
Carnegie Mellon University
Research Showcase @ CMU
Department of Electrical and Computer
Engineering Carnegie Institute of Technology

3-2015

Ramulator: A Fast and Extensible DRAM
Simulator
Yoongu Kim
Carnegie Mellon University

Weikun Yang
Peking University

Onur Mutlu
Carnegie Mellon University, onur@cmu.edu

Follow this and additional works at: http://repository.cmu.edu/ece

Part of the Electrical and Computer Engineering Commons

This Article is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase @ CMU. It has been accepted for
inclusion in Department of Electrical and Computer Engineering by an authorized administrator of Research Showcase @ CMU. For more
information, please contact research-showcase@andrew.cmu.edu.

Published In
Computer Architecture Letters, forthcoming.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fece%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cit?utm_source=repository.cmu.edu%2Fece%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.cmu.edu%2Fece%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu


IEEE COMPUTER ARCHITECTURE LETTERS 1

Ramulator: A Fast and Extensible DRAM Simulator
Yoongu Kim1 Weikun Yang1,2 Onur Mutlu1

1Carnegie Mellon University 2Peking University

Abstract—Recently, both industry and academia have proposed many different roadmaps for the future of DRAM. Consequently, there is a
growing need for an extensible DRAM simulator, which can be easily modified to judge the merits of today’s DRAM standards as well as those
of tomorrow. In this paper, we present Ramulator, a fast and cycle-accurate DRAM simulator that is built from the ground up for extensibility.
Unlike existing simulators, Ramulator is based on a generalized template for modeling a DRAM system, which is only later infused with the
specific details of a DRAM standard. Thanks to such a decoupled and modular design, Ramulator is able to provide out-of-the-box support for
a wide array of DRAM standards: DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, as well as some academic proposals (SALP, AL-DRAM, TL-
DRAM, RowClone, and SARP). Importantly, Ramulator does not sacrifice simulation speed to gain extensibility: according to our evaluations,
Ramulator is 2.5× faster than the next fastest simulator. Ramulator is released under the permissive BSD license.

1 INTRODUCTION

In recent years, we have witnessed a flurry of new proposals for
DRAM interfaces and organizations. As listed in Table 1, some were
evolutionary upgrades to existing standards (e.g., DDR4, LPDDR4),
while some were pioneering implementations of die-stacking (e.g.,
WIO, HMC, HBM), and still others were academic research projects
in experimental stages (e.g., Udipi et al. [38], Kim et al. [24]).

Segment DRAM Standards & Architectures

Commodity DDR3 (2007) [14]; DDR4 (2012) [18]

Low-Power LPDDR3 (2012) [17]; LPDDR4 (2014) [20]

Graphics GDDR5 (2009) [15]

Performance eDRAM [28], [32]; RLDRAM3 (2011) [29]

3D-Stacked WIO (2011) [16]; WIO2 (2014) [21]; MCDRAM (2015) [13];
HBM (2013) [19]; HMC1.0 (2013) [10]; HMC1.1 (2014) [11]

Academic

SBA/SSA (2010) [38]; Staged Reads (2012) [8]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33];
SARP (2014) [6]; AL-DRAM (2015) [25]

Table 1. Landscape of DRAM-based memory

At the forefront of such innovations should be DRAM simulators,
the software tool with which to evaluate the strengths and weaknesses
of each new proposal. However, DRAM simulators have been lagging
behind the rapid-fire changes to DRAM. For example, two of the
most popular simulators (DRAMSim2 [36] and USIMM [7]) provide
support for only one or two DRAM standards (DDR2 and/or DDR3),
as listed in Table 2. Although these simulators are well suited for their
intended standard(s), they were not explicitly designed to support a
wide variety of standards with different organization and behavior.
Instead, the simulators are implemented in a way that the specific
details of one standard are integrated tightly into their codebase. As a
result, researchers — especially those who are not intimately familiar
with the details of an existing simulator — may find it cumbersome
to implement and evaluate new standards on such simulators.

