

Technology
Foundations for
Computational
Evaluation of Software
Security Attributes

Gwendolyn H. Walton
Thomas A. Longstaff
Richard C. Linger

December 2006

TECHNICAL REPORT
CMU/SEI-2006-TR-021
ESC-TR-2006-021

Pittsburgh, PA 15213-3890

Technology Foundations for
Computational Evaluation of
Software Security Attributes

CMU/SEI-2006-TR-021
ESC-TR-2006-021

Gwendolyn H. Walton
Thomas A. Longstaff
Richard C. Linger

December 2006

CERT Program

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Administrative Agent
ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2006 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract.. v

1 Software Security Attributes.. 1

2 Historical Approaches to Security Attribute Analysis................................... 3

3 Security Attribute Definitions .. 7

4 Function Extraction Technology ... 11

5 The CSA Analysis Process .. 17

6 Behavioral Requirements of Security Attributes .. 21
6.1 Use of a Trusted Mechanism.. 21
6.2 Trusted Data Transmission... 22
6.3 The Authentication Security Attribute.. 25
6.4 The Authorization Security Attribute.. 27
6.5 The Non-repudiation Security Attribute... 28
6.6 The Confidentiality Security Attribute.. 29
6.7 The Privacy Security Attribute... 30
6.8 The Integrity Security Attribute.. 31
6.9 The Availability Security Attribute.. 32

7 A Miniature Illustration of CSA Using an FX System................................... 33

8 Broader Implications: Improving Security Engineering Practice.............. 35
8.1 Advantages of using FX-generated Behavior Catalogs............................ 35
8.2 Open Questions.. 36
8.3 Next Steps .. 36

References/Bibliography.. 39

CMU/SEI-2006-TR-021 i

ii CMU/SEI-2006-TR-021

List of Figures

Figure 1: Evolution of Approaches to Security Attribute Analysis 4

Figure 2: An Assembly Language with Three Jumps .. 11

Figure 3: FX/MC Output after Processing the Program of Figure 2 12

Figure 4: FX/MC Behavior Catalog for a 4000-line Assembly Language Program 14

Figure 5: The CSA Approach... 17

Figure 6: Requirements for Trusted Data Transmission .. 22

Figure 7: CSA Analysis of Data Transmission Security ... 23

Figure 8: CSA Analysis of Modification of Data Transmission Control Data 24

Figure 9: Requirements for Authentication Property.. 25

Figure 10: CSA Analysis of Trusted User Identification ... 26

Figure 11: CSA Analysis of Trusted User Binding ... 26

Figure 12: Requirements for Authorization Property ... 27

Figure 13: Requirements for Non-repudiation Property... 29

Figure 14: Requirements for Confidentiality Property.. 30

Figure 15: Requirements for Privacy Property .. 31

Figure 16: Requirements for Integrity Property ... 32

Figure 17: The Behavior Catalog Computed by the FX/MC Prototype.................... 34

CMU/SEI-2006-TR-021 iii

iv CMU/SEI-2006-TR-021

Abstract

In the current state of practice, analysis of the security attributes of software systems is
typically carried out through subjective evaluations by security experts who accumulate
system knowledge in bits and pieces from architectures, specifications, designs, code, and
tests. In contrast, this report describes foundations for a new computational security attributes
(CSA) technology. This innovative approach provides precise computational methods for
defining and analyzing security attributes based solely on the data and transformations of data
found within programs. CSA permits security attributes to be evaluated through automatable
analysis of the functional behavior of programs. The technology can support specification of
security attributes of systems before they are built; specification and evaluation of security
attributes of acquired software; verification of the as-built security attributes of systems; and
real-time evaluation of security attributes during system operation.

CMU/SEI-2006-TR-021 v

1 Software Security Attributes

Fast and reliable analysis of security attributes is vital for every sector of our software-
dependent society. For example, access to enterprise applications and data must be restricted
to those who can provide appropriate proofs of identity. Applications and data must be
protected so that attempts to corrupt them are detected and prevented. Healthcare systems
must protect personal data while allowing controlled access by authorized personnel.
Enterprises must be able to demonstrate that every accounting change is auditable. The flow
of data through enterprise applications and the flow of transactions that drive the data must be
logged and reported as proof of what actually happened.

In the current state of practice, security properties of software systems are typically assessed
through labor-intensive evaluations by security experts who accumulate system knowledge in
bits and pieces from architectures, specifications, designs, code, and test results. Ongoing
program maintenance and evolution limit the relevance of even this hard-won but static and
quickly outdated knowledge. When systems operate in threat environments, security attribute
values can change very quickly. To further complicate matters, security strategies must be
sufficiently dynamic to keep pace with organizational and technical change.

This report describes a fundamentally different approach to the specification and evaluation
of software security attributes. This approach recognizes and leverages the fact that the
problem of determining the security properties of programs comes down in large measure to
the question of how the software behaves when invoked with stimuli intended to cause
harmful outcomes. Because security properties have functional characteristics amenable to
computational approaches, it is appropriate to focus on the question “What can be computed
with respect to security attributes?” The computational security attribute approach provides a
step toward a computational security engineering discipline. The ultimate goal is to develop
and describe mathematical foundations and their engineering automation to permit

• rigorous specification, evaluation, and improvement of the security attributes of software
and systems during development

• specification and evaluation of the security attributes of acquired software

• verification of the as-built security attributes of software systems

• real-time evaluation of security attributes during system operation

The CSA approach will support modeling, analysis, and evaluation of the security attribute
values of software, as constrained by the policies of specific execution environments.

CMU/SEI-2006-TR-021 1

2 CMU/SEI-2006-TR-021

2 Historical Approaches to Security
Attribute Analysis

The evolution of security attribute analysis is illustrated in Figure 1. Historically, security
analysis has required consideration of a variety of artifacts and concerns. Early methods
emphasized information and people; analysis of information attributes centered on code and
models, and analysis of people attributes centered on policies. In the 1980s, the security
emphasis shifted to systems analysis and architectures. By the 1990s, the emphasis shifted to
survivability of the essential missions of software and systems. Survivability analyses
centered on approaches to resist, recognize, recover from, and adapt to mission-
compromising attacks. In addition, the 1990s yielded definitions and descriptions for security
attributes, functions, actors, roles, and protocols. For examples, see those set forth by the
International Standards Organization, Longstaff report, and the National Research Council
[ISO/IEC 1996, Longstaff 1997, NRC 1999].

The security analyses of the past have typically been carried out through subjective
evaluations by security experts. In addition, some researchers have attempted, with limited
success, to apply traditional formal methods to security attributes. Researchers have applied
a variety of analytical tools such as model checking, concurrent sequential process modeling,
and rule-based systems to model, analyze, and verify security protocols. In recent years,
several research threads have emerged that address the difficult problems of security metrics
and quantitative analysis and evaluation of security attributes. This research to date has
typically focused on finding approximate solutions. Many of the studies have been based on
assumptions that severely constrain the operational utility of the results. In addition, many
security analysis methods require that a separate model of the software be developed to
include consideration of the users and/or the environment in which the software is executed.
While these approaches provide valuable insights, none of them allow security analysts to
state with certainty how the software under consideration behaves under ALL circumstances
of use with respect to security attributes of interest.

