1-1-2000

Doing without schema hierarchies: A connectionist approach to routine sequential action and its pathology

M Botvinick

D C. Plaut
plaut@cmu.edu

Follow this and additional works at: http://repository.cmu.edu/psychology

Published In
JOURNAL OF COGNITIVE NEUROSCIENCE, 3E.
Doing Without Schema Hierarchies: A Recurrent Connectionist Approach to Normal and Impaired Routine Sequential Action

Matthew Botvinick
University of Pennsylvania

David C. Plaut
Carnegie Mellon University and the Center for the Neural Basis of Cognition

In everyday tasks, selecting actions in the proper sequence requires a continuously updated representation of temporal context. Previous models have addressed this problem by positing a hierarchy of processing units, mirroring the roughly hierarchical structure of naturalistic tasks themselves. The present study considers an alternative framework, in which the representation of context depends on recurrent connections within a network mapping from environmental inputs to actions. The ability of this approach to account for human performance was evaluated by applying it, through simulation, to a specific everyday task. The resulting model learned to deal flexibly with a complex set of sequencing constraints, encoding contextual information at multiple time scales within a single, distributed internal representation. Degrading this representation led to errors resembling those observed both in everyday behavior and in apraxia. Analysis of the model’s function yielded numerous predictions relevant to both normal and apraxic performance.

Much of everyday life is composed of routine activity. From the moment of getting up in the morning, daily living involves a collection of familiar, typically unproblematic action sequences such as dressing, eating breakfast, and driving to work. Because such activities can be executed without intense concentration, it is easy to overlook their psychological complexity. In fact, even the most routine everyday activities may call for a sophisticated coordination of perceptual and motor skills, semantic memory, working memory, and attentional control. Given the central role such activities play in naturalistic human behavior, it seems important to understand their psychological underpinnings.

In the present article, we advance, in basic form, a theory of how routine, object-oriented action sequences are performed. The framework we put forth, expressed in a set of computer simulations, takes as its point of departure existing work using recurrent connectionist networks. Applying such models to routine sequential action results in an account that differs sharply from most competing theories. As we discuss, most current accounts of action begin by assuming a processing system that is explicitly hierarchical in structure and which contains processing elements that are linked, in a one-to-one fashion, with specific segments of behavior. The work we present here converges on two central theoretical claims that differentiate it from such hierarchical accounts: (a) The skills reflected in routine sequential activity cannot be identified with discrete, isolable knowledge structures but instead emerge out of the interaction of many simple processing elements, each of which contributes to multiple behaviors, and (b) the detailed mechanisms that underlie routine action develop through learning and, as a result, are closely tied to the structure of particular task domains. As we demonstrate, these tenets allow the present account to deal with a number of issues that have proved challenging for earlier theories.

Hierarchical Organization in Routine Tasks

An essential point concerning the sequential structure of routine tasks was made early on by Lashley (1951). His aim was to point out the insufficiency of then current associationist accounts of sequencing, which characterized serial behavior as a chain of simple links between each action and the next. Lashley noted that because individual actions can appear in a variety of contexts, any given action may be associated with more than one subsequent action. In such cases, information limited to the action just performed provides an ambiguous cue for action selection. Lashley’s conclusion was that, in addition to representations of individual actions, the actor must also have access to a broader representation of temporal context, a “schema” that somehow encodes the overall structure of the intended action sequence.
Later work has extended Lashley’s (1951) argument by emphasizing that sequential action typically has multiple, hierarchically organized levels of structure (e.g., Miller, Galanter, & Pribram, 1960; Schank & Abelson, 1977; Grafman, 1995). As stated by Fuster (1989),

Successive units with limited short-term goals make larger and longer units with longer-term objectives. These in turn, make up still larger and longer units, and so on. Thus we have a pyramidal hierarchy of structural units of increasing duration and complexity serving a corresponding hierarchy of purposes. (p. 159)

An illustration drawn from recent work by Humphreys and Forde (1999) is shown in Figure 1. Here, simple actions occurring during a typical morning routine (e.g., lifting a teapot) are grouped together into subroutines (e.g., pouring tea into a cup), which are themselves part of larger routines (e.g., making tea), and so forth. Rather than being organized by a unitary schema, behavior here has been described as involving the coordination of multiple schemas associated with different levels of temporal structure.

Hierarchical Models of Action

Since the original work highlighting the hierarchical structure of sequential behavior, a variety of proposals have been made concerning the cognitive mechanisms supporting such behavior. The most influential of these proposals share, as a central assumption, the idea that the hierarchical structure of behavior is mirrored in the gross architectural structure of the processing system. According to this approach, the processing system is arranged in layers corresponding to discrete levels of task structure, with processing at lower levels guided by input from higher ones. Models of this kind have proved partially successful in capturing basic phenom-

ena relating to human sequential action. However, as detailed below, there are also several issues they have not yet entirely addressed.

One of the earliest attempts to model sequential action using a hierarchical processing architecture was by Estes (1972). This work posited a hierarchy of “control elements,” which activate units at the level below. Ordering of the lower units depends on lateral inhibitory connections, running from elements intended to fire earlier in the sequence to later elements. After some period of activity, elements are understood to enter a refractory period, allowing the next element in the sequence to fire. This same basic scheme was later implemented in a computer simulation by Rumelhart and Norman (1982), with a focus on typing behavior.

Models proposed since this pioneering work have introduced a number of innovations. Norman and Shallice (1986) discussed how schema activation might be influenced by environmental events; MacKay (1985, 1987) introduced nodes serving to represent abstract sequencing constraints (see also Dell, Berger, & Svec, 1997); Grossberg (1986) and Houghton (1990) introduced methods for giving schema nodes an evolving internal state and explored the consequences of allowing top-down connections to vary in weight; and Cooper and Shallice (2000) have used “goal nodes” that gate activation flow between levels. Despite these developments, however, the majority of existing models continue to assume that the hierarchical structure of sequential behavior is directly reflected in the structure of the processing system, as a hierarchy of nodes or schemas.

An illustration of the state of the art is provided by Cooper and Shallice (2000). Their model, illustrated in Figure 2, addresses the everyday routine of making a cup of coffee. As in earlier models, the processing system is structured as a hierarchy of nodes or units, with units at the lowest level representing simple actions and nodes

---

**Figure 1.** Hierarchical representation of a routine sequential task. From “Disordered Action Schema and Action Disorganization Syndrome,” by G. W. Humphreys and E. M. E. Forde, 1999, Cognitive Neuropsychology, 15, p. 802. Copyright 1999 by Taylor & Francis. Adapted with permission.
at higher levels representing progressively larger scale aspects of the task.

Data Addressed by Hierarchical Models

The basic motivation behind the hierarchical approach is to address the issues originally raised by Lashley (1951), Miller et al. (1960), and related work. As such, the approach has been used to simulate normal behavior in a number of hierarchically structured task domains, including typing (Rumelhart & Norman, 1982), spelling (Houghton, 1990), and coffee making (Cooper & Shallice, 2000).

An appealing aspect of the hierarchical approach is that it can also be used to provide an account of action pathologies. Specifically, hierarchical models have been applied to error data from two domains: everyday “slips of action” made by neurologically intact individuals (see, e.g., Baars, 1992; Cooper & Shallice, 2000; Norman, 1981; Reason, 1990; Roy, 1982; Rumelhart & Norman, 1982) and the behavior of patients with ideational apraxia and action disorganization syndrome (ADS), neuropsychological disorders involving impairments in performing sequential tasks using objects (described further below). In general, hierarchical accounts have led to two suggestions concerning the source of errors: disruptions of the within-level competition between schema nodes and disruptions of the top-down influence of schema nodes on their children (for instances of both accounts, see Humphreys & Forde, 1999; MacKay, 1985, 1987; Norman, 1981; Rumelhart & Norman, 1982; Schwartz, Reed, Montgomery, Palmer, & Mayer, 1991). Once again, the most recent and detailed account is that of Cooper and Shallice (2000), who used interventions of both kinds to simulate various types of action slip and several key aspects of ADS.

Challenges for the Hierarchical Approach

Despite the successes of the hierarchical approach, there are a number of areas to which, so far, it has proved difficult to apply. In the following sections, we focus on four such areas.

Learning

If action is based on the interaction of nodes in a hierarchy, how does such a hierarchy develop through learning? Much work involving hierarchical models skips over this issue, simply building the needed structure into the processing system (e.g., Cooper & Shallice, 2000; Estes, 1972; MacKay, 1985; Rumelhart & Norman, 1982). There are at least two cases in which learning has been implemented (Grossberg, 1986; Houghton, 1990). However, in both instances, learning appears to depend on a debatable assumption. Specifically, these accounts require that it be possible, prior to learning, to identify the boundaries of any sequence that is to be represented by a schema node. Challenging this assumption is empirical evidence suggesting that, at least in some domains, reliable surface markers for event boundaries may not be readily available (see, e.g., Morgan & Demuth, 1996). Indeed, there is evidence that the identification of event boundaries can depend on knowledge concerning the sequential structure of the domain (see Avrahami & Kareev, 1994; Zacks & Tversky, 2001; Saffran, 2001). Thus, from the point of view of existing models, learning in schema hierarchies appears to present a chicken-and-egg conundrum: Acquisition of sequence knowledge depends on the ability to identify event boundaries, but the identification of event boundaries depends on sequence knowledge.
Sequencing

How are actions and subtasks selected in an appropriate sequence? Although hierarchical models have gone a great distance toward answering this question, they have also left certain aspects of sequencing unexplained.

The earliest approach to this issue (Estes, 1972; Rumelhart & Norman, 1982), which involved lateral inhibitory connections, did not address situations in which the same items appear in more than one order across sequences. In more recent work, more sophisticated sequencing mechanisms have been proposed, but uncertainties remain. For example, in Cooper and Shallice (2000), the top-down flow of activation to each unit is gated until the appropriate preceding actions have been completed. However, because no mechanism is specified for this “symbolic gating,” the model ends up assuming an important part of the functionality it is intended to explain. In a more explicitly mechanistic approach, Houghton (1990, see also Grossberg, 1986) has introduced compound units, with time-varying states, that can be used to activate lower level units in sequence. However, it has not yet been shown how this approach might extend to tasks with more than two levels of structure (e.g., the coffee task treated by Cooper & Shallice, 2000). In addition, it is unclear whether the approach might be able to deal with situations involving cross-temporal contingency, in which choosing the correct action depends on retaining specific information about earlier actions.

In Houghton’s (1990) model and in others, a critical mechanism in sequencing is reflex (or rebound) inhibition, by which units are automatically inhibited after firing. An inherent limitation of this mechanism, acknowledged by Cooper and Shallice (2000), is that it can be applied only to units at the bottom level of the hierarchy. Units at higher levels must remain active until the entire segment of behavior they represent is completed. Immediate self-inhibition is thus inappropriate for these units, and other mechanisms must be included. To cope with the issue, Cooper and Shallice simply stipulated that units above the lowest level remain active until all relevant subgoals have been achieved. The actual mechanisms responsible for goal-monitoring and schema inhibition thus remain to be explained.

Accounting for Error Data

As noted earlier, hierarchical models have been used to account for errors, both those of neurologically intact subjects and those of patients with apraxia. One recent model (Cooper & Shallice, 2000), in particular, is impressive in the range of data for which it accounts. Through various manipulations, Cooper and Shallice (2000) elicited errors in many of the major categories described in empirical studies, comparing their data explicitly with observations of apraxic patients reported by Schwartz et al. (1991, 1995).

However, despite the strengths of this recent work, there are places in which it falls short of capturing empirical findings or in which a more parsimonious account would be desirable. For example, Cooper and Shallice (2000) found it necessary to use several different manipulations to produce different kinds of action slips. Whereas errors of omission were produced by weakening of top-down influence within the schema hierarchy, repetition or perseveration errors were attributed instead to insufficient lateral inhibition. Of perhaps greater concern are two empirical findings that the model did not reproduce. First, without the addition of special mechanisms, the model did not produce errors involving the repetition of an entire subtask after one or more intervening subtasks—so-called “recurrent perseveration” (Sandson & Albert, 1984). Second, the model did not reproduce an important relationship between error rate and error content in ADS: that across patients, as overall error rate increases, omission errors form a progressively higher proportion of all errors (Schwartz et al., 1998; also see Figure 14 and further discussion below).

Dealing With Quasi-Hierarchical Structure

Hierarchical models apply most naturally to behavioral domains that are themselves strictly hierarchical, that is, domains in which the elements at one level of the schema hierarchy can be completely specified without reference to the levels above. Such models are less straightforward to apply in domains in which the performance of a routine should vary with the larger behavioral context. To see why this type of context dependence presents a challenge for hierarchical models, consider the following scenario: A waiter working in a diner serves three different regular customers each morning, one who prefers one scoop of sugar in his coffee, one who prefers two scoops, and one who prefers no sugar. Modeling the waiter’s coffee-making repertoire in a hierarchical model would present a dilemma. Given that each customer expects a different amount of sugar, should the sugar-adding routine be represented using one unit or several? Clearly, using one unit is inappropriate, because this does not allow the amount of sugar added to vary according to the individual being served. The alternative strategy of using several separate sugar-adding units ignores the fact that the different versions of sugar adding are all instances of a single routine and thus share a great deal of structure. The same dilemma arises at the level of the coffee-making task as a whole. Should the model represent coffee making as a unitary schema or as a set of independent schemas, each relating to a different customer?

Such indeterminacies are concerning, given that behavior in naturalistic tasks is often not strictly hierarchical. Although there are ways in which hierarchical models can be elaborated to permit some degree of context sensitivity (see the General Discussion), the question arises whether there might be alternative accounts for which context sensitivity is an inherent feature.

In the other areas we have touched on as well, it is always possible that further refinements or extensions to the hierarchical approach may overcome the remaining challenges. While such work goes forward, however, the present uncertainties make it seem desirable to also consider alternative accounts.

An Alternative Approach

Our goal in the present article is to put forth an alternative framework for understanding routine sequential behavior. This takes as its point of departure existing work on recurrent connectionist networks. Beginning with the pioneering work of Jordan (1986b) and Elman (1990, 1991, 1993), numerous studies have demonstrated the ability of such networks to produce sequential behavior resembling that of humans in a variety of domains, including spoken word comprehension and production (Christiansen, Allen, & Seidenberg, 1998; Cottrell & Plunkett, 1995;
Dell, Juliano, & Govindjee, 1993; Gaskell, Hare, & Marslen-Wilson, 1995; Plaut & Kello, 1999), lexical semantics (Moss, Hare, Day, & Tyler, 1994), reading (Pacton, Perruchet, Fayol, & Cleeremans, 2001; Plaut, 1999), sentence processing (Allen & Seidenberg, 1999; Christiansen & Chater, 1999; Rohde, 2002; Rohde & Plaut, 1999), implicit learning (Cleeremans, 1993; Cleeremans & McClelland, 1991), dynamic decision making (Gibson, Fichman, & Plaut, 1997), motor control (Jordan, Flash, & Arnon, 1994), and cognitive development (Munakata, McClelland, & Siegler, 1997). In the work reported here, we adapt the recurrent connectionist framework to the domain of routine, object- and goal-oriented sequential behavior, evaluating its ability to address a fundamental set of empirical phenomena.

