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PREDICTIVE MOVER DETECTION AND TRACKING IN CLUTTERED 
ENVIRONMENTS 

 
Luis Navarro-Serment, Christoph Mertz, and Martial Hebert 

The Robotics Institute, Carnegie Mellon University 
Pittsburgh, PA, 15213 

 
ABSTRACT 

 
This paper describes the design and experimental 

evaluation of a system that enables a vehicle to detect and 
track moving objects in real-time. The approach 
investigated in this work detects objects in LADAR scan 
lines and tracks these objects (people or vehicles) over 
time. The system can fuse data from multiple scanners for 
360° coverage. The resulting tracks are then used to 
predict the most likely future trajectories of the detected 
objects. The predictions are intended to be used by a 
planner for dynamic object avoidance. The perceptual 
capabilities of our system form the basis for safe and 
robust navigation in robotic vehicles, necessary to 
safeguard soldiers and civilians operating in the vicinity 
of the robot. 

 
1.  INTRODUCTION 

 
Safe navigation is one of the most important goals for 

any vehicle.  To operate in real-world environments, 
vehicles must successfully avoid collisions with other 
moving objects (people or vehicles) while traversing the 
environment.  
 

The ability to avoid colliding with other moving 
objects is particularly important in autonomous vehicles. 
This is especially important in cases where the vehicle 
operates in close proximity with people. In order to be 
effective, a vehicle’s collision avoidance system must 
perform two basic tasks: detect and track moving objects. 
The timely detection of an object makes the vehicle aware 
of a potential danger in its vicinity. Similarly, the vehicle 
can predict the most likely future positions of an object 
being tracked, and make corrections to its present course 
accordingly. For instance, a vehicle tracking a pedestrian 
currently walking on the sidewalk in the same direction 
may decide to continue its present course. However, if the 
vehicle anticipates that a pedestrian walking ahead of it is 
about to cross the street, it must then either slow down or 
stop completely.  
 

Robust and reliable detection and tracking has 
attracted a lot of attention in recent years, driven by 
applications such as pedestrian protection (Fuerstenberg 
and Scholz, 2005), vehicle platooning, and autonomous 
driving (Sun et al., 2006). This is a difficult problem, 
which becomes even harder when the sensors (e.g., 
optical sensors, radar, laser scanners) are mounted on the 

vehicle rather than being fixed, such as in traffic 
monitoring systems. Effective detection and tracking 
require accurate measurements of object position and 
motion, even when the sensor itself is moving. Range 
sensors are well suited to this problem because a first-
order motion correction can be made by simply 
subtracting out self-motion from range measurements. 
Unfortunately, merely subtracting out ego-motion does 
not eliminate all the effects of motion because the 
perceived object’s shape seems to change as different 
aspects of the object come into view, and this change can 
easily be misinterpreted as motion. Plus, the perceived 
appearance of an object depends on its pose, and can also 
be affected by nearby objects. Finally, complex outdoor 
environments frequently involve cluttered backgrounds, 
unpredictable interaction between traffic participants, and 
are difficult to control.  

 
The fundamental problem is that, in order to detect 

change in the object’s position, it is necessary to observe 
some fixed reference point on it.  However, if the 
reference point is not truly fixed, then false apparent 
motion is perceived. In other words, apparent shape 
change due to changing perspective can be misinterpreted 
as motion. The severity of the shape change problem 
depends primarily on the largest object size, the slowest 
speed to be measured and the time available for detection.  
How much can the reference point shift?  If the apparent 
center of the object is used as the reference, then due to 
angular resolution limits, the reference can shift by more 
than 1/2 the object size in a short time. This happens 
when the long side of an object suddenly becomes visible. 

 
In this paper, we describe the design of a system that 
enables a vehicle to detect and track moving objects in 
real-time (Fig. 1). The approach investigated detects 
objects in LADAR scan lines and tracks these objects 
(people or vehicles) over time. The tracker detects 
moving objects and estimates their position and motion, 
while largely ignoring self-motion-induced changes in the 
scan.  The resulting tracks are then used to predict the 
most likely near-future trajectories of the detected objects 
and generate collision warnings. Our work differs from 
previous approaches in that the detection-tracking-
prediction elements are integrated into a single system. 