CMU/SEI-2006-TR-021 3

Figure 1: Evolution of Approaches to Security Attribute Analysis

There are many potential objects of interest to a security analyst. Both hostile and legitimate
users perform data access processes, and administrators perform system security processes.
Data access processes create, read, and change user and control data, identification and
access privilege data of users (which must be kept confidential), and audit data. System
security processes authenticate users, authorize processes, secure transmissions of data, and
generate audit data. Unfortunately, the behavior of users and administrators, the operating
environment, and data transmission mechanisms are all non-determinable. While there are
some excellent approaches for approximating the behavior of these objects, it must be
recognized that these approaches do not describe the complete behavior of the software under
all circumstances of use. Software with unknown behavior cannot be certified as secure.
Thus, the current technology for security analysis is inadequate. The following quotes from
the National Research Council report, Trust in Cyberspace, underscore this point [NRC
1999]:

• “Access control policies merely model in cyberspace notions of authorization that exist in
the physical world. However, in cyberspace, programs—acting on behalf of users or
acting autonomously—and not the users themselves are what interact with data and
access other system objects.” (p111)

• “Trustworthiness mechanisms basically concern events that are not supposed to happen...
some users may be malicious, and the world is not fault free.” (p63)

• “Some properties (e.g., ‘the absence of security vulnerabilities’) have no system-
independent formalization and, therefore, are not amenable to direct analysis using
formal methods.” (p96)

4 CMU/SEI-2006-TR-021

• “For any given system, there will exist properties that together imply ‘the absence of
security vulnerabilities.’ But careful thought by a system developer is required to identify
these constituents, and there is no formal way to ever establish that the system developer
has listed them all.” (p96)

• “An overwhelming majority of security vulnerabilities are caused by buggy code.”
(p110)

A method is needed for security attribute specification and analysis based on 1) the actual
behavior of software, and 2) security attribute definitions that consider only data and
transformations on data. The computational security attributes analysis approach (shown
under the “Now” heading in the timeline of Figure 1) emphasizes the comparison of
behavioral descriptions of security attributes with behavior catalogs. These catalogs
completely describe the behavior of the code and are produced by the new technology of
function extraction (FX).

CMU/SEI-2006-TR-021 5

6 CMU/SEI-2006-TR-021

3 Security Attribute Definitions

Published definitions for security attributes lack theoretical foundations and cannot support a
disciplined approach to analysis of software and system security. For example, various U.S.
government publications describe privacy as an interest, a freedom, an ability, and a right:

• For purposes of the Health Insurance Portability and Accountability Act (HIPAA) Privacy
Rule, privacy means “an individual's interest in limiting who has access to personal
health care information” [US OCR 2006].

• The NRC report entitled Trust in Cyberspace describes privacy as “freedom from
unauthorized intrusion” [NRC 1999].

• The NSA ‘red book’ defines privacy as follows: “(1) the ability of an individual or
organization to control the collection, storage, sharing, and dissemination of personal and
organizational information. (2) The right to insist on adequate security of, and to define
authorized users of, information or systems” [NSA 1987].

The National Security Agency (NSA) ‘red book’ definition further states: “The concept of
privacy cannot be very precise and its use should be avoided in specifications except as a
means to require security, because privacy relates to ‘rights’ that depend on legislation” [NSA
1987].

In contrast, U.S. government publications describe authorization both as a process and as a
document:

• With respect to HIPAA, authorization refers to the document that designates permission
[US OCR 2006].

• For the purpose of the Gramm-Leach-Bliley Act, authorization is the “process by which a
known (not anonymous) entity gains specified privileges such as access, read or write
rights, system administration rights, etc.” [FDIC 2004].

Published definitions can be more or less restrictive, can require separate security policies for
different organizations or geographical areas, and can leave much room for interpretation. For
example, consider the following U.S. government definitions for confidentiality:

• Confidentiality is “the protection of communications traffic or stored data against
interception or receipt by unauthorized third parties” [NRC 1999].

• The meaning of confidentiality may vary across states, and even across companies: “the
protection of individually identifiable information as required by state and federal legal
requirements and Partners policies” [US OCS 2006].

CMU/SEI-2006-TR-021 7

• Privacy can also be interpreted as “against unauthorized access to or use of customer
information that could result in substantial harm or inconvenience to any customer”
[FDIC 2004].

To support a behavioral approach to security attribute specification and analysis, it is
necessary to develop consistent definitions that can support computational analysis of
security attributes. The following descriptions of security attributes provide useful
information to support developing such definitions [ISO/IEC 1996, Longstaff 1997, NRC
1999]:

• Confidentiality: “the protection of communications traffic or stored data against
interception or receipt by unauthorized third parties” [NRC 1999]. “When information is
read or copied by someone not authorized to do so, the result is known as loss of
confidentiality” [Longstaff 1997]. “The confidentiality function prevents the
unauthorized disclosure of information. The confidentiality function includes the
functions hide and reveal. In the context of confidentiality, objects fulfill either or both of
the following roles: confidentiality-protected information originator or confidentiality-
protected information recipient” [ISO/IEC 1996].

• Integrity: “the property of an object meeting an a priori established set of expectations. In
the distributed system or communication security context, integrity is more precisely
defined as assurance that data have not been undetectably modified in transit or storage”
[NRC 1999]. “When information is modified in unexpected ways, the result is known as
loss of integrity. This means that unauthorized changes are made to information, whether
by human error or intentional tampering” [Longstaff 1997]. “The integrity function
detects and/or prevents the unauthorized creation, alternation, or deletion of data. The
integrity function includes all the following functions: shield, validate, unshield. In the
context of integrity, objects fulfill one or more of the following roles: Integrity-protected
data originator or integrity-protected data recipient” [ISO/IEC 1996].

• Availability: “the property asserting that a resource is usable or operational during a
given time period, despite attacks or failures” [NRC 1999]. “Information can be erased or
become inaccessible, resulting in loss of availability. This means that people who are
authorized to get information cannot get what they need. When a user cannot get access
to the network or specific services provided on the network, they experience a denial of
service” [Longstaff 1997].

• Authentication: “proving that a user is who he or she claims to be. That proof may
involve something the user knows (such as a password), something the user has (such as
a smartcard), or something about the user that proves the person's identity (such as a
fingerprint)” [Longstaff 1997]. “Authentication refers to the process by which a system
establishes that an identification assertion is valid” [NRC 1999]. “In the context of
authentication, objects fulfill one or more of the following roles: principal, claimant, or
trusted third party” [ISO/IEC 1996]. Authentication requires use of exchange
authentication information. Authentication is of interest when communication is required
in the (possible) presence of a hostile agent.

8 CMU/SEI-2006-TR-021

• Authorization: “the act of determining whether a particular user (or computer system)
has the right to carry out a certain activity, such as reading a file or running a program”
[Longstaff 1997].

• Non-repudiation: when the means of authentication cannot later be refuted—the user
cannot later deny that he or she performed the activity. “The non-repudiation function
prevents the denial by one object involved in an interaction of having participated in all
or part of the interaction. In the context of non-repudiation, objects fulfill one or more of
the following roles: (non-repudiable data) originator, (non-repudiable data) recipient,
evidence generator, evidence user, evidence verifier, non-repudiation service requester,
notary, or adjudicator” [ISO/IEC 1996].

CMU/SEI-2006-TR-021 9

10 CMU/SEI-2006-TR-021

4 Function Extraction Technology

The mathematics of functions provides a solid point of departure for computational analysis
of security attributes. Desired security attributes can themselves be specified in terms of
functions (i.e., in terms of data and transformation on data), thereby permitting software to be
evaluated for conformance or not through comparison of behavioral requirements of security
attributes to the functional behavior of the software. The emergence of CERT’s new function
extraction (FX) technology, unavailable to previous researchers, provides the critical first step
for computational security attribute analysis by supporting the derivation of the full
functional behavior of programs as a starting point for security analysis.

