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Line-of-Sight Networks ∗

Alan Frieze† Jon Kleinberg‡ R. Ravi§ Warren Debany¶

Abstract

Random geometric graphs have been one of the fundamental
models for reasoning about wireless networks: one places n

points at random in a region of the plane (typically a square
or circle), and then connects pairs of points by an edge if
they are within a fixed distance of one another. In addition
to giving rise to a range of basic theoretical questions, this
class of random graphs has been a central analytical tool in
the wireless networking community.

For many of the primary applications of wireless net-
works, however, the underlying environment has a large
number of obstacles, and communication can only take place
among nodes when they are close in space and when they
have line-of-sight access to one another — consider, for ex-
ample, urban settings or large indoor environments. In such
domains, the standard model of random geometric graphs is
not a good approximation of the true constraints, since it is
not designed to capture the line-of-sight restrictions.

Here we propose a random-graph model incorporating

both range limitations and line-of-sight constraints, and

we prove asymptotically tight results for k-connectivity.

Specifically, we consider points placed randomly on a grid

(or torus), such that each node can see up to a fixed

distance along the row and column it belongs to. (We

think of the rows and columns as “streets” and“avenues”

among a regularly spaced array of obstructions.) Further,

we show that when the probability of node placement is a

constant factor larger than the threshold for connectivity,

near-shortest paths between pairs of nodes can be found,

with high probability, by an algorithm using only local

information. In addition to analyzing connectivity and

k-connectivity, we also study the emergence of a giant

∗The fourth author’s institution has designated this paper as
approved for public release; distribution unlimited.

†Department of Mathematical Sciences, Carnegie Mellon Uni-
versity, Pittsburgh PA 15213, USA. Supported in part by NSF
grant CCF-0502793.

‡Department of Computer Science, Cornell University, Ithaca
NY 14853. Supported by a David and Lucile Packard Foundation
Fellowship, a John D. and Catherine T. MacArthur Foundation
Fellowship, and NSF grants CCR-0122581, CCF-0325453, IIS-
0329064, CNS-0403340, and BCS-0537606; work done in part
while on sabbatical leave at Carnegie Mellon University.

§Tepper School of Business, Carnegie Mellon University, Pitts-
burgh PA 15213, USA. Supported by NSF ITR grant CCR-
0122581 (The ALADDIN project) and NSF grant CCF-043075.

¶Information Grid Division, Air Force Research Laboratory /
IFG, 525 Brooks Rd., Rome NY 13441-4505, USA.

component, as well an approximation question, in which we

seek to connect a set of given nodes in such an environment

by adding a small set of additional “relay” nodes.

1 Introduction

Most of today’s approaches to wireless computing and
communications are built on architectures where base
stations connect the wireless devices to a supporting
infrastructure. However, since the overwhelming trend
is to transmit information in packets, over standard
protocols, a dominant focus in the wireless research
community is on more decentralized approaches where
nodes cooperate to relay packets on behalf of other
nodes. This focus is at the heart of current work on
mobile ad hoc networks (MANETs) [17, 18].

Such networks can be viewed as consisting of a
collection of nodes, representing wireless devices, po-
sitioned at various points in some physical region. The
(wireless) “links” of the network, joining pairs of nodes
that can directly communicate with one another, are
predominantly short-range and constrained by line-of-
sight; this is an inevitable result of the scarcity of radio
frequency (RF) spectrum and physical constraints on
the propagation of RF and optical signals. The ways
in which these physical limits on direct communication
affect the overall performance of the network is a fun-
damental issue that motivates much of the theoretical
work in this area.

Random Geometric Graphs. Given this frame-
work, random geometric graphs have emerged as a dom-
inant model for theoretical analysis of distributed wire-
less networks. One places n points uniformly at random
in a geometric region (typically a disc or a square), and
then, for a range parameter r, one connects each pair of
nodes that are within distance r of one another. This
model is the subject of a recent book by Penrose [20],
and we refer the reader there for extensive background;
we also note that the enormously influential work of
Gupta and Kumar on the capacity of wireless networks
is framed this model as well [13, 14].

One of the most basic questions is to determine how
the probability of connectivity of a random geometric
graph depends on the number of nodes n and the range
parameter r. A canonical result here is the following



theorem of Penrose [19]. If we place n points uniformly
at random in a unit square, and then continuously
increase the range parameter r, with high probability
the resulting geometric graph becomes k-connected at
the smallest value of r for which there are no nodes
of degree < k. In other words, the graph becomes k-
connected at the moment that all trivial obstacles to
k-connectivity (i.e. low-degree nodes) disappear. An
analogous type of result is familiar from the theory of
classical Erdős-Rényi random graph models [4]. (For
further results and discussion concerning thresholds for
properties in random geometric graphs, see Goel, Rai,
and Krishnamachari [11].)

For modeling distributed wireless networks, the as-
sumption of random node placement has proved to be
a reasonable abstraction for the lack of structure in
node locations, given that most frameworks for ad hoc
networks assume some arbitrary initial “scattering” of
nodes, or that nodes reach their positions as a result of
arbitrary mobility. More problematic is the fact that
the analysis takes place in regions with no obstructions
— in other words, that a node can communicate with
all other nodes within distance r. This is at odds with
the underlying constraints in many applications of dis-
tributed wireless networks, where there can generally be
a large number of obstructions limiting communication
between nearby nodes due to a lack of direct line-of-sight
contact.