Type Simulator DRAM Standards

DRAMSim2 (2011) [36] DDR2, DDR3
USIMM (2012) [7] DDR3
DrSim (2012) [22] DDR2, DDR3, LPDDR2Standalone

NVMain (2012) [34] DDR3, LPDDR3, LPDDR4

GPGPU-Sim (2009) [3] GDDR3, GDDR5
McSimA+ (2013) [2] DDR3Integrated
gem5 (2014) [9] DDR3,∗ LPDDR3,∗ WIO∗

∗Not cycle-accurate [9].

Table 2. Survey of popular DRAM simulators

Manuscript submitted: 26-Nov-2014. Manuscript accepted: 22-Feb-2015.
Final manuscript received: 15-Mar-2015.

The lack of an easy-to-extend DRAM simulator is an impediment
to both industrial evaluation and academic research. Ultimately, it
hinders the speed at which different points in the DRAM design space
can be explored and studied. As a solution, we propose Ramulator,
a fast and versatile DRAM simulator that treats extensibility as a
first-class citizen. Ramulator is based on the important observation
that DRAM can be abstracted as a hierarchy of state-machines,
where the behavior of each state-machine — as well as the afore-
mentioned hierarchy itself — is dictated by the DRAM standard in
question. From any given DRAM standard, Ramulator extracts the
full specification for the hierarchy and behavior, which is then entirely
consolidated into just a single class (e.g., DDR3.h/cpp). On the other
hand, Ramulator also provides a standard-agnostic state-machine (i.e.,
DRAM.h), which is capable of being paired with any standard (e.g.,
DDR3.h/cpp or DDR4.h/cpp) to take on its particular hierarchy and
behavior. In essence, Ramulator enables the flexibility to reconfigure
DRAM for different standards at compile-time, instead of laboriously
hardcoding different configurations of DRAM for different standards.

The distinguishing feature of Ramulator lies in its modular design.
More specifically, Ramulator decouples the logic for querying/up-
dating the state-machines from the implementation specifics of any
particular DRAM standard. As far as we know, such decoupling has
not been achieved in previous DRAM simulators. Internally, Ramu-
lator is structured around a collection of lookup-tables (Section 2.3),
which are computationally inexpensive to query and update. This
allows Ramulator to have the shortest runtime, outperforming other
standalone simulators, shown in Table 2, by 2.5× (Section 4.2).
Below, we summarize the key features of Ramulator, as well as its
major contributions.

• Ramulator is an extensible DRAM simulator providing cycle-
accurate performance models for a wide variety of standards:
DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, SALP, AL-
DRAM, TL-DRAM, RowClone, and SARP. Ramulator’s mod-
ular design naturally lends itself to being augmented with addi-
tional standards. For some of the standards, Ramulator is capable
of reporting power consumption by relying on DRAMPower [5]
as the backend.

• Ramulator is portable and easy to use. It is equipped with a
simple memory controller which exposes an external API for
sending and receiving memory requests. Ramulator is available
in two different formats: one for standalone usage and the other
for integrated usage with gem5 [4]. Ramulator is written in
C++11 and is released under the permissive BSD-license [1].

2 RAMULATOR: HIGH-LEVEL DESIGN

Without loss of generality, we describe the high-level design of
Ramulator through a case-study of modeling the widespread DDR3
standard. Throughout this section, we assume a working knowledge
of DDR3, otherwise referring the reader to literature [14]. In Sec-
tion 2.1, we explain how Ramulator employs a reconfigurable tree
for modeling the hierarchy of DDR3. In Section 2.2, we describe the
tree’s nodes, which are reconfigurable state-machines for modeling
the behavior of DDR3. Finally, Section 2.3 provides a closer look at
the state-machines, revealing some of their implementation details.