To see how FX works, consider the miniature Intel assembly language program of Figure 2
and the question of what it does. The figure shows the relative address (in hex) of each line
of code after it has been disassembled. Note that t1, t2, and t3 are labels used by jump (jmp)
instructions to branch to the line of code at that address. The arrows show these branches to
reveal the spaghetti-logic control flow of the code.

start: push eax
push ebx
add esp, byte 4
jmp t1

t3: retn
t2: sub eax, ebx

add ebx, eax
push ecx
sub ecx, ecx
sub ecx, eax
add ecx, ebx
sub eax, eax
add eax, ecx
clc
pop ecx
jmp t3

t1: pop eax
jmp t2

0x00000000
0x00000001
0x00000002
0x00000005
0x0000000A
0x0000000B
0x0000000D
0x0000000F
0x00000010
0x00000012
0x00000014
0x00000016
0x00000018
0x0000001A
0x0000001B
0x0000001C
0x0000001E
0x0000001F

start: push eax
push ebx
add esp, byte 4
jmp t1

t3: retn
t2: sub eax, ebx

add ebx, eax
push ecx
sub ecx, ecx
sub ecx, eax
add ecx, ebx
sub eax, eax
add eax, ecx
clc
pop ecx
jmp t3

t1: pop eax
jmp t2

0x00000000
0x00000001
0x00000002
0x00000005
0x0000000A
0x0000000B
0x0000000D
0x0000000F
0x00000010
0x00000012
0x00000014
0x00000016
0x00000018
0x0000001A
0x0000001B
0x0000001C
0x0000001E
0x0000001F

Figure 2: An Assembly Language with Three Jumps

CMU/SEI-2006-TR-021 11

In terms of their behavior, assembly language programs can do only three things: update
registers, update flags, and update memory. It is certainly possible to determine exactly what
the program of Figure 2 does by manually performing a step-by-step analysis of the
semantics of each instruction in the program. However, this task is time consuming and
potentially error prone. A better approach is to extract the function computationally using FX
technology. The first step in FX processing is to transform the program into structured form
expressed in terms of the three fundamental control structures of sequential logic: sequences,
alternations (if-then-else), and iterations (loops). The next step is to extract the behavior of
the structured version by using a precise definition of the functional semantics of each
instruction in the language of interest (Intel assembly language in this example) together with
rules for their combination. The result is a complete, correct derivation of the behavior of the
code. This definition reveals the net behavior of the program, that is, how it transforms input
data into output data, essentially its as-built specification.

To illustrate, Figure 3 shows a screen image of output from the first generation of a prototype
system (Function Extraction for Malicious Code - FX/MC) under development by CERT
STAR*Lab to support function extraction of assembly code.

Figure 3: FX/MC Output after Processing the Program of Figure 2

12 CMU/SEI-2006-TR-021

The window on the left side of Figure 3 shows the code of Figure 2 after it has been
structured. The information enclosed in parentheses and square brackets in the structured
output are comments to assist the reader in comparing the structured version with the
original. The original address for each line of code is shown in square brackets at the end of
the line. The jumps are no longer relevant, since after structuring they simply jump to the
next line of code. Jumps are included in the structured listing in the left window as comments
to assist the reader who wishes to compare the structured code with the original code. Note
that the only purpose of the jumps in this example seems to have been to obfuscate the code,
because after the FX system unraveled the spaghetti-logic of Figure 2, only a simple
sequence of instructions remained.

The window on the right-hand side of Figure 3 shows the complete behavior of the code as
computed by the system. The behavior description is in the form of non-procedural
conditional concurrent assignments that show the behavior in terms of transformations on the
input data. The first line of the behavior catalog, condition: ?true, indicates that there is no
condition controlling this code’s behavior. Thus, the program of Figure 2 always behaves in
the same way under all circumstances, regardless of the initial state of the registers, flags, and
memory.

The concurrent assignments in the behavior catalog are displayed into three sections: register
updates, flag updates, and memory updates. The left-hand side of each concurrent assignment
represents a final value; the right-hand side represents how the final value is computed from
initial values. Thus, the behavior catalog shows that only the three general-purpose registers
(EAX, EBX, and ECX) and the stack pointer (ESP) are required to express the behavior of the
code. According to the right-hand window of Figure 3, the calculated behavior can be
summarized as follows:

• Registers: The final value stored in ECX was the same as the initial value, but the code will
swap the values of EAX and EBX. The value of the stack pointer will be increased by 4.

• Two values will remain in memory on the stack after the code is executed: EBX and ECX.

• The values of six flags will be changed (AF, CF, OF, PF, SF, and ZF).

This behavior might not be obvious from a casual reading of either the original code or even
the structured version. Looking only at the push and pop instructions of the structured code in
the left-hand window of Figure 3, one would note the following sequence.

push eax
push ebx
pop eax
push ecx
pop ecx

If this sequence of push and pop instructions were considered in isolation from the rest of the
code, it would appear that the final value for EAX will be the initial value of EBX, and one

CMU/SEI-2006-TR-021 13

value (the initial value of EAX) will remain on the stack. However, this simplistic analysis
gives an incorrect result for both register assignments and memory values due to the add
instruction that manipulated the stack pointer (see line 3 of the structured code: add esp,
0x00000004), and does not consider any changes to the flags. Certainly, for this miniature
example, a careful programmer with knowledge of the Intel instruction set semantics could
manually do the thorough analysis required to derive the complete, correct behavior provided
in the behavior catalog. However, for large, complex programs, such a labor-intensive, error-
prone manual analysis is simply not feasible.

FX technology can be applied to complex programs to yield complete calculated behavior
expressed in terms of net effects on data. For example, Figure 4 shows the output produced
by the FX system in computing the complete behavior of a 4000-line assembly language
program that included many superfluous statements to obfuscate the true behavior of the
code. As shown in the right-hand window of Figure 4, these 4000 lines of code do nothing
other than store a value of 4 in the general-purpose EAX register, change the value of the
stack pointer, and set six flags. Such intentional obfuscation is often found in malicious code.

Figure 4: FX/MC Behavior Catalog for a 4000-line Assembly Language Program

FX technology can be applied to any programming language environment and has the
potential to impact many aspects of the software engineering lifecycle. The function
extraction process derives the as-built specification of software; that is, the behavior that has
actually been implemented. This derived behavior can be compared to requirements and

14 CMU/SEI-2006-TR-021

specifications to determine if the software is indeed a correct implementation. Thus, the
derived behavior can be used to determine if the software meets security requirements if they
have been specified in behavioral terms.

FX technology prescribes effective means to create and record specifications, with the
corresponding specification task itself amenable to automated support. Automated
correctness verification of code with respect to desired security properties would be
especially valuable during system development, to check on the behavior of partial
implementations and find and fix errors and vulnerabilities along the way. It would also
permit a new level of rigor in acquisition and acceptance of systems by supporting required
provision of behavior catalogs for all delivered code.

CMU/SEI-2006-TR-021 15

16 CMU/SEI-2006-TR-021

5 The CSA Analysis Process

While analysts have often characterized many security attributes as “non-functional”
properties of programs, it turns out that they are in fact fully functional and thereby subject to
FX-style automated analysis. Complete definitions of the required behavior of security
attributes of interest can be created based solely on data and transformations of data. These
definitions can then be used to analyze the security properties of programs. Thus, as
illustrated in Figure 5, computational security attribute analysis consists of three steps:

1. Define required security behavior. Specify security attributes in terms of required
behavior during execution expressed in terms of data and transformations on data.

2. Calculate program behavior. Apply function extraction to create a behavior catalog
that specifies the complete “as built” functional behavior of the code.

3. Compare program behavior to required security behavior. Compare the computed
behavior catalog with required security attribute behavior to verify whether it is correct
or not.

Function
Extractor

Behavior
Catalog

Required
Security
Attribute
Behavior

CSA
Analyzer

Security property
satisfied (or not)

Input
Program

Calculate
Program
Behavior

Define
required
security
behavior

Compare
program
behavior

to
required
security
behavior

CSA Analysis

Function
Extractor

Behavior
Catalog

Required
Security
Attribute
Behavior

CSA
Analyzer

Security property
satisfied (or not)

Input
Program

Calculate
Program
Behavior

Define
required
security
behavior

Compare
program
behavior

to
required
security
behavior

CSA Analysis

Figure 5: The CSA Approach

CMU/SEI-2006-TR-021 17

Requirements for security attribute behavior must explicitly define expected behavior of code
in all circumstances of interest. Thus, the requirements for security attribute behavior must
include a minimal definition of required behavior for all inputs of interest to the security
attributes, including desired inputs (for example, an authenticated user id) and undesired
inputs (for example, an unknown user id). Usage environment conditions related to security
attributes are specified in the same manner as inputs to the system. For example, availability
of the network might be specified by a Boolean value that indicates whether or not the
network is currently available. Security successes and failures are also specified in terms of
data. For example, system control data can be used to indicate whether the current user has
been authenticated using a trusted authentication mechanism.

