterion (cf. Wasserman, 2000). In such
55 procedures, there is a clear division of labor between the scoring rule, which
56 amounts to a proposed confirmation relation, and the subsidiary rules of
57 search that sift among possible models. Such practice fits well with confir-
58 mation theory’s conception of its relationship to computer science; for
59 according to confirmation theorists, empirical justification is nothing but
60 confirmation, so after it is known that a theory is confirmed, the theory is
61 justified independently of how we came to know or compute this fact
62 (Laudan, 1980). So although computational search procedures are useful for
63 finding confirmed hypotheses, they have nothing per se to do with the jus-
64 tification of the hypotheses they output.
65 Confirmation theory has its appeal. The concept of confirmation seems to
66 respond to Hume’s challenge for a justification of fallible belief. It also cuts a
67 scientific theory loose from the history by which it was obtained, for the
68 theory is justified by its current confirmation, regardless how it was discov-
69 ered. Finally, confirmation theory neatly divides labor between pure phi-
70 losophers of science, who speculate about the meaning of empirical
71 justification without regard for computational efficiency, and practical
72 computer engineers, who seek efficient procedures for checking the confir-
73 mation of particular theories or for finding maximally confirmed theories.
74 My concern is that such a collaboration can be sophisticated and formally
75 challenging without ever getting around to the two most obvious and

KEVIN T. KELLY2

Journal : MIND SPS Article No. : DO00000708 Dispatch : 28-6-2004 Pages : 21

PIPS No. : D000000708 h LE h TYPESET

MS Code : MIND MAM-4 h CP h DISK4 4



UN
CO

RR
EC
TE
D
PR
OO

F

76 pressing questions in the philosophy of science: whether the overall proce-
77 dure hobbled together out of search and confirmation principles is any good
78 at finding the truth and whether alternative approaches would be equally
79 good or better. Finding the truth is the issue and everything in theoretical
80 computer science is directed toward finding it efficiently. So why put phi-
81 losophers in charge and trust them to decide that a broadly computational
82 concern with truth-finding efficiency is useless in the empirical domain?

83 3. Empirical Naturalism

84 Whereas confirmation theorists take scientific methods to be justified insofar
85 as they produce confirmed conclusions, epistemic naturalists reverse the story,
86 so that conclusions are justified insofar as they are produced by reliable or
87 truth-tracking methods (e.g. Nozick, 1981; Goldman, 1986). Since reliability
88 is an empirical property of a learning method or disposition, it is, itself, subject
89 to empirical investigation, e.g. by running a machine learning program on
90 different learning problems to see how it does. Hence, computer scientists can
91 be useful lab assistants, since they can program different inductive strategies
92 and run them on lots of simulated test cases, presumably leaving philosophers
93 in a theoretical or management position (e.g. Laudan, 1996).
94 I like the new devotion to reliability and truth-finding, but I am skeptical
95 of the narrowly empirical perspective. Some evidence that a method ‘works’
96 in a certain application is fine, but one would also like to know more general
97 and explanatory things, such as what it is about the mathematical structure
98 of a learning problem that makes finding the truth hard or easy, what it is
99 about methods that make them work well in problems of a certain kind,

100 whether a given method can be improved, whether there is any truth-finding
101 rationale for our inductive prejudices (a.k.a. principles of confirmation), and
102 so forth. Such questions are hard to answer by applying particular methods
103 to problem sets, by scouring the history of science for examples, or by
104 appealing to general evolutionary considerations for a biological warranty on
105 our wiring. They sound, rather, like the questions routinely studied in the
106 theories of computability and computational complexity.

107 4. Computational Naturalism

108 Does there exist a method for answering a certain formal question? Could the
109 question be answered in a stronger sense or more efficiently? What structural
110 features of a question make it hard or easy to solve and how are algorithms
111 helped or hindered by such structural features? Questions like these
112 have been addressed routinely by computability theorists for over a half
113 century (e.g. Rogers, 1967; Hinman, 1978; Garey and Johnson, 1979). The
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114 mathematical theory of computability is naturalistic in the sense that rational
115 mechanics or the theory of dynamical systems are: if the formal description
116 fits a mechanical device, then the theorems aptly describe what it can or
117 cannot do. And yet it has normative import, for an algorithm is justified,
118 hypothetically rather than categorically, insofar as it solves its appointed
119 problem efficiently. Moreover, although the results of the theory govern what
120 real systems that implement such algorithms can do, the reasoning involved is
121 purely a priori and mathematical. In short, theoretical computer science
122 provides a deep and impressive model of how naturalism is compatible with a
123 mainly a priori and normative approach.
124 On the other hand, computability concerns the crisp world of algorithms
125 that halt with the right answer; empirical science is intrinsically fraught with
126 uncertainty and guesswork. So isn’t it obvious that the right mathematical
127 framework for science is probability theory rather than computability? Not
128 in the slightest. First, not all formal problems are computable and the ones
129 that aren’t seem quite analogous to Hume’s problem of induction (e.g. ‘will
130 an arbitrary computation continue to run forever?’) Moreover, some
131 empirical questions can reward extreme diligence with infallible results (e.g.
132 ‘is there a needle in the haystack’) and they resemble decidable formal
133 problems. Compare apples with apples and oranges with oranges.1 Second, it
134 is far from obvious that assigning probabilities or intermediate degrees of
135 belief to hypotheses respond in a relevant way to the issue of undecidability
136 in either the empirical or the formal domain. Yes, if you ever become com-
137 pletely certain that a general law is true, you might encounter a counterex-
138 ample tomorrow and have to completely reverse your opinion. But if your
139 partial degrees of belief converge to unity on the basis of increasing numbers
140 of positive instances, as is often claimed by advocates of partial degrees of
141 belief, then you may have to reverse your opinion from 1� � to zero anyway,
142 where � > 0 is arbitrarily small. Either way, the real issue posed by unde-
143 cidability is that any possible method guaranteed to converge to the truth
144 must undergo a severe reversal of opinion in some possible worlds.
145 Putting the two points together, it is natural to concede that some questions –
146 both formal and empirical – can only be solved by methods that may change
147 their opinion quite sharply prior to arriving at the right answer, and to study the
148 efficiency of such methods in a unified, broadly computational framework. The
149 basic idea was first articulated by Putnam (1965) and has since been developed
150 in detail in the literature of ‘formal’ or ‘computational learning theory’.2