IEEE COMPUTER ARCHITECTURE LETTERS 2

2.1 Hierarchy of State-Machines
In Code 1 (left), we present the DRAM class, which is Ramulator’s

generalized template for building a hierarchy (i.e., tree) of state-
machines (i.e., nodes). An instance of the DRAM class is a node in a
tree of many other nodes, as is evident from its pointers to its parent
node and children nodes in Code 1 (left, lines 4–6). Importantly, for
the sake of modeling DDR3, we specialize the DRAM class for the
DDR3 class, which is shown in Code 1 (right). An instance of the
resulting specialized class (DRAM<DDR3>) is then able to assume one
of the five levels that are defined by the DDR3 class.
1 // DRAM.h
2 template <typename T>
3 class DRAM {
4 DRAM<T>* parent;
5 vector<DRAM<T>*>
6 children;
7 T::Level level;
8 int index;
9 // more code...
10 };

1 // DDR3.h/cpp
2 class DDR3 {
3 enum class Level {
4 Channel, Rank, Bank,
5 Row, Column, MAX
6 };
7
8
9 // more code...
10 };

Code 1. Ramulator’s generalized template and its specialization

In Figure 1, we visualize a fully instantiated tree, consisting of
nodes at the channel, rank, and bank levels.1 Instead of having a sep-
arate class for each level (DDR3_Channel, DDR3_Rank, DDR3_Bank),
Ramulator simply treats a level as just another property of a node
— a property that can be easily reassigned to accommodate different
hierarchies with different levels. Ramulator also provides a memory
controller (not shown in the figure) that interacts with the tree through
only the root node (i.e., channel). Whenever the memory controller
initiates a query or an operation, it results in a traversal down the
tree, touching only the relevant nodes during the process. This, and
more, will be explained next.

DRAM<DDR3> Instance
-level = DDR3::Level::Channel
-index = 0

DRAM<DDR3>
-Rank
-1

DRAM<DDR3>
-Rank
-0

DRAM<DDR3>
-Rank
-2

DRAM<DDR3>
-Bank
-0

DRAM<DDR3>
-Bank
-7

•••

Figure 1. Tree of DDR3 state-machines

2.2 Behavior of State-Machines
States. Generally speaking, a state-machine maintains a set of

states, whose transitions are triggered by an external input. In
Ramulator, each state-machine (i.e., node) maintains two types of
states as shown in Code 2 (top, lines 5–6): status and horizon.
First, status is the node’s state proper, which can assume one of the
statuses defined by the DDR3 class in Code 2 (bottom). The node may
transition into another status when it receives one of the commands
defined by the DDR3 class. Second, horizon is a lookup-table for
the earliest time when each command can be received by the node.
Its purpose is to prevent a node from making premature transitions
between statuses, thereby honoring DDR3 timing parameters (to be
explained later). We purposely neglected to mention a third state
called leaf_status, because it is merely an optimization artifact —
leaf_status is a sparsely populated hash-table used by a bank to track
the status of its rows (i.e., leaf nodes) instead of instantiating them.

Functions. Code 2 (top, lines 9–11) also shows three functions that
are exposed at each node: decode, check, and update. These functions
are recursively defined, meaning that an invocation at the root node
(by the memory controller) causes these functions to walk down the
tree. In the following, we explain how the memory controller relies on
these three functions to serve a memory request — in this particular
example, a read request.

1Due to their sheer number (tens of thousands), nodes at or below the row level are
not instantiated. Instead, their bookkeeping is relegated to their parent — in DDR3’s
particular case, the bank.

1. decode(): The ultimate goal of a read request is to read from
DRAM, which is accomplished by a read command. Depending
on the status of the tree, however, it may not be possible to issue
the read command: e.g., the rank is powered-down or the bank
is closed. For a given command to a given address,2 the decode
function returns a “prerequisite” command that must be issued
before it, if any exists: e.g., power-up or activate command.

2. check(): Even if there are no prerequisites, it doesn’t mean
that the read command can be issued right away: e.g., the bank
may not be ready if it was activated just recently. For a given
command to a given address, the check function returns whether
or not the command can be issued right now (i.e., current cycle).

3. update(): If the check is passed, there is nothing preventing
the memory controller from issuing the read command. For a
given command to a given address, the update function triggers
the necessary modifications to the status/horizon (of the affected
nodes) to signify the command’s issuance at the current cycle. In
Ramulator, invoking the update function is issuing a command.