The level of abstraction at which a security attribute is specified can depend on the specific
situation. For example, if all available data transmission mechanisms have previously been
certified to be trusted, the security attribute requirements would need not include details
regarding data transmission. If there is one trusted data transmission mechanism, X, and one
or more data transmission mechanisms that may not be trustworthy, the security attribute
requirements could specify that all data transmissions will be performed using X. If none of
the data transmission mechanisms have been previously certified as trusted, the security
attribute requirements will need to include required control data effects for transmission
security.

A “never responded” and “no output” case for each external function call of interest must be
considered, including a definition of correct behavior in the case of intentional and
unintentional aborts and hangs. In addition, security attribute requirements may specify a
specific order in which certain functions can be called. For example, user authentication must
occur before any data access functions can be called. The requirements may specify that a
certain set of data transformations always occur. For example, the control data that indicates
that data transmission is secure must always be set by the trusted data transmission
mechanism. The requirements may specify that a certain set of data transformations must
never occur. For example, the control data that indicates that data transmission is secure must
never be set by any code other than the trusted data transmission mechanism. In the case
where a user is authorized to only access specific data, the requirements may state that no
data transformations other than those specified can occur.

Any amount of traceability and control can be specified in the requirements for security
attribute behavior. For example, the requirements may include specifications of bounded
behavior. (i.e., execution will proceed so long as the behavior is within a specified domain)
Specifications for trusted mechanisms can be included in the requirements as constraints. For
example, one might specify that “a call to method XXX that returns a value of y is sufficient
to satisfy a requirement that a trusted mechanism must be used to perform authentication.”
The behavioral approach also supports dealing with some uncertainty in the specification of
the security attribute requirements. For example, a security requirement might state that the
code must guarantee security properties modulo some defined value. Some constraints might

18 CMU/SEI-2006-TR-021

be specified using a stochastic component. For example, “The response history of component
X must indicate that the component was available at least 94% of the time.”

Verification that a security property is satisfied requires verification of both the data at rest
(i.e., the control data values) and the data in motion (i.e., the mechanisms used to perform the
data transformations). Some common tasks to verify data at rest include checking to make
sure that a specific task (for example, an audit task) will always be carried out to validate the
contents of a specific control data structure. Advantages of this approach to security attribute
verification include the use of constraints and boundary conditions that can make any
assumptions explicit. People and process issues can be handled by the CSA approach by
using assumptions and constraints as part of the behavior catalogs. Behaviors can embody
requirements for a given security architecture. The attribute verification process will expose
security vulnerabilities, making it easier to address evolution of code, environment, use, and
so forth.

The CSA verification process can provide important opportunities for improved acquisition
and third-party verification. A “user” of a system might be a person, a device, or a software
component. The user may be the intended user or may be an unexpected and/or hostile user.
An issue that must be considered with commercial off-the-shelf (COTS) products and reuse is
that the definition of “user” embodied in the security behavior requirements may not be the
same definition that was employed in the COTS or reused component. The same issue occurs
when unknown components are employed as “black boxes” in systems of systems. If, in the
composition of components or systems, it doesn’t matter what a specific “black box”
component does with respect to security attribute requirements, then that component can be
used. However, if the behavior of a component does matter, it cannot be used until its security
attributes have been verified. In this case, a behavior catalog can be calculated for the
component using its executable, even if documentation and source code are not available.
Only externally observable behaviors are of interest to security attribute analysis. Thus, while
the behavior catalog will have to be produced for the entire system in order to extract the
externally observable behaviors, there is no need to expose the algorithm or source code, and
there’s no need to understand the entire state space.

CMU/SEI-2006-TR-021 19

20 CMU/SEI-2006-TR-021

6 Behavioral Requirements of Security
Attributes

As noted earlier, security attributes are often termed “non-functional” properties. In reality,
security properties are fully functional and are dependent on the execution behavior of
software. The security attributes discussed in this report are (listed alphabetically)
availability, authentication, authorization, confidentiality, integrity, non-repudiation, and
privacy. Three of these attributes (confidentiality, integrity, and availability) are important to
information. The other four attributes (authentication, authorization, non-repudiation, and
privacy) relate to the people who use that information.

The behavioral requirements for each of these attributes can be completely described in terms
of data items and constraints on their processing. The processing can be expressed, for
example, as logical or quantified expressions or even conditional concurrent assignments,
which can be mechanically checked against the calculated behavior of the software of interest
for conformance or non-conformance with security attribute requirements.

6.1 Use of a Trusted Mechanism
Each of the security attributes requires the use of one or more trusted mechanisms. FX
technology can be used to certify a mechanism as trusted. A behavior catalog for a
mechanism can be generated to describe all cases of behavior in terms of its data and the
transformations it carries out on that data. The behavior catalog can then be analyzed to
ensure the following:

• The trusted mechanism sets the values of control data which indicates whether the
mechanism executed correctly.

• If control data indicates that the mechanism executed correctly, there exists evidence data
to show that the data transformation was performed in a manner that satisfies the defined
security specification.

Note that the implementation of a security attribute may include a trusted third party to
acquire, authenticate, and adjudicate evidence of transactions. However, for the purposes of
behavior specification of security attributes, the specific mechanism and actors are not
relevant. All that is needed is a precise specification of the data and the transformations on
the data, and any constraints concerning these transformations.

CMU/SEI-2006-TR-021 21

6.2 Trusted Data Transmission
As illustrated in Figure 6, the requirements for trusted data transmission are as follows:

• A trusted data transmission mechanism is used for all data transmissions. If the
mechanism is not available or the mechanism fails, the requirement fails.

• No mechanism outside this trusted data transmission mechanism sets the value of the
control data that indicates whether the data transmission mechanism executed correctly.

As illustrated in Figure 7, the process for determining whether data transmission security
properties are satisfied by the data transmission components of a system consists of the
application of the CSA analysis process illustrated in Figure 5. The input to the process is the
data transmission components of the system, and the output is a determination of whether the
data transmission security requirements have been satisfied.

CSA Analysis:
data transmission

security

CSA Analysis:
data transmission

security

Data
Transmission
mechanism

Data
Transmission
mechanism

security
property
satisfied?

CSA Analysis:
no modification

of data transmission
control data

CSA Analysis:
no modification

of data transmission
control data

Remainder
of the

System

Remainder
of the

System

security
property
satisfied?

both
properties
satisfied?

No. Data
transmission
is not trusted.

Yes. Data
transmission

is trusted.

CSA Analysis:
data transmission

security

CSA Analysis:
data transmission

security

Data
Transmission
mechanism

Data
Transmission
mechanism

security
property
satisfied?

CSA Analysis:
no modification

of data transmission
control data

CSA Analysis:
no modification

of data transmission
control data

Remainder
of the

System

Remainder
of the

System

security
property
satisfied?

both
properties
satisfied?

No. Data
transmission
is not trusted.

Yes. Data
transmission

is trusted.