151 5. Counting Retractions

152 A familiar, philosophical objection to the viewpoint just described is that any
153 finite variant of a convergent method is still convergent (e.g. Salmon, 1967),
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154 so that strong, intuitive biases regarding theory choice in the short run are
155 left unexplained. It is widely believed, therefore, that there must be some
156 short-run relation of confirmation that justifies one such conclusion better
157 than others, etc. (e.g. Earman, 1992).
158 But that argument neglects considerations of efficiency: although many
159 routes lead to the truth, the best route may be unique. In standard com-
160 putability theory, computations halt and computational complexity is mea-
161 sured in terms of computational steps or storage space expended prior to
162 halting. In the case of convergent, or non-halting methods, there is another,
163 natural measure of cognitive complexity: the number of times the method
164 retracts its opinion prior to convergence to the right answer, where a
165 retraction is a change in opinion in which the new view does not entail the old
166 view, so that some loss of content occurs (G€aerdenfors, 1988).
167 There is a cultural divide on this issue. Retractions are intensively exam-
168 ined in computational learning theory, but when I mention the idea to phi-
169 losophers, they ask why anyone would care. Whenever this happens, I can’t
170 help but imagine a philosopher who keeps running around the block, crying
171 ‘All I care about is being home.’ When you express surprise, she responds:
172 ‘When did I say I cared about the number of times I run around the block?’
173 There is such a thing as too pure a love of truth, for as Plato remarked, true
174 lovers are seekers and gratuitously roundabout seekers are unworthy of the
175 name. Computational learning theorists recognize that and instinctively
176 recognize retractions as a cognitive or epistemic consideration analogous to
177 halting. The halting of an algorithm with the right answer is what confers
178 certainty on the output and is ultimately why proof systems yield certainty.
179 Counting retractions measures a kind of epistemic distance from the ideal of
180 halting and, hence, is not merely a practical matter. Indeed, there is a hier-
181 archy of formal problems unsolvable in the usual sense that are solvable with
182 bounded numbers of retractions, and there is a parallel hierarchy of empirical
183 problems (cf. Kelly, 1996; Jain, 1999). Furthermore, incorrigibility is a tra-
184 ditional topic in philosophy and retractions measure the distance from that
185 ideal as well. Finally, Kuhn (1970) caused a philosophical sensation by urging
186 an explicitly diachronic perspective on science in which sharp breaks or
187 revolutions in opinion constitute an inevitable and healthy part of the pro-
188 cess. Surely, taming this bohemian notion within a broadly computational,
189 normative theory of truth-finding efficiency should be of some philosophical
190 interest.
191 Computer scientists who study retractions are usually interested in clas-
192 sifying problems – formal and empirical – according to the number of
193 retractions required to solve them. My aim is a bit different: it is to address
194 the ‘short-run arbitrariness’ objection to convergent methodology by show-
195 ing that key intuitions regarding short-run theory preference follow deduc-
196 tively from the fact that the method in question minimizes retractions en
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197 route to the truth. In particular, I will derive a version of Ockham’s razor
198 entirely from retraction-efficient convergence to the truth.

199 6. Ockham’s Razor

200 One of the deepest puzzles in the philosophy of science concerns simplicity.
201 When several, possible theories are compatible with experience, scientists
202 incline toward the ‘simpler’ one, where simple theories are somehow more
203 uniform, symmetrical, unified, or free from independently adjustable
204 parameters. The question is how a fixed bias toward simplicity helps science
205 find the true theory. The outlook for an answer seems bleak, on the face of it,
206 for a fixed bias toward simplicity can no more indicate the (possibly complex)
207 truth than a broken thermometer, whose reading never changes, can indicate
208 temperature. There are attempted responses, but they tend to be of three
209 disappointing types: circular, bait-and-switch, or insufficient – which is not at
210 all to say that they are trivial or easy to implement. On the contrary, the
211 mathematical formidability of some of these ideas is part of their allure: it
212 seems that so much mathematical trouble must somehow help us find the
213 truth.

214 6.1. CIRCULAR ARGUMENTS

215 (1) You can simply adopt prior probabilities biased toward simple theories
216 (Jeffreys, 1985; Salmon, 1990). But that merely presupposes the very bias to
217 be explained. Nor does it explain how adopting such a bias is better than
218 adopting a prior bias toward complex theories.
219 (2) According to the minimum description length approach (Solomonoff,
220 1964), sequences computed by smaller Turing machines are more probable
221 than sequences computed only by larger machines. But that is simply because
222 a prior bias toward small machines is assumed.
223 (3) According to the minimum message length approach (cf. Rissannen,
224 1983 and the discussion in Mitchell, 1997), an efficient coding scheme assigns
225 shorter codes to symbols that are more likely to be transmitted to some
226 recipient, in which case the expected message length is minimized. If ‘chances
227 of transmission’ are interpreted as prior probabilities on theories, then the
228 principle stipulates that more a priori probable theories should be assigned
229 shorter descriptions. The result is the same as before: a prior bias toward
230 possibilities with shorter descriptions.
231 (4) It is sometimes claimed that the data would be a miracle if a complex
232 theory were true. That finally sounds like a matter of objective likelihood,
233 rather than of prior opinion. Is it? Let S be a simple theory that entails e. Let
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234 C be a complex theory that has a free parameter i that can be twiddled among
235 n possible values to ‘save’ the data, so that C ¼ C0 _ Ci _ � � � _ Cn. Simple
236 theory S has no such parameter and faces the tribunal of experience with a stiff
237 Popperian lip. If the parameter i is ‘free’, we shouldn’t have strong a priori
238 ideas about how it is actually fixed, so assume a uniform distribution. Suppose
239 that, as it happens, S entails e and C0 entails e, but for all other i, Ci is
240 incompatible with e. Then we have PðejSÞ ¼ 1 but PðejCÞ ¼

