

Ranged Integers for the C Programming

Language

Jeff Gennari

Shaun Hedrick

Fred Long

Justin Pincar

Robert C. Seacord

September 2007

TECHNICAL NOTE
CMU/SEI-2007-TN-027

CERT Program
Unlimited distribution subject to the copyright.

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and .No Warranty. statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract iii

1 Introduction 1
1.1 Terms and Definitions 1
1.2 Goals 2

2 Ranged Integers 3
2.1 Declaration 3
2.2 Initialization 4
2.3 Runtime Constraints 4
2.4 Usage 5

3 Examples 6

4 Conclusion 7

References 8

 SOFTWARE ENGINEERING INSTITUTE | i

ii | CMU/SEI-2007-TN-027

Abstract

This report describes an extension to the C programming language to introduce the notion of
ranged integers, that is, integer types with a defined range of values. A variable of a ranged inte-
ger type will always have a value within the defined range as a result of initialization or assign-
ment. Use of ranged integers would help prevent integer overflow errors and thus would result in
more reliable and secure C programs. The syntax and semantics of ranged integers are presented,
and some examples are given to illustrate their use.

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2007-TN-027

1 Introduction

The inability of computers to represent an infinite range of values is well known. The behavior
when a value is too large for an unsigned integer type to represent is defined as being “reduced
modulo the number that is one greater than the largest value that can be represented by the result-
ing type” (or “wrapped around”—see ISO/IEC 9899:1999 TC2:2004 [ISO/IEC 2004a] Section
6.2.5.9). However, the behavior of a signed integer type when a value is too large or small to be
represented is undefined and may result in modulo behavior or an exception (see ISO/IEC
9899:1999 TC2:2004 [ISO/IEC 2004a] Section 6.3.1.3).

In either the case of signed or unsigned integers, it is useful to define a valid range within which
all values are guaranteed to lie after the result of an assignment or initialization on that integer
type. It is then necessary to determine a policy to be enforced in the event that a resulting assign-
ment or initialization lies outside of the valid range that is defined.

An extension to the C programming language’s integer type system [ISO/IEC 2001] could pro-
vide such functionality through the use of ranged integers. This extension would effectively es-
tablish a new type of integer—a ranged integer—which maintains a specified policy on an as-
signment or initialization of the value of an integer. Ranged integers could be of particular value
when used as array indices. The use of such indices in the C language is equivalent to unchecked
pointer arithmetic and frequently results in reading and writing outside the bounds of an array, a
condition frequently exploited as a buffer overflow vulnerability [Seacord 2005].

This report describes the semantics of ranged integer declaration and initialization and the policies
enforced on operations in which they are used.1

1.1 TERMS AND DEFINITIONS

For the purposes of this description, the following definitions apply. Other terms are defined
where they appear in the text and appear as italicized text. Terms explicitly defined are not to be
presumed to refer implicitly to similar terms defined elsewhere. Terms not explicitly defined in
this document are to be interpreted according to the C standard [ISO/IEC 2001].

range-min The defined minimum value that a ranged integer is intended to hold.

range-max The defined maximum value that a ranged integer is intended to hold.

storage policy A set of rules to be enforced on an assignment or initialization into a
ranged integer.

modwrap semantics The ranged integer storage policy that enforces modulo behavior over
the defined range of values.

saturation semantics The ranged integer storage policy that stores range-max or range-min
in the event of positive or negative overflow (respectively).

1 This report is a development of an article by Robert C. Seacord, “Ranged Integers and Saturation Semantics”

[Seacord 2007].

 SOFTWARE ENGINEERING INSTITUTE | 1

1.2 GOALS

Minimize the impact on the C language

One of the reasons that the C programming language has been so effective and popular is because
of its ability to evolve but not generally break existing code. This proposal aims to adhere to this
philosophy by making as little change to the standard as possible and to avoid defining notation,
keywords, and so on that may break existing code. The extension to the C programming language
to support embedded processors [ISO/IEC 2004b] introduced the reserved word _Sat to denote
saturation semantics (of fixed point types). The syntax introduced in this report avoids the need
for any new reserved words.