In other words, while random geometric graphs
model wireless networks in open spaces, we lack a
corresponding model for wireless networks in some of
their most common domains: urban settings, large
indoor environments, or any other context in which
there are obstacles limiting visibility. With such a model
would come the ability to address a range of basic
theoretical problems. In particular, we are guided by
the following genre of question:

How do connectivity and other structural
properties of random geometric graphs change
once we introduce line-of-sight constraints?

An understanding of such issues could help provide a
framework for reasoning more generally about the per-
formance of distributed wireless networks in obstructed
environments.

The present work: Connectivity in line-of-
sight networks. In this paper, we propose a random-
graph model incorporating both range limitations and
line-of-sight constraints, and we prove asymptotically
tight results for k-connectivity. We also consider related
structural questions, including the emergence of a giant
component, as well as some of the algorithmic issues
raised by the model.

To motivate the model, consider a stylized abstrac-
tion of limited-range wireless communication in an ur-
ban environment: there are n streets running east-west,
n avenues running north-south, and wireless nodes can
be placed at intersections of streets and avenues. Each
node has range ω — it can see up to ω blocks north and
south along the avenue it lies on, and up to ω blocks
east and west along the street it lies on.

More concretely, we have an underlying set T of
lattice points {(x, y) : x, y ∈ {1, 2, . . . , n}}. We
measure distance using the L1 metric, though to prevent
complications arising from boundary effects in this
presentation, we define the distance between points as
though they form a torus:

d((x, y), (x′, y′)) =

min(|x − x′|, n − |x − x′|) + min(|y − y′|, n − |y − y′|).

For a specified range parameter ω, we say that two
points are mutually visible if they are in the same row
or the same column of the torus, and if they are within
distance at most ω from one another. We view the range
ω as implicitly being a function of n, and in this paper
we will make the assumption that ω is asymptotically
bounded below by lnn and above by some polynomial
in n; specifically, we assume ln n = o(ω) and that
ω = O(nδ) for a value of δ < 1 to be specified below.

We now study the random graph G that results if,
for some placement probability p > 0, we locate a node
at each point of T independently with probability p,
and then connect those pairs of nodes that are mutually
visible. As p increases, the torus becomes more crowded
with nodes, and the resulting graph G is more likely to
be connected. Our main result states, roughly, that the
smallest value of p at which G becomes k-connected
with high probability is asymptotically the same as the
smallest value of p at which the minimum degree in G
is k with high probability.

More concretely, for a critical value of the placement
probability p∗ = O( ln n

ω ), we find that in an interval of
width O( 1

ω ) around p∗, the random graph G goes from
being k-connected with arbitrarily small probability to
being k-connected with probability arbitrarily close to
1. Moreover, the probability that G has no nodes of
degree < k undergoes a comparable transition in a
corresponding interval around p∗. We state this theorem
about k-connectivity as follows. First, we write ω = nδ

where we assume that ω ≫ lnn and δ < 6
8k+7 . Note

that we do not preclude the case where δ = o(1).

Theorem 1.1. Let k ≥ 1 be a fixed positive integer and



let p =
(1− 1

2
δ) lnn+ k

2
ln lnn+cn

2ω . Then

lim
n→∞

Pr(G is k-connected) =











0 cn → −∞

e−λk cn → c

1 cn → ∞

where

λk =
2k−2(1 − 1

2δ)ke−2c

(k − 1)!
.

The proof of this result, which occupies Section 2 of
the paper, requires techniques quite different from the
analysis of standard geometric random graphs, due to
the line-of-sight constraints. One way to appreciate why
this appears necessary is to consider that, as we vary
ω, the resulting model interpolates between two well-
known but qualitatively different random graph mod-
els. When ω = 1, so that a node can only see neighbor-
ing points, we have site percolation on a lattice, a well-
studied problem that is still not completely well under-
stood. At the other extreme, when ω = n and nodes can
see all points in their row and column, it is easy to see
that the model is equivalent to a purely graph-theoretic
one in which we start with the complete bipartite graph
Kn,n and keep each edge with probability p. Note that
our bounds on ω preclude either of these exact extremes,
but our analysis for the “middle region” of ω that we
consider involves ingredients from both extremes, com-
bining techniques from classical random graph analysis
with the combinatorics of the underlying grid of points.

Remark. The reader might wonder if the con-
straint ω ≫ lnn is really necessary. Suppose for exam-
ple that ω = o(ln n). The expected number of isolated
vertices X0 = n2p(1 − p)4ω. If p = o(1) then X0 → 0
only when n2p → 0. If p is bounded from below, then
unless p = 1 − o(1), X0 = n2−o(1) and one can show
that with high probability X0 6= 0. Thus the threshold
for connectivity is very close to one when ω = o(ln n)
and therefore not interesting.

The present work: Further results. We con-
sider the emergence of a giant component in our model.
We prove that if p = c/ω for c > 1 and ω → ∞, then
with high probability G contains a component with a
linear fraction of all the nodes.