P
i�n PðCiÞ

241 PðejCiÞ ¼ PðC0ÞPðejC0Þ ¼ PðC0Þ ¼ PðCÞ=n; which is very small when n is
242 very large. So it seems that ewould be a miracle givenC if n is sufficiently large
243 (Rosencrantz, 1983). Notice, however, that the miraculously low value
244 PðCÞ=n is simply the agent’s subjective prior probability for parameter value
245 C0 which gets passed through the weighted average. Since prior probabilities
246 are assumed in the argument anyway, consider the ratio of posterior proba-
247 bilities. By Bayes’ theorem,

PðSjeÞ
PðCjeÞ ¼

PðejSÞPðSÞ
PðejCÞPðCÞ ¼

PðSÞ
PðCÞ=n � PðCÞ ¼

n

PðCÞ
PðSÞ
PðCÞ :

249 So as the number n of parameter values increases, one would have to be
250 increasingly ‘unfair’ to S in order for C to win. But notoriously, Bayesians
251 can’t be fair in every comparison: fairness over ‘blue versus non-blue’ is bias
252 over ‘blue versus green versus something else’. In this case, ‘fairness’ in the
253 contest of S against C induces a huge bias in favor of S compared to each Ci,
254 including C0, and the miracle argument merely passes this bias along until S
255 is refuted and C wins for sure. So the miracle argument amounts to a circular,
256 prior bias in favor of simple worlds.

257 6.2. BAIT-AND-SWITCH ARGUMENTS

258 (1) Simple theories have other virtues: explanatory power (Harman, 1965),
259 testability (Popper, 1959; Glymour, 1980), and symmetry or unity (Friedman,
260 1974; Kitcher, 1989). But absent a prior probabilistic bias toward simplicity,
261 none of these features indicates the truth. So inferring a theory on such
262 grounds is an instance of wishful thinking (VanFraassen, 1980).
263 (2) When one uses a model for purposes of prediction, one may do better
264 with an over-simplified model than with the true one if the true one has many
265 free parameters. That provides a kind of truth-directed motive for choosing
266 simpler models (Forster and Sober, 1994), but the motivation is not that
267 doing so helps you find the true model (cf. Wasserman, 2000). Still, I prefer
268 this story to the preceding ones: at least it is relevant, in a non-circular way,
269 to finding the truth about something.
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270 6.3. INSUFFICIENT ARGUMENT

271 Nor does it suffice to observe that if the simplicity presumption is mistaken,
272 future evidence will swamp it and set us right eventually (Sklar, 1977), for a
273 mistaken presumption of complexity would also be set right, eventually, by
274 an increasing sequence of ‘null results’ in which anticipated complexities
275 persistently fail to appear. An asymmetry is required. But the idea is on the
276 right track, and would be quite interesting if it could be strengthened by
277 efficiency considerations to single out Ockham’s razor as the right bias for
278 efficient convergence to the truth. That is the approach I will now pursue.

279 7. How Ockham Helps

280 The puzzle at hand is to explain how fixed advice could possibly help you find
281 something, regardless where it is, unless you already know where it is. Some
282 magical connection seems to be required and, too often, the magical con-
283 nection provided is a question-begging prior probability assignment. But the
284 puzzle conceals a questionable assumption: that ‘help’ means ‘immediately
285 indicate or point to’. Usually you want – and get – a different kind of help.
286 Suppose you become lost in a small town on your way home from another
287 city. You ask a local resident for directions. She gives you street directions to
288 the nearest freeway entrance ramp. Such advice doesn’t necessarily indicate
289 where your home is, since the entrance ramp could be in the opposite
290 direction. And yet you ought to follow the advice, for suppose you disregard
291 it. Then you eventually end up on the outskirts of town on winding, rural
292 routes until you finally make a U-turn, retrace your route back to the helpful
293 resident, and then follow her advice to get on the freeway, which is the most
294 direct route home, wherever home is along the highway corridor. So your
295 reward for disregarding her advice is an an extra, needless, U-turn before you
296 even get properly started on the long freeway journey home. The same will be
297 true at each future detour from the freeway: if you disregard the local advice,
298 you add an extra U-turn to the remaining route home, from that point
299 onward. So you should always follow the (fixed) local directions to the
300 freeway entrance, no matter where you happen to be headed.
301 That is essentially how Ockham’s razor helps you find the truth without
302 indicating what the truth is: disregarding Ockham’s advice opens you to a
303 needless, extra U-turn or reversal in opinion prior to all the reversals that
304 even the best of methods would have to perform if the same answer were true.
305 So you ought to heed Ockham’s advice. Simplicity doesn’t indicate the truth,
306 but it minimizes reversals along the way. That’s enough to explain the unique
307 connection between simplicity and truth, but it doesn’t promise more than

KEVIN T. KELLY8

Journal : MIND SPS Article No. : DO00000708 Dispatch : 28-6-2004 Pages : 21

PIPS No. : D000000708 h LE h TYPESET

MS Code : MIND MAM-4 h CP h DISK4 4



UN
CO

RR
EC
TE
D
PR
OO

F

308 can be delivered, namely, a philosophical warranty against more twists and
309 bumps in the future.