 
The evaluation of tracking systems is difficult, since 

it is hard to provide target ground truth. A formal 
assessment of such systems in vehicular applications is 
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rarely found in the literature. Consequently, we also 
present the experimental evaluation of system 
performance using a small robot as a controlled-motion 
target to establish ground truth. 

 
Finally, we present tracking results from controlled 

experiments using pedestrians, as well as an evaluation of 
object motion predictions in a collision warning system. 
 

2.  RELATED WORK 
 

The problem of detection and tracking of moving 
objects for vehicular applications has received 
considerable attention in recent years. The most 
commonly used approaches involve both active and 
passive sensors (Hebert, 2000). Active sensors, such as 
radar and LADAR, detect the distance of objects by 
measuring the travel time of a signal emitted by the sensor 
and reflected by the object. Conversely, passive sensors, 
such as video cameras, acquire data in a non-intrusive 
way. (Sun et al., 2006) present an extensive review of 
vision-based on-road vehicle detection systems.  

Active sensors have the advantage of being capable 
of measuring certain quantities (e.g., distance) directly 
without requiring powerful computing resources. In 
particular, recent models of laser scanners are capable of 
gathering high resolution data at high scanning speeds, 
and are available in enclosures suitable for vehicular 
applications. The closest work related to our approach 
involves the use of laser line scanners, and it is described 
in the rest of this section. 

 
In (Fuerstenberg et al., 2002), the authors describe 

the application of a multilayered laser scanner for 
pedestrian classification.  Vehicle odometry is used to 
estimate self-motion, removing the kinematic effects of 
sensor motion.  A Kalman filter is used for object velocity 
estimation.  Tracked objects are classified as car, 
pedestrian, etc., based on their apparent shape and 
behavior over time. Fuerstenberg’s work also produced a 

second system (Streller et al., 2002), in which a Kalman 
filter estimates motion based on the change in position of 
an object’s estimated center-point.  Object classification is 
used to fit a class-specific prior rectangular model to the 
points.  Although not mentioned explicitly, this appears to 
be an approach to reducing shape-change motion artifacts.   
The success of this technique would depend on the 
correctness of the classification and the prior model.  
Each object class also has distinct fixed Kalman filter 
parameters.  A multi-hypothesis approach is used to 
mitigate the effect of classification error. The emphasis of 
both efforts is on single-LADAR systems, and multi-
scanner fusion is not considered.  

In (Wang et al., 2003) the authors generalize 
Simultaneous Localization and Mapping (SLAM) to 
allow detection of moving objects, relying primarily on 
the scanner itself to measure self-motion.  An extended 
Kalman filter with a single constant velocity model is 
used in a multi-hypothesis tracker. As opposed to our 
work, their emphasis appears to be on mapping in the 
presence of moving objects, rather than the real-time 
detection of moving objects when no map is needed. 

Using a map, such as an occupancy grid, appears to 
offer a convenient way of detecting moving objects by 
simply observing the changes in occupancy values for 
each location. However, maintaining an occupancy grid is 
expensive; (Lindstrom and Eklundh, 2001) addressed this 
problem with a sparse representation of open space.  Yet, 
the grid does not solve the shape-change problem because 
we cannot disregard the possibility that an object was 
there already but could not be detected due to occlusion or 
because it was out of range.  The effect of range limits is 
particularly intractable because it depends on the 
unknown target reflectivity. 

Several papers describe indoor people tracking 
systems that use laser scanners.  Shape-change effects are 
mild when tracking people because people are compact 
compared to typical sensing ranges and do not have flat 
surfaces.  Although a moving scanner will see shape 
change in large objects such as desks, large objects can 
simply be discarded because they are clearly not people.  

In (Fod et al., 2002), motion is measured by 
registering old and new scans using chamfer fitting.  A 
constant velocity, constant angular velocity Kalman filter 
is used.  Because the scanner is placed above the leg 
level, a rigid body model is satisfactory.  Although this 
paper does not use moving scanners, it is noteworthy 
because of its attempt to quantitatively evaluate 
performance without ground truth by measuring the 
position noise of stationary tracks, the measurement 
residue of moving tracks, and the occurrence of false 
positive and false negative errors in moving object 
detection. 