The account we put forth differs most strikingly from the hierarchical approach in the way that it portrays the representation of sequence knowledge. Rather than attempting to make such knowledge explicit, by linking it to specific elements within the processing system, the present account suggests that knowledge about sequential structure inheres in the emergent dynamical properties of the processing system as a whole. In the framework we put forth, there is no isolable structure that can be identified with a schema. Borrowing the words of Rumelhart, Smolensky, McClelland, and Hinton (1986),

Schemata are not “things.” There is no representational object which is a schema. Rather, schemata emerge at the moment they are needed from the interaction of large numbers of much simpler elements all working in concert with one another. (p. 20)

The knowledge that structures this interaction in our account is not represented locally as in hierarchical models. Instead, knowledge about a variety of action sequences is distributed and superimposed over a large set of connection weights among processing units. The result is a system that displays behavior that can be hierarchically structured but also flexible and context sensitive. Furthermore, as we show, the same properties that give such a processing system its power also make it susceptible to errors resembling those occurring in human performance.

Recurrent Networks: The General Framework

Connectionist or parallel distributed processing models (Rumelhart & McClelland, 1986) comprise a set of simple processing units, each carrying a scalar activation value. The activation of each unit is based on excitation and inhibition received from units linked to it through weighted synapse-like connections. Often, the units in connectionist networks are segregated into three populations or layers. A first layer carries a pattern of activation representing some input to the system. Activation propagates from this layer through an internal or hidden layer, which transforms the input information, sending a pattern of activation to an output layer whose units together represent the system’s response to the input.

A network is described as recurrent when loops or circuits can be traced through its set of connections. For example, in the so-called simple recurrent network architecture, each hidden unit is connected to every other unit. A critical aspect of such recurrent connectivity is that it allows information to be preserved and transformed across time. In each step of processing, the network’s recurrent connections carry information about the state of the system at the previous time step. Because this state carries information about earlier events, it allows the network to act in a way that is sensitive to temporal context.

The ability of recurrent networks to map from inputs to appropriate outputs and to encode, preserve, and utilize information about temporal context depends on the pattern of connection weights among its units. Through the use of a connectionist learning procedure such as “back-propagation” (Rumelhart, Hinton, & Williams, 1986), an effective set of weights can be learned through repeated exposure to correct sequential behavior. Through the gradual, adaptive adjustment of its connection weights, the system learns to produce internal representations—patterns of activation across its hidden layer—that both facilitate the immediate selection of outputs and preserve information that will be needed later in the sequence.

The basic properties of recurrent connectionist networks, as demonstrated in previous work, suggest that they may offer an interesting alternative to hierarchical models in the domain of routine sequential action. Recurrent networks are well suited to sequential domains, containing a flexible mechanism for structuring behavior in time. The paradigm is associated with an account of learning, previously applied to other areas of sequential behavior (Elman, 1990; McClelland, St. John, & Taraban, 1989). Of importance, recurrent networks are capable of encoding temporal structure at multiple time scales simultaneously (Cleeremans, 1993; Elman, 1991), pointing to a capacity to cope with hierarchically organized sequential structure. At the same time, as Elman (1991) has shown in models of sentence processing, recurrent networks have the capacity to integrate information across multiple levels of temporal structure, allowing them to show behavior that is sensitive to context (see also Servan-Schreiber, Cleeremans, & McClelland, 1991).

Despite these appealing aspects of recurrent connectionist networks, widespread skepticism toward such models appears to exist among researchers studying routine sequential action. For example, Houghton and Hartley (1995) have suggested that recurrent networks necessarily suffer from the same limitations as “chaining” models. Brown, Preece, and Hulme (2000, p. 133) argued that recurrent networks lack “temporal competence . . . the intrinsic dynamics that would enable them to progress autonomously through a sequence.” Others have expressed specific doubt concerning the ability of recurrent networks to account for error data (e.g., Cooper & Shallice, 2000). Our work attempts to demonstrate that such skepticism is misplaced.

Modeling Naturalistic Action

The goal of applying the recurrent connectionist framework to routine sequential action raises several implementational issues. First, because everyday action typically involves action on objects, it is necessary to formulate a way to represent not only actions but also their targets and implements. Second, because actions often alter the perceived environment, it is necessary to allow this to occur in the model. Third, in approaching error data, it is necessary to motivate a technique for inducing dysfunction. In what follows, we detail our approach to these issues.

Action on Objects

Allport (1987, p. 395) has noted, “systems that couple ‘perception’ to ‘action’ must deal moment by moment with two essential
forms of selection: Which action? and Which object to act upon?” Because computational models of action have often dealt with tasks that do not involve direct physical action on objects (e.g., language tasks), they have typically focused only on the first of these two forms of selection. Thus, a central question facing models of routine naturalistic action is how objects are identified as targets for action.

One promising hypothesis in this regard is that targets for action are specified indexically. That is, actions are directed toward whatever object is currently at the system’s focus of orientation, for which orientation can mean the point of visual fixation or, more generally, the focus of attention. This strategy, otherwise known as a “deictic” (Agre & Chapman, 1987; Ballard, Hayhoe, Pook, & Rao, 1997) or “do-it-where-I’m-looking” (Ballard, Hayhoe, Li, & Whitehead, 1992) strategy, has seen wide application in engineering and robotics (McCallum, 1996; Whitehead & Ballard, 1990). More important, it has been proposed as a model for how objects are selected as targets for action in human behavior (Agre & Chapman, 1987; Ballard et al., 1997, see also Kosslyn, 1994; Pylyshyn, 1989; Ullman, 1984).

The three-layer recurrent network architecture described earlier lends itself naturally to the use of indexical representation. One need only assume that the input layer, now interpreted as carrying a representation of the perceived environment, conveys information about which object is currently the focus of attention. Units selected in the model’s output layer, now understood as representing actions, can be interpreted as directed toward that object. One potential implementation of this approach is diagrammed in Figure 3. Here, the input layer contains a segment labeled fixed object, which specifies the visual features of the object currently at the focus of visual attention. The units in the output layer correspond to actions to be directed toward this object.

Some actions involve objects not only as targets but also as instruments or tools. Again following previous deictic models (e.g., Ballard et al., 1992), we assume that this role is assigned to whatever object the agent currently has in hand. Accordingly, the input layer in Figure 3 includes a second portion labeled held object, which specifies the features of this object. Just as the fixated object is interpreted as the target for action, the held object (if any) is interpreted as the implement to be used.

Because, within this framework, actions are directed at whatever object is currently the focus of attention, selecting a new target for action necessarily involves shifting that focus to a different object. To this end, computational models using indexical representations typically involve not only manipulative actions (actions that involve transformation of the environment) but also perceptual actions, which serve to reorient to the system toward a new object (see Whitehead & Ballard, 1990). This can be understood as either a physical reorientation, such as an ocular saccade, or a covert change of focus accomplished through attentional adjustments. Units representing such perceptual actions can be incorporated into the output layer of the architecture diagrammed in Figure 3, with each unit representing an action such as “fixate the spoon.”

Given this framework, sequential action on objects takes the form of a rough alternation between perceptual actions, which orient the system toward a target object, and manipulative actions, during which the object is acted on. Evidence for such an alternation in human behavior has been provided by several studies of hand-eye coordination (Ballard et al., 1992; Hayhoe, 2000; Land, Mennie, & Rusted, 1998).

**Implementing the Perception–Action Loop**

An important aspect of naturalistic sequential action is that each movement, by altering the environment, can impact the perceptual input the system receives next. This can be captured in a model by interposing a functional representation of the environment between the model’s outputs and its subsequent inputs. The implementation diagrammed in Figure 3 incorporates such a simulated workspace. This maintains a representation of the state of various objects in the environment, updates this in response to each action, and if appropriate, yields a new input pattern to the layers representing the objects currently fixated and held.

**Modeling Task Acquisition**

The focus of the present research is on routine behavior. As such, we are more concerned with the outcome of learning than with the learning process itself. Nevertheless, a central claim of the present account is that experience plays a critical role in shaping the representations and mechanisms that support sequential behavior. Thus, the issue of learning provides an important part of the background for the account.

In human behavior, the acquisition of sequential routines can occur by a variety of means: explicit instruction, trial and error, problem-solving methods, and so on. Two methods that appear to be particularly important in everyday life are learning through prediction and learning with scaffolding. As characterized by Schank (1982), much of our knowledge about action sequences is gained through a process of continual prediction making; learning occurs when our predictions about actions and events turn out to be erroneous. One instance of such prediction-based learning would be learning through observation, during which the learner follows the performance of an individual already familiar with the task and attempts to predict his or her actions at every step. Scaffolding

![Figure 3. Architecture of the overall model. Open arrows indicate that every unit in the sending layer is connected to every unit in the receiving layer. (See text for details, including the number of units included in each layer.) From "Representing Task Context: Proposals Based on a Connectionist Model of Action," by M. Botvinick and D. C. Plaut, 2002, Psychological Research, 66, p. 300. Copyright 2002 by Springer. Adapted with permission.](image-url)
Involves a similar process, except that the learner attempts to perform the task, with a teacher intervening only when the learner falters (Greenfield, 1984).

In both observational learning and learning with scaffolding, task acquisition is an active process. The learner attempts, at each step of performance, to produce (or predict) the next correct action, and learning occurs when this turns out to be incorrect. Our approach to simulating learning implements this basic process. In the simulations we present, learning entails the step-by-step presentation of specific action sequences. At each step in the process, the network generates the representation of a possible next action, and learning occurs to the extent that this action fails to match the observed sequence.

Human learning of complex procedures appears to involve two principal stages, each depending on a functionally and anatomically distinct set of learning mechanisms: an initial phase, in which task knowledge is rapidly but superficially acquired, followed by a longer phase of consolidation or proceduralization (Anderson, 1987; McClelland, McNaughton, & O’Reilly, 1995; Schneider & Detweiler, 1988). The simulations we present relate most clearly to the second of these phases, because they involve the establishment of highly routinized behavior through a very gradual learning process. The simulations implement no mechanisms for rapid binding. It is thus important to note that such mechanisms do not appear to be absolutely necessary for the acquisition of procedural knowledge; when they are bypassed through task manipulations (Stadler & Frensch, 1998), or impaired due to brain injury (Cleeremans, 1993; N. J. Cohen, 1984), a gradual form of sequence learning is still observed. Our simulations can be thought of as modeling this direct form of procedural learning. However, another way of viewing the simulations, which we prefer, is as modeling the process of consolidation. According to McClelland et al. (1995), consolidation occurs through a process by which long-term memory systems (housed in the neocortex and the basal ganglia) are trained by shorter term learning mechanisms (housed in the medial temporal lobe). The simulations can be interpreted as modeling this process, if the input and feedback provided to the model is viewed as coming not from the environment but from a second learning system.

**Modeling Dysfunction**

Previous studies of action errors, in both neurologically intact subjects and individuals with apraxia, have regarded such errors as reflecting dysfunction in the basic mechanisms that give behavior its temporal structure. In hierarchical models, as we have discussed, this has involved disrupting either within-layer competition or the top-down influence of high-level schemas. In the present framework, the most direct way to compromise the mechanisms that support sequencing is to disrupt the information carried by the recurrent connections within the hidden layer. Several different methods can be used to induce such a disruption. Previous studies using recurrent networks have added random perturbations to connection weights (Dell et al., 1993) or to net inputs (Cleeremans, 1993), or reduced the gain of the unit activation function (J. D. Cohen & Servan-Schreiber, 1992). In the modeling work reported here, we added random noise to the activation values being conducted over the processing system’s recurrent connections.

Of importance, the disruption of internal representations in the present framework can be viewed as corresponding, in terms of its consequences, to basic etiological factors underlying both slips of action and ADS. Studies of slips have emphasized that such errors tend to occur during periods of distraction, during which there is cross talk from task-irrelevant cognitive activity (Reason, 1990). We assume that internal representations of temporal context are among the representations affected by such cross talk. The addition of noise to these representations can thus be understood as a functional correlate of mental distraction. More severe levels of noise can be interpreted as representing the effects of direct neural damage in ADS. Although the basic problem here is structural rather than functional (as in the case of slips), we assume that at the computational level the two domains involve the same basic problem: a corruption of the system’s internal representation of context.\(^1\) It is interesting that there is independent motivation for using a single technique for modeling both slips of action and errors in apraxia. On the basis of observations concerning the patterns of errors made by neurologically intact individuals and patients with apraxia of varying severity, Schwartz et al. (1998) have suggested that apraxia may represent an exaggeration of the same processes that lead to errors in neurologically intact individuals (see also Roy, 1982).

**Simulations**

Using the approach just outlined, we conducted a series of computer simulations evaluating the capacity of a recurrent network to account for a variety of basic phenomena pertaining to routine sequential action. The simulations centered on a single model, trained on a set of concrete, everyday tasks—most centrally the task of making a cup of instant coffee. The behavior of this model was first compared with normal, error-free human performance (Simulation 1). Then, by impairing the mechanisms responsible for maintaining contextual information, we used the model to address slips of action (Simulation 2) and the behavior of patients with ADS (Simulation 3). We also carried out two additional simulations, in which the model was trained on other training sets, to address the specific issues of context sensitivity (Simulation 1A) and the effect of varying task frequency (Simulation 2A).

**Simulation 1: Normal Performance**

In the initial simulation, we asked whether the recurrent network framework could be used to account for a set of core features of error-free, routine sequential activity. The relevant phenomena, several of which we have already mentioned, were gleaned from existing work in the domain and include the aspects of action previously addressed by hierarchical models:

1. Routine sequences tend to assume a roughly hierarchical form (Miller et al., 1960; Schank & Abelson, 1977).

\(^1\) At a more concrete level, the addition of noise may be interpreted as an analogue for the effects of damage to long-fiber pathways due to head injury (a condition often associated with ADS), insofar as such damage is likely to reduce the fidelity of information transmission across these pathways.
2. Elements at any level of this hierarchy may appear in multiple contexts (Lashley, 1951).

3. Although the environment often provides cues to the correct action, the information it conveys is also frequently insufficient to guide action selection without some added context (Whitehead & Lin, 1995).