310 8. Counting Things

311 Consider a very simple situation in which marbles (or new types of particles
312 or empirical ‘effects’) are presented at irregular intervals from some source
313 that is known to contain at most finitely many marbles.3 The question is how
314 many marbles will be presented. Ockham recommends positing no more
315 marbles than have been seen so far. Several intuitive aspects of simplicity
316 conspire toward this conclusion. First, that answer minimizes ‘entities’ (i.e.,
317 marbles). Second, it is most uniform (no more marble appearances). Third, it
318 is most testable (it is crisply refuted by another marble if it is false). Fourth, it
319 has the fewest ‘adjustable parameters’ (the times of appearance of the posited
320 marbles).
321 The preceding glosses depend on the question asked. For example, sup-
322 pose the question had asked how many ‘tharbles’ will be observed, where a
323 ‘tharble’ is a non-marble prior to stage 1000 and a marble from stage 1000
324 onward (Goodman, 1983). Then the hypothesis ‘no tharbles’ is most uniform
325 (in terms of tharbles) and has fewest adjustable parameters or auxiliary
326 assumptions (concerning ‘appearance of new tharbles’), but ‘no tharbles’ is
327 inconsistent with ‘no marbles’. Goodman’s example was a scandal in con-
328 firmation theory, but it is just what a computer science undergraduate is
329 trained to expect. Efficiency is always relative to an aim or problem, so if
330 simplicity is to help us answer questions about nature, it must, somehow,
331 conform itself to the contours of the question asked.
332 The U-turn argument for Ockham’s razor is almost a retelling of the
333 freeway story. Suppose you converge to the true answer in each possible
334 world, but you disregard Ockham’s advice after receiving finite sequence of
335 experience r including n observed marbles by concluding some number of
336 marbles other than n. Then r is compatible with the world wn that presents r
337 followed by uniformly marble-free experience. On pain of failing to converge
338 to the truth in wn, you must retract, eventually, to ‘n marbles’ – say, by the
339 time finite sequence of experience sn extending r has been received. That is
340 your extra, initial U-turn, for had you listened to Ockham, you would never
341 have retracted after r in wn. Now there exists a world wnþ1 compatible with r
342 in which one marble is presented after r. Since you converge to the truth, you
343 eventually retract ‘n marbles’ in favor of ‘nþ 1 marbles’, say by the end of
344 snþ1 extending r. The argument continues in this manner forever, so we have
345 constructed an infinite sequence of worlds wn;wnþ1; . . . such that you retract
346 kþ 1 times after r in wnþk, which satisfies ‘nþ k marbles’. The obvious
347 Ockham method that simply counts the marbles as they appear, on the other
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348 hand, retracts at most k times after r in an arbitrary world satisfying ‘nþ k
349 marbles’. So your method retracts at least one more time than the Ockham
350 method’s worst-case performance within each answer compatible with r.
351 That’s all there is to it.
352 Say that the subproblem entered in r consists of all worlds compatible with
353 r and the answers to the subproblem are just the answers to the original
354 problem that are compatible with r. Furthermore, think of inquiry in the
355 subproblem as beginning at the end of r, so don’t count retractions occurring
356 along r in the subproblem. Finally, exclude from the subproblem all answers
357 incompatible with it. Then it has been shown that if you are guaranteed to
358 converge to the truth, then in the subproblem entered at your violation of
359 Ockham’s razor, your worst-case retractions in each answer to the subproblem
360 exceed the obvious counting method’s by at least one. This can be summarized
361 by saying that the obvious Ockham method strictly dominates your method in
362 worst-case retractions over answers in the subproblem.
363 The key to the argument is the concept of strict dominance in worst-case
364 retractions over possible answers. One cannot argue that your method is
365 strictly dominated with respect to retractions simpliciter, since violation of
366 Ockham’s razor may result in fewer retractions in some complex worlds (e.g.
367 those in which the anticipated marbles appear very quickly, before the
368 method’s confidence collapses). Nor can one argue that your method’s
369 overall worst-case retraction bound exceeds that of the Ockham method,
370 since there is no finite such bound for either method (any number of marbles
371 might come later). Finally, one cannot argue that the expected number of
372 retractions is higher for your method than for the Ockham method, since any
373 such argument would appeal to a question-begging prior probability distri-
374 bution biased toward simple worlds.
375 The reason for bringing up subproblems in the argument is this. Suppose
376 that a method guesses ‘no marbles’ a priori and persists in this conclusion
377 after seeing the first marble. That’s a violation of Ockham’s razor. True, the
378 method can be forced back to the true hypothesis ‘one marble’ by with-
379 holding new marbles long enough, but in the overall problem, that still
380 amounts to just one retraction, which even the Ockham method requires in
381 the worst case if ‘one marble’ is true. It is only in the subproblem entered
382 upon seeing the first marble that the Ockham method dominates the violator,
383 for in that subproblem the violator requires one retraction at some world
384 satisfying ‘one marble’ but the Ockham method requires none.
385 There is more to be said. Weak dominance in worst-case retractions
386 over answers means that some other method’s worst-case retractions over
387 answers are as good in each answer and better in some answer. A similar
388 argument to the one just given shows that there is no subproblem in which an
389 alternative method even weakly dominates the obvious counting method in
390 worst-case retractions. I say, then, that the obvious counting method is a
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391 retraction-efficient solution to the full problem. So no violator of Ockham’s
392 razor is retraction-efficient, but the obvious Ockham method is. It follows
393 that the only retraction-efficient methods are those that either agree with the
394 obvious counting method or refrain from saying anything at all for some
395 finite number of steps. Thus, the substantive outputs of retraction-efficient
396 methods must all agree in this problem.
397 Still more can be said. Someone might retract the uniquely simplest theory
398 on general, skeptical grounds (after reading Hume, say) before it is refuted by
399 seeing yet another marble. In science, that general sort of skepticism is
400 frowned upon: the simplest theory holds its ground until it gets into concrete,
401 empirical trouble. Call the additional requirement that one should never drop
402 the Ockham answer until it gets into concrete empirical trouble the retention
403 principle. The retention principle also follows from a worst-case retraction
404 dominance argument. For suppose you choose the answer ‘n marbles’ in light
405 of finite sequence of experience r, which presents n marbles and then retract
406 in light of experience s extending r that presents no new marbles even though
407 ‘n marbles’ is not yet refuted. So in the subproblem entered when r is seen,
408 one retraction occurs at s, whereas a non-retracting Ockham method
409 wouldn’t retract after r. So if no more marbles are seen, you use one more
410 retraction than the method that hangs on to the Ockham hypothesis until it is
411 refuted. That is an initial U-turn in the sub-problem entered upon experi-
412 encing r. Now as before, nature can elicit at least one more retraction for
413 each successive marble, so no matter which answer is true, you use more
414 retractions than the method that hangs onto the Ockham answer until it is
415 refuted. So you shouldn’t have dropped the Ockham answer until it was
416 refuted.