There is a large body of literature on tracking 
techniques developed for long-range radar which can be 
applied to robotic applications (Bar-Shalom and 
Fortmann, 1988).  However, the low resolution and long 

 
Figure 1.  A Demo III Experimental Unmanned Vehicle (named 

XUV), and a smaller robot used as a controlled target for 
establishing ground truth. 



3 

range means that all objects are treated as points. In our 
problem, we deal with objects which are closer to the 
sensor. Consequently, a single object is treated as a 
collection of points, rather than a single one.  
 

3.  SYSTEM DESCRIPTION 
 

In this section, the main steps of the algorithm used 
in our system are described. A more detailed description 
of these steps is presented in (MacLachlan and Mertz, 
2006). 

 
3.1 Detection, Tracking, and Prediction 

Objects in the vicinity of the vehicle are detected 
using measurements collected by the vehicle’s LADAR 
line scanners. The objects might be static objects in the 
environment, or moving objects (see Figure 2 for an 
overall depiction). The detection and tracking process 
involves the execution of the following sequence of tasks: 
object detection, object tracking, and prediction.  

 
Object Detection. The first step of the algorithm is 

the grouping of the 3-D points measured by the LADAR 
into potential objects. The objects might be static objects 
in the environments (which are discarded later), or 
moving objects. The algorithm can handle people or 
vehicles as moving objects. Each LADAR scan is 
segmented into objects. Each object is summarized by a 
corner or a line which is fitted to the set of points 
belonging to the object. The corner- and end-points are 
the feature points used for describing the object. 

 
Object Tracking. The objects detected in the current 

scan are then matched with segments from previous 
scans. A measure of match quality is extracted for each 
pair of objects. If they do match, they are considered the 
same objects and the motion of the feature points 
calculated from the match is then fed into a Kalman filter 
which calculates the velocity of the object. The output of 
the detection and tracking algorithm is a set of objects and 
their attributes (i.e., position and velocity). To handle the 
shape change problem, we apply a separate track 
validation procedure that determine whether recent 
observations are consistent with rigid body motion under 
the dynamic model, and whether there is sufficient 
evidence to conclude that  the object is definitely moving. 
To address the problem of tracking objects over a 360° 
envelope around the vehicle, the detection and tracking 
algorithm are executed over four sensors arranged around 
the vehicle with overlapping fields of view. As a result, it 
is necessary to “hand off” objects tracked in one field of 
view to the next. The fusion of the four sensors happens at 
the object level. The segmentation and feature extraction 
is done for each sensor scan separately. There is only one 
object list and each scan updates the objects within its 
own field-of-view. Objects which are seen by two sensors 
are updated twice per cycle. 

 
Prediction. The last part of the system is the 

generation of the predicted trajectories from the objects 
detected and tracked in the fields of view. We assume that 
the trajectories that a given object may choose in the 
future follow a given probability distribution which may 
not be normal or even unimodal. In that case, it becomes 
impossible to represent the distribution of trajectories 
parametrically (e.g., by its mean and variance) and it 
becomes important to resort to non-parametric techniques. 
In the current approach, representative trajectories are 
sampled according to the underlying probability 
distribution. Samples tend to concentrate in areas of the 
space of object trajectories that are more likely, while 
they tend to be sparse in areas that are unlikely. This 
component use a particle filter to predict object positions 
seconds into the future using only the current motion 
estimate. This approach enables the use of more 
sophisticated prediction models. For example, it can 
support multi-modal distributions of trajectories that 
cannot be represented by, for example, a simple dynamic 
model from a Kalman filter.  

The predictions have been used for collision warning 
(MacLachlan and Mertz, 2006). More precisely, the 
system generates the probability of collision for each 
proposed vehicle’s trajectory at varying time horizons. 
These predicted trajectories can also be used as input to a 
vehicle’s planner to implement avoidance of dynamic 
obstacles.  