4. In some cases, it may be permissible to execute the elements of a sequence in variable order.

5. In some cases, actions or subroutines may be substituted for one another.

6. The details of certain sequences may depend on the context in which they are performed (see Simulation 1A).

As an exemplar, the task of coffee making is appealing for several reasons. To begin with, coffee making involves all of the benchmark features of routine sequential behavior enumerated above. Perhaps because of this, coffee making, and its close relative tea making, have figured in numerous empirical studies of routine behavior, including studies of slips of action (Reason, 1990; Humphreys, Forde, & Francis, 2000) and ADS (Schwartz et al., 1991, 1998; see also Lehmkuhl & Poeck, 1981). Furthermore, coffee making has served as the focus for a recently proposed hierarchical model of sequential action (Cooper & Shallice, 2000). Addressing this task thus facilitates a comparison between approaches.

**Method**

**Task and representations.** Our formalization of the coffee-making task is presented in Table 1. (As discussed below, the sequence shown corresponds to one of four versions of the task that were used in training.) The task consists of a series of discrete steps, each involving a set of perceptual inputs and an associated action. As introduced above, perceptual inputs are divided into those pertaining to the object currently viewed and those pertaining to the object currently grasped. In both cases, objects are represented as a collection of complex, but in all cases perceptible, features. The full feature set used is listed in Table 2.

**Table 1**

*The Coffee Task: One of Four Versions Used in Training*

<table>
<thead>
<tr>
<th>Step</th>
<th>Fixated object</th>
<th>Held object</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cup, 1-handle, clear-liquid</td>
<td>nothing</td>
<td>fixate-coffee-pack</td>
</tr>
<tr>
<td>2</td>
<td>packet, foil, untorn</td>
<td>nothing</td>
<td>pick-up</td>
</tr>
<tr>
<td>3</td>
<td>packet, foil, untorn</td>
<td>packet, foil, untorn</td>
<td>pull-open</td>
</tr>
<tr>
<td>4</td>
<td>packet, foil, torn</td>
<td>packet, foil, torn</td>
<td>fixate-cup</td>
</tr>
<tr>
<td>5</td>
<td>cup, 1-handle, clear-liquid</td>
<td>packet, foil, torn</td>
<td>pour</td>
</tr>
<tr>
<td>6</td>
<td>cup, 1-handle, brown-liquid</td>
<td>packet, foil, torn</td>
<td>fixate-spoon</td>
</tr>
<tr>
<td>7</td>
<td>spoon</td>
<td>packet, foil, torn</td>
<td>put-down</td>
</tr>
<tr>
<td>8</td>
<td>spoon</td>
<td>nothing</td>
<td>pick-up</td>
</tr>
<tr>
<td>9</td>
<td>spoon</td>
<td>spoon</td>
<td>fixate-cup</td>
</tr>
<tr>
<td>10</td>
<td>cup, 1-handle, brown-liquid</td>
<td>spoon</td>
<td>stir</td>
</tr>
<tr>
<td>11</td>
<td>cup, 1-handle, brown-liquid</td>
<td>spoon</td>
<td>fixate-sugar</td>
</tr>
<tr>
<td>12</td>
<td>cup, 2-handles, lid</td>
<td>spoon</td>
<td>put-down</td>
</tr>
<tr>
<td>13</td>
<td>cup, 2-handles, lid</td>
<td>nothing</td>
<td>pull-off</td>
</tr>
<tr>
<td>14</td>
<td>cup, 2-handles, sugar</td>
<td>lid</td>
<td>fixate-spoon</td>
</tr>
<tr>
<td>15</td>
<td>spoon</td>
<td>lid</td>
<td>put-down</td>
</tr>
<tr>
<td>16</td>
<td>spoon</td>
<td>nothing</td>
<td>pick-up</td>
</tr>
<tr>
<td>17</td>
<td>spoon</td>
<td>spoon</td>
<td>fixate-sugar bowl</td>
</tr>
<tr>
<td>18</td>
<td>cup, 2-handles, sugar</td>
<td>spoon</td>
<td>scoop</td>
</tr>
<tr>
<td>19</td>
<td>cup, 2-handles, sugar</td>
<td>spoon-sugar</td>
<td>fixate-cup</td>
</tr>
<tr>
<td>20</td>
<td>cup, 1-handle, brown-liquid</td>
<td>spoon-sugar</td>
<td>pour</td>
</tr>
<tr>
<td>21</td>
<td>cup, 1-handle, brown-liquid</td>
<td>spoon</td>
<td>stir</td>
</tr>
<tr>
<td>22</td>
<td>cup, 1-handle, brown-liquid</td>
<td>spoon</td>
<td>fixate-carton</td>
</tr>
<tr>
<td>23</td>
<td>carton, closed</td>
<td>spoon</td>
<td>put-down</td>
</tr>
<tr>
<td>24</td>
<td>carton, closed</td>
<td>nothing</td>
<td>pick-up</td>
</tr>
<tr>
<td>25</td>
<td>carton, closed</td>
<td>carton, closed</td>
<td>peel-open</td>
</tr>
<tr>
<td>26</td>
<td>carton, open</td>
<td>carton, open</td>
<td>fixate-cup</td>
</tr>
<tr>
<td>27</td>
<td>cup, 1-handle, brown-liquid</td>
<td>carton, open</td>
<td>pour</td>
</tr>
<tr>
<td>28</td>
<td>cup, 1-handle, light-, brown-liquid</td>
<td>carton, open</td>
<td>fixate-spoon</td>
</tr>
<tr>
<td>29</td>
<td>spoon</td>
<td>carton, open</td>
<td>put-down</td>
</tr>
<tr>
<td>30</td>
<td>spoon</td>
<td>nothing</td>
<td>pick-up</td>
</tr>
<tr>
<td>31</td>
<td>spoon</td>
<td>spoon</td>
<td>fixate-cup</td>
</tr>
<tr>
<td>32</td>
<td>cup, 1-handle, light-, brown-liquid</td>
<td>spoon</td>
<td>stir</td>
</tr>
<tr>
<td>33</td>
<td>cup, 1-handle, light-, brown-liquid</td>
<td>spoon</td>
<td>put-down</td>
</tr>
<tr>
<td>34</td>
<td>cup, 1-handle, light-, brown-liquid</td>
<td>nothing</td>
<td>pick-up</td>
</tr>
<tr>
<td>35</td>
<td>cup, 1-handle, light-, brown-liquid</td>
<td>cup, 1-handle, light-, brown-liquid</td>
<td>sip</td>
</tr>
<tr>
<td>36</td>
<td>cup, 1-handle, light-, brown-liquid</td>
<td>cup, 1-handle, light-, brown-liquid</td>
<td>sip</td>
</tr>
<tr>
<td>37</td>
<td>cup, 1-handle, empty</td>
<td>cup, 1-handle, empty</td>
<td>say-done</td>
</tr>
</tbody>
</table>
Also as shown in Table 2, actions were represented by single descriptors. Actions fell into two broad categories: manipulative actions that alter the environment (e.g., pick-up, pour, tear) and perceptual actions that orient the system toward a new object (e.g., fixate-cup, fixate-spoon). In keeping with the indexical representational scheme described above, the designations of manipulative actions did not specify which object was being acted on.

The sequence shown in Table 1 was one of four instances of the coffee-making sequence included in the training set. Each version of the task included four basic subtasks: (a) add coffee grounds to the hot water, (b) add cream, (c) add sugar, and (d) drink. However, the order of these subtasks varied. Specifically, in two sequences sugar was added before cream, and in the other two, from a packet. Crossing these two dimensions of variability yielded the four exemplar sequences used:

- Grounds → Sugar (Pack) → Cream → Drink
- Grounds → Sugar (Bowl) → Cream → Drink
- Grounds → Cream → Sugar (Pack) → Drink
- Grounds → Cream → Sugar (Bowl) → Drink

The hierarchical structure of everyday tasks means that subtasks can appear as part of different overall tasks. To pose this challenge to the model, we added a secondary task to the training set. The task chosen, tea making, is detailed in Table 3. (A second version of the task, not shown, involved adding sugar from a sugar bowl rather than from a packet.) Some features of the tea task are relevant to our simulations of action errors. For present purposes, we note only that tea making was implemented so as to contain versions of sugar adding identical to those involved in coffee making.

Note that the tea and coffee tasks begin with precisely the same perceptual input. This raised the issue of how the network was to “decide” which task to perform when this input was presented. As explained further below, in some simulations the choice of task was left to the network. In other simulations, however, it was useful to have some means of directing the network to perform one task or the other. To this end, two additional input units were included: instruct-coffee and instruct-tea. These were intended to represent simply another form of perceptual input. Although they can be thought of as representing auditory verbal commands, we included them with the visual input units, thinking of them as representing the visual cue cards used to instruct patients in some of the experiments of Schwartz et al. (1998). When used during training and testing, the instruction units were activated along with the initial perceptual input and then inactivated. That is, the instruction units were active only during the first cycle of processing. Thus, although they provided an initial cue for action, they could bear none of the burden of representing task context on subsequent cycles of processing.

In addition to the tea and coffee tasks, the network was trained on an additional group of 267 single-step examples we refer to as the background training set. This contained one training example for each physically realizable configuration of the coffee-making environment. For each such input, the corresponding output included every action that might plausibly be performed in that environmental context, with unit activations normalized to sum to 1.0. The purpose of adding the background set to the training corpus was to provide the network with information that might otherwise be derived from exposure to a wide variety of routines other than coffee and tea making, including information about basic physical constraints and affordances associated with objects.

For example, in real-world behavior, it is necessary to be holding an object to perform the action put-down. To some extent, this rule is implicit in our implementation of the coffee and tea tasks, because the network is trained to select the put-down action only in cases in which the grasp is occupied. However, the background training set provided a broader basis for making the relevant generalization, exposing the network to a much larger set of circumstances in which it would be feasible or infeasible to execute put-down.

Our inclusion of the background set in the training corpus follows from our view that performance in specific routine tasks can be influenced by the subject’s larger task repertoire. However, the contribution of the background set to the model’s performance should not be overestimated. Specifically, it is important to emphasize that the background set involved only single-step examples, not sequences. Thus, the sequential behavior of the model at test cannot be attributed to this aspect of its training.

During training, the coffee, tea, and background examples were presented in an interleaved fashion. Such interleaving is necessary in training models that use distributed representations. Without it, acquisition of a new task can disrupt previous learning on another (so-called catastrophic interference; see McCloskey & Cohen, 1989). It is, of course, not our claim that exposure to sequential routines occurs in a strictly interleaved fashion. Instead, the training regime used here can be understood within the context of the complementary learning systems theory proposed by McClelland et al. (1995). As discussed earlier, this account suggests that long-term knowledge is established through a two-stage process, supported by dual learning mechanisms. In the first stage, new knowledge is encoded rapidly, but superficially, by mechanisms implemented in medial temporal lobe structures. This rapid encoding is followed by a more gradual process of consolidation, during which the patterns encoded by the hippocampal system are repeatedly presented to a slower learning, but representationally richer, neocortical system. The consolidation process allows this second learning system to integrate the results of earlier learning, and to avoid catastrophic interference, by exposing it to both new and established patterns in an interleaved fashion. We provide further comments on how

---

2 Localist action representations were used as a matter of convenience; the paradigm does not require them. Further simulations, to be described elsewhere, coded actions multidimensionally, on the basis of features derived from empirical studies (e.g., Klutsky, Pellegrino, McCloskey, & Lederman, 1993).
were initialized to small random values (sampled uniformly between 0 and 1). This random initial state was intended to serve as a proxy for possible over successive processing steps. Learning, we introduced an additional term into the network’s performance measure that pressured hidden unit activations to change as little as possible over successive processing steps. Although this learning con-

the present account relates to this larger theoretical context in the General Discussion section.

**Model architecture.** The model architecture followed that shown in Figure 3, with a single input and output unit for each of the features and actions listed in Table 2 and 50 hidden units. Recurrent connections were associated with a conduction delay of one time step, thereby instantiating a simple recurrent network (Elman, 1990; Jordan, 1986b). Unit activations were a smooth, nonlinear (logistic) function of their summed input from other units,

$$ a_j = \frac{1}{1 + \exp(-\sum_i a_i w_{ij})}, $$

where $a_j$ is the activation of unit $j$, $a_i$ is the activation of unit $i$, and $w_{ij}$ is the weight on the connection from unit $i$ to unit $j$. An environmental feedback loop was implemented as described earlier, with the Perl scripting language (Wall, Christiansen, & Orwant, 2000).

**Training procedure.** The training set included all four versions of the coffee task, both versions of the tea task, and the entire set of background examples. Each of the four coffee sequences occurred twice during each epoch (each pass through the training set): once with the *instruct-coffee* unit and once without. Each tea sequence appeared four times, twice with the *instruct-tea* unit and twice without.

The network was trained on the target sequences with a version of recurrent back-propagation through time, adapted to the simple recurrent network architecture (see Williams & Zipser, 1995). Connection weights were initialized to small random values (sampled uniformly between –1 and 1). At the beginning of each training sequence, activations over the hidden units were initialized to random values (sampled uniformly between 0.01 and .99). This random initial state was intended to serve as a proxy for internal states that would be present if the model were involved in a variety of other activities just prior to entering the coffee- or tea-making task. At each time step during training, an input pattern corresponding to a particular combination of viewed and held objects was applied to the input layer of the network (see Figures 1 and 3). Activation was allowed to propagate through the network, producing a pattern of activation over the output layer. This output pattern was compared with the correct output for that step in the sequence (as defined by the target sequence). The difference between these two patterns, measured by their cross-entropy (see Hinton, 1989), was used as a measure of performance error, providing the basis for gradual, adaptive weight changes. Note that during training, the correct input sequence was presented to the network regardless of its generated outputs.

Weight updates were performed at the end of each individual sequence, with a learning rate of 0.001 and no momentum. Training was stopped after 20,000 passes through the training set, a point at which error levels had plateaued.3

Earlier work has shown that simple recurrent networks can have difficulty learning to preserve contextual information through sequences in which it is not immediately useful in selecting outputs (e.g., Servan-Schreiber, Cleeremans, & McClelland, 1988). To support this aspect of learning, we introduced an additional term into the network’s performance measure that pressured hidden unit activations to change as little as possible over successive processing steps.4 Although this learning con-

---

3 Later investigations revealed that correct responses, on the basis of a winner-take-all criterion, were produced after about half as many epochs. Even given this, learning in the model may appear surprisingly slow. In this regard, it should be noted that learning required the network to acquire both task knowledge and background knowledge simultaneously. If the network begins the learning process having already encoded relevant background knowledge, task acquisition can be more rapid, especially if the network has been exposed to tasks that share structure with the target task (for relevant simulations, see Botvinic & Plaut, 2002).