417 9. Freeing Parameters

418 Real science is a lot more than counting marbles; it involves constructing
419 laws and models that explain empirical effects. But there is an important
420 analogy. ‘Effects’ (e.g. causal influences, correlations, monomial coefficients
421 in polynomial laws) may be small or arcane and may not show up right away,
422 but when they do, they reveal that our current, simplistic models are wrong.
423 In such circumstances, Ockham’s razor is understood to favor waiting to add
424 a parameter until the corresponding effect is verified. And if effects were as
425 discrete as marbles, then arguments very similar to the preceding ones derive
426 both Ockham’s razor and the retention principle from retraction-efficiency.
427 Even in this more general setting, the preceding results concede just one
428 degree of freedom to retraction-efficient methods in problems of the sort
429 under discussion: they can differ only in how much uniform experience after the
430 last retraction they require before leaping to the next Ockham hypothesis.
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431 Furthermore, since the measurements that verify ‘effects’ can usually be
432 presented in an arbitrary order, whenever two retraction-efficient methods
433 receive the same data set (regardless of the order in which it was collected) they
434 produce the same answer if they produce any answer at all. All of this is derived
435 entirely from a concept of minimizing reversals of opinion en route to the
436 truth – none of it was imposed in advance due to prior ideas about what
437 ‘rational’ inquiry or ‘confirmation’ have to be like.4

438 Recall the objection that confirmation theory is necessary to explain short-
439 run theory preferences and to screen scientific justification from the psy-
440 chological accidents by which a theory was produced.5 Both challenges are
441 met in the preceding example, if retraction-efficiency is taken into account in
442 addition to convergence to the truth.

443 10. Bayesian Retractions

444 Although I have been rather hard on the Bayesian penchant for smug, cir-
445 cular explanations, Bayesian methods are quite another matter, and Baye-
446 sians who are sufficiently biased toward simple models in the typical way will
447 tend to look good in terms of the preceding, non-circular argument. Let a be
448 a fixed quantity strictly between zero and one half such that values lower than
449 a are ‘small’ and values higher than 1� a are ‘large’. A Bayesian agent can be
450 said to retract when her posterior probability drops from a high to a low level
451 on some answer to the question at hand. With this slight modification, the U-
452 turn argument also applies to Bayesian agents whose posterior probabilities
453 really converge to the truth (i.e. not just in the Bayesian’s own mind: cf.
454 Kelly, 1996 for more on this distinction). Moreover, Bayesians with a prior
455 bias toward simple theories will tend to be retraction-efficient, since the high
456 prior probability will remain if the simplest theory is true, will ‘wash out’ in
457 favor of the next-to-simplest theory if that is true, and so forth, for a total of
458 k retractions in the kth simplest answer. So Bayesians can have it both ways,
459 as they do with their worst-case ‘Dutch Book’ arguments. Among the
460 faithful, they can get by with their usual, circular appeals to their own sim-
461 plicity biases. When seriously challenged, they can revert to the worst-case U-
462 turn argument to get skeptics on board. After the skeptics are converted, the
463 circular argument is good enough.
464 On the other hand, Bayesians and their biases have no monopoly on
465 retraction-efficiency. Again, the issue is convergence to the truth with mini-
466 mal retractions and hedging one’s bets in the short run doesn’t make them go
467 away; for if the problem requires a certain number of retractions in each
468 answer, then the Bayesian can be forced into that many retractions no matter
469 how small a > 0 is chosen to be. Moreover, the mathematical and computa-
470 tional difficulties frequently encountered when Bayesians attempt to define
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471 appropriate prior probabilities can be skipped by simply adopting a method
472 that chooses the uniquely simplest answer compatible with experience first.

473 11. Ockham’s Statistical Razor

474 Scientific ‘effects’ are usually not as hard-edged as marbles. Randomness in
475 nature and error in measurement introduce chance, so that the detection of
476 an effect is no longer certain. Still, there is an intuitive sense in which small
477 effects are probably missed at low sample sizes and are probably recognized
478 when sample size increases sufficiently, with a grey interval in between in
479 which the two chances are comparable.
480 A statistical problem is a partition over some set of statistically possible
481 worlds, which may be thought of as possible models with their parameters
482 fixed one way or another. I will focus on the special case in which all possible
483 statistical parameters constitute a (potentially infinite) vector space and
484 models result from setting all but finitely many of the parameters to zero. A
485 statistical method is just a rule or strategy that (perhaps randomly) selects an
486 answer to a statistical question in response to a sample of arbitrary size.
487 Again, let a be a fixed parameter properly between zero and one half such that
488 any probability less than a is ‘small’ and any probability exceeding 1� a is
489 ‘large’. Say that a statistical method retracts in probability in world w between
490 sample sizes n and nþ k if the chance that it produces some answer drops from
491 above 1� a at n to below a at nþ k in w. A Bayesian statistician retracts in
492 probability in w between n and nþ k just in case she has a high chance of
493 assigning a high degree of belief to an answer at n and a high chance of
494 assigning a low degree of belief to the same answer at nþ k, where ‘high’ and
495 ‘low’ are understood in terms of a. To count overall retractions in a statistical
496 world, tally the successive sample size intervals in which retractions occur.
497 Finally, say that a method solves a statistical problem in the limit iff the chance
498 that it produces the right answer converges to unity in each statistical world.
499 Statistical retractions are an unavoidable by-product of statistical infer-
500 ence. For consider a simple test of the point null hypothesis H0 that the mean
501 of a normal distribution with known variance is zero against the composite
502 alternative H1 that the mean has any value but zero. The usual approach to
503 this problem is to adopt a test with low (<a) significance of H0. By tuning the
504 significance level downward according to a sufficiently slow schedule as
505 sample size increases, one can ensure that the chance of producing the null
506 hypothesis if it is true rises monotonically to unity and that the power of the
507 test also converges to unity at each alternative world as sample size increases.
508 Hence, the sequence of tests is a statistical method that solves the binary
509 decision problem in the limit. Moreover, the low significance level on H0