We also consider the problem of how nodes in
such a random graph can construct paths between each
other, possessing knowledge of their own coordinates
but otherwise having only local information. We show
that when p exceeds the threshold for connectivity by
a fixed (relatively small) constant factor — i.e. p =
C lnn/ω — then a simple decentralized algorithm allows
a given pair of nodes at L1-distance d to construct, with
high probability, a path of O(d/ω + lnn) edges while

involving only O(d/ω+ω lnn) nodes in the computation.
This is nearly optimal, even with global information,
since Ω(d/ω) is a simple lower bound on the length of
any path between nodes at L1-distance d (and hence
also a lower bound on the number of nodes who need to
participate in the construction of the path).

Finally, we consider a basic algorithmic problem in
a non-random version of the line-of-sight model: given
an input set of nodes, we would like to add a small set of
additional nodes so that the full set becomes connected.
More concretely, suppose we are given a set of nodes
at points X ⊂ T , such that the graph on X (defined
by visibility with respect to the range parameter ω) is
not connected. We would like to add further nodes,
at a set Y ⊂ T , where Y should be as small as possible
subject to the constraint that the graph on X∪Y should
be connected. We think of the additional nodes Y as
“relays” that connect the original nodes in X under line-
of-sight constraints; as a result, we refer to this as the
Relay Placement problem.

By considering the graph of mutual visibility, and
viewing the nodes in Y as Steiner nodes, an instance
of Relay Placement can be easily cast as an instance of
the Node-Weighted Steiner Tree problem. The general
Node-Weighted Steiner Tree problem is inapproximable
to within a factor of Ω(log n) [16]. For the class of line-
of-sight networks that we study here, however, we show
how to exploit the underlying visibility structure to ob-
tain a constant-factor approximation. In particular, we
make use of a graph-theoretic notion that we call cohe-
siveness, which suggests some combinatorial questions
of independent interest.

Relay Placement is clearly related to certain algo-
rithmic art-gallery problems (see e.g. [8, 9] and the
VC-dimension results in [15, 23]), since there too one
is placing nodes in a region subject to visibility con-
straints. However, the problems considered in the liter-
ature on art-gallery problems have a different focus, as
they are concerned with placing nodes so as to see the
entire region, as opposed to adding Steiner nodes so as
to create a connected visibility graph, as we do here.

2 Connectivity

This section is devoted to the proof of Theorem 1.1. We
will concentrate first on the case where cn → c and to
avoid trivialities we will assume that cn = c. Thus until
further notice, we will assume that

p =
(1 − 1

2δ) lnn + k
2 ln lnn + c

2ω
.

The overall outline of the proof is as follows. We
imagine adding nodes in two stages — most of the
nodes in the first stage, and a few final nodes in the



second stage. Now, suppose the graph H formed by
nodes added in the first stage can be disconnected by
the deletion of some set S of fewer than k nodes. We
argue that with high probability, any two components
J and K of H −S come “close” to one another at many
disjoint locations on the torus T — in particular, at each
of these locations, there is some point of the torus that
sees nodes in both J and K. When we then add nodes
in the second stage, it is enough that a node is placed at
one of these points that can see both components; and
we argue that there are enough such points that this
happens with high probability.

2.1 Minimum degree computation.

Proposition 2.1.

lim
n→∞

Pr(G contains a vertex of degree < k) = 1− e−λk ,

where λk is defined as in Theorem 1.1.

Proof. Let Xl denote the number of vertices of degree
0 ≤ l < k. Then observe first that

E [Xl] =

= n2p

(

4ω

l

)

pl(1 − p)4ω−l

∼ n2 ·
(1 − 1

2δ) lnn

2ω

4lωl

l!

(

(1 − 1
2δ) lnn

2ω

)l
nδe−2c

n2(lnn)k

∼

{

0 l ≤ k − 2

λk l = k − 1

Thus the expected number of vertices of degree less than
k is asymptotically λk. The rest of the proof is quite
standard. Let Sk denote the set of vertices of degree
less than k in G and let X = |Sk|. Let X ′′ denote the
number of pairs of vertices v, w ∈ Sk such that v, w are
within ℓ1 distance 2ω of each other. Let X ′ denote the
number of vertices in Sk which are at ℓ1 distance greater
than 2ω from any other vertex in Sk. Then

X ′ ≤ X ≤ X ′ + X ′′.

Now

E [X ′′] ≤ 16ω2n2p2

(

8ω

2k

)

(1 − p)6ω−2k = o(1)

using our upper bound on δ. Thus X = X ′ with high
probability.

Now fix a positive integer t. Then, where (a)t =

a(a − 1) · · · (a − t + 1), we compute

(

(n2 − 16tω2)p

k−1
∑

i=0

pi(1 − p)4ω−i

)t

≤ E [(X ′)t] ≤

(

n2p

k−1
∑

i=0

pi(1 − p)4ω−i

)t

which implies that

lim
n→∞

E [(X ′)t] = λt
k

and so X ′ is asymptotically Poisson with mean λk,
which implies the lemma.

2.2 Probabilistic part of proof. We imagine plac-
ing nodes at random according to the following two-
stage process. We place a node at each point with prob-
ability p1 in the first stage. We then independently place
a node at each point with probability p2 in the second
stage. We choose

p1 =
(1 − 1

2δ) lnn + k
2 ln lnn + c − (lnn)−1

2ω
≥

lnn

3ω

and p2 so that this is equivalent to the original place-
ment process with probability p, in which case

p2 ∼
1

2ω lnn
.