4 In back-propagation, weight changes are made on the basis of how they affect output error, which in turn depends on how they affect unit activations. Thus, the procedure includes a computation of the derivative of error with respect to each unit’s activation on each cycle. Our modification involved adding the term $2p(a(t) - a(t - 1))$ to the derivative for the network’s hidden units, where $a$ is the unit’s activation and $p$ is a scaling parameter (set to 0.05 in our simulations). This imposes a penalty on changing hidden unit activations that scales as the square of the difference between each hidden unit’s activation on the present cycle and its activation on the previous one.
straint was used in all of the simulations reported here, we found in subsequent simulations that dropping the constraint yielded equivalent results.

Testing procedure. The model was tested by allowing it to produce sequences of actions without the external feedback provided during training. Prior to each test run, a random pattern of activation was applied to the hidden layer, as during training. In the first cycle of processing, the initial input pattern from the coffee and tea sequences was applied. Once activation had propagated to the output layer, the most active output unit was taken to specify the action selected. The representation of the environment was updated on the basis of this action (even if incorrect) and used to generate a new input pattern.

A total of 300 test runs were completed. In 100 of these the instruct-coffee unit was included in the initial input pattern, in the next set of 100 the instruct-tea unit was included, and in the third set of 100 no instruction unit was activated. On each test trial, output was collected until the say-done action was produced.

Evaluation of performance. The goal of the present simulation was to establish the network’s capacity to acquire and reproduce the full set of sequences included in the training corpus. Evaluation of performance was straightforward: The sequences produced at test were categorized on the basis of the specific target sequences with which they matched, with a residual error category reserved for sequences not precisely matching any target sequence.

Results

When the fully trained model was permitted to select actions without the feedback provided during training, it reproduced, without errors, each of the sequences from the training corpus. On each test run initiated with the instruct-coffee unit, the model produced one of the four coffee-making sequences. The number of occurrences of each variant of the task in 100 test runs is shown in Table 4. On each test run using the instruct-tea unit, the model produced one of the two tea sequences, as also shown in Table 4.

Of importance, production of the target sequences did not require inclusion of the instruction units. On test runs in which no instruction unit was activated, the model produced one of the six training sequences, with the frequencies shown in Table 4.

Analyses

Although the coffee and tea tasks may appear simple, it is worth emphasizing the fact that together they posed to the network the full set of computational challenges that hierarchical models have traditionally addressed, as enumerated in our list of benchmarks. The network’s performance demonstrates its ability to cope with situations in which subtasks can be executed in variable order, situations in which different versions of one subtask can be substituted for one another, and situations involving hidden environmental states (here, whether sugar has been added to the cup). Above all, it is worth emphasizing the tasks’ hierarchical structure. The simulation results demonstrate that such structure can be managed by a processing system that is not explicitly hierarchical in form. Rather than expressing the hierarchical organization of the task domain at the architectural level, the model captures this structure in the internal representations it uses to perform the task. Because these representations are the key to understanding the behavior of the model, it is worth considering them in some detail.

At each step of processing, the model’s hidden layer assumes a new pattern of activation. Because this pattern reflects both the current stimulus-response mapping and any contextual information being preserved, it can be thought of as a compact and context-specific representation of the current step in the task. Given that there are 50 units in the hidden layer, this internal representation can be represented as a point in a 50-dimensional state space. As the task sequence unfolds and the model’s internal representation evolves, a trajectory is traced through that space. As Elman (1991, 1993) has shown, it is useful to visualize such trajectories as a way of understanding how recurrent models represent tasks they have learned to perform. One way of accomplishing this is through multidimensional scaling (MDS). MDS yields a representation in two dimensions that preserves as much information as possible about the original distances among a set of points in a higher dimensional space (Kruskal & Wish, 1978).

An illustration of MDS applied to the present model’s internal representations is presented in Figure 4. This shows the trajectory followed during the sugar (pack) sequence, beginning with fixate-sugar (o) and ending with stir (x).

Figure 4 actually shows two trajectories, both of which are based on the sugar (pack) sequence but which are drawn from different task contexts. One is based on the sequence as performed during coffee making, the other as performed during tea making. A comparison of the two trajectories provides an indication of how the network is able to cope with hierarchical task structure. In both instances of the sugar (pack) sequence, the network performs precisely the same actions, in response to precisely the same perceptual inputs. This accounts for the fact that the two trajectories in Figure 4 are similar in shape. However, the slight shifting of the trajectories with respect to one another indicates that the internal representation the network uses for each step is affected by the larger task context in which it is performed. To borrow a term from Servan-Schreiber et al. (1991), the network “shades” its internal representations, on the basis of the overall task in which it is engaged. It is this representational shading that allows the

Table 4

<table>
<thead>
<tr>
<th>Type of instruction and sequence</th>
<th>Total no. produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>With coffee instruction</td>
<td></td>
</tr>
<tr>
<td>GROUNDS → SUGAR (PACK) → CREAM → DRINK</td>
<td>35</td>
</tr>
<tr>
<td>GROUNDS → SUGAR (BOWL) → CREAM → DRINK</td>
<td>37</td>
</tr>
<tr>
<td>GROUNDS → CREAM → SUGAR (PACK) → DRINK</td>
<td>14</td>
</tr>
<tr>
<td>GROUNDS → CREAM → SUGAR (BOWL) → DRINK</td>
<td>14</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
</tr>
<tr>
<td>With tea instruction</td>
<td></td>
</tr>
<tr>
<td>TEABAG → SUGAR (PACK) → DRINK</td>
<td>46</td>
</tr>
<tr>
<td>TEABAG → SUGAR (BOWL) → DRINK</td>
<td>54</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
</tr>
<tr>
<td>With no instruction</td>
<td></td>
</tr>
<tr>
<td>GROUNDS → SUGAR (PACK) → CREAM → DRINK</td>
<td>15</td>
</tr>
<tr>
<td>GROUNDS → SUGAR (BOWL) → CREAM → DRINK</td>
<td>18</td>
</tr>
<tr>
<td>GROUNDS → CREAM → SUGAR (PACK) → DRINK</td>
<td>12</td>
</tr>
<tr>
<td>GROUNDS → CREAM → SUGAR (BOWL) → DRINK</td>
<td>10</td>
</tr>
<tr>
<td>TEABAG → SUGAR (PACK) → DRINK</td>
<td>20</td>
</tr>
<tr>
<td>TEABAG → SUGAR (BOWL) → DRINK</td>
<td>25</td>
</tr>
<tr>
<td>Errors</td>
<td>0</td>
</tr>
</tbody>
</table>
network to simultaneously capture information pertinent to multiple levels of the task hierarchy.

In addition to preserving information about the overall task context, representational shading allows the model to preserve specific information about earlier actions and about hidden states of the environment. For example, during coffee making, the model’s hidden representations are shaded to reflect whether sugar has or has not yet been added (see Figure 5). This aspect of the model differentiates it from hierarchical models, in which information about previous actions is dealt with by mechanisms separate from those used to keep track of task context (i.e., reflex inhibition and symbolic gating).

Two additional aspects of the present model’s method for preserving context information further differentiate it from the one implemented in hierarchical accounts. First, information pertaining to different levels of task structure is not segregated within the system. Instead, information pertaining to different levels is represented in a superimposed fashion over a common pool of units. Second, information pertaining to all levels of task structure is represented in a distributed fashion rather than locally. Some implications of these two points are discussed in the next simulation, addressing context-sensitive behavior, and in the simulations of errors that follow.

**Simulation 1A: Performance on a Quasi-Hierarchical Task**

One characteristic of normal routine action that we have emphasized is its context dependence. This refers to the way in which the details of a task or subtask vary depending on the particular situation in which it is performed. In our basic implementation of the coffee task, such context dependence is largely filtered out. The steps followed in adding cream, adding sugar, drinking, and so on are the same regardless of the temporal context in which they occur. To address the issue of context dependence, we carried out a separate simulation. Here, the model used in Simulation 1 was retrained with a set of tasks intended to implement the example given in the introduction, involving a waiter preparing coffee for three regular customers, each of whom expects a different amount of sugar.

**Method**

Three new instruction units were added to the basic model, corresponding to requests for coffee with no sugar, with one spoonful of sugar, and with two spoonfuls of sugar, respectively. The model was trained in the same manner as in Simulation 1 but with a training set containing modified versions of the coffee sequence shown in Table 1. Each sequence began with the initial input used in that sequence but was now accompanied by one of the new instruction units. The sequence for making coffee without sugar followed the original coffee sequence but omitted the entire sugar sequence. The sequence for making coffee with one spoonful of sugar was drawn directly from the original set of four coffee sequences (ground $\rightarrow$ sugar $ightarrow$ cream $ightarrow$ drink). The sequence for making coffee with two spoonfuls of sugar was identical to the previous sequence, but the sequence fixate-sugarbowl $ightarrow$ scoop $ightarrow$ fixate-cup $ightarrow$ pour appeared twice in succession rather than once, as in the original version of the task.

In view of the fact that no variability in performance was required of the model, the hidden layer was initialized by setting all unit activations to 0.5.
rather than to random values. The training and testing procedures were otherwise identical to those used in Simulation 1. As in that simulation, training was terminated when it was evident that learning had reached a final plateau (20,000 epochs).

Results and Analysis

Testing of the fully trained model indicated that it was able to perform all three versions of coffee making without errors. In accordance with the instruction unit activated on the first cycle of processing, the network reproduced the appropriate version of the coffee-making sequence from the training set, either omitting sugar or adding one or two spoonfuls from the sugar bowl. The model’s method of dealing with the sequences involved in this simulation provides a contrast to traditional, hierarchically structured models of sequential action. As discussed in the introduction, such models appear to face a choice between representing different variations of a sequence using a single unit or using multiple independent units. The present model, in contrast, provides a natural means for simultaneously encoding the relatedness of two sequences while at the same time representing their differences. Once again, the point is made clear by an examination of the internal representations the model uses during task processing.

Figure 5. Multidimensional scaling plot of the hidden representations arising during performance of the cream-adding sequence, as performed before (solid line) and after (dashed line) sugar adding. o = fixate-cream; x = stir.

Simulation 2: Slips of Action

In this simulation, we examined the ability of the model studied in Simulation 1 to account for several basic characteristics of human slips of action. Slips are the absent-minded mistakes neurologically intact individuals make from time to time while performing familiar tasks. Although such errors have been of interest to psychologists since William James (1890; see also Jastrow, 1905), the most detailed information about the timing and form of such errors comes from work by James Reason (1979, 1984a, 1984b, 1990, 1992). Reason conducted diary studies in which subjects recorded the details of their own slips of action. In addition to Reason’s own interpretation of these data, it has also been analyzed and extended by Norman (1981) and others (e.g., Baars, 1992; Roy, 1982). Such work points to a number of general principles that any sufficient model should address.
1. As noted earlier, slips tend to occur under conditions of distraction or preoccupation (Reason, 1990).

2. Slips tend to occur at branch points or decision points, junctures at which the immediately preceding actions and/or the environmental context bear associations with different subsequent actions. The following example was offered by Reason (1990, p. 70): “On passing through the back porch on my way to get my car I stopped to put on my Wellington boots and gardening jacket as if to work on the garden.”

3. In the closely related phenomenon Norman (1981) labeled “capture,” lapses from one task into another tend to occur just after a series of actions that the two tasks share. Perhaps the most famous example of capture from the psychology literature is the one reported by William James (1890), who describes how “very absent-minded persons in going to their bedroom to dress for dinner have been known to take off one garment after the other and finally to get in bed.”

4. Rather than involving bizarre or disorganized action sequences, slips tend to take the form of a familiar and intact sequence, ordinarily performed in a different but related context (Reason, 1979, 1984b).

5. Sequencing errors tend to fall into three basic categories: perseverations, omissions, and intrusions (Reason, 1984a; object substitutions form a fourth major category of slip). Perseverations (or repetitions) occur when the sequence constituting the error derives from earlier within the same task. Intrusions occur when the sequence comes from a different, usually related, task. Omissions involve skipping over a subroutine to execute a sequence from later in the same task.

6. Slips involving lapses from one task into another (i.e., intrusions) tend to reflect the relative frequency of the two tasks. Specifically, lapses tend to involve a shift from a less frequently performed task into one more frequently performed (Reason, 1979).

As introduced earlier, our approach in simulating slips of action was based on the widely shared assumption that slips result from degradation of representations of task context. In the setting of the present simulation, this meant examining the model’s performance...
under conditions that mildly distorted the patterns of activation arising in its internal layer.

**Method**

The simulation was conducted with the model described in Simulation 1, complete with its final set of connection weights. However, here, to simulate the conditions involved in slips of action and ADS, we disrupted the model’s sequencing mechanism by adding zero-mean, normally distributed, random noise to activation values in the hidden layer at the end of each cycle of processing, after the completion of action selection. Test runs were otherwise conducted as in Simulation 1. Each trial began with the activation of one instruction unit (as before, for the first step of the trial only) and was terminated when the say-done action was completed, or after 100 cycles. A total of 200 trials were conducted, half with the network performance is described in conjunction with the simulation error rate of less than 0.5 errors per trial. The approach to evaluating noise (variance): 0.02, 0.04, 0.08, 0.10, 0.20, 0.30, 0.40, and 0.50.

Because slips of action are relatively infrequent in human behavior, we focused our analysis on model behavior at levels of noise producing an error rate of less than 0.5 errors per trial. The approach to evaluating network performance is described in conjunction with the simulation results.

**Results**

The number of errors occurring at each level of noise is shown in Figure 7. Our focus in this section of the study was on error rates lower than 0.5 and thus on noise levels lower than 0.10. (See Simulation 3 for analysis of model performance at higher levels of noise.) In this range, in keeping with empirical findings, the model’s errors tended to take the form of recognizable subtask sequences, inserted at the wrong moment but nonetheless drawn intact from somewhere in the training corpus. In some instances, the inserted sequence came from earlier within the task being performed, resulting in a perseveration or repetition error (e.g., adding sugar twice, either in succession or with intervening subtasks). In other instances, the inserted sequence came from later in the task, resulting in a subtask omission (e.g., leaving out the sugar subtask and skipping directly to cream adding and then to drinking). In still other cases, the inserted subtask came from outside the task being performed, resulting in an intrusion error. The prime example here occurred in the context of tea making. As shown in Table 3, our implementation of the tea task did not include the cream-adding subtask. Thus, if a trial included the tea-bag subtask and, later, cream adding, this reflected a lapse from tea into coffee making. This was, in fact, the network’s most common error during tea making.

The tendency for errors to take the form of intact but displaced subtask sequences is illustrated in Figure 7. The black portion of each bar in the diagram indicates the number of trials at each level of noise that contained only errors involving subtask displacement. The data diagrammed here are based on 100 test runs of the coffee-making task, applying noise with variance 0.10. The horizontal axis indexes the steps in the task. The vertical axis shows the number of trials for which no error had yet occurred at the corresponding step. Occurrence of errors at a given point is indicated by a sudden step down in the diagram, the size of which reflects the frequency of errors at that step. The plot contains large drops at three specific steps, each of which corresponds to a point in the task at which a subtask has just ended and a new one begins.