Minimize the performance overhead

The notion of dynamically checking that an integer type is within a certain range implies an asso-
ciated runtime overhead, with both temporal and spatial implications. The approach described
here allows implementations to define ranged integers in a way that minimizes the amount of
space needed to store any associated data structures and aims for a performance overhead compa-
rable to manually coded range checks.

Maximize the flexibility

If a ranged integer is not sufficiently flexible in how it can be used, it is not a viable alternative for
hard-coded range checks and is consequently useless. The approach described here aims to make
ranged integers sufficiently robust and flexible so that they become preferable to manual range
checking in most circumstances.

2 | CMU/SEI-2007-TN-027

2 Ranged Integers

Ranged integers are intended to be a security enhancement to the C programming language so that
a stronger guarantee can be made about the value of an integer type after the results of an assign-
ment or initialization.

As an example, consider an integer type that is used as an index into a fixed-length array. In many
cases, this may result in a read or write out of bounds. However, if a malicious user is able to in-
fluence that value in some way, an exploitable buffer overflow might result. If a ranged integer
were to be used instead, even if an unexpected value were attempted to be assigned to the integer
type, a well-known policy would be in place to handle this condition and prevent the buffer over-
flow from occurring.

Ranged integers are intended to assist a developer by performing checks that would otherwise
need to be done manually by control statements such as if and allow for a more intuitive policy
to be enforced in the event of an exceptional condition.

2.1 DECLARATION

All of the C programming language’s integer types—char, short, int, long, long long
(both signed and unsigned; see ISO/IEC 9899:1999 TC2:2004 [ISO/IEC 2004a] Section 6.2.5)—
and pointers or arrays thereof can be declared as ranged. The valid range for a given integer type
is the implementation-defined minimum and maximum for that type. Range-min must not be ar-
ithmetically greater than range-max for any ranged integer.

A ranged integer may be declared with any of the C programming language storage class identifi-
ers—typedef, extern, static, auto, or register (see ISO/IEC 9899:1999 TC2:2004
[ISO/IEC 2004a] Section 6.7.1). However, only ranged integers with the auto storage class can be
declared as dynamic ranged integers.

A ranged integer may also be declared with any of the C programming language type qualifiers—
const, restrict, or volatile (see ISO/IEC 9899:1999 TC2:2004 [ISO/IEC 2004a] Section
6.7.3). However, it should be noted that declaring a ranged integer as const or volatile may
not have the intended effect. A const qualified ranged integer need not guarantee that any value
stored into it after initialization be within its defined range, as assigning a value to a const-
qualified integer after initialization is undefined. A volatile-qualified ranged integer may not
necessarily always lie within the defined range as expected by definition of the volatile quali-
fier.

Pointers and arrays

As previously stated, both pointers to and arrays of ranged integers may be declared.

A ranged integer pointer points to either a ranged integer or NULL and must not point to a regular
(non-ranged) integer. A regular (non-ranged) integer pointer must not point to a ranged integer.

An array of ranged integers degrades into a pointer to ranged integers when passed to another
function. Although an array of ranged integers is guaranteed to fill a contiguous block of memory,

 SOFTWARE ENGINEERING INSTITUTE | 3

no guarantee is placed on the layout of the ranged integers stored within that array; that is, the
values of the stored ranged integers need not occupy adjacent bytes in memory.

Syntax

integer-type

underlying-integer-type

ranged-integer-type

underlying-integer-type

char, signed char, unsigned char

short, unsigned short

int, unsigned int

long, unsigned long

long long, unsigned long long

ranged-integer-type

underlying-integer-type integer<..>integer modwrap semantics

underlying-integer-type integer|..|integer saturation semantics

Note that the ranged integer syntax is meant to be pictographical. The notation min<..>max indi-
cates that the values can continue (wrap around) when the ends of the range are reached, whereas
min|..|max indicates that the values are constrained at the ends of the range.