For ease of terminology, we say that a node is red if it
was placed in the first stage, and we say that it is blue if
it is placed in the second stage at a point not hit by the
first stage. Let H denote the subgraph of G consisting
only of red nodes.

For each point in T , we define its four arms to be the
four sets of ω points that are visible from it in a single
direction (north, south, east, and west). We further
partition each arm α of point x into 10 consecutive
segments α1, α2, . . . , α10 of length ω/10. A segment is
said to be weak, otherwise strong, if it contains fewer
than 1

50 lnn red nodes. An arm is said to be mighty if
all its segments are strong. We first claim

Lemma 2.1. With high probability there does not exist
a red node which has an arm α on which we can find
1000 red vertices, each having an arm orthogonal to α
which is not mighty.

Proof. For a fixed point x and arm α, the probability
that the arm contains a weak segment can be bounded
by

10 Pr

(

Bin(ω/10, p1) ≤
1

50
lnn

)

≤

e−(lnn)/400 = n−1/400.



So the probability that there is a red node as described
in the statement is bounded by

8n2

(

ω

1000

)

p1000
1 n−1000/400 = o(1).

Let E1 denote the event that the property in
Lemma 2.1 holds. For the non-probabilistic part of this
argument, we will assume that E1 holds.

Lemma 2.2. With high probability H does not contain
a vertex v of degree less than ln lnn that has a neighbor
w such that w contains an arm orthogonal to vw which
is not mighty.

Proof. The probability that H contains such a pair
v, w is bounded by

n2p1

ln ln n
∑

t=1

(

4ω

t

)

pt
1(1 − p1)

4ω−t(2n−1/400)

≤ 2n−1/400
ln lnn
∑

t=1

(

(4 + o(1))e lnn

t

)t

e−2c+o(1)

= o(1).

Let E2 denote the event that the property in
Lemma 2.2 holds. For the non-probabilistic part of this
argument, we will assume that E2 holds.

Lemma 2.3. With high probability H does not contain
a red vertex with at most k−1 red neighbors and at least
one blue neighbour.

Proof. The probability that H contains such a vertex
v is bounded by

n2p1

k−1
∑

t=0

(

4ω

t

)

pt(1 − p1)
4ω−t(4ωp2) ∼ 4λkωp2 = o(1).

Let E3 denote the event that the property in
Lemma 2.3 holds. For the non-probabilistic part of this
argument, we will assume that E3 holds.

Lemma 2.4. With high probability H does not contain
a blue vertex with fewer than k red neighbours.

Proof. The probability that H contains such a vertex
v is bounded by

n2p2

k−1
∑

t=0

(

4ω

t

)

pt
1(1 − p1)

4ω−t ∼
λkp2

p1
= o(1).

Let E4 denote the event that the property in
Lemma 2.4 holds. For the non-probabilistic part of this
argument, we will assume that E4 holds.

2.3 Non-probabilistic part of proof. For the next
part, we assume that the high-probability events con-
sidered thus far all occur; in particular, we assume that
δ(G) ≥ k and that E1, E2, E3, and E4 all hold.

Recall that H is the subgraph of G consisting only
of the red nodes. Let S be an arbitrary set of k − 1 red
vertices, and let HS = H−S. Our goal is to show that if
HS has multiple connected components, then with high
probability they will all be linked up by the addition of
the blue nodes.

Let L be the set of points in T with coordinates
(i, j), where each of i and j is a multiple of 3ω. For
each connected component K of HS , and for each point
x ∈ L, let vKx denote the node in K that is closest to
x in L1 distance. We claim

Lemma 2.5. vKx lies within the ω ×ω box Bx centered
at x.

Proof. Let a red node be pink if it is not in S. Assume
without loss of generality that the point x is located at
the origin of the torus, which we denote x = 0. Suppose
that v = vK0 = (a, b) is N-E of 0 and that it does not lie
in B0. v has at least one arm containing a pink node w.
This follows from the occurrence of E3. If the degree of
v is less than ln lnn then we can use the non-occurrence
of E2 to argue that the two arms of w orthogonal to vw
are mighty. If the degree of v is greater than ln lnn then
we can use the non-occurrence of E1 to argue that there
is a choice of ln lnn − 4000 w’s such that the two arms
of w orthogonal to vw are mighty. Let α denote the arm
of v containing a w with mighty arms. Note that every
segment of a mighty arm contains at least 1

51 lnn pink
nodes.

Case 1: α is the South arm of v.
If a ≤ ω/2 then any pink node on α is either in

B0 or closer to 0 than vK0. Similarly, if b > ω/2 then
any pink node on α is closer to 0 than vK0. So we can
assume that a > ω/2 ≥ b. Also, if (a, b′) ∈ α then
we must have 0 > b′ = −b′′ where we can assume that
b ≤ b′′ ≤ ω − b.

Choose such a pink node (a,−b′′) with a mighty
West arm β. Now choose a pink node w = (a′,−b′′) ∈ β
such that (i) a − a′ ∈ [.4ω, .5ω] and (ii) the North arm
γ of w is mighty. Now choose a pink node (a′, c) ∈ γ
such that |c − b| ≤ .1ω. It follows that |a′| + |c| ≤
a + b + .1ω − .4ω, contradiction.

