








Next we follow some of the ideas in [H] and the techniques developed by

Giga and Kohn [GK] to study the blow-up of the solution of semilinear heat

equation.

To this end, we define

t;(y, s) = (T - t)-\h{yy/T - M) with s = - log(T - t).

Observe that v(y,s) is defined for (ye"2,T-e~s) in (-2A,2A) x (0,T) C ft,

i.e. t; is defined on

K(A) = {{y,s) : s > -logT,|y| < 2Ae>'2}.

We now write

and calculate

()

Using (2.4) and (2.7) we get

(2.8) w(0,a

and

(2-9) My,,)|<(

To obtain more pointwise estimates for v, vy, Vyy and v, we use the equa-
tion which is satisfied by v, namely

(210) "• - T T w L ̂  + 1{SV" ~ v) in
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and recall that (1.10) holds in [-e,e] x [T- e,T). Finally, denote
= {(y>«) e K(A) such that |y| < ec'l2 and s > - loge}.

Proposition 2.1: There exists Cj > 0 (i = 1,2,3) such that for all
(y,s)€K(e),

(2.11)

' (a)

(6) K

Proof: For c > 0 set

and observe that

i n

On the other hand, (2.3) and the definition of v yield

v(0,5) < y/2(N - 2),

hence,
v(0,s) < u*(0,5) in (logT,+oo)

provided c > ^2(JV - 2). Also

es'\s) < e#

if c > ||/i||oo/2i4. Applying the maximum principle we get v < v* in K{A),
and, therefore, (2.11)(a).

For the second derivative estimate we have
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with the inequality following from (1.2) and (2.7).

Hence, by (2.11)(a),

1),

for some C2 > 0.

Finally,

V ( y , , ) ^

We now obtain (2.11)(c) using v(y,s) > r(0,s), (1.2), (2.7) and (2.11)(a),

(b).
•

2,2 A monotonicity formula.

As we will explain in the next subsection, Proposition 2.1 yields the local uni-

form compactness of v as s —> oo. To show that the whole family converges,

it is sufficient (cf. [GK]) to come up with an "energy-type" functional, which

will play the role of a Lyaponov function as e —* oo. To this end, following

[H] we define

where

p(y, s) = exp(-^(v2(y, s) + y2)) and R(s) = ee''2.

Proposition 2.2:

(2.12) iw*;.))) = - r
ds J-R(s) [l
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and

(2.13) lim e(s) = 0.

We will prove (2.12) by an elementary computation using (2.10). The

error e(s) is due to the boundary \y\ = ee*/2 we are imposing in the formula

for E. Finally, we refer the reader to [H,Section 3] for a more elegant proof

(using differential geometric arguments).

Proof: We directly calculate

±E(v(; s)) = A(s) + B(s) + C(s)

where

C(s) = J*^ pv[(l + v2
y)>]vsydy,

and

v ' \ s ) - (pv(l + vl

Since p(±eea/2,s) < exp(-^a), (2.11) yields

(2.14) lim e^s) = 0.

Next we will show that

(2.15) A(s) + B(s) + C(s) = - / P
v

)2

with 62(5) —* 0 as s —* 00. This will conclude that proof with e = e\ + e2.
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To obtain (2.15) we calculate

"'+ e2(5)

K + e2(s)

w

+
V L (1 +

with

where all the integrals are over the interval [—/2(s)7i2(s)],u; = vy and we

used that

Py = "2\vw + y)P^Ps^ -2vwp'

Now a straightforward computation gives (2.15). The fact that e2 —> 0 as

e —> oo, follows again from (2.11) and the form of /9.
D

2.3 Blow-up

In view of (2.7) and (2.11), there exists Sj —» oo with Sj+i — 5j > 2 such that

*>j(y, 5) = v{y, 5 + s;) -> t;oo(y, 5) as j -4 00,

with the limit uniform on compact subsets of Ft2 and

i>j,y —k t;oo,y in I / 0 0 — w*.

By passing to a further subsequence, which we again denote by $j, we also

have that

vjiV —* Voo,y f° r almost every (y, s).
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If for some s, VjtV(y, s) —> ̂ ( y , s) for almost every y, then (2.11)(b) yields

that this convergence is uniform for bounded y's. Hence for every integer /:,

there is a n* € [A:, k + 1) such that

uniformly for bounded y for each n*.