Static ranged integers

A static ranged integer is declared using only integer constant expressions. A static ranged integer
must not have a range-min less than or a range-max greater than what can be represented by the
underlying integer type.

Dynamic ranged integers

A dynamic ranged integer takes integer expressions determined at runtime for its range-min and
range-max. The size of a dynamic ranged integer need not necessarily have the same size as a stat-
ic ranged integer pointer.

2.2 INITIALIZATION

The rules for the value stored on the initialization of a ranged integer type are as specified in the
section “As an lvalue” below. Note that if a ranged integer is left uninitialized, its initial value is
indeterminate and need not be in the defined range.

2.3 RUNTIME CONSTRAINTS

In the event that the defined range is exceeded and a storage policy is applied, a runtime con-
straint handler may be called to take an appropriate action, and the default action of the runtime
constraint handler is to do nothing. The existing mechanisms used by ISO/IEC TR 24731-1
[ISO/IEC 2006] are used to handle the runtime constraints. That is, the user may define a function
that is to be called if an attempt is made to initialize or assign to a ranged integer outside of its

4 | CMU/SEI-2007-TN-027

defined range. The user can implement this function to print an error message or to do anything
else that the user wishes. The function does not even have to return. For example, it could abort
the program. If the function does return, the appropriate saturation or modwrap semantics are ap-
plied to the value that caused the constraint to determine the value to be stored in the ranged inte-
ger. The default constraint handler does nothing. It is unspecified whether a function call must
actually take place if the default handler is used.

2.4 USAGE

It is important to understand that ranged integers are a new type of integer that implements a stor-
age policy, that is, range checking and enforcement occur only upon assignment or initialization.
The following subsections describe this in more detail.

As an rvalue

When a ranged integer appears in an expression as an rvalue, it is subjected to the C programming
language’s normal integer promotion rules and conversion ranks (see ISO/IEC 9899:1999:2001
Section 6.3.1.1 [ISO/IEC 2001]) for its declared integer type.

As an lvalue

When a ranged integer appears as an lvalue, the right-hand side of the expression is first evaluated
according to the normal promotion rules and conversion ranks for integer types. If the value of the
right-hand side is not within the range specified for the ranged integer, a runtime constraint handler
is called, if one is defined. If the runtime constraint handler returns execution to where it was called,
modwrap or saturation semantics are applied to the value before it is assigned to the ranged integer.

As a pointer or array

In almost all cases, a pointer or an array that is typed as a ranged integer can be treated as if it
were a pointer or array to the underlying integer type. The main difference lies in pointer arithme-
tic, as a ranged integer type is not guaranteed to use the same amount of space as its underlying
integer type.2

2 For example, if “int 0|..|15 *pri;” is declared, adding one to pri does not necessarily add

sizeof(int) to determine the address.

 SOFTWARE ENGINEERING INSTITUTE | 5

3 Examples

The declaration
 int 0|..|20 index = 0;

declares the variable index to be a static ranged integer of underlying type int with a minimum
value of 0, a maximum value of 20, and saturation semantics, initialized with the value 0. Any
assignment to the variable index will ensure that its value remains in the range 0 to 20. The as-
signment
 index = 25;

results in index having the value 20 (assuming that no constraint handler is in place that prevents
index from being assigned a value.) When index is used as an rvalue, it is treated as if it were a
normal variable of type int.

Assuming that the variables min and max are defined of some integer type and have values such
that min is not greater than max, the declaration

 long min<..>max circular;

declares the variable circular to be a dynamic ranged integer of underlying type long with a
minimum value of min, a maximum value of max, and modwrap semantics. As it is not initial-
ized, its initial value is indeterminate and could be any value, not necessarily one in the range min
to max. The assignment

 circular = max + 1;

results in circular having the value min (assuming that no constraint handler is in place that
prevents circular from being assigned a value).

