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Abstract

We consider detection of moving ground vehicles in
airborne sequences recorded by a thermal sensor with
automatic gain control, using an approach that inte-
grates dense optic flow over time to maintain a model
of background appearance and a foreground occlusion
layer mask. However, the automatic gain control of the
thermal sensor introduces rapid changes in intensity
that makes this difficult. In this paper we show that an
intensity-clipped affine model of sensor gain is suffi-
cient to describe the behavior of our thermal sensor. We
develop a method for gain estimation and compensa-
tion that uses sparse flow of corner features to compute
the affine background scene motion that brings pairs
of frames into alignment prior to estimating change in
pixel brightness. Dense optic flow and background ap-
pearance modeling is then performed on these motion-
compensated and brightness-compensated frames. Ex-
perimental results demonstrate that the resulting algo-
rithm can segment ground vehicles from thermal air-
borne video while building a mosaic of the background
layer, despite the presence of rapid gain changes.

1. Introduction

Thermal imaging or infra-red (IR) photography, has
provided some notable gains over conventional photo-
graphic methods and it is becoming more and more
important in wide variety of problems ranging from
firefighting to night-vision security and surveillance
systems. Although, infrared radiation penetrates many
obscurant aerosols far better than visible wavelengths
and thermal cameras are applicable to both day and
night scenarios, these beyond-visible-spectrum imag-
ing modalities have their own challenges such as sat-
uration or ”halo effect” that appears around very hot
or cold objects, rapid automatic gain change and lack
of chromatic information - thermal radiation reflected

from objects in the scene is mapped as a 1-d heat in-
formation. Hence, not all conventional computer vision
techniques developed for electro-optical imagery are di-
rectly applicable to thermal video sequences. For ex-
ample, vision algorithms such as optic flow estimation
and background subtraction assume a pixel will main-
tain a constant intensity value over time – the bright-
ness constancy assumption. Rapid adjustment of pixel
sensor gain invalidates this assumption, leading to algo-
rithm failure. When hot objects such as roads and build-
ing roofs enter the camera field of view, large regions
of pixels saturate, and the sensor adjusts gain to darken
the image in an attempt to avoid saturation. The result-
ing change in intensity can be dramatic from one frame
to the next. Smaller changes in gain occur on a contin-
ual basis as the sensor adjusts to the changing contents
of a moving field of view.

In this paper we show that an intensity-clipped affine
model of sensor gain is sufficient to describe the behav-
ior of our thermal sensor. Experimentation with thou-
sands of thermal images proved that the gain change
exhibits an affine behaviour, except in regions of ”halo
effect”. We first align successive frames using a stabi-
lization technique that uses sparse flow of corner fea-
tures to compute the affine background scene motion
that brings pairs of frames into alignment prior to es-
timating change in pixel brightness and then we fit an
affine model to gain change and estimate the param-
eters using least mean squares estimator. Dense optic
flow and background appearance modeling is then per-
formed on these motion-compensated and brightness-
compensated frames. We experiment the resulting algo-
rithm to segment ground vehicles from thermal airborne
video while building a mosaic of the background layer,
despite the presence of rapid gain changes.

Section 2 reviews related work on gain compensa-
tion. In Section 3 we describe our approach to two
frame stabilization, based on robust estimation of an
affine transformation from sparse corner point corre-



spondences. Gain compensation and background es-
timation is described in section 4 and section 5, re-
spectively. Section 6 presents experimental results on
a thermal sequence, showing both gain-and-motion-
compensated frames and estimated background mo-
saics.

2. Related Work

Radiometric calibration of a sensor allows one to
model how the quantity of light (or heat) energyq col-
lected at a sensor pixel during an exposure period is
converted into pixel values in the image [11, 7]. The ra-
diometric transfer functionf(q) is typically nonaffine.
In the present application we do not really need to know
the nonaffine sensor responsef(q), but only the relation
betweenf(q) andf(kq) after a relative changek in sen-
sor gain or exposure time.