Figure 6: Requirements for Trusted Data Transmission

22 CMU/SEI-2006-TR-021

Behavior
Catalog

Data
transmission

security
requirements

Analysis
of security
behavior

Data
Transmission

Program

Calculate
programmed

effects on
control data

Define required
control data
effects for

transmission
security

Compare
program
behavior

with required
effects on

control data

Function
Extractor

CSA Analysis: Data transmission security

Security property
satisfied (or not)

Behavior
Catalog

Data
transmission

security
requirements

Analysis
of security
behavior

Data
Transmission

Program

Calculate
programmed

effects on
control data

Define required
control data
effects for

transmission
security

Compare
program
behavior

with required
effects on

control data

Function
Extractor

CSA Analysis: Data transmission security

Security property
satisfied (or not)

Figure 7: CSA Analysis of Data Transmission Security

As illustrated in Figure 8, the process for determining whether the remainder of the system
can modify the control data set by the data transmission components consists of the
application of the CSA analysis process, where the input to the process is the software for the
entire system, and the output is a determination of transmission components can be modified
by any other part of the system. whether the control data set by the data

CMU/SEI-2006-TR-021 23

Behavior
Catalog

Requirements for
no modification

of specific control
data

Analysis
of security
behavior

Security property
satisfied (or not)

Remainder
of the system

Calculate
programmed

effects on
control data

Define requirements
for security property =

no modification
of data transmission

control data

Compare
program
behavior

with requirement
for no modification

of data transmission
control data

Function
Extractor

CSA Analysis: no modification of
data transmission control data

Figure 8: CSA Analysis of Modification of Data Transmission Control Data

To verify that a data transmission mechanism is trusted, one must verify the data that
provides the evidence related to data transmission. For example, the specification for the data
to provide evidence of valid data transmission might describe the mechanism by which each
data message output incorporates a shared (between sender and receiver) data item that can
be used to verify that the transformation worked correctly. Assignments to this shared data
must not be reversible (i.e., guaranteed encryption).

As another example, suppose the FX behavior catalogs for all of the code have been
examined to verify that all data transmissions in the system occur as a result of calls to
function YYY. To verify the necessary security properties for data transmission, we examine
function YYY’s behavior catalog to determine the net effect of the data transformations
related to any conditions for which invalid data transmission could occur. If invalid data
transmission can occur when, say, the value of register EAX is equal to 4 at a particular line
of code, we calculate the behavior catalog for all of the code up to that line and examine the
resulting conditional current assignments to see the conditions (if any) for which the net
effect of the data transformations is to set EAX to 4. (If the line of code of interest is in the
middle of a loop, the behavior catalog will provide the values for the variables in the loop
body at each step through the loop.) As still another example, if function YYY is called using
an argument popped from the top of the stack, we must examine the behavior catalog of the
calling program to determine the net effect of the data transformations on the stack prior to
that function call to determine the value of the parameter.

24 CMU/SEI-2006-TR-021

6.3 The Authentication Security Attribute
Authentication requires that a trusted user has been bound to the behavior. That is, the
system will only allow the program to be executed if the user has previously been determined
to be a trusted user. To verify authentication, one must examine the net effects on the control
data related to authentication: verify the data that provides evidence that the binding took
place, and verify that this evidence data was not changed before completion of any operation
that required authentication. As illustrated in Figure 9, the requirements for authentication are
as follows:

• A trusted data transmission mechanism is always used for every data transmission.

• A trusted identification mechanism is always used to provide proof of a user’s
identification. Note that the “user” to be identified may be a person, a process, a program,
or other entity.

• A trusted binding mechanism is always used to bind user data (user identification,
password, or other information to confirm the identification, and the system information
that provides the proof of the identification) to an execution environment.

• No other mechanism outside the trusted mechanisms sets the value of any of the control
data that indicates whether each of the trusted mechanisms executed correctly and that
indicates the status of the bound data.

• If any of the above requirements or mechanisms fails, authentication fails.

Trusted data
transmission
mechanism

Trusted data
transmission
mechanism

Trusted user
identification
mechanism

Trusted user
identification
mechanism

Trusted user
binding

mechanism

Trusted user
binding

mechanism

control data
(modified only by the
trusted components)

Authentication property is satisfied.

Figure 9: Requirements for Authentication Property

The mechanism for using CSA to determine whether the data transmission is trusted was
illustrated earlier (see Figures 6, 7, and 8). As illustrated in Figures 10 and 11, the analysis of
the user identification mechanism and the user binding mechanism applies the CSA approach
by proceeding along the same lines as Figures 7 and 8 to determine whether each of these
mechanisms is trusted.

CMU/SEI-2006-TR-021 25

CSA Analysis:
user identification

security

CSA Analysis:
user identification

security

User identification
program

User identification
program

security
property

satisfied?

CSA Analysis:
no modification

of user identification
control data

CSA Analysis:
no modification

of user identification
control data

Remainder
of the
system

Remainder
of the
system

security
property

satisfied?

both
properties
satisfied?

No. User
identification
is not trusted.

Yes. User
identification

is trusted.

Figure 10: CSA Analysis of Trusted User Identification

CSA Analysis:
user binding

security

CSA Analysis:
user binding

security

User binding
program

User binding
program

security
property

satisfied?

CSA Analysis:
no modification
of user binding
control data

CSA Analysis:
no modification
of user binding
control data

Remainder
of the
system

Remainder
of the
system

security
property

satisfied?

both
properties
satisfied?

No. User
binding
is not

trusted.

Yes. User
binding

is trusted.

CSA Analysis:
user binding

security

CSA Analysis:
user binding

security

User binding
program

User binding
program

security
property

satisfied?

CSA Analysis:
no modification
of user binding
control data

CSA Analysis:
no modification
of user binding
control data

Remainder
of the
system

Remainder
of the
system

security
property

satisfied?

both
properties
satisfied?

No. User
binding
is not

trusted.

Yes. User
binding

is trusted.

Figure 11: CSA Analysis of Trusted User Binding

26 CMU/SEI-2006-TR-021

6.4 The Authorization Security Attribute
Authorization requires that a user has the right to perform the requested process. To verify
that an authorized operation took place, one must examine the net effects on the control data
to verify that it provides evidence that authorization occurred before the operation, and that
the evidence data for the authorization was not changed before that operation completed. As
illustrated in Figure 12, the requirements for authorization are as follows:

• A trusted authentication mechanism (subsection 6.3) is always used to authenticate the
user. Note that this requirement includes a requirement for trusted data transmission and
authentication.

• A trusted lookup mechanism is always used to determine that the user has the right to
complete the specified request.

• No other mechanism outside the trusted mechanisms sets the value of any of the control
data that indicates whether each of the trusted mechanisms executed correctly and that
identifies the authorized user and the scope of the authorization.

• If any of the above requirements or mechanisms fails, authentication fails.

Analysis of the authentication mechanism was discussed in the previous subsection. Analysis
of the lookup mechanism applies the CSA approach by proceeding along the same lines as
Figures 7 and 8 to determine whether this mechanism is trusted.

Trusted
Authentication

mechanism

Trusted
Authentication

mechanism
Trusted Lookup

mechanism
Trusted Lookup

mechanism

control data
(modified only by the
trusted components)

Authorization property is satisfied.

Figure 12: Requirements for Authorization Property

CMU/SEI-2006-TR-021 27

6.5 The Non-repudiation Security Attribute
Non-repudiation of data transmission requires that neither the sender nor the recipient of the
data can later refute his or her participation in the transaction. Non-repudiation of changes
to a dataset requires that the means for authentication of changes cannot later be refuted. For
the purposes of this discussion we treat data change as a special case of data transmission,
where receipt of the data transmission includes making and logging the requested change to
the dataset. To verify non-repudiation one must examine the net effects on the control data
related to non-repudiation. As illustrated in Figure 13, the requirements for every data
transmission that is subject to non-repudiation are as follows:

• Trusted authorization (subsection 6.4) is always used for sender, receiver, and the scope
of any data changed or transmitted. Note that this requirement includes a requirement for
trusted data transmission, trusted authentication of users, and trusted authorization of
users and processes for the specific data scope.

• Trusted binding is used to bind the sender to the data sent and to bind the receiver to data
received.

• The authorization, binding, and data transmission are handled as a single atomic
operation within the boundary of the authorized secure process.

• A trusted mechanism is always used to provide traceability and audit. This trusted
mechanism ensures data persistence of the audit data so the means of authentication and
the data transmission cannot later be refuted.

• Every data transmission is preceded by an absolute definition of the data and
identification that binds the data to the sender.

• Every data receipt is preceded by an absolute definition of the data and identification that
binds the data to the recipient.

• No other mechanism outside the trusted mechanisms sets the value of any of the control
data that indicates whether each of the trusted mechanisms executed correctly or the
value of any of the control data generated by the trusted mechanisms.