510 assures that the method never retracts H0 in probability as sample size

OCKHAM’S RAZOR WORKS 13

Journal : MIND SPS Article No. : DO00000708 Dispatch : 28-6-2004 Pages : 21

PIPS No. : D000000708 h LE h TYPESET

MS Code : MIND MAM-4 h CP h DISK4 4



UN
CO

RR
EC
TE
D
PR
OO

F

511 increases. On the other hand, the method probably produces H0 in alterna-
512 tive worlds near to H0 until the sample size rises to the point at which the
513 corresponding test probably rejects H0 in favor of H1. That constitutes a
514 retraction in probability. So the sequence of tests solves the problem in the
515 limit with no retractions in H0 and with at most one retraction in H1. That
516 sounds quite similar to the problem of counting at most one marble: either it
517 appears or it doesn’t, so the obvious counting method retracts either zero
518 times or one.
519 Furthermore, no possible method does better. For let an arbitrary method
520 that solves the problem in the limit be given. Since the method converges in
521 probability to the right answer in each world, it does so in the zero-mean
522 world w0. So there exists a sample size n0 at which the method probably (i.e.
523 with chance >1� a) produces the null hypothesis H0 that the mean is zero.
524 In this case (and in typical cases), the chance of a fixed sample event at a
525 given sample size varies continuously with the parameter. Hence, there is a
526 small, nonzero value r for the mean such that the method still probably
527 produces H0 in world wr in which r is the true mean. But again, since the
528 method converges in probability to the right answer in each world, there
529 exists a sample size n1 > n0 at which it probably produces H1. That is a
530 retraction in probability in H1, so no possible method achieves better worst-
531 case performance in each answer in this problem than zero retractions in H0

532 and one retraction in H1.
533 So the test-based method minimizes retractions over the whole problem. It
534 might also be said to follow a statistical version of Ockham’s razor, for it
535 favors the ‘simple’ hypothesis that the statistical parameter in question (the
536 normal mean) is zero at the expense of the complex alternative which frees it.
537 Now suppose that your method reverses this bias and at some stage probably
538 produces the complex alternative H1 in the simple world w0, in which H0 is
539 true at some sample size n0. Since your method converges in probability to
540 the right answer, there is a larger sample size n1 at which the method
541 probably producesH0 in w0. That is a retraction in probability and represents
542 your method’s initial U-turn as a consequence of its violation of Ockham’s
543 razor. Again, by continuity there exists a small r > 0 such that both answers
544 are also produced in wr at the corresponding sample sizes n0, n1. Since your
545 method converges to the right answer, there is a sample size n2 > n1 at which
546 the method probably produces H1. So your method probably retracts at least
547 twice in some world in the alternative hypothesis. Hence, your method does
548 worse than the test-based method’s worst in in each answer to the problem.

549 12. Ockham and Statistical Model Selection

550 The statistical U-turn construction is very general, requiring only
551 the assumption that the chance of a particular sampling event varies
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552 continuously with parameters and that each world has arbitrarily close
553 worlds in which an arbitrary, finite set of parameters relaxed. In fact, under
554 these weak, topological conditions, a general U-turn argument shows that: if
555 a convergent method probably produces the wrong answer in a given world w
556 satisfying model H at sample size n, then for each answer H0 that frees k � 0
557 parameters in H, there exists a world near to w in H0 in which the method
558 retracts at least kþ 1 times.6

559 Furthermore, there exists, in sufficiently well-behaved problems, a strategy
560 whose worst-case retraction bounds over answers in the overall problem
561 cannot be improved, so that Ockham violations in the simplest worlds in the
562 overall problem lead to dominance in the full problem. For a simple illus-
563 tration, suppose that you have a joint normal distribution over two random
564 variables X;Y, and the question is which coordinates of the joint mean vector
565 are zero. In this case, a natural, ad hoc method is to adopt nice tests for the
566 individual mean components with suitably corrected low significance levels so
567 that the chance that neither test rejects in world (0, 0) is high. Tune the
568 significance level of each test downward as sample size increases by a slow
569 schedule, so that power rises monotonically at each world in which the test’s
570 null hypothesis is false. On a given sample, perform both tests and free the
571 parameter of each rejecting test. This method converges in probability to the
572 right answer and retracts in probability at most k times in a world with k
573 nonzero mean components. The approach generalizes naturally to higher
574 dimensions7, So under the assumptions jointly required for both of the
575 preceding results, if you produce a needlessly complex answer in a simplest
576 world w in the overall problem, you are dominated in worst-case retractions
577 over the set of answers w, without encountering the measure-theoretic diffi-
578 culties encountered in the definition of prior probabilities over models and
579 parameters in an infinite space of models.
580 The extension of Ockham’s razor to the remaining, less-than-simplest,
581 worlds requires a statistical surrogate of the concept of compatibility with
582 experience. In the marble example, consistency with experience is sharp and
583 objective. In statistics, the statistical experience afforded ‘in probability’ by a
584 statistical world at a sample size is just the sampling distribution determined
585 by the world at that sample size, and sampling distributions usually vary
586 continuously with parameters. Therefore, statistical consistency with expe-
587 rience is bound to be a matter of degree. One approach is to define the
588 statistical distance between w and w0 at sample size n to be the supremum over
589 all measurable sample events E of the absolute difference between the
590 probability assigned to E in w at n and the corresponding probability in w0.
591 Now the set of all worlds �-compatible with experience in w at n is just the set
592 of all worlds whose statistical distance from w at n is less than r.
593 Ockham’s razor can now be stated in terms of �-compatibility in the fol-
594 lowing way: do not probably produce a false answer in arbitrary world w at n
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595 unless you avoid producing the wrong answer in all the simplest worlds among
596 the worlds �-compatible with w at n. This formulation is equivalent to the
597 usual principle in non-statistical problems, for then the method does the same
598 thing in each world in a subproblem at the time the subproblem is entered.
599 Moreover, the proposed principle absolutely forbids errors in simplest worlds
600 in the overall problem, so it agrees with favoring the simple null hypothesis in
601 a statistical test. Finally, it still implies an asymmetrical bias toward sim-
602 plicity at less-than-simplest worlds, for probably producing the simple truth
603 in a nearby, simple world excuses error in a complex world, but probably
604 producing the complex truth in a nearby, complex world does not excuse
605 error in a simple world.
606 Recall that the derivation of Ockham’s razor in less-than-simplest worlds
607 required a concept of subproblem in the non-statistical case. Subproblems
608 are again defined in terms of compatibility with experience, and hence must
609 be a matter of degree. Since a is the fixed notion of smallness, say that the
610 subproblem entered in w at n is just the set of all worlds a-compatible with w
611 at n. Such subproblems differ from those in non-statistical settings because
612 they can overlap. Indeed, in sufficiently regular settings, continuity implies
613 that for each pair of distinct worlds w;w0 and sample size n, there is a statistical
614 subproblem entered in some world w00 at n that contains w but not w0.8