Applying the dominated convergence theorem and using the exponential

decay of p we get, that, for each n*,

(2.16) lim E(vi(;nk)) = EM,nk)),

On the other hand, Vj(-,n/.) = v(-,Sj + n^). Therefore,

J5(vi+1(-,n*)) - E(vJ(.,n0) = - / (l(j,s) + e(s + Sj))ds,
Jnk

where

Finally, in view of (2.7) and (2.11)(a),

for some c > 0. Since Vj > 0, this yields

Using the exponential decay of /?, the uniform convergence of Vj (2.11) and

the fact that by construction Sj+i — Sj > 2, we get, for each n^,

and
lim / e(s + Sj)ds = 0.

Jnk
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Hence

But, in view of (2.11)(a),

Voo

therefore, for almost every y,

vooAy->s) ^ 0 for almost every s,

which, by (2.11)(c), yields

Voo(y, 5) = ^ ( y ) for all y € JR.

Passing to the limit in (2.10) we get that VQQ solves

(2.i7) -SaOL_ _ ?L=2 + 1 (yVo0iy - Voo) = 0 in R

As a matter of fact, the estimates of Proposition 2.1 yield that Vo© is a classical

solution of (2.17) and, moreover,

(2.18) y/2^ < Voo(y) < Cl(|y| + 1) and boo,w(y)l < c2[\y\^ + 1).

A direct calculation also shows that if

then

In view of (1.3), if # 2 has an interior maximum at yo, then

- 1 < *(yo) < 0.
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We now claim that $ < 0 in JR. Indeed suppose that there exists y* G JR

such that \P(j/*) > 0. Without any loss of generality we may assume that

tyy(y*) > 0, since, else we consider the point — y*~ But then

«(y) > *(y*) > 0 in (y*,oo),

since, in view of the discussion above, \t cannot have a positive interior

maximum. This, however, contradicts (2.18). Hence V? < 0 in JR. Hence Voo

is concave and, in view of (2.18), constant. Using (2.17) we see that the only

constant solution is \/2(N — 2). Since any limit of r(y, s + Sj) is equal to

\/2(N — 2), we have concluded the proof of Theorem 1.

Corollary 2.3: For any e > 0 there exists 6 > 0 satisfying

(2.19) limfc(M) < e\z\ for 2 € [-£,<$].

Note that in view of (1.3) the above limit exists for sufficiently small \z\.

Proof: Suppose that for a given e there is a sequence zn —* 0 such that

(2.20) ]]mh(zn,t) > e\znzn\.

then

- 2)

Since zn —* 0,sn —» oo and, by (2.20),

n ,*n) > 2(N-2) > yj2{N - 2),ve\**\
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which contradicts Theorem 1.
D

Corollary 2.4: As t —> T,h(-,t) converges, uniformly in [—2A,2A], to
h(-,T), which is smooth for z ^ 0 and differentiable at z = 0 and h(-,T) > 0
for all y^O.

Proof- In view of (1.3),

ht(z,t)<0 for |*| <£ and T-t<e.

Hence h(z^t) converges to a limit which we call h(z^T) for \z\ < e. On the
other hand, (0.6) implies that /i(-,T) is nondecreasing on [0,e) and nonin-
creasing on (—6,0].

Suppose now that h(2zo,T) = 0 for some 2z0 € (0,e). Then h(z,T) = 0
for z 6 [0,2zo] and by Dini's Theorem h(z,t) —> 0 uniformly on [0,2JZO].

Set
$(z, t) = h{z + zo, t) - h(z, t) , (z, t) e O,

where
O = (0,zo)x(r-e,r).

It is immediate that $ satisfies

(2.21) $t = a$22 + 6$2 + c$ in 0,

where

+ zo,t)h(z,t))-\

b(z, t) = hzz(z + z0, t)[hz(z + z0, t)hz(z, t)]a{z + z0, t)a(z, t).
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ButO < a < 1 and \b(z,t)\ < \hzz(z+zo,t)\ < h-l(z+zo,tM(z+zo,t)(h{z+
1^))2^. Using (1.3), we conclude that, for (z,t) € O,

((a) \b{z,t)\<c{T-t)-h
(2.22) {

I (6) \c(z,t)\<c(T-t)-K

Moreover, again using (1.3), we see that, for some appropriate constant K,

(2co(T-t))l < -ht < (K(T-t))-i in [-e,e] x [T- e,t).

Integrating we obtain

(2.23) 0 < *(*,*) < KVT -1, in 0

For fi > 0 consider the auxiliary function

A direct calculation yield

T_tyl -a-b(z- zQ)}.