1 // DRAM.h
2 template <typename T>
3 class DRAM {
4 // states (queried/updated by functions below)
5 T::Status status;
6 long horizon[T::Command::MAX];
7 map<int, T::Status> leaf_status; // for bank only
8 // functions (recursively traverses down tree)
9 T::Command decode(T::Command cmd, int addr[]);
10 bool check(T::Command cmd, int addr[], long now);
11 void update(T::Command cmd, int addr[], long now);
12 };

1 // DDR3.h/cpp
2 class DDR3 {
3 enum class Status {Open, Closed, ..., MAX};
4 enum class Command {ACT, PRE, RD, WR, ..., MAX};
5 };

Code 2. Specifying the DDR3 state-machines: states and functions

2.3 A Closer Look at a State-Machine
So far, we have described the role of the three functions without

describing how they exactly perform their role. To preserve the
standard-agnostic nature of the DRAM class, the three functions defer
most of their work to the DDR3 class, which supplies them with all
of the standard-dependent information in the form of three lookup-
tables: (i) prerequisite, (ii) timing, and (iii) transition. Within these
tables are encoded the DDR3 standard, providing answers to the
following three questions: (i) which commands must be preceded by
which other commands at which levels/statuses? (ii) which timing
parameters at which levels apply between which commands? (iii)
which commands to which levels trigger which status transitions?

Decode. Due to space limitations, we cannot go into detail about
all three lookup-tables. However, Code 3 (bottom) does provide a
glimpse of only the first lookup-table, called prerequisite, which is
consulted inside the decode function as shown in Code 3 (top). In
brief, prerequisite is a two-dimensional array of lambdas (a C++11
construct), which is indexed using the (i) level in the hierarchy at
which the (ii) command is being decoded. As a concrete example,
Code 3 (bottom, lines 7–13) shows how one of its entries is defined,
which happens to be for (i) the rank-level and (ii) the refresh
command. The entry is a lambda, whose sole argument is a pointer to
the rank-level node that is trying to decode the refresh command. If
any of the node’s children (i.e., banks) are open, the lambda returns
the precharge-all command (i.e., PREA, line 11), which would close
all the banks and pave the way for a subsequent refresh command.
Otherwise, the lambda returns the refresh command itself (i.e., REF,
line 12), signaling that no other command need be issued before
it. Either way, the command has been successfully decoded at that
particular level, and there is no need to recurse further down the
tree. However, that may not always be the case. For example, the
only reason why the rank-level node was asked to decode the refresh
command was because its parent (i.e., channel) did not have enough

2An address is an array of node indices specifying a path down the tree.



IEEE COMPUTER ARCHITECTURE LETTERS 3

information to do so, forcing it to invoke the decode function at its
child (i.e., rank). When a command cannot be decoded at a level,
the lambda returns a sentinel value (i.e., MAX), indicating that the
recursion should continue on down the tree, until the command is
eventually decoded by a different lambda at a lower level (or until
the recursion stops at the lowest-level).
1 // DRAM.h
2 template <typename T>
3 class DRAM {
4 T::Command decode(T::Command cmd, int addr[]) {
5 if (prereq[level][cmd]) {
6 // consult lookup-table to decode command
7 T::Command p = prereq[level][cmd](this);
8 if (p != T::Command::MAX)
9 return p; // decoded successfully
10 }
11 if (children.size() == 0) // lowest-level
12 return cmd; // decoded successfully
13 // use addr[] to identify target child...
14 // invoke decode() at the target child...
15 }
16 };

1 // DDR3.h/cpp
2 class DDR3 {
3 // declare 2D lookup-table of lambdas
4 function<Command(DRAM<DDR3>*)>
5 prereq[Level::MAX][Command::MAX];
6 // populate an entry in the table
7 prereq[Level::Rank][Command::REF] =
8 [] (DRAM<DDR3>* node) -> Command {
9 for (auto bank : node->children)
10 if (bank->status == Status::Open)
11 return Command::PREA;
12 return Command::REF;
13 };
14 // populate other entries...
15 };