Mann [6] introduces the idea of acomparametric
plot of f(kq) with respect tof(q), using pairs of cor-
responding pixel values observed from images taken at
different exposure settings. Fitting a parametric model
to the observed correspondences yields a comparamet-
ric function that relates pixel intensities before and af-
ter a change in exposure. Mann points out that a com-
monly used model of nonaffine camera response is

f(q) = α + βqγ (1)

where α, β and γ are sensor-specific constants. The
comparametric function relatingf(q) to f(k(q) is then
a straight line

f(k(q)) = kγ
∗ f(q) + α(1 − kγ).

For thermal sensors, nonaffine film response is not
an issue, and there is typically an affine relation be-
tween sensor response and radiant exitance (i.e.γ = 1
in Equation 1). For example, Lillesand discusses the
modelN = A + BεT 4, whereN is numeric sensor re-
sponse,ε is thermal emissivity at the point of measure-
ment,T is blackbody kinetic temperature at the point
of measurement, andA andB are calibration parame-
ters to be determined [4]. Following [10], we consider a
gainai and offsetbi mapping sensor responseN to ob-
served pixel valuesPi at two different timesi = 1, 2.
Assuming the thermal exitance (εT 4) stays constant be-
tween the two times, we find that an affine relationship

P1 =
a1

a2

P2 −

a1

a2

b2 + b1 = mP2 + b

relates corresponding thermal pixel values.
Even without a physical justification, it has often

been found useful to assume corresponding brightness
values across different times and/or different sensors

are related by an affine intensity transformationP1 =
mP2 + b, and to use this to facilitate image matching,
change detection, and mosaicing of spatially registered
views [5, 2, 3].

3. Affine Alignment via Sparse Cor-
ner Flow

Two-frame stabilization is achieved by establishing
correspondences between adjacent video frames and es-
timating an affine or higher order transformation that
warps the images into alignment. We estimate image
alignment by fitting a global parametric motion model
to sparse optic flow. We want a method that can bring
frames into alignment prior to estimating gain changes.
Since brightness changes are present, we use a feature-
based approach. We first extract a sparse set of corner
features in each frame, find potential matching pairs us-
ing normalized correlation, and then estimate the pa-
rameters of a global affine alignment using RANSAC.
Higher order motion models such as planar projective
could be used, however the affine model has been ade-
quate in our experiments due to the large sensor standoff
distance, narrow field of view, and nearly planar ground
structure in the aerial sequences.

Our mathematical model for alignment is affine
warped images with affine gain changes. That is

It(x, y) = m∗It−1(a1x+a2y+a3, a4x+a5y+a6)+b

wherea1, . . . , a6 are the affine warp parameters, andm

andb are the gain and offset parameters of the affine in-
tensity change.

Given two frames that we want to align, we first de-
tect corners in each frame using the Harris corner de-
tector. The important criterion for this step is that the
corner detection berepeatable, meaning that many of
the corners from frame 1 should also have correspond-
ing corners detected in frame 2, despite the affine warp
and gain change in frame 2. The Harris detector detects
corners as spatial maxima of the function

f(x, y) = det(A(x, y)) − k trace(A(x, y))2

whereA(x, y) a Gaussian-weighted image autocorrela-
tion function centered at pixel x,y, andk is a constant
chosen in the range 0.04 to 0.06. A study of the repeata-
bility of many standard corner detectors was conducted
in Schmid et.al.[9], where it is shown that the Harris
corner detector has the best repeatablity with respect to
moderate affine deformations and illumination changes.

Given sets of corners detected in frame 1 and frame
2, we perform matching to determine potential corre-
sponding pairs. We compare each corner point in frame



Figure 1. Stabilization results: (a) Current
(2095th) frame, It (b) previous frame, It−1 and
sparse flow obtained through corner detection
and matching, (c) stabilized frame, IS

t−1 (d) ab-
solute difference between current and previ-
ous frame (e) absolute difference between cur-
rent and stabilized frame.