Using (2.22) and (2.23), we conclude that, there is t0 < T such that for all

/x>0 ,

6, - a$y y - b$y > 0, (z, t) € (0,2o) x (U, T).

Moreover, for all sufficiently small // there is i < T such that

inf $(zo,t) < inf l$(z,t) : (z,t) 6 {0,2z0} x [t,T) U [0,2z0] x {t}\.

Hence $ has an interior minimum, which contradicts with the fact that $ is
a supersolution to a linear equation.

In summary we have shown that

h(z,T)>0 in (0,e).
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Similarly we show that

/i(z,T)>0, in [-6,0).

Using (0.6), we
<) : \z\>e,te [0,T)} > 0.

Finally, equation (0.4) for \z\ > e, we can easily show that h(z,t) has a limit

as <-* T.
D

2.4 No interior at the focusing point

We conclude this long section with a brief discussion, without any proofs, of

why the focusing point 0 cannot be in the interior of Fj+p for p > 0 and very

small. This will be a consequence of (1.3).

To this end, we consider the solution u of (0.2) with initial datum #, such

that {g = 0} = {r = ho(z)}. It follows (cf. [ES]) that, for t < T,

where here, as usual, we denote by h the solutions of (0.4) which correspond

to the different branches of h0. Assume now that 0 € MN belongs to the

interior of Fj+p for p > 0. This implies that there exist R(p) > 0 such that

J5(0,i?(p)) C FT+P. On the other hand, (1.3) yields that we can bound the

part of h which focuses by catenoids as close to (0, T) as we want. Recall that

catenoids are stationary solutions to (0.2). Finally, we recall that the dis-

tance between two surfaces which move by mean curvature is a nondecreasing

function in time (cf. [ES]).

To conclude this heuristic discussion we argue as follows. If 0 G Fr+ P ,

choose e > 0 so small that /i(0, T — e) = \R(p) and bound h by the catenoid

passing through (|i?(p),0). In view of the above discussion, the set
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= 0} cannot touch the catenoid which contradicts the choice of e.

This argument can be made rigorous at the expense of technical arguments.

We choose, therefore, to omit the details.

3 No interior - Motion after the focusing

Our goal here is to show that, under certain assumtions, if I \ "focuses at

(0,T), then, for t > T,Tt: (i) does not develop interior and (ii) "opens" up.

We begin with the definition of non-interior.

Definition S.I: Tt has no interior iff d{u(-,t) > 0} = d{u{-,t) > 0}, where

u is the solution of (0.2).

As mentioned in the Introduction, in general, Tt will develop interior,

(see for example: Soner [S]). On the other hand, [BSS] gives a fairly general

geometric condition on Fo, which yields no interior. We next state this result

of [BSS] as it applies to the case of cylindrically symmetric surfaces moving

by mean curvature.

Theorem 3.2 ([BSS]): Assume that To is C2 surface and that there exists

a constant C such that

(3.1) x-Dd + CAd^O on To,

where d is the signed distance to IV Then Tt has empty interior in (0, +oo).

Condition (3.1) has a geometric meaning, since the left hand side is the

generator of dilations and translations in (z,<) evaluated at t = 0 on Fo.

If To is smooth, then Tt is smooth for t € [0,fi)(<i > 0) and, therefore,

has empty interior in (0,<i). As remarked in [BSS], if the solution tx of (0.2)

which defines Tt satisfies, for some to € (0, <i),

, , 2 ) £
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then Tt has empty interior in (0, oo). Indeed let d(-,t) be the signed distance

to Tt. Then at t0

2t = utl\Du\, Dd = Du/\Du\.

Also

dt = Ad/(N - 1),

since I\ is a classical solution of the mean curvature flow and Ad is equal to

(N — 1) times the mean curvature.

Since in this paper we assume that To is smooth, the main goal in this

section will be to show that, under some additional assumptions on To, (3.2)

holds near the focusing time T, although it may not hold at t = 0.