615 The possibility of separating any two points with a statistical subproblem
616 breaks the worst-case dominance argument for Ockham’s razor in the fol-
617 lowing way: every convergent method is dominated in worst-case retractions over
618 answers consistent with the subproblem entered in some world at some sample
619 size.9 So there is no question of a method avoiding worst-case retraction
620 dominance in every subproblem. The best one can do is to attempt tominimize,
621 at each sample size, the region of worlds in which the dominance argument
622 applies, without compromising convergence in probability to the truth.
623 Indeed, Ockham still wins if one is interested in reducing the geometrical
624 volume of worlds in which the method is dominated in worst-case retractions
625 in the subproblem entered at sample size n. Call the set of all such worlds the
626 dominance argument zone (DAZ) for the method at sample size n. Recall the
627 simple, bivariate mean problem with known variance. Assume that all pos-
628 sible parameter values lie within a finite square, in order to keep areas finite.
629 To aid visualization further, assume that the bivariate normal distributions
630 are radially symmetric. Then the subproblem entered in w at n is an open disk
631 of radius r centered on w, where r depends only on a and n. Similarly,
632 Ockham’s razor holds at sample size n to degree � iff there exists s (depending
633 on n and �) such that for each disk of radius s, if the method probably
634 produces an error at the center of the disk, then it doesn’t produce an error in
635 any simplest world in the disk.
636 To see why Ockham’s razor is a good idea, consider a world w at which
637 Ockham’s razor fails dramatically (i.e. for a large radius s). If the failure is
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638 dramatic enough, then no subproblem (disk of radius r) containing w catches
639 simpler worlds in which the method doesn’t probably make a mistake. So the
640 dominance argument (using the appropriate test-based method and the gen-
641 eral U-turn construction) works in each such disk that catches w. The mid-
642 points of such disks are contained in an open disk of radius r about w. So a
643 dramatic failure of Ockham’s razor at w contributes a full disk of radius r
644 centered on w to the DAZ. Now consider a very slight failure of Ockham’s
645 razor. In this case, w is very close to simpler worlds in which the method
646 doesn’t probably produce an error and is close to no worlds at least as simple
647 as those in which the method probably produces an error. The dominance
648 argument arises in subproblems that include w but not any of the simpler
649 worlds in which the method avoids error. Hence, the dominance argument
650 arises only in subproblems entered in worlds in a circle of radius r around w
651 but not in any circle of radius r around the nearby worlds in which the method
652 avoids error. So only a thin sliver of the former circle is contributed to the
653 DAZ; the smaller the deviation from Ockham’s razor, the thinner the sliver.
654 All such slivers can be made arbitrarily small, if the method is constructed
655 of tests in the manner described earlier and the significance levels of the tests
656 are dropped very slowly so that power can be maintained at a high level. That
657 explains the importance of power even when the tests are being used in an
658 ‘unofficial’ way to ‘fish’ for models. It explains, further, why boldly leaping to
659 the simplest answer with high chance on small samples is not a good idea.
660 Doing so forces more extreme violations of Ockham’s razor on the side of
661 failing to reject a statistically ‘refuted’ theory soon enough and these viola-
662 tions may contribute more to the DAZ than probably producing a complex
663 hypothesis in a simple world. So much of the workaday business of statistics
664 still makes good sense even if your only goal is to minimize retractions in the
665 sense of minimizing the DAZ.
666 In statistics, Ockham’s razor is often viewed as a delicate balance between
667 fit and simplicity. One might suppose that if confirmation theory is needed to
668 explain anything, it is needed here. But the preceding story accounts for the
669 balance entirely in terms of minimizing retractions on the way to the truth,
670 without any circular appeal to a prior simplicity bias. First of all, there is an
671 asymmetrical preference for simpicity, for probably producing a false,
672 complex answer in a simple word will tend to add a fixed area to the DAZ
673 even if there are nearby, complex worlds in which you probably produce the
674 truth, whereas probably producing a false, simple answer in a complex world
675 contributes only a sliver to the DAZ if there is a nearby simple world in
676 which the answer is true. Hence, it is better to moderately err on the side of
677 simplicity. But extreme commitment to simplicity should be avoided. If the
678 chance of producing the simple answer in a simple world is too great at low
679 sample sizes, there will be distant, complex worlds in which you probably
680 produce the simple answer, and their contribution to the DAZ will be as
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681 large, or larger, than if you had favored a complex answer in the simple
682 world. In particular problems, the optimal tradeoff may have an analytic
683 solution depending only on the sampling model.
684 It might be objected that the appeal to areas in the preceding argument re-
685 introduces the Bayesian circle by weighting the relative importance of worlds.
686 But the reverse is true. The Bayesian circle explains our prior bias toward
687 simple worlds by presupposing it. In the preceding argument, each simple
688 theory is a subspace of zero area, whereas in each bounded open set, the area
689 of the set of complex worlds is identical with the area of the set. That hardly
690 counts as a bias toward simple worlds and is best described as a strong prior
691 bias against simple models. Nonetheless, Ockham wins in the nuanced
692 manner just described.