Also in keeping with empirical findings, the model’s errors tended to take the form of recognizable subtask sequences, inserted at the wrong moment but nonetheless drawn intact from somewhere in the training corpus. In some instances, the inserted sequence came from earlier within the task being performed, resulting in a perseveration or repetition error (e.g., adding sugar twice, either in succession or with intervening subtasks). In other instances, the inserted sequence came from later in the task, resulting in a subtask omission (e.g., leaving out the sugar subtask and skipping directly to cream adding and then to drinking). In still other cases, the inserted subtask came from outside the task being performed, resulting in an intrusion error. The prime example here occurred in the context of tea making. As shown in Table 3, our implementation of the tea task did not include the cream-adding subtask. Thus, if a trial included the tea-bag subtask and, later, cream adding, this reflected a lapse from tea into coffee making. This was, in fact, the network’s most common error during tea making.

The tendency for errors to take the form of intact but displaced subtask sequences is illustrated in Figure 7. The black portion of each bar in this diagram indicates the number of trials at each level of noise that contained only errors involving subtask displacement. The gray portion stacked above this shows the number of trials containing at least one error involving a disordered subtask sequence (e.g., fixate-carton → pick-up → peel-open → fixate-cup → put-down). As Figure 7 makes clear, at low overall error rates, errors primarily took the form of intact subtask sequences.

In summary, the errors produced by the model under low levels of noise displayed three principal characteristics of slips of action produced by neurologically intact subjects: The errors tended to occur at branch points, they tended to take the form of displaced but well-formed action sequences, and they involved omissions, repetitions, or intrusions.

**Analyses**

In this simulation, errors resulted from a degradation of the model’s representations of task context. The functional consequences of such distortion follow from a basic property of connectionist models: If faced with a novel or distorted representation, such models tend to respond on the basis of that representation’s similarity to more familiar ones (Rumelhart, Durbin, Golden, & Chauvin, 1996). When the present model is faced with a distorted context representation, it responds on the basis of the representation’s similarities to the set of canonical representations it has learned to use in performing the target tasks. An error occurs when the network is in some situation calling for some action and distortion causes its context representation to resemble a pattern the model has learned to associate with a different situation and a different action.

---

6 The data shown are from the coffee task. However, similar data were obtained for the tea task, both here and in subsequent analyses.
A case study. For illustration, consider the following relatively common error: After adding grounds, sugar, and cream, the model selects fixate-sugar and enters into a second round of sugar adding, committing a perseveration error. In explicating this error, it is useful to consider how the error is ordinarily avoided. When operating without noise, the model is able to keep track of whether sugar has been added by appropriately shading its internal representations, as shown in Figure 5. When the model reaches the critical juncture, at the end of the cream-adding subtask, it will be in one of the two states indicated with an X in that figure. One of these patterns indicates that sugar has not yet been added, the other that it has. For brevity, let us label these patterns Cr$_{11}^{nosug}$ and Cr$_{11}^{sug}$, respectively. In this notation, the main element designates a specific subsequence (e.g., Cr for adding cream), the subscript designates a specific step in this sequence (e.g., 11), and the super- script designates the larger context in which the sequence occurs (e.g., nosug for a point prior to adding sugar). The sugar perseveration error occurs when the model is in the situation usually represented by Cr$_{11}^{nosug}$ (i.e., having added cream after sugar), but noise causes the model’s context representation instead to resemble Cr$_{11}^{sug}$ (i.e., having added cream but before adding sugar).

Evidence for this account of the model’s behavior is provided in Figure 9. This focuses on the context representations arising at the end of the cream-adding sequence, comparing these between correct trials and trials in which a sugar perseveration occurred. For each trial type, the plot shows the average distance of the actual context representation from the two canonical patterns Cr$_{11}^{nosug}$ and Cr$_{11}^{sug}$. What Figure 9 indicates, is that the internal representations on correct trials, although distorted, still tended to resemble the context-appropriate pattern Cr$_{11}^{nosug}$ more closely than Cr$_{11}^{sug}$. In contrast, on trials in which a sugar perseveration occurred, the context representations present at the point of the error tended to drift away from the canonical patterns. On these trials, noise caused the model to, in effect, “forget” that it had previously added sugar.

Branch points. Critically, when such confusions between contexts do occur, their effect on overt performance is most often felt at branch points. This is because branch points involve a situation in which similar context representations are associated with different actions. For example, in the case of the sugar perseveration error we have just been considering, it is important that Cr$_{11}^{nosug}$ and Cr$_{11}^{sug}$ lie close to one another in representational space (see Figure 5). In the setting of mild representational distortion, this similarity makes it easy for the network to mistake one context for the other.

It is interesting that although context confusions tend to impact overt behavior at branch points, they may nonetheless be present for multiple time steps prior to a branch point. Indeed, further analysis of the model’s internal representations shows that in most cases, the model’s branch-point errors involve a gradual drift in the representation of context, beginning several steps before the branch point.

For illustration, we focus once more on the example of the sugar perseveration. Figure 10 is based on the context representations arising in the steps leading up to this slip (i.e., the steps in the cream-adding sequence). Like the single step addressed in the previous diagram, here the degraded representation in each step (which we designate Cr$_{11}^{sug*}$) is visualized in terms of its distance from two canonical vectors, each produced by the model in the corresponding step in the absence of noise. The dashed line shows distances from the canonical presugar patterns (Cr$_{11}^{presug}$); the solid line shows distances from a corresponding set of postsugar reference points (Cr$_{11}^{postsug}$). Note that the dashed line in the figure curves upward. This indicates that over the steps leading up to a sugar perseveration error, the patterns Cr$_{11}^{sug*}$ tend to drift gradually away from the canonical patterns Cr$_{11}^{presug}$; that is, the network gradually “forgets” that sugar has already been added. The solid line falls over the course of the cream sequence, showing Cr$_{11}^{sug*}$ drifting toward Cr$_{11}^{postsug}$. Eventually, the solid and dashed lines cross, representing the point at which the network has effectively forgotten that sugar has been added. Note that on average, this crossover occurs several steps prior to the step on which the error actually occurs. The confusion remains latent until the branch point simply because it is only at that point that the particular piece of information that has been corrupted becomes relevant to action selection.

![Figure 8. Survival plot for the coffee task under noise with variance 0.10. On the x-axis are steps in the sequence. The y-axis indicates the number of trials of 100 that remained error free at the corresponding step. Data are collapsed across the four versions of the task.](image)
One reason that branch-point errors are usually associated with a gradual representational drift beginning several steps earlier is that at low levels of noise, only small distortions occur on each step. It thus requires several incremental distortions to sufficiently disrupt the system’s function. However, a further examination of the model’s context representations indicates that there is also another reason: It is easier for the model to confuse one context with another when processing is toward the middle of a subtask sequence than when it is near the beginning or the end of one. To explain why this is so, we return to the data diagrammed in Figure 10. Recall that the distance data in this figure were computed with the two sets of canonical patterns, \(C_r^{\text{pre-sug}}\) and \(C_r^{\text{sug}}\). Although the context representations occurring under noise drift toward and away from these reference patterns, it is interesting to note that the reference patterns themselves vary in their distance from one another over the course of the cream-adding sequence. Specifically, as illustrated by the dotted line in Figure 10, the patterns in \(C_r^{\text{pre-sug}}\) become progressively more similar to their siblings in \(C_r^{\text{sug}}\) during the first half of the sequence, and this trend reverses during the second half of the subtask. The pattern illustrated in Figure 10 means, in effect, that the network represents the pre- and postsugar situations more similarly toward the center of the subtask sequence than near the branch points at either end. As a result, the center of the subtask represents a point in processing at which contextual information is particularly vulnerable to the effects of noise. It is particularly easy here for noise to alter a postsugar context pattern so that it resembles the corresponding presugar pattern, and vice versa. At the beginning and the end of the subtask, at which the standard context patterns are more distinct, noise is less likely to have this effect.

Despite its subtlety, this aspect of the model is important, for it leads to a novel prediction about human slips of action. The prediction concerns the impact of momentary distraction, based on the timing of such distraction with respect to subtask boundaries. Specifically, the prediction is that distraction toward the middle of a subtask sequence should give rise to more frequent errors at the transition to the next subtask than distraction closer to that transition point.

This prediction is illustrated in Figure 11. This figure shows data drawn from simulations in which momentary distraction was modeled by degrading the model’s context representation in a single step of processing. Introducing noise at a step near a subtask boundary yielded no errors. However, the same amount of noise injected toward the middle of a subtask sequence resulted in a large number of subsequent errors (occurring at the nearest subsequent subtask boundary). This differential effect of distraction, based on its timing, constitutes a strong prediction of the model, one that appears to differentiate it from previous models of action. In very recent work, Botvinick and Bylsma (2004) conducted an empirical test of this prediction. Neurologically intact participants were asked to perform the coffee-making task repeatedly, while coping with occasional interruptions. In line with the present model, a greater number of errors occurred following mid- than end-subtask distraction.

**Simulation 2A: Effect of Relative Task Frequency**

One particularly interesting aspect of the empirical data concerning intrusions is that these errors show an effect of relative task frequency; intrusions tend to involve a lapse from a less...
frequently executed task into a more frequent one. Simulation 2 showed that when the model’s context representations are degraded, intrusions are among the errors that it produces. In particular, the model was prone to the error of adding cream to tea, indicating an intrusion from coffee making into tea making. In the present simulation we asked whether the frequency of this intrusion error would vary, like human lapse errors, with relative task frequency. This was tested by retraining the model on training sets involving three different proportions of coffee and tea making.

**Method**

The model from Simulation 1 was retrained, with the same procedure as in that simulation, but with three modified training sets. The first set included five times as many instances of coffee making as tea making, the second equal proportions of the two tasks, and the third five times as many instances of tea making. The total number of target sequences (coffee plus tea) was balanced across sets. Each training set included the same group of background examples that appeared in the original training set. Training was terminated after it was evident that a final plateau in error had been reached (5,000 epochs).

Following training, each version of the model was tested in the standard fashion, with the instruct-tea unit on the first cycle of processing and noise with a variance of 0.10. Evaluation of the model’s performance following training on each corpus focused on the odds of lapsing from tea into coffee making, indicated by the error of adding cream to tea. Specifically, we asked whether the odds of making this error (over the course of 500 trials) would vary inversely with the relative frequency of tea making during training.

**Results and Analysis**

In accordance with empirical data, the model’s behavior did show an effect of task frequency on the tendency to lapse from one task into another; the lapse error occurred more frequently as the tea task became less frequent in training. Specifically, the odds of the cream-into-tea error following training on the three example sets were 0.02 (tea more frequent), 0.07 (tea and coffee equally frequent), and 0.15 (coffee more frequent).

The mechanism behind these results can be understood in much the same terms as those of Simulation 2. Like the errors discussed earlier, the cream-into-tea error occurs when distortion to the context representation leads it to resemble another pattern that is part of the network’s repertoire but which is associated with a different action. As shown in Figure 4, on the last step of the sugar subtask, the model uses one pattern when performing the tea task (let us call it Sug_{tea}^{11}) and another, slightly different pattern when performing the coffee task (Sug_{cof}^{11}). The cream-into-tea error occurs when the model’s internal representation should be Sug_{tea}^{11} but noise causes it to more closely resemble Sug_{cof}^{11}. Returning to the spatial metaphor, one can imagine the effect of noise as a movement of the model’s context representation away from the tea-making reference point into the vicinity of the coffee-making reference point.

Similar results were obtained in simulations in which the absolute number of presentations of the tea task during training was held constant.
Figure 12 (top) illustrates how this movement affects action selection. The data shown here were produced by instating, and holding constant, the environmental input normally present at the end of the sugar sequence in the tea task while applying a series of gradually varying context representations. These were produced by starting with Sug\textsubscript{tea}1 and gradually distorting it in the direction of Sug\textsubscript{cof}. The effects of this gradual transformation are plotted from left to right in the figure. The data themselves relate to the activation of two output units: put-down, the correct action in the tea context, and fixate-carton, the correct action in the coffee context. As the context pattern diverges from Sug\textsubscript{tea}, the network activates the put-down action less strongly, and as the pattern comes to resemble Sug\textsubscript{cof}, the network more strongly activates fixate-carton.

The point at which the two lines in Figure 12 intersect provides an indication of the distance the context pattern must travel before the cream-into-tea error will occur. As illustrated in the center and bottom panels of Figure 12, variations in relative task frequency influence where this crossover occurs along the path from the tea pattern to the coffee pattern. When tea making occurs more frequently during training, the crossover point lies closer to Sug\textsubscript{tea}. This means that a smaller distortion will cause the error, explaining why it occurs more frequently.

**Simulation 3: Action Disorganization Syndrome**

In Simulation 2, mild degradation of the model’s representation of temporal context led to errors resembling everyday slips of action. The next segment of the study tested the prediction that more severe degradation would lead to behavior resembling that of patients with ADS.

Impairment in performing everyday sequential routines, especially those involving the use of multiple objects, is frequently observed following brain damage. Most relevant to the issues under investigation here are two closely interrelated neuropsychological syndromes: ideational apraxia and frontal apraxia. Whereas ideational apraxia is traditionally associated with left-hemisphere lesions and frontal apraxia with prefrontal damage, in both syndromes patients display disorganization in their approach to sequential tasks (Duncan, 1986; Lehmkuhl & Poeck, 1981). In recent years, studies have challenged the specificity of ideational apraxia to left-hemisphere damage (Buxbaum, Schwartz, & Montgomery, 1998) and have blurred the distinction between ideational and frontal apraxia. As a result, the anatomically neutral term *action*...
disorganization syndrome has been adopted by some researchers (Schwartz, 1995).

Recent studies of ADS, most notably those performed by Schwartz and colleagues (Buxbaum et al., 1998; Schwartz, Mayer, Fitzpatrick, & Montgomery, 1993; Schwartz et al., 1995, 1998; see also Humphreys & Forde, 1999), have used explicit coding techniques to analyze patients’ performance on naturalistic tasks, both in the laboratory and in daily life, and have begun to yield a finer grained picture of such patients’ behavior. The principal findings can be summarized as follows:

1. Patients with ADS produce sequential behavior that is more fragmented than that of neurologically intact individuals. Specifically, they show a tendency to abandon a subtask before the goal of that subtask has been accomplished. Schwartz et al. (1991) quantified this tendency by counting actions that occur outside the boundaries of completed subtask sequences, calling these “independent” actions. Schwartz et al. (1991) evaluated the frequency of independent actions in the behavior of an ADS patient as he prepared instant coffee in the context of eating breakfast. In the earliest testing sessions, approximately 1 month after the onset of the disorder, roughly one half of the patients’ actions were independents. Continued observations over the ensuing month revealed a gradual reduction in fragmentation as measured by the proportion of independent actions (see Figure 13).