Throughout the discussion below we will need to go back and forth to

parametrizing Tt, for t € (0, T), in terms of both z and r. More pre-

cisely, we will need the existence of positive numbers z(t),r,-(t)(t = 1,2,3)

with t G [0,T) and smooth functions h,H : [-z(t),z(t)} -» [0,oo) and

g : [ri(t),r2(t)) -+ [0,oo) such that:

(3.3) = h{0,t),r2(t) = H(0,t) and z{t) = g(r3(t),t),

(3.4) Tt = {r = h(z, t) : \z\ < z(t)} U {r = H(z, t):\z\< z(t)}

= {\z\=g(r,t):re[ri(t),r2(t)}},

hzz(3.5) ht =
N-2 , „ Hzz N - 2 . . . , . ,.
—r— and ^ = — - ^ - + —— m \-z(t),z(t)],

n 1 + ti; n

(3.6)

(3.7)

\ (t) g(h(z,t),t) = g(H(z,t),t) = z in

(ii) h(g(r,t),t) = rm [r,(t),r2(0],

[ (in) H(g(r,t),t) = r in [r2(t),
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and

f (r-r2(t))gr(r,t)<0 in
(3.8) I and

I
It is immediate that if (3.3)-(3.8) hold, then

(3.9) and
grr = —hZ2hj3 = —HZZH~Z.

The existence of such *:(*), rt(<)(i = 1,2,3) and ft, # and 5 with the above

properties follows from the next proposition.

Proposition 3.2: Assume that there exist positive numbers z0, rOft-(t = 1,2,3)

and smooth functions ho,Ho : [—zo,zo] —* [0,oo) and g0 : [ro,i,rOl3] —»

[0,+oo) 5uc/i </iai (3.3), (3.4), (3.7) and (3.8) hold at To. Then there exist

smooth z, n : [0, T) -> (0, +oo)(t = 1,2,3) and h(; t), //(•, t) : [-z(t)y z{t)] -*

(0,oo)iflf : [ri(t),r3(*)) ~* [0,+oo)(< G [0,T)) satisfying (3.3)-(3.8) for all

Proof: Consider the solution u of (0.2) with initial data u0 satisfying

tio(x) = go{r) - \z\ (r € [rOfi, ro,3]),

where, for x = (x! , . . . ,x n ) G iRN,z = x# and r2 = X^x^# Since u0 is
f=i

smooth, (0.2) has a, local in time, smooth solution. The resulting smooth Tt

can be parametrized as in (3.4) where /i, H and g solve (3.5) and (3.6) with

initial data ho, Ho and go respectively. Moreover, u satisfies

(3.10) u(x,t) = g(r,t)-\z\ (r € M*W0])-

On the other hand, (3.5) admits a smooth solution as long as the solution

stays positive. This yields that u is smooth as long as Tt does not focus
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i.e. for t e (0,T). Finally (3.8) follows from analyzing the properties of the

number of zeroe's of gr as in the Appendix.
D

Next we use (3.10) to write the expresion in (3.2) as

,Q 1 1v x • Du + Cut rgr-g + Cgt

(3.11) TTT~i = , o n l t .

The first important result in this section is:

Proposition 3.3: Assume that # { r € [roi,rO3] : rgOr — go — 2Tgot = 0} < 2.

Then there exists t0 € [0, T) and B > 0 such that

(3.12) rgr-g- 2Bgt < 0 in (n(<0), r3(t0)) x {t0}.

/n particular Tt has no interior for all t > 0.

Before we begin with some preliminaries which will lead to the proof of

Proposition 3.3, let us first comment on why (3.12) seems reasonable to hold.

Indeed that analysis in Section 2 yields that ht(O,t) —> —oo as t —» T, which,

in turn, suggests, by (3.9), that <fr(ro(*)>O ~"* +°° as < —• 71. This would

yield (3.12), provided one is able to control, away from the singularity, the

term rgr — g. Keeping this in mind, we define

K : Ui€[OfT)((ri(<)f r3(<)) x {*}) -+ R

by

(3.13) K(r,t) = rgr(r,t) - g(r,t) - 2(T - 0^(r,t).

Using (3.6) we obtain

(3.14) Kt = C{K) in Ute(o,r) ((ri(0.rs(0) x ( 0 ) ,

where
1 , 2<7rrgr f N-2.
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We will also need to define the functions

, J • UtelQ,T)((-z(t),z(t)) x {<}) - R by

( I(z, t) = h(z, t) - zh,(z, t) + 2(T - t)ht(z, 0,
(3.15) {

{ J{z,t) = H(z,t)- zH,(z, t) + 2(T - t)Ht(z, t).

It follows from (3.7) and (3.9) that

I(g(r,t),t) = g-l(r%t)K(r%t) (r € M*),f*(t)))

and

J(9(r,t),t) = g;l(r>t)K(r,t) (r 6 ( r ^

Hence, (3.8) yields

sign(/r(r,0) = sign (/(y(r, *),*)) (r €
(3.16) {

I sign(/C(r,/)) = - sign (J(^(r, <),<)) ( r € (r2(*),r3(0)).