Code 3. The lookup-table for decode(): prereq

Check & Update. In addition to prerequisite, the DDR3 class
also provides two other lookup-tables: transition and timing. As is
apparent from their names, they encode the status transitions and
the timing parameters, respectively. Similar to prerequisite, these
two are also indexed using some combination of levels, commands,
and/or statuses. When a command is issued, the update function
consults both lookup-tables to modify both the status (via lookups
into transition) and the horizon (via lookups into timing) for all of
the affected nodes in the tree. In contrast, the check function does not
consult any of the lookup-tables in the DDR3 class. Instead, it consults
only the horizon, the localized lookup-table that is embedded inside
the DRAM class itself. More specifically, the check function simply
verifies whether the following condition holds true for every node
affected by a command: horizon[cmd] ≤ now. This ensures that the
time, as of right now, is already past the earliest time at which the
command can be issued. The check function relies on the update
function for keeping the horizon lookup-table up-to-date. As a result,
the check function is able to remain computationally inexpensive —
it simply looks up a horizon value and compares it against the current
time. For performance reasons, we deliberately optimized the check
function to be lightweight, because it could be invoked many times
each cycle — the memory controller typically has more than one
memory request whose scheduling eligibility must be determined. In
contrast, the update function is invoked at most once-per-cycle and
can afford to be more expensive. The implementation details of the
update function, as well as that of other components, can be found
in the source code.

3 EXTENSIBILITY OF RAMULATOR

Ramulator’s extensibility is a natural result of its fully-decoupled
design: Ramulator provides a generalized skeleton of DRAM (i.e.,
DRAM.h) that is capable of being infused with the specifics of an
arbitrary DRAM standard (e.g., DDR3.h/cpp). To demonstrate the
extensibility of Ramulator, we describe how easy it was to add
support for DDR4: (i) copy DDR3.h/cpp to DDR4.h/cpp, (ii) add
BankGroup as an item in DDR4::Level, and (iii) add or edit 20

entries in the lookup-tables — 1 in prerequisite, 2 in transition, and
17 in timing. Although there were some other changes that were also
required (e.g., speed-bins), only tens of lines of code were modified
in total — giving a general idea about the ease at which Ramulator is
extended. As far as Ramulator is concerned, the difference between
any two DRAM standards is simply a matter of the difference in
their lookup-tables, whose entries are populated in a disciplined and
localized manner. This is in contrast to existing simulators, which
require the programmer to chase down each of the hardcoded for-
loops and if-conditions that are likely scattered across the codebase.

In addition, Ramulator also provides a single, unified memory con-
troller that is compatible with all of the standards that are supported
by Ramulator (Table 2). Internally, the memory controller maintains
three queues of memory requests: read, write, and maintenance.
Whereas the read/write queues are populated by demand memory
requests (read, write) generated by an external source of memory
traffic, the maintenance queue is populated by other types of memory
requests (refresh, powerdown, selfrefresh) generated internally
by the memory controller as they are needed. To serve a memory
request in any of the queues, the memory controller interacts with the
tree of DRAM state-machines using the three functions described in
Section 2.2 (i.e., decode, check, and update). The memory controller
also supports several different scheduling policies that determine the
priority between requests from different queues, as well as those from
the same queue.

4 VALIDATION & EVALUATION

As a simulator for the memory controller and the DRAM system,
Ramulator must be supplied with a stream of memory requests from
an external source of memory traffic. For this purpose, Ramulator
exposes a simple software interface that consists of two functions: one
for receiving a request into the controller, and the other for returning
a request after it has been served. To be precise, the second function
is a callback that is bundled inside the request. Using this interface,
Ramulator provides two different modes of operation: (i) standalone
mode where it is fed a memory trace or an instruction trace, and
(ii) integrated mode where it is fed memory requests from an
execution-driven engine (e.g., gem5 [4]). In this section, we present
the results from operating Ramulator in standalone-mode, where we
validate its correctness (Section 4.1), compare its performance with
other DRAM simulators (Section 4.2), and conduct a cross-sectional
study of contemporary DRAM standards (Section 4.3). Directions for
conducting the experiments are included the source code release [1].
4.1 Validating the Correctness of Ramulator