1 with corners from frame 2, using normalized cross
correlation (NCC) to determine similarity. To reduce
the combinatorics, the search set of corners in frame
2 is limited to lie within an area bounded by a pre-
determined upper bound on the magnitude of affine dis-
placement between pixels in the two images. Letting
the pixel intensities in an 11x11 neighborhood around
a corner in frame 1 be represented in vectorP , and the
11x11 neighborhood around a candidate corner match
in frame 2 be vectorQ, the NCC match score is com-
puted as

NCC(P, Q) =
1

σP σQ

(P − P̄ )T (Q − Q̄)

whereP̄ andσP is the mean and standard deviation of
the values inP , and similarly forQ̄ andσQ. The NCC
score is clearly invariant to affine gain changes, since
subtracting means normalizes for the additive intensity
offsetb and dividing by standard deviations normalizes
for the multiplicative gain factorm. Compatible cor-
ner matches are determined as pairsP andQ such that
Q has lowest NCC score among the corners tested for
P , andP has the lowest NCC score among the corners
tested forQ. A similar “marriage-based” compatibility
scheme was described in [8].

Given a set of potential corner correspondences

across two frames, a six parameter affine motion
model is fit to the observed displacement vectors to ap-
proximate the global flow field induced by camera
motion and a rigid ground plane. We use a Ran-
dom Sample Consensus (RANSAC) procedure [1]
to robustly estimate affine parameters from the ob-
served displacement vectors. The benefit of using
a robust procedure such as RANSAC is that the fi-
nal least squares estimate is not contaminated by
erroneous displacement vectors, points on moving ve-
hicles in the scene, and scene points with large paral-
lax.

Figure 2. Stabilization results: (a) Current
(2099th) frame, It (b) stabilized frame, IS

t−1 (c)
absolute difference between current and previ-
ous frame (e) absolute difference between cur-
rent and stabilized frame.

Figure 1 illustrates the stabilization for one of the
frames (2095thframe) in our database. Stabilization
of the frames compensates for gross affine background
motion and the residual error is high only in regions
exhibiting different motion statistics than background
layer as long as the gain doesn’t change. Unfortunately,
gain changes rapidly in thermal imagery due to the
nature of the physics of the thermal cameras acquir-
ing these sequences. For example, Figure 2 illustrates
stabilization results for2099thframe in the same se-
quel, where a drastic change in gain occurs and the
foreground objects can not be distinguished from back-
ground layer, despite correct alignment of the frames.

4. Compensating Gain Change

Many computer vision techniques, such as op-
tic flow estimation, background subtraction techniques
are based on the assumption that brightness is con-
served between successive frames. Rapid adjustment
of pixel sensor gain invalidates this assumption, lead-



ing to algorithm failure. We are interested in estimat-
ing the functiong that relates the registered previous
frame,IS

t−1
to the current frame,It, namely

It = g(IS
t−1) (2)

SinceIS
t−1

is registered towardsIt by an affine trans-
formation, each pair at every pixel location(x, y) is
supposed to have very close values, if the automatic
gain control is not active. To understand the nature of
this function, we built a 2-D histogram of the intensity
values of stabilized frame versus current frame pairs:
(IS

t−1(x, y), It(x, y)), as illustrated in Figure 3(c). Hor-
izontal axis corresponds to intensity bins for(IS

t−1
(x, y)

ranging from0 to 255, and vertical axis corresponds to
intensity bins forIt(x, y)). By examining thousands of
thermal image pairs, we verified that the gain relation-
ship between registered successive frames exhibits an
affine behaviour.

We use least mean squares estimator (LMSE) to
compute the parameters of this affine model, consider-
ing the pairs of observables,(IS

t−1
(x, y), It(x, y)) to be

related by

It = m IS
t−1 + b + ε (3)

whereε values at every pixel are independent and iden-
tically distributed. The formulas for the least squares es-
timator are provided in the Appendix.

The regions that appear either as too hot or too
cold, namely regions with ”halo effect” are excluded
from the model estimation since they violate the affine
model. For such regions, we construct confidence maps
with low probability values, essentially meaning that
the affine model for the automatic gain control does not
hold in those regions.

Figure 3(c) illustrates this affine relationship for
the 2099th frame of Figure 2. We built the 2-D his-
togram of the intensity values ofIS

2098
(stabilized

frame) versusIS
2099 (current frame) pairs. The intensity

pairs (IS
t−1

(x, y), It(x, y)) are mainly clustered along
the line with parameters(m, b) = (1.288, 0.5979).
If the the automatic gain control of the thermal cam-
era was inactive, these pairs were supposed to be
clustered aroundIt = IS

t−1
line. Note that the cars be-

come visually distinctive after gain compensation as
shown in Figure 3(b).