Finally, another direct computation gives

(3.17) /< = C(h, I) and Jt = £(i7, J) in Ute[0,r) ({-z(t), z(t)) x {<}),

where

) = i ^ ^ » - ( T + / ^ + ^ F ^ ^ i n Ut6l0'T)("z(0'z(0)x{

To state the next result we define n : [0, T) —* 2Z+ by

n{t) = #{r € (r,(«) + 6,rz{t) - 6) : K(r,t) = 0}

where 0 < 6 < min{r3(<) — r2(t),r2(t) — ri(t)} is arbitrary. In view of (3.16)
the above definition is independent of 6.
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Lemma 3.4: Assume n(0)) < oo. Then n(t) < n(0) and t »-+ n(t) is
nonincreasing in [0,T).

Lemma 3.4 follows by applying the lemma in the Appendix about the

number of zeroe's of solutions to linear parabolic equations in one dimension.

Of course, special care has to be taken for the fact that, in principle, the

boundary Ut€[o,r)({ri(<),r2(i)} x {*}) °f ^e domain where K satisfies (3.14)

may generate new zeroe's. This difficulty, however, may be overcome, in

view of (3.16), by applying the aforementioned lemma to K,I and J and the

equations they satisfy. The proof is long but rather standard, we, therefore,

omit it.

Next we will extend the statement of Lemma 3.4 up to T. This is not

immediate, since the coefficients of C and C are no longer bounded at t = T.

But Corollary 2.4 asserts that h and, therefore, by (3.7) and Proposition 3.2,

H and g are defined in a continuous way up to t = T. It follows that K, I

and J can be extended up to t = T away from their respective singularities.

Finally, Proposition 2.1 and Corollary 2.4 also yield that

/(*, T) = h(z, T) - zhz(z, T) (z € (-z(T), *{T)))

and

Moreover / is continuous on its domain possibly except at (0, T).

The next result asserts that z t-» I(z,T) is negative in a neighborhood of

2 = 0.

Lemma 3.5: Ifn(0) < oo, then there exists e > 0 such that

I(z,T)<0in [-e,e]\{0}.

Proof: If 7(-,T) > 0 in (zuz2) G (0,z(T)), then
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Hence

(3.18)

Let
(mt{ze(O,z(T)):I(z,T) = O}

\z(T),if I{-tT) *0 in (Otz(T)).

Since n(0) < <x>, Lemma 3.4 yields z" > 0. Hence I(-,T) is either negative

or positive in (0,2*). If the latter holds, then

fa.B,e(o,o
and, since hz(Q,T) = 0,

h(z\T) = 0

which contradicts the positivity of h(-,T) in (0,2(T)).

Lemma 3.6: //n(0) < oo, then

(3.19) n(T) = # { 2 > 0 : 7(z,T) = 0 or J(«, T) = 0} < n(0)

(3.20) n' = # { r > 0 : A'(r, T) = 0} < n(0) - 1.

Proof: In view of (3.16) and 7(0, T) = 0, (3.19) and (3.20) are equivalent.

To prove (3.20), we first claim that, for sufficiently small 7 > 0,

(3.21) n^(T) < limn^t),

where, fort G [0,T],

ny(t) = # { r € ( * ( 7 , « W 0 ) '• ̂ (r,*) = 0}.
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To this end, choose 7 > 0 sufficiently small so that

Then, by (3.16), K(h(i,t),t) < 0 for t near T, hence (3.21) follows from
(3.14) and an application of Lemma A. As in the proof of Lemma 3.4, again
we need to apply Lemma A to K, / and J.

We will conclude by showing

(3.22) limn7(0 < limn(0 - 1.

Since ny(t) < n(t), if
\\mn~(t) = limn(t),

there must exist a > 0 such that

/ < 0 in [0,a]x [T - a,T) U (0,a] x {T} and 7(0,T) = 0.

Hence, / has an interior nonpositive maximum, which contradicts the maxi-
mum as it applies to the equation (3.17) satisfied by /.

D

Lemma 3,7: // n* > 0, then n* > 2. In particular, if n(0) < 2, then
K(r,T)<0forallr>0.

Proof: Since J(0, T) = i/(0, T) > 0, there exists e > 0 such that J(z, T) > 0
in [—£,£]. Combining this with Lemma 3.5 and (3.16) we get

K(r,T) < 0 for r <E (0,£] U [rz(T) - 6,r3(T)].