Ramulator must simulate any given stream of memory requests
using a legal sequence of DRAM commands, honoring the status
transitions and the timing parameters of a standard (e.g, DDR3). To
validate this behavior, we created a synthetic memory trace that would
stress-test Ramulator under a wide variety of command interleavings.
More specifically, the trace contains 10M memory requests, the
majority of which are reads and writes (9:1 ratio) to a mixture of
random and sequential addresses (10:1 ratio), and the minority of
which are refreshes, power-downs, and self-refreshes.3 While this
trace was fed into Ramulator as fast as possible (without overflowing
the controller’s request buffer), we collected a timestamped log of
every command that was issued by Ramulator. We then used this
trace as part of an RTL simulation by feeding it into Micron’s
DDR3 Verilog model [30] — a reference implementation of DDR3.
Throughout the entire duration of the RTL simulation (∼10 hours),
no violations were ever reported, indicating that Ramulator’s DDR3
command sequence is indeed legal.4 Due to the lack of corresponding
Verilog models, however, we could not employ the same methodology
to validate other standards. Nevertheless, we are reasonably confident
in their correctness, because we implemented them by making careful
modifications to Ramulator’s DDR3 model, modifications that were
expressed succinctly in just a few lines of code — minimizing the

3We exclude maintenance-related requests which are not supported by Ramulator or other
simulators: e.g., ZQ calibration and mode-register set.
4This verifies that Ramulator does not issue commands too early. However, the Verilog
model does not allow us to verify whether Ramulator issues commands too late.



IEEE COMPUTER ARCHITECTURE LETTERS 4

risk of human error, as well as making it easy to double-check. In
fact, the ease of validation is another advantage of Ramulator, arising
from its clean and modular design.
4.2 Measuring the Performance of Ramulator

In Table 3, we quantitatively compare Ramulator with four other
standalone simulators using the same experimental setup. All five
were configured to simulate DDR3-16005 for two different memory
traces, Random and Stream, comprising 100M memory requests
(read:write=9:1) to random and sequential addresses, respectively.
For each simulator, Table 3 presents four metrics: (i) simulated clock
cycles, (ii) simulation runtime, (iii) simulated request throughput, and
(iv) maximum memory consumption. From the table, we make three
observations. First, all five simulators yield roughly the same number
of simulated clock cycles, where the slight discrepancies are caused
by the differences in how their memory controllers make scheduling
decisions (e.g., when to issue reads vs. writes). Second, Ramulator
has the shortest simulation runtime (i.e., the highest simulated request
throughput), taking only 752/249 seconds to simulate the two traces
— a 2.5×/3.0× speedup compared to the next fastest simulator.
Third, Ramulator consumes only a small amount of memory while
it executes (2.1MB). We conclude that Ramulator provides superior
performance and efficiency, as well as the greatest extensibility.

Simulator
(clang -O3)

Cycles (106) Runtime (sec.) Req/sec (103) Memory
(MB)Random Stream Random Stream Random Stream

Ramulator 652 411 752 249 133 402 2.1
DRAMSim2 645 413 2,030 876 49 114 1.2
USIMM 661 409 1,880 750 53 133 4.5
DrSim 647 406 18,109 12,984 6 8 1.6
NVMain 666 413 6,881 5,023 15 20 4,230.0

Table 3. Comparison of five simulators using two traces

4.3 Cross-Sectional Study of DRAM Standards
With its integrated support for many different DRAM standards

— some of which (e.g., LPDDR4, WIO2) have never been modeled
before in academia — Ramulator unlocks the ability to perform
a comparative study across them. In particular, we examine nine
different standards (Table 4), whose configurations (e.g., timing) were
set to reasonable values. Instead of memory traces, we collected
instruction traces from 22 SPEC2006 benchmarks,6 which were fed
into a simplistic “CPU” model that comes with Ramulator.7

Standard Rate Timing Data-Bus Rank-per-Chan BW
(MT/s) (CL-RCD-RP) (Width×Chan.) (GB/s)