5. Application : Background Estimation

Affine alignment via sparse corner flow and model-
ing automatic gain control between successive frames
enables reliable dense optical flow computation and
background appearance modeling.

Figure 3. Stabilization results: (a)
Gain-corrected frame (b) absolute dif-
ference between current and stabilized-
and-gain-corrected frame (c) histogram of
(IS

t−1(x, y), It(x, y)) pairs and gain relation-
ship plot between current and stabilized
frame.

We employ our background mosaicking technique
[12] on these motion-compensated and brightness-
compensated frames. Our approach to background
layer modeling is based on applying robust opti-
cal flow algorithm to stabilized and gain-compensated
image pairs. Stabilization of the frames compen-
sates for gross affine background motion prior to
running robust optical flow to compute dense resid-
ual flow. Based on the flow and the previous back-
ground appearance model, the new frame is separated
into background and foreground occlusion layers us-
ing an EM-based motion segmentation. Estimated
variance of the residual flow is used as a statisti-
cal test to determine the likelihood that each pixel is
from the background or foreground, providing an own-
ership weight to a layer segmentation process. This
ownership weight along with the gain confidence
map (construction of which is explained in previ-
ous section) are then used to build a background mo-
saic from previous background appearance model
and also new information from the observed im-
age.



6. Experimental Results

The flow of our approach is illustrated in Fig-
ure 4. First, affine warp parameters are computed us-
ing corner-detection based matching and RANSAC and
then previous frame and previous background appear-
ance model is registered towards current frame. Second,
parameters of affine model for automatic gain con-
trol is computed using least mean squares estimator and
then registered frames are compensated for the gain fac-
tor. Finally, we run our algorithm that uses sparse and
dense motion statistics to estimate background appear-
ance model on these motion and gain-compensated
frames.

Figure 4. Our approach.

We experimented with our approach on the task of
detecting moving vehicles in airborne thermal video
imagery. Figures 5 - 6 illustrate the background own-
ership weight, the absolute difference between current
and stabilized frame and stabilized-and-gain-corrected
frame, background mosaic and the gain relationship plot
between current and stabilized frame. The frames dis-
played here are picked particularly from the ones where
a severe gain change occurs between succesive frames.
Video clips of the experimental results presented in this
section are provided as additional material.

Initially, we assume that the steady regions after sta-
bilization belong to the background layer. Hence, we
set the regions with no motion as the initial background
appearance model and some regions in the background
appearance model appear as blacked out. As further
frames are processed, these regions are gradually recov-
ered since the occluded regions (regions with low back-
ground ownership weight) are disoccluded and filled in
with the warped appearance model from the previous
time instant. Regions with high background ownership
weight are updated from the current image.

Gain compensation under severe automatic gain con-
trol change makes the continuous execution of the algo-
rithm possible without breaking and it also allows the

algorithm to carry along the previously estimated back-
ground appearance model which would otherwise be
impossible.

7. Conclusions

In this paper, we considered the detection of mov-
ing ground vehicles in airborne sequences recorded by
a thermal sensor with automatic gain control. We ex-
ploited an affine model that describes the behaviour of
gain change between successive frames which proved
to be a very useful preprocessing step in combination
with affine alignment procedure, for using an approach
that integrates dense optic flow over time to maintain a
model of background appearance and a foreground oc-
clusion layer mask.
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9. Appendix

The formulas for the least squares estimator are

b =
SSIS

t−1
,It

SSIS

t−1
,IS

t−1

m = Īt − b ĪS
t−1

where

SSIS

t−1
,It

=

N
∑

x=1

M
∑

y=1

(

IS
t−1(x, y) − ĪS

t−1

)

·

(

It(x, y) − Īt

)

SSIS

t−1
,IS

t−1

=

N
∑

x=1

M
∑

y=1

(

IS
t−1

(x, y) − ĪS
t−1

)2

ĪS
t−1

=
1

NM

N
∑

x=1

M
∑

y=1

IS
t−1

(x, y)

Īt =
1

NM

N
∑

x=1

M
∑

y=1

It(x, y)

HereN andM are the horizontal and vertical sizes of
the frames respectively.
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