6 | CMU/SEI-2007-TN-027

4 Conclusion

This report describes a syntax and semantics for adding ranged integers to the C programming
language. Ranged integers provide guarantees about the value of an integer in the event of integer
overflow. Their introduction and use would result in more reliable and secure C programs.

 SOFTWARE ENGINEERING INSTITUTE | 7

8 | CMU/SEI-2007-TN-027

References

URLs are valid as of the publication date of this document.

[ISO/IEC 2001]
International Organization for Standardization (ISO) and International Electrotechnical
Commission. ISO/IEC 9899:1999:2001, Information Technology – Programming Languages,
Their Environments and System Software Interfaces – Programming Language C. Geneva,
Switzerland: International Organization for Standardization, 2001. http://www.open-
std.org/JTC1/SC22/WG14/

[ISO/IEC 2004a]
International Organization for Standardization (ISO) and International Electrotechnical
Commission. ISO/IEC 9899:1999 TC2:2004, Information Technology – Programming Lan-
guages, Their Environments and System Software Interfaces – Programming Language C –
Technical Corrigendum 2. Geneva, Switzerland: International Organization for Standardiza-
tion, 2004. http://www.open-std.org/JTC1/SC22/WG14/

[ISO/IEC 2004b]
International Organization for Standardization (ISO) and International Electrotechnical
Commission. ISO/IEC TR 18037:2004, Information Technology – Programming Languages,
Their Environments and System Software Interfaces – Extensions for the Programming Lan-
guage C to Support Embedded Processors. Geneva, Switzerland: International Organization
for Standardization, 2004. http://www.open-std.org/JTC1/SC22/WG14/

[ISO/IEC 2006]
International Organization for Standardization (ISO) and International Electrotechnical
Commission. ISO/IEC TR 24731-1:2006, Information Technology – Programming lan-
guages, Their Environments and System Software Interfaces – Specification for Safer, More
Secure C Library Functions. Geneva, Switzerland: International Organization for Standardi-
zation, 2006. http://www.open-std.org/JTC1/SC22/WG14/

[Seacord 2005]
Seacord, Robert C. Secure Coding in C and C++. Boston, MA: Addison-Wesley Profes-
sional, 2005 (ISBN 0-321-33572-4).

[Seacord 2007]
Seacord, Robert C. “Ranged Integers and Saturation Semantics.” The Art of Software Security
Assessment blog, January 18, 2007.
http://taossa.com/index.php/2007/01/18/ranged-integers-and-semantics/

http://taossa.com/index.php/2007/01/18/ranged-integers-and-semantics/
http://www.open-std.org/JTC1/SC22/WG14/
http://www.open-std.org/JTC1/SC22/WG14/
http://www.open-std.org/JTC1/SC22/WG14/
http://www.open-std.org/JTC1/SC22/WG14/
http://www.open-std.org/JTC1/SC22/WG14/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

September 2007
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
Ranged Integers for the C Programming Language

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Jeff Gennari, Shaun Hedrick, Fred Long, Justin Pincar, Robert C. Seacord

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2007-TN-027

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
This report describes an extension to the C programming language to introduce the notion of ranged integers, that is, integer types with
a defined range of values. A variable of a ranged integer type will always have a value within the defined range as a result of initializa-
tion or assignment. Use of ranged integers would help prevent integer overflow errors and thus would result in more reliable and secure
C programs. The syntax and semantics of ranged integers are presented, and some examples are given to illustrate their use.

14. SUBJECT TERMS
C programming language, information system security, secure programming

15. NUMBER OF PAGES
14

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Ranged Integers for the C Programming Language
	Table of Contents
	Abstract
	1 Introduction
	2 Ranged Integers
	3 Examples
	4 Conclusion
	References