Case 2a: α is the North arm of v and a ≥ ω/2.
Choose a pink node (a, b′) ∈ α with a mighty West

arm β. Then choose a pink node w = (a′, b′) ∈ β such
that (i) a−a′ ∈ [.4ω, .5ω] and (ii) the South arm γ of w
is mighty. Now choose a pink node (a′, b′′) ∈ γ such that
|b′′−b| ≤ .1ω. It follows that |a′|+|b′′| ≤ a+b+.1ω−.4ω,
contradiction.



Case 2b: α is the North arm of v and a < ω/2.
We must have b > ω/2, else vK0 ∈ B0. Choose

a pink node (a, b′) ∈ α with a mighty West arm β.
Then choose a pink node w = (a′, b′) ∈ β such that (i)
|a − a′| ≤ .1ω and (ii) the South arm γ of w is mighty.

If |b− b′| ≤ .7ω then choose a pink node (a′, b′′) ∈ γ
such that |b′′ − b| ∈ [.9ω, ω]. It follows that |a′|+ |b′′| ≤
a + b + .1ω + .7ω − .9ω, contradiction. Otherwise,
|b − b′| > .7ω. We can choose a pink node y =
(a′, b′′) ∈ γ such that the West arm δ of y is mighty
and |b′−b′′| ≥ .9ω. Choose a pink node z = (a′′, b′′) ∈ δ
such that |a′′ − a′| ≤ .1ω and its South arm ε is
mighty. Finally, we note that there exists a pink node
w = (a′′, b′′′) ∈ ε such that |b′′ − b′′′| ∈ [.5ω, .6ω]. Then
we have |a′′|+ |b′′′| ≤ a + b + ω + .1ω − .9ω + .1ω − .5ω,
contradiction.

The case where α is the West arm is dealt with as
in Case 1 and the case where α is the east arm is dealt
with as in Case 2.

Now, let J and K be two distinct component of HS .
Since vJx and vKx both lie in the ω × ω box around x,
there is some point z(J, K, x) that is visible from both
of them. We observe that

Lemma 2.6. The points z(J, K, x) and z(J, K, y) are
distinct, for distinct points x, y ∈ L.

Proof. z(J, K, x) lies in the ω × ω box around x, and
z(J, K, y) lies in the ω×ω box around y, and these boxes
are disjoint, since x and y are at least 3ω apart.

2.4 Finishing the proof. Note that if a node is
placed at z(J, K, x), then it will be a neighbor both
of a point in J and K, and hence J and K will belong
to the same component in G. In the second stage of
node placement, a blue node will be placed at each point
z(J, K, x) with probability p2. By Lemma 2.6, there are
n2

9ω2 such points for a fixed pair of components J, K, and
so the probability that no blue point is placed at any of
them is bounded by

(1 − p2)
n2/(9ω2) ≤ e−n2/(20ω3 ln n) ≤ e−n2−3δ/(20 ln n)

There are at most ω2 components, since for any fixed
point x ∈ L, each component has a node in the ω × ω
box around x.

Thus, the probability that there exists a set S of
size at most k − 1 and components J, K of HS , which
are not connected in G by a blue vertex is at most

ω4e−n2−3δ/(20 ln n)n2k−2 = o(1). Thus, conditional on
there being no vertices of degree k − 1 or less, if we
remove any set S of k − 1 vertices, then with high
probability the graph HS has a component containing
all of the red vertices. It follows from E4 that G − S

is connected and so G itself is k-connected with high
probability.

This finishes the case cn → c. If cn → −∞ then
one uses the Chebyshev inequality to show that with
high probability there are vertices of degree less than
k. If cn → ∞ then with high probability there are
no vertices of degree less than k (the expected number
tends to zero), and the argument for cn → c implies
that G will be k-connected with high probability.

This completes the proof of Theorem 1.1.

3 The Existence of a Giant Component

We now consider the existence of a giant component in
our model of line-of-sight networks. Note here that since
G itself has O(n2p) vertices, a giant component is one
with Ω(n2p) vertices.

Theorem 3.1.

(a) If p = c
ω where c > 1 and ω → ∞ then with

high probability G contains a component with (1 −
o(1))(1 − x2

c)n
2/ω vertices, where xc is the unique

solution in (0, 1) of xe−x = ce−c.

(b) If p = c
ω where c < 1/(4e) and ω → ∞ then with

high probability the largest component in G has size
O(ln n).

(a) To prove the first part of the theorem, we first re-
quire a lemma about the existence of a giant component
in the random graph H = Bm,m,q where q = d/m. Here
we create H by including each edge of the complete bi-
partite graph Km,m independently with probability q.

Lemma 3.1. If d > 1 then with high probability H
contains a component Cg with (1 − o(1))(1 − xd)m
vertices on each side of the partition, where xd is the
unique solution in (0, 1) of xe−x = de−d. Furthermore
Cg contains (1 − o(1))(1 − x2

d)m edges.