• If any of the above requirements or mechanisms fails, non-repudiation fails.

Analysis of the authorization mechanism was discussed in the previous subsection. Analysis
of the binding mechanism and the traceability and audit mechanism applies the CSA
approach by proceeding along the same lines as Figures 7 and 8 to determine whether each of
these mechanisms is trusted.

28 CMU/SEI-2006-TR-021

Trusted
authorization

mechanization for
sender, receiver, and
scope of data changes

Trusted
authorization

mechanization for
sender, receiver, and
scope of data changes

Trusted binding
mechanism

Trusted binding
mechanism

control data
(modified only by the
trusted components)

Non-repudiation property is satisfied

Trusted
traceability
and audit

mechanism

Trusted
traceability
and audit

mechanism

Figure 13: Requirements for Non-repudiation Property

6.6 The Confidentiality Security Attribute
Confidential data access or confidential data transmission requires that unauthorized
disclosure of one or more specific data items will not occur. Confidentiality is often described
in terms of a security policy that specifies the required strength of the mechanisms that ensure
that the data cannot be accessed outside the system. For example, the security policy may
require verification that approved encryption mechanisms are used for the output. To verify
confidentiality, one must examine the net effects on the control data related to confidentiality.
As illustrated in Figure 14, the requirements for confidentiality are as follows:
• A trusted non-repudiation mechanism (subsection 6.5) is always used to process requests

for confidential data access and confidential data transmission. Note that this
requirement includes a requirement for trusted data transmission, trusted authentication
of users and processes, and trusted authorization of users and processes for the particular
data scope.

• A trusted mechanism is always used to ensure that the data cannot be read outside the
system.

• No other mechanism outside the trusted mechanisms sets the value of any of the control
data that indicates whether each of the trusted mechanisms executed correctly or the
value of any of the control data set by the trusted mechanisms.

• If any of the above requirements or mechanisms fails, the request for confidential data
access or confidential data transmission fails.

Analysis of the non-repudiation mechanism was discussed in the previous subsection.
Analysis of the data access mechanism applies the CSA approach by proceeding along the
same lines as Figures 7 and 8 to determine whether this mechanism is trusted.

CMU/SEI-2006-TR-021 29

Trusted
non-repudiation

mechanism

Trusted
non-repudiation

mechanism

Trusted
data access
mechanism

Trusted
data access
mechanism

control data
(modified only by the
trusted components)

Confidentiality property is satisfied.

Figure 14: Requirements for Confidentiality Property

6.7 The Privacy Security Attribute
Privacy requires that an individual has defined control over how his/her information will be
disclosed. To verify privacy, one must examine the net effects on the control data related to
privacy. As illustrated in Figure 15, the requirements for privacy are as follows:

• A trusted confidentiality mechanism (subsection 6.6) is always used for all accesses of a
user’s personal information. Note that this requirement includes a requirement for trusted
data transmission, trusted authentication of users and processes, trusted authorization of
users and processes for the specific data scope, and trusted non-repudiation for access to
a user’s personal information.

• All access to a user’s personal information satisfies an existing privacy and con-
fidentiality policy that includes control data that defines the scope of access for each user.

• A trusted non-repudiation mechanism (subsection 6.4) is used for all changes to the
control data that defines the scope of access for each user. Note that this requirement
includes a requirement for trusted data transmission, trusted authentication of users, and
processes and scope of data.

• No other mechanism outside the trusted mechanisms sets the value of any of the control
data that indicates whether each of the trusted mechanisms executed correctly or the
value of any data set by the trusted mechanisms.

• If any of the above requirements or mechanisms fails, the request for confidential data
access or confidential data transmission fails.

Analysis of the confidentiality and non-repudiation mechanisms was discussed in previous
subsections. Analysis of the access mechanism applies the CSA approach by proceeding
along the same lines as Figures 7 and 8 to determine whether this mechanism is trusted.

30 CMU/SEI-2006-TR-021

Trusted
confidentiality
mechanism

Trusted
confidentiality
mechanism

Trusted access
mechanism

that satisfies
privacy policy

and scope of access

Trusted access
mechanism

that satisfies
privacy policy

and scope of access

control data
(modified only by the
trusted components)

Privacy property is satisfied.

Trusted
non-repudiation

mechanism

Trusted
non-repudiation

mechanism

Figure 15: Requirements for Privacy Property

6.8 The Integrity Security Attribute
Integrity requires that authorized changes are allowed, changes must be detected and
tracked, and changes must be limited to a specific scope. Integrity is defined as a property of
an object, not of a mission. To verify integrity, one must examine the net effects on the
control data related to integrity. That is, one must be able to: isolate the object, isolate all the
behaviors that can modify the object, detect any modifications to the data, and ensure that all
transformations of the data across the object are within the pre-defined allowable subset. As
illustrated in Figure 16, the requirements for integrity are as follows:

• A security policy exists that describes the scope of allowed changes as an invariance
function: certain data transformations must hold; others must never hold.

• If the security policy data is changed to remove any element from the allowable subset,
integrity of the data fails.

• A trusted non-repudiation mechanism (subsection 6.5) is always used for changes to data
and changes to policy to ensure that all changes to the security policy and changes to data
are performed using a trusted non-repudiation mechanism. Note that this requirement
includes a requirement for trusted data transmission, trusted authentication of users and
processes, trusted authorization of users and processes for the specific data scope, and
trusted non-repudiation for changes to the data. Every authorization for data changes
must be restricted to the allowable subset as defined in the security policy.

• No other mechanism outside the trusted mechanisms sets the value of any of the control
data that indicates whether each of the trusted mechanisms executed correctly or the
value of the control data set by any of the trusted mechanisms.

CMU/SEI-2006-TR-021 31

• If any of the above requirements or mechanisms fails, integrity of the data fails.

Analysis of the non-repudiation mechanism was discussed in a previous subsection. Analysis
of the data change mechanism applies the CSA approach by proceeding along the same lines
as Figures 7 and 8 to determine whether this mechanism is trusted.

Trusted
non-repudiation

mechanism

Trusted
non-repudiation

mechanism

Trusted data change
mechanism that

satisfies the
security policy and

access policies

Trusted data change
mechanism that

satisfies the
security policy and

access policies

control data
(modified only by the
trusted components)

Integrity property is satisfied.

Figure 16: Requirements for Integrity Property

6.9 The Availability Security Attribute
Availability requires that a resource is usable during a given time period, despite attacks or
failures. To verify availability, one must examine the net effects on the control data related to
availability. To avoid having to consider temporal properties, one can specify non-availability
rather than availability (i.e., specify under what conditions the program’s behavior catalog
do not apply). The analysis of non-availability would proceed along the same lines as the
other security attributes just discussed.

32 CMU/SEI-2006-TR-021

7 A Miniature Illustration of CSA Using an
FX System

The following notional example illustrates application of the CSA approach to determine
whether a security requirement is satisfied. Suppose that the specification of the requirements
for one security attribute includes a constraint that the value of the second argument to each
call to function XXX must not be equal to 4. A constraint such as this, expressed in terms of
concrete data operations and values, could be part of the requirements specification for any of
the security attributes previously discussed.

Consider the screen image of a behavior catalog generated by the FX/MC prototype shown in
Figure 17. Suppose this is the behavior catalog for a fragment of code that executes
immediately before the program calls function XXX with the second argument equal to the
value stored in register EAX. The computed behavior highlighted as section A in Figure 17 is
the behavior with respect to register values for the condition: ?(1 & EAX) == 0). This
condition means “if the value of register EAX at the beginning of this fragment of code is
even.” As shown on the figure, if this condition is true, the value of register EAX after
executing this fragment of code is equal to the initial value of register ECX, and therefore the
value of the second argument to function XXX will be equal to the initial value of register
ECX. In contrast, the computed behavior highlighted as section B of Figure 17 is the
behavior with respect to register values for the condition: ?(1 & EAX) != 0). This condition
means “if the initial value of register EAX is odd.” As shown in the figure, if this condition is
true, the value of register EAX is unchanged and therefore the value of the second argument
to function XXX will be equal to the initial value of register EAX. Thus, the security
constraint is not satisfied because, under either of these conditions, we can’t certify that the
value of the second argument will never be equal to 4.