The algorithms described above are fast enough to 
keep up with a scanner acquisition rate of 75 Hz when 
running on a 600 MHz embedded processor. 

 
3.2 Parameters 

There are multiple parameters that affect the 
operation of the tracker. These have been empirically 
tuned for our particular scanner and application. We 
summarize the most relevant here: 

LADAR fields of view

Detected moving object

Static object (tree)

2sec. predicted trajectory

Recorded trajectory

Estimated motion
velocity, acceleration

LADAR fields of view

Detected moving object

Static object (tree)

2sec. predicted trajectory

Recorded trajectory

Estimated motion
velocity, acceleration

Detected moving object

Static object (tree)

2sec. predicted trajectory

Recorded trajectory

Estimated motion
velocity, acceleration

 
Fig. 2. Overview of the detection and tracking system . At the center 
of the figure is the vehicle (viewed from above), which carries four 

LADARs (one on each side).   
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1) A track is considered apparently moving if it has been 
tracked for at least 15 cycles, and the speed is greater than 
0.75 m/s. 
2) A track is valid when it is apparently moving, the 
standard deviation of its velocity estimate is less than 0.8 
m/s, and has maintained a history of consistency for at 
least 10 cycles. 
3) A minimum of 3 points are required to create a new 
object track; a minimum of 2 points are required to keep 
the track alive. 
4) To keep the computational load low, range 
measurements longer than 40 m are ignored. 
 

4.  EXPERIMENTAL SETUP 
 

4.1 Metrics 
The performance of the system can be evaluated 

along many different axes, each with different metrics. 
Accordingly, we defined a number of metrics and 
corresponding experiments and carried them out using 
one of the experimental setups described before. The rest 
of this section describes the key experimental results 
according to these metrics, which are: 

 
Detection Distance: This is the distance to the object 

at the time the track is considered valid. 
 
Velocity Error: This is the difference between the 

velocity measured by the system and the ground-truth 
velocity. Mean and standard deviation of velocity error 
are reported. 

 
Velocity Delay: This is the delay between the time at 

which an object is detected and the time at which its 
velocity is estimated. As opposed to the position 
measurement process, where no target dynamic model is 
used and from which estimates are immediately available, 
a Kalman filter is used to compute target velocity 
estimates.  The initial velocity of an object is assumed to 
be zero; it takes several cycles to establish a reliable 
velocity estimate. However, there is a tradeoff between 
the accuracy of the velocity estimate and the delay in 
acquiring it. An attempt to obtain a valid estimate faster 
implies a relaxation of the uncertainty allowed for that 
estimate to be considered valid. In our system, there has 
to be a consistency in the history of the track before an 
estimate can be declared well grounded. This consistency 
is evaluated using multiple criteria. For example, an 
estimate has to undergo a minimum number of cycles; the 
standard deviation of the estimate should not exceed a 
maximum threshold, and the estimate should remain 
consistent for at least a certain minimum time. For our 
experiments, a track must have data associated for at least 
15 iterations (equivalent to 0.4 seconds at 37.5 Hz). 
Similarly, the maximum standard deviation of the velocity 
estimate allowed in a track to be reported as valid is 0.8 
m/s. Finally, the velocity estimate should remain 

consistent (i.e., without significant variations of its 
standard deviation) for at least 10 iterations.  

The application of these criteria is illustrated in 
Figure 3, which shows the velocity measurement of a 
pedestrian walking at a constant speed in front of a static 
vehicle (NavLab11), and the corresponding uncertainty 
reported by the Kalman filter. As the person is detected, 
the system starts estimating its velocity (top plot). After 
0.4 s (equivalent to 15 iterations), the first criterion is 
satisfied. As the velocity estimate converges to the true 
value, its standard deviation decreases below the 0.8 m/s 
threshold at 0.46 s, as shown in the bottom plot. This 
satisfies the second requirement. The standard deviation 
continues to decrease, and eventually reaches a steady-
state value. As shown in the top plot, a consistent velocity 
estimate (third requirement) is produced after 10 
iterations producing, a valid velocity estimate is produced 
at 0.8 s, and the track is considered valid. 