Hence, if /f (r, T) has any zeroe's for r > 0, there have to be at least two.
Finally, (3.20) and n(0) < 2 yield n* < 1, which in view of the previous

discussion implies that n* = 0.
D
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We are now in a position to prove Proposition 3.3.
Proof: In view of (1.3) and Lemma 3.5, there exists Rt € (0,r2(T)) such
that, for all C > 0,

Hm sup (I(z,t) + 2Cht(z,t)) < 0
<TrW<ff(«i.T)

and, therefore,

(3.23) fiin sup [K(r,t)-2Cgt(r,t)] < 0.

Next, choose R2 € (r2(T),r3(r)) and set

k= sup K(r,T)<0.

Hence, for any C < k sup |<7<(r, T)|~x,

(3.24) Hm sup [K(r,t)-2Cgt(r,t))<0.

Also

z,T) > 0 in [-;

In fact
kx= inf J(z,T)>0

and
Jk2= sup | ^ t ( z , r ) |<oo .

Hence, if C < ki/k2,

and, consequently,

(3.25) Inn" sup [K(r,t)-2Cgt(r,t)]<0.
'TT r€(fi2,r3(T))
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Combining (3.23), (3.24) and (3.25) we obtain (3.12).

In view of the discussion at this beginning of this section, Proposition 3.3

yields
-x-Du + But n _

1 > 0 o a T

with B = 2[(T —10) + C). Since u is a smooth function, there exists a / { > 0

and 7 > 0 such that

(3.26) - x • Du + 'But + K\u\ > 7 on RN x {f0}.

The maximum principle and the properties of equation (0.2) then yield

(3.27) - z • Du + 2[(T -t) + C]ut + K\u\ > 7 on RN x [*0,00).

The last inequality may be rewritten as

(3.28) £{u(x(s),t{s))ex?[K(sgnu(x(s),t(s)))s}} > 7

where, for every (x, t) and s > 0,

Although (3.28) was derived under the assumption that u is smooth, it follows

easily that it holds in the viscosity sense for all s as long as u exists. But

then, for x = 0 and t = T, (3.29) yield x(s) = 0,t(s) = T+C-Ce~23. Hence

by (3.28), for e > 0,

u(0,r + e ) > 0

i.e. TT "opens up". (Recall that u(0,t) < 0 for alii € (0,T) and u(0,T) = 0.)
Finally, in order to show that Tt is smooth after the singularity, it suffices

to show that the equation

Grr (N-2)Gr
G = +
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admits a smooth solution for t > 0, even if G(-,0) has a singularity like
the one of g(-,T). This can be shown by a number of approximations using
standard parabolic regularity and the stability properties of surfaces moving
by mean curvature (cf. [S]). As a matter of fact, such arguments can be
used from the beginning to show that I\ never develops interior. This is
the approach of [AAG] for "barbell" type domains. In this paper, however,
we chose to follow the approach described above since it gives rise to (3.27),
which has a very nice geometric interpretation.

We now combine all the above to state the main result of the section.

Theorem 3.8: Suppose that the assumptions of Proposition 3.2 hold and

the n(0) < 2. Then the evolution t H+ Tt never develops interior. Moreover,

it uopens up77 instanteneously after the focusing time and continuous moving

as a smooth surface.

We conclude this section by checking that a torus

(r-l)2 + z2 = R2 (0 < /?< 1),

whose evolution t »-* Tt by mean curvature focuses at (0, T), satisfies n(0) <

2. This will yield Proposition 3 in the Introduction.

A simple calculation yields

K(r,0) = W r 2 + r(R2 - 1 - 2T(N - 1)) + T(N - 1)],
rg{r)

where

The above claim is then obvious.
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Appendix.

In this Appendix we state a result of Angenent for the convenience of the

reader. The statement of this lemma is taken from [A2]. However its proof

is in [Al].

Lemma A. Let u : [xo, Xi] x (0,fo) —> R be a continuous classical solution

of
ut = a(x, t)uxx + b(x, t)ux + c(x, t)u

with u(xo,t) ^ 0,u(xut) ^ 0 for all i € (0,<o)-
Assume that a, 6, c satisfy

(i) 8 < a{x,t) < S-1 for some 6>0,

(ii) a,at,ax, axx, b, 6t, bx and c are bounded measurable functions of

[xo,xi] x (0,i0).

Then the number of zeroes ofu(-,t)

is finite and non-increasing in t.
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