This analysis takes place in seconds, eliminating the need to study and understand the code
by manual means.

CMU/SEI-2006-TR-021 33

A

B

A

B

Figure 17: The Behavior Catalog Computed by the FX/MC Prototype

34 CMU/SEI-2006-TR-021

8 Broader Implications: Improving
Security Engineering Practice

Computational security attribute analysis is a step toward a computational security
engineering discipline. It can transform security engineering by rigorously defining security
attributes of software systems and replacing or augmenting labor-intensive, subjective,
human security evaluation. Advantages of the CSA approach include the following:

• A rigorous method is used to specify security attributes in terms of the actual behavior of
code and to verify that the code is correct with respect to security attributes.

• The specified security behaviors can provide requirements for a security architecture.

• Traceability capabilities can be defined and verified outside of the automated processes.

• Vulnerabilities can be well understood, making it easier to address evolution of code,
environment, use, and users.

• The use of constraints provides a mechanism for explicitly defining all assumptions.

CSA technology addresses the specification of security attributes of systems before they are
built, specification and evaluation of security attributes of acquired software, verification of
the as-built security attributes of systems, and real-time evaluation of security attributes
during system operation.

8.1 Advantages of using FX-generated Behavior
Catalogs

The behavior catalogs generated by function extraction provide a formal, complete, correct
specification of behavior of the code that can be automatically generated. The use of these
behavior catalogs provides several advantages for security attribute analysis:
• A behavior catalog lends itself to query. In general, source code and executables do not.

Thus, the use of behavior catalogs will facilitate risk assessments and other query-driven
analyses of security attributes.

• Because the behavior catalog provides a complete description of behavior, it can be used
to answer negative as well as positive questions. This distinguishes CSA from other
security analysis techniques such as static analysis and formal methods.

• Because the behavior catalog supports examination of the functional transformations on
data and does not require examination of the state space, this approach is more scalable

CMU/SEI-2006-TR-021 35

than formal methods approaches. For example, when formal methods are used to
examine, say, the integrity attribute, the entire state space must be computed. Integrity
exists if the system can never map outside the state space. In contrast, with CSA and the
use of behavior catalogs, only the calculated behavior is of interest. Because only the
behavior at the boundary of the system has to be calculated, there is no need to examine
the entire internal state space.

• If a property can be expressed in code, FX technology can be used to determine if that
property holds within a program.

• FX technology can be used to describe the behavior of a function that combines two
behaviors. Thus, FX can be used to give the exact description of the composition of the
behaviors.

• Corporate policies and “intentions” can be defined in a behavioral format in advance of
the design of the architecture and code. Queries to examine the behavior catalog for the
presence or absence of desired properties can be developed in parallel with design of the
architecture. If pre- and post-conditions are defined behaviorally, they can be used to
evaluate all artifacts (i.e., the behavioral catalogs, not just the code).

8.2 Open Questions
Behavioral requirements for concurrency and parallel system issues must be addressed. In
addition, because computational security attributes and function extraction are emerging
technologies, there has been limited experience in applying the technology to large systems.
The computational effort involved in analyzing functions with extensive decompositions and
in analyzing large numbers of component compositions to yield a system security
specification remains to be studied. However, it is clear that the CSA approach can be more
effective than formal methods in addressing state space explosion while yielding complete,
correct answers.

8.3 Next Steps
The plan is to seek sponsorship to develop prototype automation to support application of
CSA technology. This automation will be developed based on a vision of human-computer
interaction that would complement and amplify human capabilities for reasoning about
software security attributes during development and for real-time evaluation of a system’s
security attributes during operation. These tools will be constructed in accumulating
increments to maximize earned value and minimize risk.

CSA supports a usage-centric evaluation of security attributes that can explicitly consider the
objectives and constraints of specific execution environments. Such an approach will support
modeling, analysis, and evaluation of the security attribute values of software, as constrained
by the policies of specific execution environments. In order for this approach to be widely
used, tools are needed to support user input and query of security requirements, including
automatic mapping of the model of user-specified acceptable function calls and safe behavior

36 CMU/SEI-2006-TR-021

to the code’s behavior catalog. The CERT STAR*Lab FX project is developing tools that will
be used to compare behavior catalogs. These FX tools, combined with the CSA approach and
proposed CSA tools, will support security analysts in the comparison of security attribute
requirements and constraints with behavior catalogs, thus providing a mechanism for
automated security attribute analysis.

CMU/SEI-2006-TR-021 37

38 CMU/SEI-2006-TR-021

References/Bibliography

URLs are valid as of the publication date of this document.

[Ahmed 2003] Ahmed, Tanvir & Tripathi, Anand R. “Static Verification of Security
Requirements in Role Based CSCW Systems,” 196-203. Eighth
ACM Symposium on Access Control Models and Technologies
(SACMAT 2003). Como, Italy, June 2003. New York, NY: ACM,
2003. http://www.cs.umn.edu/Ajanta/papers/p342-ahmed.pdf.

[Albert 02] Albert, Cecilia & Brownsword, Lisa. In collaboration with Bentley,
David; Bono, Thomas; Morris, Edwin & Pruitt, Deborah.
Evolutionary Process for Integrating COTS-Based Systems (EPIC)
(CMU/SEI-2002-TR-005, ADA408653). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2002.
http://www.sei.cmu.edu/publications/documents/02.reports
/02tr005.html.

[Bella 2001] Bella, G., & Paulson, Lawrence. “Mechanical Proofs about a Non-
repudiation Protocol,” Fourteenth Int. Conference Theorem Proving
in Higher Order Logics, Lecture Notes In Computer Science, 2152,
Pages: 91-104. Edinburgh, Scotland, Sep. 2001. New York, NY:
Springer-Verlag, 2001.

[Cannady 2001] Cannady, S. & Stockton, T. “Easing the PAIN: How PKI can reduce
the risks associated with e-business transactions” Feb 1, 2001.
White Plains, NY: IBM Corporation. http://www-128.ibm.com
/developerworks/library/s-pain.html.

[Caralli 2004] Caralli, R.A. & Wilson, W.R. “The Challenges of Security
Management,” Pittsburgh, PA: CERT, Software Engineering
Institute, Carnegie Mellon University, 2004.
http://www.cert.org/archive/pdf/ESMchallenges.pdf.

[Chevalier 2004] Chevalier, Y. & Vigneron, L. “Strategy for Verifying Security
Protocols with Unbounded Message Size,” Journal of Automated
Software Engineering 11, 2 (April 2004): 141-166. Norwell, MA:
Kluwer Academic Publishers. http://www.avispa-project.org/papers
/ChevalierV-JASE04.ps.

[Collins 2005] Collins, R.; Walton, G.; Hevner, A.; & Linger, R. The CERT
Function Extraction Experiment: Quantifying FX Impact on

CMU/SEI-2006-TR-021 39

http://www.cs.umn.edu/Ajanta/papers/p342-ahmed.pdf
http://www.sei.cmu.edu/publications/documents/02.reports
http://www-128.ibm.com
http://www.cert.org/archive/pdf/ESMchallenges.pdf
http://www.avispa-project.org/papers

Software Comprehension and Verification (CMU/SEI-2005-TN-
047, ADA442865), Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2005. http://www.sei.cmu.edu
/publications/documents/05.reports/05tn047.html.

[FDIC 2004] Federal Deposit Insurance Corporation, U.S. Government.
“Legislative and Regulatory Responses to Identity Theft.”
http://www.fdic.gov/consumers/consumer/idtheftstudy
/legislative.html (2004).

[Hevner 2001] Hevner, A.; Linger, R.; Sobel, A.; & Walton, G. “Specifying Large-
Scale, Adaptive Systems with Flow-Service-Quality (FSQ)
Objects,” Proceedings of the 10th OOPSLA Workshop on
Behavioral Semantics, Tampa, FL, Oct. 2001. New York, NY: ACM
Press, 2001.