 
Track Breakup: The position estimation process can 

be negatively affected by several causes. The system fails 
to detect a target when the target is occluded, when it has 
poor reflectivity at the infrared frequency at which the 
scanner operates, or when objects are too close to each 
other and it is not clear whether to segment the data as 
one or more objects. The latter is known as clutter, and 
can cause the spontaneous disappearance of tracks when a 
target moves close to another object, even though it is not 
visually occluded from the scanner.  

The system continuously collects measurements and 
seeks to establish relationships among groups of adjoining 
points to determine whether they belong to the same 
object. This determination may fail for a number of 
reasons, including occlusion from background clutter, 
poor reflectivity, or objects in close proximity to each 
other (in which case it is not clear whether to segment the 

 
Fig. 3. Estimation of target velocity. A pedestrian walking at a 
constant speed of 2 m/s is tracked. The system reports a valid 

velocity estimate after 0.8 seconds, as shown in the top figure. The 
standard deviation of the velocity estimate, plotted in the bottom 

figure, is one of several criteria used to validate the track. 
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data as one or more objects.  When this occurs, a single 
target is tagged with many different labels as it is being 
tracked. This has a negative impact in the velocity 
estimation, since every time a new target is detected, there 
is a time delay until a new target velocity fix is available, 
as described before. The re-labeling of the target, also 
known as track breakup, results in an accumulation of 
time during which the target is not accurately tracked. 

 
Prediction: One way to assess the performance of 

the approach is to measure the rate of correctly 
anticipated potential collisions with the vehicle. This is a 
difficult metric to evaluate because of its subjective nature 
(the only way to get real “ground truth” is to actually 
collide with the object, a procedure that is not practical 
when the moving objects of interest are humans!) 
 
4.2 Experimental Platforms 

We used several testing platforms during the design 
of this system. We have tested our algorithms using data 
collected from these four configurations: 

1. Tabletop: The laser scanners are on a fixed 
platform. This configuration is useful to characterize the 
baseline performance of the sensors and of the system on 
a completely stationary platform (i.e., without even 
engine vibrations or other effects from a “live” vehicle). 

2. Demo III XUV (Shoemaker and Bornstein, 
1998): Four scanners are mounted on the XUV. Data was 
collected from natural environments in central 
Pennsylvania and northwestern Maryland. This 
configuration is used to validate the performance and 
operation of the system on the target platform. 

3. NavLab11: The CMU test vehicle is a Jeep 
Wrangler with three scanners, one in front and one on 
each side. It was driven at various speeds on and off-road, 
taking data in normal traffic and under controlled 
circumstances. This platform is particularly valuable for 
evaluating the performance of the system at high speed 
(e.g., 20 mph or higher). 

4. Transit vehicles: As part of different, but related, 
project, we mounted two scanners on two transit vehicles, 
one scanner on each side (MacLachlan and Mertz, 2006). 
The predictive obstacle detection and tracking was part of 
a side collision warning system. We collected hundreds of 
hours of data during normal operation. The data was used 
to calibrate and evaluate the system. We use some of this 
data in this report since it is the largest data set ever 
collected on the use of detection and tracking systems in 
an uncontrolled environment. This data provides valuable 
information in addition to the controlled experiments 
conducted on XUV or Navlab11. Also, this system 
provided invaluable lessons that guided the design of the 
system described in this report.  

 
The laser scanners have an update rate of 75 Hz or 

37.5 Hz, depending on the resolution of 1° or 0.5°. 
Importantly, this processing rate implies that the 

magnitude of the objects’ motion at each cycle is very 
small, thus facilitating the tracking.  

 
It is important to note that we use these commercial 

off-the-shelf sensors for convenience of experimentation, 
but other sensors can also be used with this approach (we 
have successfully tested our system using 3-D points 
collected from a mobility LADAR).  All the quantitative 
results presented in the report are relative to the 
performance of these sensors, but the algorithms are for 
the most part independent of the sensors. In particular, 
more recent versions of the scanners allow for finer 
angular resolution, which is a major limitation of the 
current implementation. 