2. In addition to showing a general fragmentation of behavior, ADS patients commit frank errors, which fall into a characteristic set of categories. Most common are omission errors. Across studies, omissions have been consis-

![Figure 12](image1.png)

**Figure 12.** Effect on action selection of progressively distorting the context representation at the end of the sugar sequence in the tea task toward the corresponding coffee context. Ratios of tea to coffee during training were 5:1 (top), 1:1 (middle), and 1:5 (bottom).

![Figure 13](image2.png)

tentently found to make up approximately 30%–40% of ADS patients’ errors (Buxbaum et al., 1998; Humphreys & Forde, 1999; Schwartz & Buxbaum, 1997; Schwartz et al., 1998). Next most frequent are sequencing errors, including repetitions of either single steps or entire sub-tasks; anticipation errors, in which an action is undertaken before a prerequisite action is completed, for example, pouring a container of cream without having yet opened it; and (rarely) reversal errors, in which two steps in a sequence are performed in the incorrect order. Sequencing errors, considered as a group, tend to make up approximately 20% of all errors. Additional error types include action additions (actions that do not appear to belong to the assigned task) and substitution errors, in which the correct action is performed with the wrong object, or the wrong action is performed with the correct implement. Schwartz et al. (1998) found that substitutions comprised 10% of errors and additions 12%. Finally, less frequent error types observed in ADS include tool omissions (e.g., pouring sugar straight from a sugar bowl; 3% of errors in Schwartz et al., 1998) and quality errors (e.g., pouring far too much sugar into a cup of coffee; 8% of errors).

3. An important observation concerning omission errors in ADS is reported by Schwartz et al. (1998) and Buxbaum et al. (1998). As mentioned earlier, they found that across patients, the proportion of omissions correlated with overall error rate (see Figure 14). In mildly impaired subjects, omissions occurred with about the same frequency as sequence and substitution errors. In contrast, for subjects with the highest error rates, omissions formed a large majority of the errors committed.

**Method**

This portion of the study involved a further analysis of the data produced in Simulation 2. In that simulation, the model was tested at multiple levels of noise variance, but analyses focused only on the range producing relatively low error rates (variances of 0.10 and below). The present section of the study focused instead on model performance at higher levels of noise (0.10–0.50).

Performance at these noise levels was compared with the behavior of patients with ADS. To compare model performance with the data on independents reported by Schwartz et al. (1991), we adapted the coding scheme used by these researchers to our implementation of the coffee-making task, as detailed in the Appendix. Comparison of the specific error types produced by the model with those of ADS patients was based on the classification specified by Schwartz et al. (1998), which includes object substitutions, gesture substitutions, action additions, tool omissions, quality errors, omission errors, and sequence errors, the last of which comprised anticipation–omission errors, reversals, and perseverations.

Initial evaluation of the model’s errors was directed at establishing whether the model produced examples of each of the above varieties of error. Quantitative analysis focused specifically on sequence and omission errors. Enumeration of these errors was approached with a simplified version of the coding scheme used by Schwartz et al. (1998), as described in the Appendix.

**Results**

In keeping with the performance of ADS patients, the sequences produced by the model became increasingly fragmented with increasing noise. At noise levels above 0.10, errors first began to

---

8 Spatial misorientation and spatial misestimation errors are inapplicable given our nonspatial coding of action; these error types are also infrequent in the behavior of ADS patients (Schwartz et al., 1998).
appear within subtask boundaries rather than only at the transitions between subtasks (see Figure 7). A typical example is shown in Table 5 (left). With increasing noise, sequencing both within and between subtasks became increasingly disrupted (see Table 5, center). At high levels of noise, only short fragments of the original subtask sequences could be discerned, as shown in Table 5 (right). At extreme levels of noise, trials were increasingly taken up with extended periods of rather aimless “toying” behavior, which is also characteristic of the behavior of highly impaired ADS patients (Schwartz et al., 1991).

A rough quantification of the degree to which sequential structure is disrupted is provided by the frequency of independent actions (as defined by Schwartz et al., 1991, and the Appendix). The proportion of independent actions increased smoothly with the severity of noise (0 at noise variance 0.01, 0.10 at 0.10, 0.11 at 0.20, 0.30, 0.42 at 0.40, and 0.58 at 0.50). It is significant that the change in fragmentation is graded, because the empirical data show that graded changes in the fragmentation of patient performance can occur over the course of recovery (Schwartz et al., 1991, and Figure 13 above).

Piecemeal examination of the model’s errors revealed instances of each of the error types described by Schwartz et al. (1998) as occurring in ADS. As shown in Table 6, the majority of errors were either omission or sequence errors. However, examples of object and gesture substitutions, action additions, tool omissions, and quality errors also occurred. As in ADS, the most frequent error type was omission. Such errors included omissions of both entire subtasks (usually the cream and/or sugar sequences) and fragments of subtasks. As the frequency of errors grew with increasing noise, the proportion of omission errors rose more rapidly than the proportions of other errors, as reported for ADS patients (Schwartz et al., 1998). Figure 15 shows the number of omission errors along with the number of sequence errors occurring at a range of noise levels. With increasing noise, the number of omission errors grew steeply, whereas the number of sequence errors grew very little (cf. Figure 14).

In summary, the behavior of the model reproduced several core characteristics of behavior in ADS: Deterioration in performance manifested as a gradually increasing fragmentation of sequential structure, a specific set of error types occurred, and the proportion of omission errors increased with overall error rate.

**Analyses**

_Fragmentation of sequential structure._ A comparison of the results of the present simulation with those of Simulation 2 indicates a qualitative difference between the model’s behavior under low and high levels of noise: At low noise levels, errors occurred primarily at the branch points between subtasks, whereas at higher levels of noise, errors began to occur within subtask boundaries (see Figure 7). Despite the importance of this distinction, a close look at non-branch-point errors indicates that they involve precisely the same principles as the branch-point errors considered in the previous portion of the study. Once again, the model selects an incorrect action when noise causes its context representation to resemble a familiar pattern, connected with some other behavioral context, that is associated with that action. The only factor that distinguishes this situation from the branch-point case is that a
greater degree of distortion is needed to produce the critical effect. At branch points, very small amounts of context distortion lead to errors because of the close resemblance between the relevant temporal contexts. At non-branch-point steps, the contexts associated with different actions tend to be less similar to one another, meaning that a larger distortion of the model’s context representation is needed to produce an error (see Figure 16). Aside from this difference, which is one of degree, the basic factors that lead to errors at branch points and at non-branch points are identical.

Indeed, there is a sense in which every step in the sequences the model produces is a branch point. During training, the model has learned to associate every environmental input with a number of different actions, each linked to a different context. In some cases, two different actions may be associated with very similar contexts. As we have seen, this tends to be the case at the transitions between subtasks. However, even when the relevant contexts are more distinct, the network must use its representation of context to decide among possible actions. The model suggests that the dichotomy between branch points and non-branch points should be replaced by a view according to which each step in a routine falls somewhere on a continuum defined by the distinctiveness of the contexts associated with candidate actions. When the representation of temporal context is disrupted, errors occur first on steps located at one end of this spectrum, where different actions are associated with very similar contexts. With increasing disruption, errors begin to occur at points lying further and further along the continuum.

**Gradedness of fragmentation.** As the data in Table 5 make clear, the occurrence of an error did not throw the model completely off track. Following an error, the model typically fell into behavior bearing some resemblance to the sequences presented during training. This tendency reflects the attractor dynamics that are characteristic of sequential networks (Gupta & Dell, 1999; Jordan, 1986a; Perlmutter, 1989). When placed in a state different from those occupied in executing sequences learned during training, recurrent models have a tendency to get drawn back into familiar lines of behavior over ensuing steps. The behavior of the present model under noise can be understood as reflecting a balance between this corrective tendency and the direct effects of noise; noise acts to knock the model out of learned patterns of behavior, and the model’s attractor dynamics tend to draw it back into those patterns. With increasing noise, the former process increasingly dominates over the latter, and increasingly fragmented behavior is observed.

**The omission-rate effect.** As overall error rate rose with increasing noise, the model produced an increasing proportion of omission errors. This finding is particularly significant, given the fact that a recent hierarchical model of ADS (Cooper & Shallice, 2000) did not reproduce the relationship between error rate and the proportion of omission errors described by Schwartz et al. (1998). In the present model, there are two reasons for the increase in omissions. The first has to do with the fact that with increasing noise, sequential behavior becomes more fragmented. Completion of the individual subtasks in coffee making, as in most practical

<table>
<thead>
<tr>
<th>Type and subtype</th>
<th>Example</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omission</td>
<td>Sugar not added</td>
<td>77</td>
</tr>
<tr>
<td>Sequence</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Anticipation</td>
<td>Pour cream without opening</td>
<td></td>
</tr>
<tr>
<td>Perseveration</td>
<td>Add cream, add sugar, add cream again</td>
<td></td>
</tr>
<tr>
<td>Reversal</td>
<td>Stir water, then add grounds</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Object substitution</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Gesture substitution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tool omission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Action addition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quality</td>
<td></td>
</tr>
</tbody>
</table>

Note. Frequencies are based on a sample of 100 trials under noise with variance 0.20. Examples are drawn from sequences produced under a variety of noise levels.

Figure 15. Average number of sequence (light gray shading) and omission (dark gray shading) errors per trial at several noise levels, based on a sample of 100 trials at each noise level.
tasks, requires that a number of actions be executed in series. Naturally, as performance becomes more and more fragmented, the network develops an increasing tendency to get sidetracked before reaching the end of these subsequences, and the goals of the relevant subtasks therefore tend to go unaccomplished.

The second factor underlying the omission effect is less obvious. It stems from a bias in action selection. Specifically, with increasing noise, the network shows an increasing bias toward selecting the actions pick-up and put-down and the fixate actions. Pour, tear, stir and the remaining actions are produced with diminishing frequency. This effect is reflected in Figure 17, which shows a step in which the correct response is peel-open. When the context representation is highly distorted, this action becomes rare in comparison with put-down and the fixate actions.

The reason particular actions become predominant derives from the fact that in the training set, they appear across a particularly wide range of contexts. The pick-up action appears in many contexts because it is a viable option whenever the grasp is empty. The put-down action appears in many because it is legal in all circumstances in which the grasp is occupied. The fixate actions are the most generic of all, because there is no situation in which they are prohibited. Because the background training set contained examples that include as targets all actions that might plausibly be executed in a given environmental setting, these three actions appeared during training in an extremely wide variety of contexts. Actions more closely tied to specific environmental situations, such as tear, sip, or peel-open, appeared in a significantly smaller variety of contexts.

To understand this correlation between the context generality of actions and their robustness, consider what happens when the peel-open step shown in Figure 17 occurs with a highly degraded context representation. If sufficiently distorted, the context will not much resemble the one associated with the peel-open response. Instead, it is more likely to bear slight similarities to a wide range of contexts the network has encountered during training, contexts associated with both this and other external input. If a preponderance of these contexts are associated with a particular output, this output is likely to be selected. The network will therefore tend to produce outputs that are associated with a large range of contexts, that is, put-down and fixate.

As we have noted, the model’s bias toward context-general actions is one reason that it produces a rising proportion of omission errors with increasing noise. This is because in the coffee task as in most others, successful completion of subtask goals depends on the execution of context-specific actions. To the extent that action selection is biased against these, such goals will go unaccomplished, contributing to a disproportionate increase in errors of omission relative to those of commission.

Beyond its contribution to the omission effect, the contextgenerality effect is important in that it gives rise to specific predictions about human behavior. We enumerate these, and assess their fit with some existing data, in the General Discussion.
General Discussion

Routine, sequential, object-directed action fills much of daily life. Despite the ubiquity of such action, its computational underpinnings remain incompletely understood. We have presented an account of how routine sequential activities are accomplished, based on the properties of recurrent connectionist networks, and supported this account with a series of simulations that exhibit several basic features of normal and impaired routine sequential behavior. The first simulation demonstrated the ability of the model to maintain a representation of temporal context capable of guiding behavior in circumstances in which the environmental situation alone is ambiguous with respect to action and capable of guiding performance in sequential tasks involving a flexible combination of subtasks. A slight degradation of this internal representation led to errors resembling everyday slips of action. In keeping with the empirical data, errors affected the ordering of subtasks more strongly than their internal structure. Of interest, although errors tended to occur at the transitions between subtasks, the processes leading up to such errors were found to begin a number of steps earlier. In fact, interference occurring midway through a subtask ultimately proved more disruptive to the model’s performance than interference occurring at the end of the subtask (as also observed in a recent empirical study; Botvinick & Bylsma, 2004). This portion of the study also reproduced the reported effect of task frequency on error rate. Further degradation of the model’s context representation led to a disruption of sequential structure within subtasks, yielding a pattern of behavior resembling that of ADS patients on a number of levels. Increasing degradation was accompanied by a graded increase in the frequency of independent actions; the errors produced by the model fell into the same categories as those produced by ADS patients, and as in ADS, a correlation was observed between overall error rate and the prevalence of omission errors. High levels of noise had an effect on the particular actions the network tended to select, resulting in a bias toward actions associated with a wide variety of objects and contexts.

In what follows, we consider the relationship between the present account and traditional models of routine sequence production, discuss some of the model’s testable predictions, and consider its implications with respect to a number of key issues in the study of action.

Comparison With Hierarchical Models

The framework presented here differs from traditional accounts in at least two fundamental ways. First, the structure of the system’s sequential behavior emerges from the functional properties of the processing system as a whole rather than being linked in a direct fashion to discrete elements within the system’s architecture. The system produces hierarchically organized behavior without relying on a structurally expressed schema hierarchy. Second, the representations that guide sequential behavior, and the detailed characteristics of the sequencing mechanism itself, develop
through experience with relevant task domains rather than being built into the processing system a priori.

To bring out the implications of these two points, we return now to the four basic topics raised in our initial discussion of hierarchical models: learning, sequencing, quasi-hierarchical structure, and errors.

**Learning**

In the introduction, we noted one difficulty with existing accounts of learning in hierarchical models, namely that it seems to require that event boundaries be reliably marked. As we noted, this assumption is challenged by evidence indicating that segmentation is sometimes accomplished not on the basis of surface markers but instead on an evaluation of sequence structure. These findings fit well with the model we have put forth. To the extent that successful performance depends on information about task segmentation, the model derives this information from the statistical structure of the sequences encountered during learning. No surface indication of event boundaries is required. Indeed, it is significant that recurrent connectionist models have been used to account for the very processes that underlie the identification of event boundaries (Christiansen et al., 1998; Elman, 1990; Hanson & Hanson, 1996).