[Hevner 2002] Hevner, A.; Linger, R.; Sobel, A.; & Walton, G. “The Flow-Service-
Quality Framework: Unified Engineering for Large-Scale, Adaptive
Systems,” Proceedings of the 35th Annual Hawaii International
Conference on System Sciences. Waikoloa, Hawaii, January 7-10,
2002. Los Alamitos, CA: IEEE Computer Society Press, 2002.

[Hevner 2005] Hevner, A.; Linger, R.; Collins, R.; Pleszkoch, M.; Prowell, S.; &
Walton, G., The Impact of Function Extraction Technology on Next-
Generation Software Engineering (CMU/SEI-2005-TR-015
ADA441893). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2005. http://www.sei.cmu.edu
/publications/documents/05.reports/05tr015.html.

[Hussein 2006] Hussein, Mureed & Seret, Dominique. “A Comparative Study of
Security Protocols Validation Tools: HERMES vs. AVISPA,” 497-
502. Proceedings of IEEE International Conference on Advanced
Communication Technology ICACT’06, Phoenix Park, Korea, Feb.
2006. New York, NY: IEEE Computer Society, 2006.

[ISO/IEC 1996]

International Organization for Standardization/International
Electrotechnical Commission. Information Technology - Open
Distributed Processing- Reference Model: Architecture, ISO/IEC
10746-3-1996(E), 1996. http://webstore.ansi.org/ansidocstore
/product.asp?sku=ISO%2FIEC+10746-3%3A1996.

[Linger 2002]

Linger, R.; Pleszkoch, M.; Walton, G.; & Hevner, A. Flow-Service-
Quality (FSQ) Engineering: Foundations for Network System
Analysis and Design (CMU-SEI-2002-TN-019 ADA443474),
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2002. http://www.sei.cmu.edu/publications/documents
/02.reports/02tn019.html.

40 CMU/SEI-2006-TR-021

http://www.sei.cmu.edu
http://www.fdic.gov/consumers/consumer/idtheftstudy
http://www.sei.cmu.edu
http://webstore.ansi.org/ansidocstore
http://www.sei.cmu.edu/publications/documents

[Longstaff 2001] Longstaff, T. “Auditing Legacy Systems for Security and
Survivability,” 689-692. Proceedings of the 23rd International
Conference on Software Engineering. Toronto, Ontario, May 2001.
Washington DC: IEEE Computer Society, 2001.

[Longstaff 1997] Longstaff, T.; Ellis, J.; Hernan, S.; Lipson, H.; McMillan, R.;
Hutz-Pesante, L. & Simmel, D. “Security of the Internet,” in
The Froehlich/Kent Encyclopedia of Telecommunications vol.
15, 231-255. New York, NY: Marcel Dekker, 1997.
http://www.cert.org/encyc_article/tocencyc.html.

[NRC 1999] National Research Council Committee on Information
Systems Trustworthiness. Trust in Cyberspace. Washington,
DC: National Academy Press, 1999.
http://www.nap.edu/html/trust.

[NSA 1987] National Security Agency, National Security Research Center.
Trusted Network Interpretation, v. 1. 7/31/87. NCSC-TG-005
(Red Book), 1987.
http://www.fas.org/irp/nsa/rainbow/tg005.htm.

[Pleszkoch 2004] Pleszkoch M. & Linger, R. “Improving Network System Security
with Function Extraction Technology for Automated Calculation of
Program Behavior,” Proceedings of 37th Hawaii International
Conference on System Sciences. Waikoloa, Hawaii, Jan. 2004. Los
Alamitos, CA: IEEE Computer Society Press, 2004.

[Prowell 1999] Prowell, S.; Trammell, C.; Linger, R.; & Poore, J. Cleanroom
Software Engineering: Technology and Process. SEI Series in
Software Engineering. Reading, MA: Addison Wesley
Longman, 1999.

[Rusinowitch 2003] Rusinowitch, M. “Automated Analysis of Security Protocols,”
Proceedings of the 12th International Workshop on
Functional and (Constraint) Logic Programming (WFLP'03),
Valencia, Spain, June 2003. Electronic Notes in Theoretical
Computer Science 86, 3, 2003. http://www.avispa-project.org
/papers /valence2.pdf.

[Rusinowitch 2003] Rusinowitch, M. & Turuani, M. “Protocol Insecurity with Finite
Number of Sessions and Composed Keys is NP-complete.”
Theoretical Computer Science 299, 1-3 (April 2003) 451-475.
http://www.avispa-project.org/papers
/np-complete-tcs03.ps.

CMU/SEI-2006-TR-021 41

http://www.avispa-project.org/papers�/np-complete-tcs03.ps
http://www.avispa-project.org/papers�/np-complete-tcs03.ps
http://www.cert.org/encyc_article/tocencyc.html
http://www.nap.edu/html/trust
http://www.fas.org/irp/nsa/rainbow/tg005.htm
http://www.avispa-project.org

[Santiago 2005] “Study for Automatically Analyzing Non-repudiation,” 151-171.
Actes du 1er Colloque sur les Risques et la Sécurité d'Internet et des
Systèmes, CRiSIS. Bourges, France, Oct. 2005. http://www.avispa-
project.org/papers/SantiagoV-CRiSIS05.pdf.

[Schneider 1996] Schneider, S. “Security Properties and CSP” 174. Proceedings of
the 1996 IEEE Symposium on Security and Privacy. Oakland, CA:
May 1996. Washington, DC, USA: IEEE Computer Society, 1996.

[Schneider 1998] Schneider, S. “Verifying Authentication Protocols in CSP,” IEEE
Transactions on Software Engineering, 24, 9, (Sep. 1998) 741-758.

[US OCR] U.S. Government Office for Civil Rights – HIPAA. “Medical
Privacy - National Standards to Protect the Privacy of Personal
Health Information.” http://www.hhs.gov/ocr/hipaa/finalreg.html
and http://www.hhs.gov/ocr/AdminSimpRegText.pdf (2006).

42 CMU/SEI-2006-TR-021

http://www.avispa-project.org/papers/SantiagoV-CRiSIS05.pdf
http://www.avispa-project.org/papers/SantiagoV-CRiSIS05.pdf
http://www.hhs.gov/ocr/hipaa/finalreg.html
http://www.hhs.gov/ocr/AdminSimpRegText.pdf

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

December 2006
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

Technology Foundations for Computational Evaluation of Software
Security Attributes

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Gwendolyn H. Walton, Thomas A. Longstaff, Richard C. Linger
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2006-TR-021

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

ESC-TR-2006-021

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

In the current state of practice, analysis of the security attributes of software systems is typically carried out
through subjective evaluations by security experts who accumulate system knowledge in bits and pieces from
architectures, specifications, designs, code, and tests. In contrast, this report describes foundations for a new
computational security attributes (CSA) technology. This innovative approach provides precise computational
methods for defining and analyzing security attributes based solely on the data and transformations of data
found within programs. CSA permits security attributes to be evaluated through automatable analysis of the
functional behavior of programs. The technology can support specification of security attributes of systems
before they are built; specification and evaluation of security attributes of acquired software; verification of the
as-built security attributes of systems; and real-time evaluation of security attributes during system operation.

14. SUBJECT TERMS

software security attributes, function extraction technology, behavioral
requirements of security attributes, computational evaluation

15. NUMBER OF PAGES

53

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

	Technology Foundations for Computational Evaluation of Software Security Attributes
	Table of Contents
	List of Figures
	Abstract
	1 Software Security Attributes
	2 Historical Approaches to Security Attribute Analysis
	3 Security Attribute Definitions
	4 Function Extraction Technology
	5 The CSA Analysis Process
	6 Behavioral Requirements of Security Attributes
	7 A Miniature Illustration of CSA Using an FX System
	8 Broader Implications: Improving Security Engineering Practice
	References/Bibliography