 
5.  EXPERIMENTAL EVALUATION 

 
5.1 Base line performance 

Evaluation of tracking systems is difficult, since it is 
hard to provide target ground truth. A formal assessment 
of such systems in vehicular applications is rarely found 
in the literature. For this reason, we conducted a number 
of experiments using a small mobile robot with all-terrain 
driving capabilities (Fig. 1). We took advantage of its 
controlled motion capabilities to establish the baseline 
performance of the system. The robot is equipped with 
wheel encoders, a fiber-optic gyro (yaw), and a laser 
rangefinder. These sensors provide accurate position and 
pose estimates, which were used to establish the ground 
truth for evaluating the tracking system.  Besides, this 
robot was primarily used as a target during high-speed 
tests for “pedestrian” detection with the remotely 
controlled XUV. (Due to safety concerns one can not 
perform these experiments with humans.)  

We conducted experiments using the small robot with 
both the XUV and NavLab111, for a combined total of 12 
experimental runs. The robot was set in motion at a 
constant speed, and the vehicle collected data while 
maneuvering around the robot. The robot motion 
information was then compared with the estimates 
reported by the tracking system. Some of these results, 
obtained at vehicular speeds of 16 and 18 mph, are 
summarized in Table 1. 

 
 

Vehicle velocity 16 mph 18 mph 
Mean error 0.089 m/s -0.0728 m/s 
Std. dev. error 3.98 cm/s 6.93 cm/s 
Velocity delay 1.1 s 2.0 s 
Track duration 11.5 s 6.5 s 
Target velocity 0.902 m/s 0.883 m/s 
Detection distance 25.5 m 36.48 m 
Target direction Same as vehicle Toward vehicle 
Table 1. Ground truth experiments using a controlled target 

 

                                                 
1 In all of the experiments conducted using NavLab11, including tests at 
higher speeds, for safety reasons the vehicle was manually driven with 
no computer interfering with the driving. 
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5.2 Velocity Delay (with High Vehicle Speed): 
Since the robot does not imitate the human gait, we 

also performed controlled experiments involving 
pedestrians moving at a constant velocity, while the 
vehicle (NavLab11) is moving at a higher speed. These 
experiments were performed in an open environment (a 
quiet street nearby a park), with moderate presence of 
clutter. Both the pedestrians (targets) and the vehicle were 
moving on flat ground. All pedestrians carried a stop 
watch each, and used it to determine their traveling speed, 
based on distance markings drawn on the sidewalk. We 
collected data from a total of 48 individuals. The results 
are summarized in Table 2. As shown, the system is able 
to consistently report accurate velocity estimates while 
NavLab11 travels at speeds of up to 40 mph. Pedestrians 
were initially detected from as far as 36.88 m, which is 
close to the maximum range of 40 m. 

 
The amount of clutter in these experiments can be 

appreciated in Figure 4, which illustrates one 
experimental run of NavLab11 driving at 25 mph. In this 
run, the pedestrian was never significantly affected by 
clutter. No breakups occurred during this experiment. 

The delay in velocity estimation is significant in 
these experiments. It should be noted that this delay 
affects only the reporting of an accurate target velocity by 
the system and that a much shorter delay can be used to 
report the detection of a moving object if one accepts to 
sacrifice accuracy of the velocity estimate. The 
parameters used here are conservative and are designed to 
guarantee a standard deviation of estimated velocity lower 
than 0.1m/s.  

 
5.3 Track Breakup 

To assess the effect of track breakup in typical 
environments, we conducted a series of 5 experiments in 
which people were walking alongside an XUV (manually 
guided using a pendant) in an off-road environment. We 
describe in detail one representative experiment in which 
four people (referred to as “targets” from now on) were 
moving around the XUV, traversing a distance of 92.2 m 
at relatively constant speed. The vehicle speed varied 
between 0.9 and 1.3 m/s. The test was conducted 
outdoors, in a rural environment. Table 3 summarizes 
track breakup occurrence. In this experimental run, target 
A moved always ahead of the vehicle, while periodically 
crossing from one side to another. Targets B and C 
always remained behind and close to the XUV (less than 

4 m), and were never occluded nor significantly affected 
by clutter. Target D followed the XUV from slightly 
farther away and eventually walked across tall grass 
areas, to the point of being lost in the clutter for extended 
amounts of time. As shown in the table, the system 
performed well, reporting valid velocity estimates 
95.99%, 79.49%, and 96.37% of the time for targets A, B, 
and C, respectively. Similarly, there were few breakups 
for these three targets, being as low as 4 for target A, and 
as high as 10 for target B.  