Another point of contrast between the present framework and hierarchical accounts relates not to how learning is accomplished but rather to what the system learns. In traditional accounts, acquisition of sequence knowledge involves instantiating a locally represented schema, typically identified with a discrete node or processing unit. In the present account, learning results in behavior that reflects schemalike knowledge but does not rise to any processing structure corresponding directly to a classical schema. Rather than implementing schema units, the system improves its performance by learning how to preserve and apply task-relevant contextual information. To put it strongly, although the notion of a schema may be useful in describing the system’s behavior over time, the system itself contains no schemas at all. In this way, the account we have put forth here mirrors earlier work by Rumelhart, Smolensky, et al. (1986): As they put it,

> In the conventional story, schemata are stored in memory. Indeed, they are the very content of memory. In our case, nothing stored corresponds very closely to a schema. What is stored is a set of connection strengths which, when activated, have implicitly in them the ability to generate states that correspond to instantiated schemata. This difference is important—especially with regard to learning. There is no point at which it must be decided to create this or that schema. Learning simply proceeds by connection strength adjustment. . . . As the network is reorganized as a function of the structure of its inputs, it may come to respond in a more or less schema-like way. (p. 21)

**Sequencing Mechanisms**

One important difference between the present account and hierarchical accounts involves their starting point. The hierarchical approach starts with assumptions about task structure and how this is represented and then turns to the question of how individual representations are activated at the appropriate time and in the appropriate order. The present account, in contrast, begins with a very general mechanism for sequencing and assumes that this mechanism is tuned, through learning, to the structure of the behavioral domain.

Taking this approach makes it possible to deal with several aspects of sequencing that have proved awkward for hierarchical models, as discussed in the introduction. For example, cross-temporal contingencies present no problem, because the approach involves a sequencing mechanism that is capable of preserving specific information about previously selected actions. Nor is there a problem with ordering subtasks; the model provides a computationally explicit account of how sequencing is enforced at multiple levels of task structure.

More important than these technical implications is the basic point that according to the present account, the sequencing mechanism is shaped by experience with specific tasks. The mechanisms associated with hierarchical models have, in contrast, typically implemented a priori assumptions about task structure. A pivotal example of this is the widely used mechanism of reflex inhibition. This implements a general assumption about the sequences the system will need to produce, namely that they will tend not to contain repeated elements. However, in reality, the frequency of repeats varies widely across behavioral domains (indeed, naturalistic behavior of the kind we have been considering is full of repeats). Furthermore, there is evidence that this variability has an impact on sequencing mechanisms; Vousden and Brown (1998) have observed that the frequency of repetition errors varies with the frequency of repetitions in the underlying task domain.

In contrast to hierarchical models, the model we have proposed builds in very few assumptions about sequential structure. The specifics of the sequencing mechanism are shaped by learning, with the result that they are closely adapted to the details of specific task domains. For example, with regard to repetitions, in domains in which these are rare, the sequencing mechanism will develop a tendency to suppress completed actions (see Dell & O’Seaghdha, 1994). In domains in which repetitions are frequent, there will be a tendency to reactivate them. Indeed, such tendencies can be item specific. In our simulations of coffee making, for example, the model learned to repeat the sip action but not to repeat the pour action.

This last observation, concerning item-level repetition constraints, points to an empirically testable prediction. As just noted, Vousden and Brown (1998) reported different frequencies of repetition errors in domains with different base rates of repetition. In accordance with the model proposed here, this phenomenon should extend to the level of individual items within a single task domain: Repetition errors should more frequently involve items that tend to be repeated in the underlying domain than items that are not repeated. Although Vousden and Brown suggested a way in which the mechanism of reflex inhibition might be elaborated to account for the data they reported, neither their account nor any other hierarchical model of which we are aware predicts such an item-level effect.

**Dealing With Quasi-Hierarchical Structure**

One assumption that traditional models build in, concerning the structure of sequential tasks, is that such tasks will always be strictly hierarchical in structure. As a result, such models have tended not to focus on situations in which details of subtask
performance depend on the larger task context, a circumstance very common in human behavior. In the present work, we have shown how a nonhierarchical system deals with such situations, performing different versions of a subtask in different settings.

The model’s ability to produce context-sensitive behavior derives in part from the fact that it need not represent different levels of task structure disjunctively. Instead, information pertaining to different levels of structure can overlap and interact in whatever way is needed to support task performance. Equally important is the model’s use of distributed internal representations (Hinton, McClelland, & Rumelhart, 1986). Because such representations can capture graded similarity, they are able to encode different versions of a subtask in a way that acknowledges their overlap while still keeping them distinct.

Another way of viewing these aspects of the model is in terms of information sharing among tasks. When a task resembles one that the system has already learned how to perform, the system will reuse representations associated with the familiar task to perform the new one. Schank and Abelson (1977; see also Schank, 1982) have argued that information sharing of this kind is likely to be involved in the representations underlying human performance. As one example, they discuss the routines involved in eating in restaurants. Although different types of restaurant—fancy restaurants, fast food restaurants, cafeterias—call for different methods for obtaining a table, ordering, paying, and so on, there is also a great deal of overlap in the behaviors they call for. Schank and Abelson argued that this overlap is reflected in the knowledge structures that guide restaurant behavior. Rather than there being a separate script for each different kind of restaurant, features common to all restaurants are represented once, with behaviors pertaining to specific kinds of restaurants built on top of this generic set of representations. The framework we have introduced here makes clear how this sort of representational scheme might be implemented and how it might emerge from experience.

Traditional schema-based accounts of action have sometimes implemented a form of information sharing through the use of “slots” (e.g., Norman, 1981; Schank & Abelson, 1977). Here, schemas contain variables that can adopt several different specific values. Although this approach allows a degree of information sharing among related tasks, it entails a sharp distinction between tasks that share information structures and tasks that do not. This can lead to uncertainties when the goal is to address domains in which tasks have varying degrees of overlap. For example, it may seem reasonable to posit a single schema for spreading peanut butter and jelly, because these call for nearly identical actions. However, it is less clear whether this schema or some other should cover the weakly related tasks of spreading icing on a cake, sauerkraut on a hotdog, or wax on a car. In the present framework such dilemmas do not arise, because there is no discrete boundary between tasks that share representations and tasks that do not. The distributed representations the system uses allow it to implement a form of information sharing that is well suited to the fact that tasks may overlap on many different dimensions and to widely varying degrees.

One important feature of this form of information sharing is that it supports generalization. When faced with a novel situation, reasonable inferences can be made about appropriate actions based on the resemblance of the new situation to familiar ones. To return to the restaurant example from Schank and Abelson (1977), some one entering a Wendy’s restaurant for the first time is likely to have a good sense of what to do, based on his or her prior familiarity with other fast food restaurants. This sort of generalization falls naturally out of the processing framework we have considered here (for relevant simulations based on the present model, see Botvinick & Plaut, 2002).

**Accounting for Pathologies of Action**

Within hierarchical accounts of action, sequencing errors in both normal and apraxic performance have most frequently been understood as reflecting a weakening of the influence of explicit high-level schemas on lower levels, or of lateral inhibition (Cooper & Shallice, 2000; MacKay, 1985; Schwartz et al., 1991; Shallice, 1988). The present account, in contrast, suggests that action errors result from the degradation of learned, distributed representations of temporal context.

As our simulations demonstrate, this proposal covers many of the same empirical phenomena addressed by the traditional account. However, it also captures some findings that have not yet been successfully addressed by hierarchical models. For example, the present framework accounts for the graded nature of action disorganization. This gradedness is evident in the data concerning recovery in ADS reported by Schwartz et al. (1991; see Figure 13), in which the number of independent actions gradually fell over the weeks following initial evaluation. It is also evident across subjects, as in the population of patients reported by Schwartz et al. (1998; see Figure 14). Indeed, a graded continuum of action disorganization appears to connect the slips of neurologically intact subjects with the more severe errors of ADS patients (Schwartz et al., 1998). As we have noted, this spectrum appears to begin with disorganization primarily at the between-subtasks level, with disorganization progressively infiltrating the within-subtask level as severity increases. It is not clear that this graded progression would fall out of the traditional, hierarchical account.

Indeed, in the model of Cooper and Shallice (2000), gradually weakening top-down influence within a hierarchy of schemas resulted in abrupt, nonmonotonic shifts in the degree and character of sequential disorganization.

As noted earlier, the Cooper and Shallice (2000) model also failed to capture two other aspects of human errors: the fact that slips of action sometimes involve repetitions of entire subtasks and the fact that, in ADS, omission errors become increasingly predominant as overall error rate increases. In contrast, the present model reproduced both findings. Furthermore, the model provides a natural account for what Norman (1981) called “capture errors,” lapses from one task into another following a series of actions that the two tasks share. Such errors follow naturally from the fact that in the present model, unlike in hierarchical models, each action performed contributes to the system’s representation of temporal context.

An influential idea concerning sequencing errors is that they reflect a failure of controlled as opposed to automatic processing. For example, Reason (1992) has suggested that naturalistic behavior consists of highly routine subsequences that can be executed without close attention, punctuated by decision points that require the actor to enter a special attentional mode. Norman (1981) made a similar argument, calling these junctures “attentional checkpoints.” Under this view, errors at the boundaries of subtasks are...
understood as reflecting a failure to engage the special attentional mechanisms responsible for guiding nonautomatic behavior. In contrast to this account, the framework we have put forth involves no sharp distinction between automatic and controlled processing (see also J. D. Cohen, Dunbar, & McClelland, 1990) nor any sharp distinction between so-called decision points and other steps in processing. The phenomena that these constructs are meant to address, such as the tendency of slips to occur at the transitions between subtasks, emerge naturally from the system's basic sequencing mechanism.

At the same time that Reason (1992) has emphasized the distinction between controlled and automatic processing in explaining slips, he has also used another idea that is much closer in spirit to the present account. Here, he suggested that errors may often result from “cognitive underspecification,” whereby representations responsible for guiding behavior insufficiently specify the operations to be performed (Reason, 1992). The same theme appears in the work of Norman (1981), who discussed errors due to “insufficient description” (a term adopted from Norman & Bobrow, 1979). In essence, these accounts suggest that slips may occur because of internal representations that are in some way vague. The present account cashes out this intuition, making computationally explicit what this representational imprecision might involve. Underspecification emerges in the present account when the system’s distributed representation of context is disrupted, producing a pattern that bears partial resemblances to familiar patterns linked to different behavioral contexts. In his arguments concerning cognitive underspecification, Reason has emphasized that “when cognitive operations are underspecified, they tend to default to contextually appropriate, high-frequency responses” (p. 71). The modeling work we have presented—in particular, the simulation addressing the relationship between task frequency and lapse errors—provides a mechanism-based explanation for why this is so.

**Predictions**

The present account gives rise to a number of testable predictions, some of which we have already had occasion to discuss. Two predictions pertain to slips of action: the differential effect of momentary distraction at or away from subtask boundaries and item-specific effects on the frequency of repetition errors. (As noted earlier, the first of these two predictions has already been empirically confirmed; see Botvinick & Byslma, 2004). A third prediction can be added to these, based on the tendency, in the model, for increasing noise to erode temporal structure beginning at the global level and only later extending to the internal structure of subsequences. If the model is correct, it appears to predict that the same pattern should be observed in neurologically intact subjects performing hierarchically structured sequential tasks under conditions of increasing distraction.

Some further predictions pertain to behavior in ADS. In Simulation 3, under high levels of noise, the model showed a bias toward context-general actions. If the model is correct, a similar bias should be observable in the behavior of ADS patients. On the basis of the model, context-general actions are assumed to include actions that respond to objects’ basic mechanical affordances, including simply picking objects up and putting them down. Actions that relate to objects’ conventional uses or that require specific configurations of the environment are predicted to occur relatively infrequently. The model’s predictions in this regard appear to receive some advance support from the informal observation of Schwartz et al. (1991) that ADS patients spend a great deal of time simply “toying” with objects. However, a more formal test of the prediction remains to be conducted.

If the model is correct, then it should also be possible to observe a bias toward context-general actions in neurologically intact subjects under conditions of distraction. Data that may be related to this prediction have been recently reported by Creem and Proffitt (2001). Here, subjects were asked to pick up individually presented familiar objects, each of which had a handle of one kind or another. In an initial test, Creem and Proffitt found that subjects lifted these objects using their handles, even when the handle was oriented away from them. However, under conditions of distraction, subjects tended to pick up objects without using their handles, grasping them elsewhere instead. Although the task used in this experiment is not sequential in the usual sense, the results reported accord with the predictions of the present model by providing evidence that distraction can influence the affordances to which subjects respond.

**Modeling Naturalistic Action: General Considerations**

Our primary focus in the present work has been on sequencing phenomena. However, the framework we have presented also speaks to a number of other central issues in the domain of routine sequential action. One set of issues relates to the fact that much of everyday action is carried out on objects. This raises the questions of how objects are selected as targets of action and how the perception of objects may in turn impact the selection of actions. Another set of issues relates to the practical, goal-oriented nature of most routine sequential activity. This raises the questions of how goals are represented and how the relevant representations structure behavior. In what follows, we consider how these issues are addressed within the present computational framework.

**Selection for Action**

The present model adopts the view that object selection and action selection involve very similar procedures: Objects are first selected by performing perceptual actions and then acted on by executing manipulative actions, resulting in what Hayhoe (2000) has referred to as a “perception–action sequence.” Although this provides a framework for understanding a number of empirical findings relating to action with objects (as cited in the introduction), it does not answer the question of how the system determines which specific object to select at any given point in performance. According to the present account, this is accomplished by learned associations between particular environmental inputs and internal contexts on the one hand and specific perceptual actions on the other. Note that here, once again, the mechanisms underlying object selection are the same as those underlying the selection of manipulative actions. An interesting consequence of this is that disruptions of context representation affect not only the selection of overt actions but also the selection of target objects. This provides a potential explanation for the fact that in both everyday slips of action and in apraxia, sequencing errors tend to occur alongside errors in object selection. Indeed, in our simulations the
majority of subtask omission and repetition errors began with errors in object selection (inappropriate perceptual actions).

**Responding to Objects**

Another key role for objects in the context of sequential routines is as triggers of action. A wide range of evidence indicates that action selection is directly influenced by perceived objects. The performance of subjects in laboratory tasks such as the Stroop (MacCleod, 1991) and flanker (Eriksen & Eriksen, 1974) tasks supports the idea that the perception of a visual stimulus leads to activation of strongly associated responses. Other data indicate that this phenomenon extends to complex stimuli familiar from everyday life (Riddoch, Humphreys, & Edwards, 2000; Riddoch, Edwards, Humphreys, West, & Heafield, 1998; Tucker & Ellis, 1998).