Proof. We follow the proof of the existence of a
giant component via branching processes as elaborated
in Chapters 10.4 and 10.5 of Alon and Spencer [1]. Note
that the degree of a vertex of H has a distribution which
is asymptotically Poisson with mean d and the proof in
[1] can easily be adapted to H . This will show that
Cg has ∼ (1 − xd)m vertices on each side. To get the
number of edges, imagine the model where we fix the
number of edges as µ ∼ dm. Suppose now we put in
µ − 1 random edges and obtain a giant component C′

g

with (1−o(1))(1−xd)m vertices on each side. Now put
in the µth random edge. We see that the probability
it is not part of the giant component Cg is ∼ x2

d. This
shows that |E(Cg)| ∼ (1 − x2

d)m in expectation. By



adding two random edges we can estimate the variance
and then use the Chebyshev inequality.

Now divide the torus T into N = n2/ω2 sub-squares
S1, S2, . . . , SN of size ω × ω. Fix a particular sub-
square Si and consider the bipartite graph Hi with
ω + ω vertices Ri ∪ Ci (rows/columns) where there
is an edge (x, y) ∈ Ri × Ci if the gridpoint of T
corresponding to (x, y) is occupied by a node of G.
Applying Lemma 3.1 with m = ω and d = c we see
that with probability (1 − o(1)), Hi contains a giant
component Γi with (1− o(1))(1− xc)ω vertices on each
side and (1 − o(1))(1 − x2

c)ω
2 edges. When translated

into a subgraph of G, we see that Hi induces a subgraph
Gi with (1 − o(1))(1 − x2

c)ω
2 vertices. This is because

each edge of Hi corresponds to a vertex of G.
We divide each sub-square Si further into 16

ω/4 × ω/4 sub-squares. We choose 4 special sub-
squares Si,1, . . . , Si,4. These will either be at
(1, 2), (2, 1), (3, 4), (4, 3) or at (1, 3), (2, 4), (3, 1), (4, 2)
where (i, j) denotes the sub-square in row i, column
j, 1 ≤ i, j ≤ 4. We then have these two sorts of sub-
squares alternate along the rows and columns of T as in
Figure 1.

Each special sub-square is associated with a direc-
tion. If i = 1 then the direction is North. If i = 4 then
the direction is South. If j = 1 then the direction is
West and if j = 4 then the direction is East.

Now with high probability each of the 4 special
sub-squares will contain ∼ (1− xc)ω/4 useable columns
(North or South sub-squares) or rows (East or West
sub-squares) that correspond to vertices of a giant
component of the corresponding Hi. We say that a
square Si is good if Hi contains a giant component with
∼ (1 − x2

c)ω
2 edges and each special sub-square has

∼ (1 − xc)ω/4 useable rows or columns, depending on
its direction.

If Hi is good then we choose (1 − xc)ω/5 random
rows or columns from the useable rows or columns of
each the four special sub-squares. Suppose that Xi,j

is the set of rows or columns chosen from Si,j . We
observe that conditional on Si being good, the sets Xi,j

are uniformly random and independent of each other.
We are now in a position to use mixed percolation.

Let L denote the n/ω×n/ω lattice L with site percola-
tion pV = 1− o(1) and bond percolation pE = 1− o(1).
Here we place a vertex at site i is the square Si is good.
If two adjacent sites Hi, Hi+1 say are good then we join
them by an edge in the lattice if the following holds: Let
the adjacent special squares be Si,r and Si+1,s. We add
the edge if Xi,r ∩ Xi+1,s 6= ∅. If this occurs then there
is a pair of nodes of G, say u ∈ Γi, v ∈ Γi+1, such that
u, v are in the same row or column and are at distance
≤ ω apart. Hence Γi and Γi+1 will form part of the

same component in G.
In this model of percolation the giant cluster will

contain almost all of the points; for example this follows
from a simple generalization of Theorem 1.1 of Deuschel
and Pisztora [7]. In this case almost all of the giant
components Γi will be part of the same component of
G. This completes the proof of part (a) of Theorem 3.1.

(b) We first note that an r-regular, N -vertex graph
contains at most N(er)k−1 trees with k vertices. This
is proved for example in Claim 1 of [10]. Thus the
expected number of k-vertex trees in G is bounded by

n2(4eωp)k−1 = n2(4ec)k−1 = o(1)

if k ≥ A lnn and A is sufficiently large.
Remark. Examining the above proof, we see that

if ω is a sufficiently large constant, then there will with
high probability be a component of size Ω(n2), although
it will not be so straightforward to put a lower bound
on its size.

4 Finding Paths Between Nodes

Thus far, we have considered the existence of paths be-
tween nodes in random line-of-sight networks. In terms
of the motivating applications, it is also interesting to
consider the algorithmic problem faced by a pair of
nodes s and t trying to construct a path between them
in such a network. We consider a decentralized model
in which each node knows only its own coordinates and
those of its neighbors in G; given the coordinates of t,
the node s must pass a message to t by forwarding it
through a sequence of intermediate nodes. We consider
the standard goal in wireless ad-hoc routing: we wish
to construct an s-t path with a small number of edges,
while consulting a small number of intermediate nodes
[22].

We show that it is possible to find good paths by
decentralized means when the placement probability
p is a constant factor larger than the threshold for
connectivity.

Theorem 4.1. Let p = C lnn/ω for a constant C to
be specified below. There is a decentralized algorithm
that, given s and t, with high probability constructs an
s-t path with O(d(s, t)/ω + lnn) edges while involving
O(d(s, t)/ω + ω lnn) nodes in the computation.