DDR3 1,600 11-11-11 64-bit × 1 1 11.9
DDR4 2,400 16-16-16 64-bit × 1 1 17.9

SALP† 1,600 11-11-11 64-bit × 1 1 11.9
LPDDR3 1,600 12-15-15 64-bit × 1 1 11.9
LPDDR4 2,400 22-22-22 32-bit × 2∗ 1 17.9
GDDR5 [12] 6,000 18-18-18 64-bit × 1 1 44.7
HBM 1,000 7-7-7 128-bit × 8∗ 1 119.2
WIO 266 7-7-7 128-bit × 4∗ 1 15.9
WIO2 1,066 9-10-10 128-bit × 8∗ 1 127.2

†MASA [24] on top of DDR3 with 8 subarrays-per-bank.
∗More than one channel is built into these particular standards.

Table 4. Configuration of nine DRAM standards used in study

Figure 2 contains the violin plots and geometric means of the
normalized IPC compared to the DDR3 baseline. We make several
broad observations. First, newly upgraded standards (e.g., DDR4)
perform better than their older counterparts (e.g., DDR3). Second,
standards for embedded systems (i.e., LPDDRx, WIOx) have lower
performance because they are optimized to consume less power.
Third, standards for graphics systems (i.e., GDDR5, HBM) provide
a large amount of bandwidth, leading to higher average performance

5Single rank, 800Mhz, 11-11-11, row-interleaved, FR-FCFS [35], open-row policy.
6perlbench, bwaves, gamess, povray, calculix, tonto were unavailable for trace collection.
73.2GHz, 4-wide issue, 128-entry ROB, no instruction-dependency, one cycle for non-
DRAM instructions, instruction trace is pre-filtered through a 512KB cache, memory
controller has 32/32 entries in its read/write request buffers.

than DDR3 even for our non-graphics benchmarks. Fourth, a recent
academic proposal, SALP, provides significant performance improve-
ment (e.g., higher than that of WIO2) by reducing the serialization
effects of bank conflicts without increasing peak bandwidth. These
observations are only a small sampling of the analyses that are
enabled by Ramulator.

0.5

1.0

1.5

2.0

IP
C

 d
is

tr
ib

u
ti

o
n

(N
o
rm

a
liz

e
d
 t

o
 D

D
R

3
) 1.14 1.19 0.88 0.92 1.09 1.27 0.84 1.12

DDR4 SALP LPDDR3 LPDDR4 GDDR5 HBM WIO WIO2

Figure 2. Performance comparison of DRAM standards

5 CONCLUSION

In this paper, we introduced Ramulator, a fast and cycle-accurate
simulation tool for current and future DRAM systems. We demon-
strated Ramulator’s advantage in efficiency and extensibility, as well
as its comprehensive support for DRAM standards. We hope that
Ramulator would facilitate DRAM research in an era when main
memory is undergoing rapid changes [23], [31].

REFERENCES

[1] Ramulator source code. https://github.com/CMU-SAFARI/ramulator.
[2] J. H. Ahn et al. McSimA+: A Manycore Simulator with Application-Level+ Simulation

and Detailed Microarchitecture Modeling. In ISPASS, 2013.
[3] A. Bakhoda et al. Analyzing CUDA Workloads Using a Detailed GPU Simulator. In

ISPASS, 2009.
[4] N. Binkert et al. The Gem5 Simulator. SIGARCH Comput. Archit. News, May 2011.
[5] K. Chandrasekar et al. DRAMPower: Open-Source DRAM Power & Energy Estimation

Tool. http://www.drampower.info, 2012.
[6] K. Chang et al. Improving DRAM Performance by Parallelizing Refreshes with Accesses.

In HPCA, 2014.
[7] N. Chatterjee et al. USIMM: the Utah SImulated Memory Module. UUCS-12-002,

University of Utah, Feb. 2012.
[8] N. Chatterjee et al. Staged Reads: Mitigating the Impact of DRAM Writes on DRAM Reads.