693 13. Ockham’s Computational Razor

694 I began with the promise of a philosophy of science inspired by theoretical
695 computer science and the theory of computability. The ensuing discussion of
696 Ockham’s razor may seem to have strayed from its alleged motivation. I
697 close, therefore, by showing how similar arguments apply in the crisp, a priori
698 domain of purely computational problems (cf. Kelly, forthcoming).
699 Suppose you are given the G€odel number of a Turing machine and all that
700 is known in advance is that the machine with that index halts on at most
701 finitely many inputs. The computational problem is to determine how many
702 inputs the Turing machine halts on. No possible, effective method can halt
703 with the right answer to this question, but we can still ask, as in the empirical
704 case, for a procedure that converges to the truth. And there is an obvious
705 one: empirically simulate the machine with the given code number on dif-
706 ferent inputs for ever longer chunks of time and always guess (in accordance
707 with Ockham) that the only inputs the machine halts on are the ones ob-
708 served so far to have halted. Eventually, no more computations halt and the
709 procedure converges to the right answer in the characteristically empirical
710 sense that it has no idea when it has found the right answer.
711 Suppose that the preceding strategy is altered so as to violate Ockham’s
712 razor at some stage by guessing more (or fewer) halting computations than
713 the n halting computations it has seen so far when studying some Turing
714 index i0. Then the altered procedure M uses one more retraction than the
715 Ockham method in each answer to the question compatible with experience so
716 far. For each k, construct a partial recursive function with index dk that is
717 defined by the following procedure. It feeds its own index dk to M (via
718 Kleene’s fixed point theorem) and passes control to the program with index i0
719 until M violates Ockham’s razor. Then the procedure halts on no further
720 inputs until M retracts to n. Thereafter, it halts on no further inputs until M
721 retracts to nþ 1, etc., up to nþ k. Hence,M retracts nþ kþ 1 times on input
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722 dk, whereas the Ockham strategy retracts at most nþ k times on the index of
723 an arbitrary function that halts on exactly nþ k inputs.
724 One may object that both the violator and the Ockham method adopt an
725 empirical approach to the formal problem at hand by electing to simulate the
726 input Turing index to see what it does. Surely some algorithm that performs a
727 formal, a priori analysis of the program indexed by an input could reduce
728 retractions. But not so: the empirical Ockham strategy is computationally
729 retraction-efficient with respect to all possible computational methods. For let
730 an arbitrary, effective procedure M0 that solves the problem in the limit by
731 whatever clever means be given. Using Kleene’s fixed-point theorem again,
732 construct a procedure that feeds its own index dk to M0. The method halts on
733 no inputs until M0 outputs 0, halts on just input 0 until M0 outputs 1, and so
734 forth, up to k. SinceM0 is guaranteed to converge to the right answer, and the
735 right answer for dk will be greater than whatever M0 converges to unless it
736 retracts k times, no effective procedure succeeds with fewer than k retractions
737 in in the worst case in answer k.
738 What about arbitrary methods that violate Ockham’s razor? Here the
739 analogy to the empirical case is weaker, since some Turing machines possess
740 ‘lookup tables’ that produce the right answer to the problem by rote for
741 various inputs. Such a machine could violate Ockham’s razor gratuitously for
742 an input on the list without being forced into extra retractions. So, at best,
743 each possible procedure has to respect Ockham’s razor on some inputs.
744 Suppose that your procedure violates Ockham’s razor on the input dk con-
745 structed for it according to the preceding recipe by starting with an answer
746 other than zero. Then your procedure ends up retracting kþ 1 times rather
747 than the k times the obvious Ockham strategy would require, so your method
748 is not retraction-efficient even with respect to purely empirical strategies.
749 Only straightforward computational results and ideas are employed in the
750 preceding arguments, so the proposed account of Ockham’s razor does, after all,
751 bear a strong resemblance to computational thinking. That is no accident, for
752 there is an objective structure to efficient truth-finding that transcends the dif-
753 ferences between formal and empirical problems. That structure is obscured
754 when truth-finding gives way to confirmation, rationality, and evidential support
755 as fundamental metaphors in the philosophy of science. It is equally obscured by
756 a narrowly naturalistic perspective on methods as short-run truth-indicators, for
757 the road to the truth may twist and turn any number of times in the future.

758 Notes

759 1 For an extended development of this analogy, cf. (Kelly, 1996; forthcoming).
760 2 For surveys of the computational learning literature cf. (Osherson et al., 1986) and (Jain

761 et al., 1999). For systematic attempts to connect computational learning theory to the phi-
762 losophy of science, cf. (Kelly, 1996) and (Martin and Osherson, 1998).
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763 3 The following story builds upon the approach in Schulte (1999). That argument is quite
764 similar, but did not yet extend to problems requiring unbounded retractions for their solution.
765 4 For an extended computational study of the inference of conservation laws in particle

766 physics in a paradigm of the sort just described (cf. Schulte, 2001).
767 5 I am indebted to one of the referees for urging emphasis on this issue.
768 6 Proof. Given the hypothesis, the method must probably produce H in w by some sample size

769 n0 > n, which is the initial U-turn. So we have the base case for k ¼ 0. Inductively, Suppose

770 that your convergent method has retracted kþ 1 times in some world wk by sample size nk, at
771 which the method probably produces the right answer Hk true in wk. Let Hkþ1 be an arbitrary
772 answer that frees up exactly one parameter in Hk. By the topological assumption, for each

773 sample size i � nk, if your method probably (i.e. with chance > 1� a) produces some answer
774 or other at sample size i in wk, then there exists an open neighborhood Si of w over which your
775 method also probably produces the same answer. Let S denote the intersection of these open

776 neighborhoods, which is still an open neighborhood of wn. By the topological assumption, S
777 contains a world wkþ1 in Hkþ1. Hence, your method probably performs the same k retractions
778 in wkþ1 up to nk and probably produces Hk in wkþ1 at nk. Since your method converges to the
779 right answer in wkþ1, there exists a sample size nkþ1 > nk at which it probably produces Hkþ1,

780 which is one more retraction. That completes the induction.
781 7 E.g., the PC algorithm for causal graph search, recommended by Spirtes et al. (2000) uses

782 conditional independence tests in this way to infer causal connections among variables.

783 8 More generally, there will be a subproblem separating an arbitrary closed set from an
784 arbitrary world outside the set.
785 9 For let an arbitrary, convergent method be given for a multi-dimensional model selection

786 problem. Hence, the method probably (> 1� a) produces the simplest model H0 in the sim-
787 plest world w0 by some sample size n0. By continuity, there is also a nearby world w1 that frees
788 one parameter in which the method probably produces H0 at n0. Now choose w0, whose
789 subproblem Q at n0 includes w1 but not w0. By the U-turn argument in w1 and the appropriate,
790 pieced-together test method for Q, the given, convergent method is dominated in worst-case
791 retractions over answers compatible with Q.
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