We note that this bound is nearly optimal, since
Ω(d(s, t)/ω) is a simple lower bound on the number
of edges and the numbers of nodes involved in any s-
t path. For example, if s and t are selected at random
(so that d(s, t) is linear in expectation), then given our
upper bounds on ω from Section 2, both bounds in
Theorem 4.1 are O(d(s, t)/ω), since the other terms are
of asymptotically lower order.



Figure 1: The sub-squares used in the analysis of the giant component.

To begin the proof of Theorem 4.1, let N = n2 and
let S1, S2, . . . , SN be the collection of all ω × ω sub-
squares obtained by choosing ω consecutive rows and
columns. Let Gi, Hi, i = 1, 2, . . . , N be defined similarly
to that done in Section 3. We first observe that

Lemma 4.1. (a) With high probability G1, G2, . . . , GN

are all connected. (b) With high probability the diameter
of Gi is at most D lnn, i = 1, 2, . . . , N , where D is some
absolute constant.

Proof. The proof of (a) is simple. G1 is connected iff
H1 is connected. If H1 is not connected then then there
exist non-empty subsets K ⊆ R1, L ⊆ C1, |K|+ |L| ≤ ω
such that K ∪L induces a connected component of H1.
The probability that such a pair exists is at most

∑

2≤k+ℓ≤n

(

ω

k

)(

ω

ℓ

)(

kℓ

k + ℓ − 1

)

pk+ℓ−1×

(1 − p)k(ω−ℓ)+ℓ(ω−k)

≤
2

p

∑

2≤k+ℓ≤n

(ωe

k

)k (ωe

ℓ

)ℓ
(

kℓe

k + ℓ

)k+ℓ

pk+ℓ×

e−((k+ℓ)ω−2kℓ)p

≤
2

p

∑

2≤k+ℓ≤n





e2C lnn

exp
{

c lnn
(

1 − 2kℓ
ω(k+ℓ)

)}





k+ℓ

≤
2

p

∑

2≤k+ℓ≤n

(

e2C lnn

nC/2

)k+ℓ

= O((ln n)2ωn−C).

So if C ≥ 3 we can inflate this latter probability estimate
by n2/ω to account for all of G1, G2, . . . , GN .

The proof of part (b) is more involved, but it is a
standard calculation; see for example Bollobás and Klee
[5]. We defer the proof to the full version.

The next thing we observe is that we can now
assume that all arms of all vertices are mighty. This

is again a simple calculation, similar to that given for
the proof of (2.1). This also allows us to specify the
value of C in the expression p = C lnn/ω: it should be
large enough for Lemma 4.1 to hold and for all arms of
all nodes to be mighty. (In fact, as will be clear from the
subsequent discussion, we will need only a weak variant
of mightiness in the analysis.)

We now describe the decentralized algorithm to
pass a message from a node s to a node t (thereby
constructing an s-t path). The algorithm consists of
two stages. First, starting at s, the message is passed
between nodes on the row of s, moving the “short way”
around the torus toward the column of t. Each node
passes the message to its farthest neighbor on the arm
in the correct direction; since all arms are mighty, the
message travels an L1-distance of at least ω/2 in each
step. This process stops, at a node u, when the message
is about to “overshoot” the column of t. At this point,
the message is then passed between nodes in the column
of u, according to the same rule. This process stops
when the message is about to overshoot the row of t.

The second stage now begins, with the message at
a node v that belongs to a subset B of size ω × ω, such
that B also contains t. The message is now propagated
by breadth-first search to all nodes within D lnn steps,
but only including nodes that belong to the set B.
Here D is the constant from Lemma 4.1. (Note that
by our assumption that nodes know the coordinates of
themselves and their neighbors, a node can determine
which subset of its neighbors lie in B and hence should
be included in the BFS.) By Lemma 4.1, the node t
will be reached by this BFS, since the subgraph of G
restricted to B is connected and with appropriately
short paths.

The bound on the number of edges in the resulting
s-t path follows directly from the definition of the two
stages. To bound the number of nodes involved in
the computation, we observe that O(d(s, t)/ω) nodes
are involved in the first stage, and the second stage
involves at most the total number of nodes in B, which
is O(pω2) = O(ω lnn) with high probability.



5 Relay Placement: An Approximation
Algorithm

Finally, we discuss an approximation result for the
Relay Placement problem: given a set of nodes in a line-
of-sight network of the kind we have been considering,
we would like to add a small number of additional nodes
so that the full set becomes connected. As before, we
are given an n×n torus of points T . Let K = (T, E) be
the graph defined on the points of T , in which we join
two points by an edge if they can see one another. Also,
we are given a cost cx for each point x ∈ T , and for a
set X ⊆ T we define c(X) =

∑

x∈X cx.
Let X = {x1, x2, . . . , xk} be a given set of points

in T . We consider the problem of choosing a set of
additional points Y = {y1, . . . , ys} such that K[X ∪ Y ]
is a connected. We call Y a Steiner set for X ; nodes
placed at Y can act as “relays” for an initial set of
terminal nodes placed at X . Our goal is to find a Steiner
set whose total cost as small as possible.