In HPCA, 2012.
[9] A. Hansson et al. Simulating DRAM Controllers for Future System Architecture Explo-

ration. In ISPASS, 2014.
[10] Hybrid Memory Cube Consortium. HMC Specification 1.0, Jan. 2013.
[11] Hybrid Memory Cube Consortium. HMC Specification 1.1, Feb. 2014.
[12] Hynix. GDDR5 SGRAM H5GQ1H24AFR, Nov. 2009.
[13] James Reinders. Knights Corner: Your Path to Knights Landing, Sept. 17, 2014.
[14] JEDEC. JESD79-3 DDR3 SDRAM Standard, June 2007.
[15] JEDEC. JESD212 GDDR5 SGRAM, Dec. 2009.
[16] JEDEC. JESD229 Wide I/O Single Data Rate (Wide/IO SDR), Dec. 2011.
[17] JEDEC. JESD209-3 Low Power Double Data Rate 3 (LPDDR3), May 2012.
[18] JEDEC. JESD79-4 DDR4 SDRAM, Sept. 2012.
[19] JEDEC. JESD235 High Bandwidth Memory (HBM) DRAM, Oct. 2013.
[20] JEDEC. JESD209-4 Low Power Double Data Rate 3 (LPDDR4), Aug. 2014.
[21] JEDEC. JESD229-2 Wide I/O 2 (WideIO2), Aug. 2014.
[22] M. K. Jeong et al. DrSim: A Platform for Flexible DRAM System Research. http://lph.ece.

utexas.edu/public/DrSim, 2012.
[23] U. Kang et al. Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling.

In The Memory Forum (Co-located with ISCA), 2014.
[24] Y. Kim et al. A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM. In ISCA,

2012.
[25] D. Lee et al. Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case.

In HPCA, 2015.
[26] D. Lee et al. Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture.

In HPCA, 2013.
[27] J. Liu et al. RAIDR: Retention-Aware Intelligent DRAM Refresh. In ISCA, 2012.
[28] M. Meterelliyoz et al. 2nd Generation Embedded DRAM with 4X Lower Self Refresh

Power in 22nm Tri-Gate CMOS Technology. In VLSI Symposium, 2014.
[29] Micron. Micron Announces Sample Availability for Its Third-Generation RLDRAM(R)

Memory. http://investors.micron.com/releasedetail.cfm?ReleaseID=581168, May 26, 2011.
[30] Micron. DDR3 SDRAM Verilog model, 2012.
[31] O. Mutlu. Memory Scaling: A Systems Architecture Perspective. MemCon, 2013.
[32] S. Narasimha et al. 22nm High-Performance SOI Technology Featuring Dual-Embedded

Stressors, Epi-Plate High-K Deep-Trench Embedded DRAM and Self-Aligned Via 15LM
BEOL. In IEDM, 2012.

[33] S. O et al. Row-Buffer Decoupling: A Case for Low-latency DRAM Microarchitecture. In
ISCA, 2014.

[34] M. Poremba and Y. Xie. NVMain: An Architectural-Level Main Memory Simulator for
Emerging Non-volatile Memories. In ISVLSI, 2012.

[35] S. Rixner et al. Memory Access Scheduling. In ISCA, 2000.
[36] P. Rosenfeld et al. DRAMSim2: A Cycle Accurate Memory System Simulator. CAL, 2011.
[37] V. Seshadri et al. RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk

Data. In MICRO, 2013.
[38] A. N. Udipi et al. Rethinking DRAM Design and Organization for Energy-Constrained

Multi-Cores. In ISCA, 2010.
[39] T. Zhang et al. Half-DRAM: A High-Bandwidth and Low-Power DRAM Architecture from

the Rethinking of Fine-Grained Activation. In ISCA, 2014.

https://github.com/CMU-SAFARI/ramulator
http://www.drampower.info
http://lph.ece.utexas.edu/public/DrSim
http://lph.ece.utexas.edu/public/DrSim
http://investors.micron.com/releasedetail.cfm?ReleaseID=581168

	Carnegie Mellon University
	Research Showcase @ CMU
	3-2015

	Ramulator: A Fast and Extensible DRAM Simulator
	Yoongu Kim
	Weikun Yang
	Onur Mutlu
	Published In


	tmp.1435699311.pdf.d1tdc