Target D was frequently occluded or cluttered by the 
tall grass and suffered as many as 57 breakups, which 
precluded the computation of valid estimates more than 
51% of the time. At some point, the system assigned a 
new track for this target every 0.1 s, since the target 
walked too close to a patch of tall grass, even though the 
scanners had an unobstructed view of it.  

 
5.4 Prediction 

We include here data acquired with a version of the 
system that was used on transit vehicles. In this case, a 
warning is issued whenever the predicted trajectory of an 
object intersects the predicted trajectory of the vehicle. 
More precisely, a warning is issued whenever the 
probability of a collision rises above a certain threshold. 
Two level of warnings, an “alert” and an “imminent 
warning” for different degrees of danger are generated. 

Vehicle speed, 
m/s  (mph) 

Target 
velocity, m/s 

Estimated 
velocity, m/s 

Mean velocity 
estimation 
error, m/s 

Target 
detection 
distance, m 

Velocity 
delay, s 

Standard 
deviation of 
velocity, m/s 

9.1 (20.36) 1.62 1.686 -0.0661 34.7 1.1 0.046 
10.5 (23.49) 2.18 2.1 0.077 36.88 1.8 0.0483 

11 (24.6) 3.95 4.08 -0.132 34.86 3.5 0.0656 
14.2 (32) 1.71 1.78 0.061 33.73 1.4 0.075 
17.7 (40) 2.89 2.92 0.027 34.26 1.42 0.081 

Table 2. Tracking pedestrians at high speed. 

 
Fig. 4. A pedestrian, identified as Track 2340, moves at constant 

velocity. NavLab11 estimates the pedestrian’s velocity while 
driving at 25 mph. The red line indicates the pedestrian’s estimated 
velocity and direction. Other objects in the scene are identified by 

rectangular boxes. Raw scanner measurements appear as blue dots. 
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The warnings are based on computing, at each cycle, 
the most likely trajectory for each detected moving target 
and to intersect it with the predicted trajectory of the 
vehicle (in this particular experiment, the vehicle was 
manually driven by an independent driver). Predicting 
trajectories of detected objects by taking into account 
typical behavior is in fact a challenging problem and so is 
the evaluation of the prediction algorithm.  

 
 For the purpose of documenting performance of the 

detection and tracking system in the context of an overall 
safety system, we analyzed the warnings issued over 5 
hours worth of data collected in urban environments. 
Although this analysis is far more qualitative than the 
other results presented in this report, it is important 
because it uses one of the few datasets that was acquired 
in an unbiased, uncontrolled manner, i.e., we had no 
control over the environment, the motion of the people 
and vehicles, and the motion of the vehicle, which was 
driven by an independent driver. For each warning that 
was issued we determined if it was a true, i.e. correct, 
warning. We determined the reason of all the false 
warnings. Table 4 shows the absolute number of 
warnings, the relative number for each category 
(percentage of the total number of warnings) for each 
cause, and the warning rate, for the left and right sides. 

 
The most common situations that cause true warnings 

are vehicles passing and fixed objects in the path of a 
turning vehicle. On the right side there are additional true 
warnings caused by pedestrians entering the vehicle or 
walking towards it when the vehicle has not yet come to a 
full stop. These are counted as “false positive” in this 
particular scenario, but they would be true positive in a 
scenario in which people approach the vehicle from any 

direction are considered threats. 
A majority of the alerts are true alerts, whereas a 

majority of the imminent warnings are false positives.  
The most common reason for false imminent warnings is 
that the velocity was incorrect, but as explained below 
this kind of error is not very serious. The main sources of 
errors are: 

 
Vegetation: The warning is triggered by vegetation 

(grass, bush, etc.). The system performs correctly, but the 
warning is regarded as a nuisance because grass or bushes 
are not considered dangerous. For an autonomous vehicle, 
these warnings can be eliminated by integrating the safety 
system with other terrain classification components. 