The ability of objects to act as triggers of action is integral to the model we have proposed. During training, the model learns to associate perceptual inputs with particular actions. Presenting a given object to the fully trained model leads directly to activation of the associated responses. Of course, in the model, as in human behavior, any given object or scene is likely to be associated with multiple responses. Action selection is thus a matter of selecting among the actions afforded by a given perceptual input. In the model, this is accomplished by combining information about the current stimulus with internally maintained context information. The latter acts in effect as a filter on the external input, allowing it to trigger only the action appropriate to the present context.

This aspect of the model’s function links it closely to several important models of cognitive control, which cast control as a top-down input biasing the system toward context-appropriate responses to incoming stimuli (e.g., Cohen et al., 1990; Norman & Shallice, 1986). An interesting aspect of such models, also shared by the present one, is that the context or control signal can specify a class of stimulus–response mappings while allowing the system to select a specific response on the basis of perceptual inputs. Such an arrangement seems likely to be involved in routine actions on objects, for which each execution of a given type of action must be fine-tuned to highly contingent aspects of the environment. For example, turning on the lights upon entering a room may involve flicking a switch, turning a dial, pushing a slider, pressing a button, and so on. The framework we have presented here points to an account of how the action system might deal with such situations, using an internal representation of context to specify the broad class of action to be performed while allowing environmental inputs to determine the details of performance.

To this point, we have focused on the role of objects in triggering individual actions. However, in our model, object perception can also trigger entire behavioral sequences. Indeed, this occurs on each test run of the model. This ability of external inputs to trigger extended behavioral sequences fits well with human behavior. Duncan (1996) has emphasized that because the environment is not entirely predictable, adaptive behavior requires the ability to enter new lines of behavior in reaction to environmental contingencies.

**Representing Goals**

It is frequently observed of human sequential behavior that it is organized around goals (e.g., Cooper & Shallice, 2000; Duncan, 1993; Fuster, 1989; Miller et al., 1960). Many observable aspects of behavior support this view: People often treat strategies that yield the same results as interchangeable; they monitor the outcome of their activities, evaluating whether they have brought about intended effects; and they compensate for unanticipated obstacles to action in a way that seems oriented toward the accomplishment of specific ends. In response to such behavior, some models of action incorporate special mechanisms for representing goals. Miller et al. (1960) posited TOTE (test, operate, test, exit) units as basic processing elements, one function of which is to compare the state of the environment with a goal state. Cooper and Shallice (2000) used “goal nodes” as gates on activation flow between schemas at adjacent hierarchical levels (see Figure 2). Explicit goal representation also plays a central role in production system models of action (Anderson & Lebiere, 1998; Laird, Newell, & Rosenbloom, 1987; Newell, 1990).

Although these efforts to address the goal directedness of action highlight an important set of psychological and computational issues, they share at least two limitations. First, most existing computational accounts minimize the extent to which goals may be context dependent (a point emphasized by Agre, 1988). For example, one’s goals in cleaning the house may vary widely depending on whether one is just tidying up or preparing for a visit from one’s mother. Most existing models that depend on goal representations make no allowance for this context dependence. Second, there are many types of routine behavior for which it is not straightforward to identify discrete, explicit goals, for example taking a walk or playing the violin.

In contrast to traditional models, the model we have presented here does not rely on special goal representations to structure its behavior. The model enters into structured lines of activity not in response to the explicit setting of a goal but because previous events have placed it in an internal state and environmental context that predisposes it toward those activities. Because the model’s functioning does not depend on explicit goals, there is no problem in applying it to behaviors with nonobvious goals. Thus, understanding the activities of someone going outside for a walk does not require identification of the goals that prompted them to enter the relevant activities. In the present account, walk taking could be triggered by feelings of restlessness, the thought of fresh air, the arrival of 2 o’clock (if one is in the habit of taking a walk then), or any other appropriate context.

However, although our model involves no special mechanisms for representing goals, it can produce behavior that appears goal directed. For example, the model can learn to persist in a given action until a particular environmental criterion is met. This is apparent during the drinking sequence in the coffee-making task, during which the model repeatedly selects the sip action until the cup is represented as empty. The model here implements something like the TOTE cycle described by Miller et al. (1960), continuing an activity until a particular goal is achieved.

Similarly, the model can learn to treat as interchangeable action sequences that address the same goal. For example, in our simulations, the model learned that the SUGAR (PACK) and SUGAR (BOWL) sequences could be used interchangeably. Thus, the model learned to associate the same contexts with both versions of the sugar subtask. Although, in this case, the model was directly trained to perform two interchangeable sequences in the same set of contexts, systems of this sort can also infer sequence equivalence, inter-
changing equivalent sequences in a way that produces overall sequences the network has not observed during training (Matthew Botvinick, unpublished observation, May 2002; see also Levy & Wu, 1997).

Although the present model implements the view that organized action can occur without explicit goals, it seems clear that in some circumstances human action does involve instantiation of explicit goal representations. In principle, the present model could be elaborated to address such situations, possibly by including connections between the model’s hidden units and a new group of units dedicated to representing desired states of the system or environment. Thus, the account we have presented is not intended to deny the existence or psychological importance of explicit goal representations. Nonetheless, it does treat skeptically the idea that such representations are fundamental to all routine sequential behavior (for related views, see Agre, 1988; Rogers & Griffin, 2003).

Challenges for the Present Account

Among the many questions raised by the work we have presented, an important one concerns the extent to which the present model is relevant to nonroutine sequential behavior, for example, that involved in problem solving, planning, error detection and compensation, and coordination of multiple tasks. It is likely that to account for these aspects of behavior, additions to the model would be necessary. For example, the demands of planning appear to require some means of forecasting the outcome of one’s actions, suggesting the addition of a forward model to the present architecture (Jordan & Rumelhart, 1992; see also Elsner & Hommel, 2001). It is possible that other elements, for example, a mechanism supporting episodic memory, may also be necessary to support nonroutine behavior (J. D. Cohen & O’Reilly, 1996; Ericsson & Kintsch, 1995). Nonetheless, we speculate that much of cognition and behavior, even in such domains as reasoning and problem solving, may share a basic reliance on mechanisms of the sort illustrated in the present model. It has been proposed that the cognitive operations involved in problem solving may themselves take the form of familiar, if very general-purpose, routines (see, e.g., Anderson & Lebiere, 1998; Chapman & Agre, 1987). Thus, at some level, problem solving itself may be a form of routine behavior. To the extent that this is the case, the mechanisms discussed in the current work may also be relevant to understanding the cognitive operations involved in problem solving and other nonroutine behavior.

Another set of questions involves the relation between the behavioral phenomena addressed in the current work and other forms of routine sequential behavior. Models very similar to the one presented here have been proposed in work on language comprehension (Elman, 1991; McClelland et al., 1989) and production (including errors; Dell, Chang, & Griffin, 1999; Dell et al., 1993), raising the intriguing possibility that sequence production in language may rely on the same mechanisms as nonlinguistic sequencing. In agreement with some others (e.g., Gupta & Dell, 1999), we suspect that a common set of computational principles and mechanisms underlie both linguistic and nonlinguistic behavior. However, as is clear from the foregoing discussion, the mechanisms in question adapt their behavior to the detailed structure of particular domains. The principles captured in the recurrent connectionist framework thus have the potential to play out in very different ways in the realms of linguistic and nonlinguistic action.

A further set of questions concerns the relation between the present model and the functional neuroanatomy underlying sequential action. Neuropsychological, neurophysiological, and neuroimaging data point to a central role for several brain areas, including portions of the frontal cortex (e.g., Fuster, 1995; Grafman, 1995), the parietal cortex (e.g., DeRenzi & Lucchelli, 1988), the cerebellum, and the basal ganglia (see Hikosaka et al., 1999, for review). Although the account we have presented does not attempt to delineate the division of labor among these brain areas, it does specify a set of computations that they may collaboratively support. Specifically, it suggests that this network of brain areas works together to maintain a representation of temporal context, integrating this with perceptual inputs to facilitate response selection. In this regard, it is interesting that features of the model we have presented bear a resemblance to features of existing computational models addressing the roles of the prefrontal cortex (J. D. Cohen & Servan-Schreiber, 1992; Dominey, 1998) and the basal ganglia (Barnes & Sejnowski, 1998; Frank, Loughry, & O’Reilly, 2000).

At the same time, it should be noted that there is evidence for more than one neural mechanism for encoding and reproducing sequences. In addition to the neocortical and the basal ganglia mechanisms just mentioned, there is also data pointing to a role for the hippocampus (e.g., Fortin, Agster, & Eichenbaum, 2002; Kesner, Gilbert, & Barua, 2002). It is interesting that there is evidence not only that the hippocampus rapidly encodes sequences of events or actions but also that it later replays these sequences (Lee & Wilson, 2002). This fits well with the account of memory consolidation provided by McClelland et al. (1995), which, as discussed earlier, provides a larger context for the present work. As we have noted, this larger context is critical to our theory, in that it explains how the problem of catastrophic interference in learning might be avoided. It is thus important to acknowledge that the McClelland et al. theory is the subject of ongoing debate (see, e.g., Page, 2000). The questions of how sequence knowledge is rapidly acquired and how it is later consolidated thus remain open. The viability of our account clearly depends on how these questions are ultimately answered.

From a biological perspective, the present work also raises questions by its use of the back-propagation learning algorithm. Although, in some studies, back-propagation learning has been shown to give rise to internal representations remarkably similar to those used by the brain (see, e.g., Zipser & Anderson, 1988), the algorithm does involve processes for which no biological correlate has yet been identified. Its use thus raises questions about biological plausibility. It is an open question whether the present theory could be implemented with a learning algorithm that is more consistent with current biological data (for example, the general recirculation algorithm proposed by O’Reilly, 1996). Of some relevance in this regard is the work of Dominey (e.g., Dominey, 1998; Dominey & Ramus, 2000), in which sequential networks are trained with a version of reinforcement learning. Aside from the learning algorithm it uses, the Dominey model differs from the one presented here in that its internal representations are fixed rather than shaped through learning. This is concerning, given that many other modeling studies (e.g., Cleeremans, 1993; Elman, 1993; not to mention the present work) point to a key role for learned internal
representations in complex sequential behavior. The question of how—and whether—sequential networks can be reconciled with constraints from neurobiology thus represents an important area for continuing work.

Conclusion

The domain of routine sequential activity raises a rich set of psychological issues, engaging the areas of perception, motor control, attention, and memory. A particularly central and poorly understood issue concerns how the cognitive system constructs and utilizes a representation of time-varying task context. The roughly hierarchical structure of many everyday tasks has led numerous theorists to the idea that the processing system itself represents a hierarchical structure. We have proposed an alternative framework for understanding routine sequential action. Here, task structure is represented not at the level of system architecture but rather in the distributed representations the system uses in performing particular tasks. The system arrives at these internal representations through learning, leading to the emergence of sequencing mechanisms that are flexible, context-sensitive, and responsive to graded similarities among tasks.

Needless to say, the account we have presented abstracts over a great deal of important detail. Where possible, we have pointed to directions in which the model could be further developed to better capture detailed aspects of human behavior. Another limitation of the modeling efforts described here derives from the empirical data they address. Data concerning routine sequential behavior are scarce, and much of the available information is qualitative or anecdotal. In view of this, we consider it an important aspect of the present model that it makes several detailed and testable predictions concerning human sequential behavior.

Finally, one welcome aspect of existing research on routine sequential action is the degree to which relevant theories have been proposed in the form of explicit, implemented computational models. It is our hope that the work we have presented here will encourage the continuation of this trend.

References


Dell, G. S., Chang, F., & Griffin, Z. M. (1999). Connectionist models of


Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed pro-


Appendix

Coding of Model Performance

Counting of Independent Actions

To quantify the frequency of independent actions produced by the model, we adapted the coding scheme devised by Schwartz et al. (1991). The latter involves two steps: coding of individual actions and a "bracketing" procedure, according to which actions are grouped into subtask units centering on the achievement of a goal. Independent actions are ones that fall outside bracketed groupings.

Listing of Actions

Following the approach used by Schwartz et al. (1991), for each trial an initial listing was made of the sequence of actions (designated as "A1" in the Schwartz et al., 1991, work). Only overt actions were listed; fixative actions were omitted. In keeping with the details of the scheme of Schwartz and colleagues, pick-up actions were explicitly listed only if two or more cycles of processing elapsed prior to any action being performed with the object involved, and put-down actions were listed only if they occurred two or more cycles after the last action performed with the object. A single pick-up, put-down action was coded if an object was picked up and then put down within two time steps, with no action being performed with the object.

As in Schwartz et al. (1991), actions in the resulting listings were classified according to the subtask to which they related: GROUNDS, SUGAR (BOWL), SUGAR (PACK), CREAM, STIR, or DRINK. A residual category for unassignable actions was included but rarely used.

Bracketing

Schwartz and colleagues (Schwartz et al., 1991) used this term to describe a procedure for grouping AIs that lead up to the achievement of a "crux" action, an action that represents the completion of a given subtask. Independents are AIs that lie outside any bracketed group. The bracketing procedure we followed was based closely on the one described in Schwartz et al. (1991). Actions were grouped together if they derived from the same subtask and led up to a crux action (sipping, stirring, or pouring of coffee grounds, cream, or sugar). Groups of actions were not grouped together if they were separated by a crux action or more than one consecutive noncrux action from another subtask. Following the bracketing procedure, each action falling outside of a bracketed group was counted as an independent.

Coding Scheme for Sequence and Omission Errors

To some extent, our categorization of the errors made by the model was made informally. However, a more explicit coding scheme was devised for the purposes of quantifying omission and sequence errors. Our approach was based on that adopted by Schwartz and colleagues in their empirical studies of ADS patients (e.g., Schwartz et al., 1991). This involved establishing a list of specific errors, based on a combination of preliminary observations of the network’s performance and a consideration of the logical possibilities presented by the normative sequences. The lists used in generating the data presented in the article were as follows:

Sequence Errors
- Drinking prior to addition of all ingredients
  (if followed by additional ingredients)
- Repeated addition of any ingredient
  (with one or more intervening actions)
- Pouring cream prior to opening carton
- Scooping with spoon without opening sugar bowl
- Adding coffee only after adding other ingredients
- Stirring prior to adding any ingredients
- Repetition of stirring action
  (more than two consecutive stir actions)

Omission Errors
- No coffee grounds added
- No sugar added
- No cream added
- Drinking omitted
- Ingredient added but not stirred in

Received April 17, 2001
Revision received April 24, 2003
Accepted July 3, 2003

Wanted: Your Old Issues!

As APA continues its efforts to digitize journal issues for the PsycARTICLES database, we are finding that older issues are increasingly unavailable in our inventory. We are turning to our long-time subscribers for assistance. If you would like to donate any back issues toward this effort (preceding 1982), please get in touch with us at journals@apa.org and specify the journal titles, volumes, and issue numbers that you would like us to take off your hands.