This is an instance of the Node-Weighted Steiner
Tree problem in the graph K, with X as the set of
given terminals and Y as the set of additional Steiner
nodes whose total cost we want to minimize. In
general, there is an Ω(log n) hardness of approximation
for this problem [16] (and this is matched in [16] by
a corresponding upper bound). However, the special
structure of the graph K allows us to efficiently find
a Steiner set whose cost is within a constant factor of
minimum. This is the content of the following theorem,
which we prove in the remainder of the section.

Theorem 5.1. There is a polynomial-time algorithm
that produces a Steiner set whose total cost is within
a factor of 6.2 of optimal.

The crucial combinatorial property of K that we use
is captured by the following definition. We say that a
graph H is d-cohesive if every connected subset of H has
a spanning tree of maximum degree d. That is, given
any connected subset S of V (H), we can choose a set F
of edges, each with both ends in S, such that (S, F ) is
a tree of maximum degree d.

We note that it is easy to construct graphs that
are not d-cohesive for any specified d; for example, any
graph containing an induced K1,d+1 is not d-cohesive.
In fact, although it is not crucial for our purposes
here, we note that the cohesiveness is a combinatorial
property of G that is almost entirely characterized by
this particular type of obstruction: if we let κ(G) denote
the minimum d for which G is d-cohesive and we let
ϕ(G) denote the maximum t for which G contains an
induced K1,t, then we can use techniques of Chrobak,
Naor, and Novick [6] to prove the following.

Proposition 5.1. ϕ(G) ≤ κ(G) ≤ ϕ(G) + 1.

Returning to the line-of-sight graph K, a direct
application of Proposition 5.1 implies that K is 5-
cohesive. With somewhat more care, we can show

Lemma 5.1. The graph K is 4-cohesive.

Proof. A direct application of Proposition 5.1 implies
that K is 5-cohesive, but we can do better via the
following argument. For each edge of K, define its length
to be the number of rows or columns of T that separate
its ends. Now, consider an arbitrary connected subset
S of K, and let (S, F ) be a spanning tree of S whose
total edge length is minimum.

We claim that the maximum degree of (S, F ) is four.
For suppose not; then some node u ∈ S has degree at
least five, and hence there are two nodes v, w ∈ S that
lie on the same arm of u, and for which (u, v) and (u, w)
are both edges in F . In other words, u, v, w lie in the
same row or column of T , in this order, and u and w are
close enough to see one another. It follows that (v, w) is
also an edge of K. But now (S, F ∪ {(v, w)} − {(u, w)}
is a spanning tree of S whose total length is strictly less
than that of (S, F ), a contradiction.

We now describe the approximation algorithm and
its analysis. We first define weights on the edges of K
as follows. First, we say that the X-reduced cost cX

v of a
node v is equal to 0 if v ∈ X , and equal to cv otherwise.
We define cX(Y ) =

∑

y∈Y cX
y . For each edge e = (v, w)

of K, we define its weight we to be max(cX
v , cX

w ). For a
subgraph Λ of K, let w(Λ) denote its total edge weight.

Now, let Y ∗ be a Steiner set for X of minimum cost,
and let Λ∗ be a Steiner tree for X of minimum total
edge weight. (Note that the Steiner nodes of Λ∗ may be
different from Y ∗.) The 4-cohesiveness of K implies a
corresponding gap of 4 between the cost of the optimal
Steiner set Y ∗ and the weight of the optimal Steiner
tree Λ∗.

Lemma 5.2. w(Λ∗) ≤ 4c(Y ∗).

Proof. Since X ∪ Y ∗ is a connected subset of K,
Lemma 5.1 implies that it has a spanning tree Λ of
maximum degree four. By the definition of the edge
weights, each edge e = (v, w) of Λ has the property that
at least one of its ends has an X-reduced cost that is at
least as large as we. We charge the weight of e to this
end.

Each node in X ∪ Y ∗ is charged for the cost of at
most four edges, and hence w(Λ) ≤ 4cX(X ∪ Y ∗) =
4c(Y ∗). Since Λ is a Steiner tree for X , and Λ∗ is the
Steiner tree for X of minimum total edge weight, we
also have w(Λ∗) ≤ w(Λ), completing the proof.

A Steiner tree whose edge weight is within a con-
stant factor γ ≤ 1.55 of optimal can be computed in



polynomial time via an algorithm from [21]. Let Λ′ be
a Steiner tree for X computed using this algorithm. Let
Y ′ be the Steiner nodes of Λ′. By charging the costs of
nodes in Y ′ to the weights of distinct incident edges in
Λ′, we have

Lemma 5.3. c(Y ′) ≤ w(Λ′).

Proof. We root Λ′ at a node in X , and we charge
the cost of each node in Y ′ to the incident edge leading
toward the root in the rooted version of Λ′. The cost of
each y ∈ Y ′ is thus charged to a distinct edge e(y) in
Λ′, and by the definition of the edge weights, we have
cy ≤ we(y).

Finally, we use Y ′ as our Steiner set for X . Using
Lemma 5.2 and Lemma 5.3, together with the approx-
imation guarantee for the edge weight of Λ′, we obtain
a bound of 4γ ≤ 6.2 on c(Y ′) relative to the optimum
c(Y ∗):

c(Y ′) ≤ w(Λ′) ≤ γw(Λ∗) ≤ 4γc(Y ∗).
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