False velocity: These are the outliers in the velocity 
measurement discussed earlier. The velocity estimate is 
sometimes slightly off, which increases the probability 
enough to cross the warning threshold. This error is not 
extremely serious, because it is only an error in the degree 
of danger. 

No velocity: These are the delay in velocity 
measurements discussed earlier. An object is detected but 
the velocity is not yet established and is therefore 
assumed to be zero. This leads to false warnings when the 
vehicle approaches another vehicle with similar speed. 

 
The error rates listed in Table 4 are only the cases 

where a warning was issued when there should not have 
been one (false positive warnings). Many of the reasons 
mentioned above could also cause false negative 
warnings, i.e. missed warnings. The rate of false negative 
warnings is very hard to determine, because one has to 
look through all the data to find situations where a 
warning should have been given. What we did instead is 
to stage collisions and determined if a warning was 

Target No. of track 
breakups 

Average 
velocity delay 

(s) 

Minimum 
velocity delay (s) 

Maximum velocity 
delay (s) 

Percentage of time with valid 
velocity estimate 

A 4 2.1 1.5 2.8 95.99 % 
B 10 3.57 0.2 10.7 79.49 % 
C 9 0.81 0.2 2.9 96.37 % 
D 57 4.95 0.8 15.0 28 % 

Table 3.  Track breakup analysis: four pedestrians walking alongside an XUV moving at low speed. 

absolute relative [%] rate [1/hour] 
  alert imminent alert imminent alert imminent 

  right  left right left right  left right left right  left right left 
True 60 94 15 9 59 71 47 26 12.0 18.8 3.0 1.8 

Vegetation 10 3 2 0 10 2 6 0 2.0 0.6 0.4 0.0 
false velocity 21 28 10 20 21 21 31 57 4.2 5.6 2.0 4.0 

no velocity 0 2 1 0 0 2 3 0 0.0 0.4 0.2 0.0 

ground return 10 4 3 3 10 3 9 9 2.0 0.8 0.6 0.6 

Other 1 2 1 3 1 2 3 9 0.2 0.4 0.2 0.6 

Sum 102 133 32 35 100 100 100 100 20.4 26.6 6.4 7.0 
Table 4. True and false positive warnings. 
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missed for those situations. 
 
We staged 30 collisions or near collisions. 17 of 

those were used to calibrate the system and the remaining 
13 were the test set. In all thirteen cases the system gave 
correct warnings. Since no false warnings were observed, 
we can only give an upper bound on the false warnings 
rate: With a 90% confidence level the false warning rate 
for these scenarios is less than 0.16. 

 
 

CONCLUSIONS 
 

We have described the design and experimental 
evaluation of a predictive mover detection and tracking 
system, capable of operating from a moving vehicle in 
real-time. In our approach, the detection-tracking-
prediction elements are integrated into a single system. 

 
 The system’s base line performance was evaluated 

by conducting experiments using a small mobile robot as 
a controlled target to provide ground truth. Since the robot 
does not imitate the human gait, we also performed tests 
with humans using NavLab11 and a Demo III XUV.  

 
The system has proven capable of detecting humans 

moving as fast as 4 m/s at distances up to 38 m, from a 
vehicle moving at speeds as high as 40 mph, and 
measured the target’s velocity with an error as small as 
0.061 m/s. The prediction capabilities were tested using 
data collected in urban environments (performance is 
summarized in the previous section).  

 
The experiments have shown that the integrated 

approach described in this document can be used in a 
system that can detect and track objects and predict the 
trajectories of objects and the corresponding probabilities 
of collision with the vehicle. The approach has still many 
limitations. Areas which can still be improved are: 
decrease in velocity delay and number of track breakups, 
especially near clutter, and filtering of vegetation. In 
addition, current results show that the predictions 
computed from the output of the detection and tracking 
system can be used effectively to predict possible 
collision with future vehicle paths, thus motivating further 
development of the prediction system. 
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