

How To Compare the Security Quality

Requirements Engineering (SQUARE)

Method with Other Methods

Nancy R. Mead

August 2007

TECHNICAL NOTE
CMU/SEI-2007-TN-021

CERT Program
Unlimited distribution subject to the copyright.

This work is supported by the Army Research Office through grant number DAAD19-02-1-0389 ("Perpetually
Available and Secure Information Systems") to CMU's CyLab. The Software Engineering Institute is a federally
funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2007 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-
nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and
derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for
external and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

http://www.sei.cmu.edu/publications/pubweb.html

Table of Contents

Abstract vii

1 Background: The Importance of Requirements Engineering 1
1.1 Security Requirements Issues 1

1.1.1 The Problem of Negative Requirements 2

2 Methods and Practices 3
2.1 Overview of the SQUARE Process 3

2.1.1 How to Apply SQUARE 5
2.2 The Comprehensive, Lightweight Application Security Process 6
2.3 Core Security Requirements Artifacts 8
2.4 Security Requirements Engineering Process 8
2.5 Security Patterns 8
2.6 Tropos 9
2.7 Use of Attack Trees for Modeling and Analysis 10
2.8 Misuse and Abuse Cases 10
2.9 Formal Methods 11

2.9.1 Software Cost Reduction 12
2.9.2 Common Criteria 13

3 Comparing Methods 16

4 Conclusions and Trends in Security Requirements Engineering 18

Sources and Funding 19

References 20

 SOFTWARE ENGINEERING INSTITUTE | i

ii | CMU/SEI-2007-TN-021

List of Figures

Figure 1: Attack Tree Example 10
Figure 2: Abuse Case Diagram for an Internet-Based Information Security Laboratory 11
Figure 3: Relationship Between the SRS, the SDS, and the SoRS 12

 SOFTWARE ENGINEERING INSTITUTE | iii

iv | CMU/SEI-2007-TN-021

List of Tables

Table 1: The SQUARE Process 4
Table 2: Relationship Between Requirements, Patterns, and Standards 9
Table 3: Contrast Between Use and Abuse Cases 11
Table 4: Condition Table Defining the Value of Term tRemLL 13
Table 5: Comparison of Elicitation Techniques 17

 SOFTWARE ENGINEERING INSTITUTE | v

vi | CMU/SEI-2007-TN-021

 SOFTWARE ENGINEERING INSTITUTE | vii

Abstract

The Security Quality Requirements Engineering (SQUARE) method, developed at the Carnegie
Mellon Software Engineering Institute, provides a systematic way to identify security require-
ments in a software development project. This report describes SQUARE and then describes other
methods used for identifying security requirements, such as the Comprehensive, Lightweight Ap-
plication Security Process, the Security Requirements Engineering Process, and Tropos, and com-
pares them with SQUARE. The report concludes with some guidelines for selecting a method and
a look at some related trends in requirements engineering.

1 Background: The Importance of Requirements
Engineering

It is well recognized in industry that requirements engineering is critical to the success of any ma-
jor development project. Several authoritative studies have shown that requirements engineering
defects cost 10 to 200 times as much to correct once fielded than if they were detected during re-
quirements development. Other studies have shown that reworking requirements defects on most
software development projects costs 40 to 50 percent of total project effort, and the percentage of
defects originating during requirements engineering is estimated at more than 50 percent. The
total percentage of project budget due to requirements defects is 25 to 40 percent.

Requirements problems are the number one reason why projects

• are significantly over budget

• are significantly past schedule

• have significantly reduced scope

• deliver poor-quality applications

• are not significantly used once delivered

• are cancelled

Requirements engineering typically suffers from the following major problems:

• Requirements identification typically does not include all relevant stakeholders and does not
use the most modern or efficient techniques.

• Requirements analysis typically is either not performed at all (identified requirements are
directly specified without any analysis or modeling) or analysis is restricted to functional re-
quirements and ignores quality requirements, other nonfunctional requirements, and architec-
ture, design, implementation, and testing constraints.

• Requirements specification is typically haphazard, with specified requirements being am-
biguous, incomplete (e.g., non-functional requirements are often missing), inconsistent, not
cohesive, infeasible, obsolete, neither testable nor capable of being validated, and not usable
by all intended audiences.

• Requirements management is typically weak, with poor storage (e.g., in one or more docu-
ments rather than in a database or tool) and missing attributes, and is limited to tracing,
scheduling, and prioritization.

1.1 SECURITY REQUIREMENTS ISSUES

In reviewing requirements documents, we typically find that security requirements, when they
exist, are in a section by themselves and have been copied from a generic set of security require-
ments. They tend to be general mechanisms such as password protection, firewalls, virus detec-
tion tools, and the like. The requirements elicitation and analysis that is needed to get a better set
of security requirements seldom takes place. Even when it does, the security requirements are of-
ten developed independently of the rest of the requirements engineering activity and hence are not
integrated into the mainstream of the requirements activities. As a result, security requirements

 SOFTWARE ENGINEERING INSTITUTE | 1

that are specific to the system and that provide for protection of essential services and assets are
often neglected.

Although data exists to support the benefits of requirements engineering in general, the data to
specifically support the benefits of security requirements engineering is anecdotal. However, the
National Institute of Standards and Technology (NIST) reports that software that is faulty in secu-
rity and reliability costs the economy $59.5 billion annually in breakdowns and repairs [NIST
2002]. The costs of poor security requirements show that even a small improvement in this area
would provide a high value. A recent study found that the return on investment when security
analysis and secure engineering practices are introduced early in the development cycle ranges
from 12 to 21 percent, with the highest rate of return occurring when the analysis is performed
during application design [Soo Hoo 2001]. By the time that an application is fielded and in its
operational environment, it is very difficult and expensive to significantly improve its security.

If security requirements are not effectively defined, the resulting system cannot be effectively eva-
luated for success or failure prior to implementation.

1.1.1 The Problem of Negative Requirements

Much requirements engineering research and practice has addressed the capabilities that the sys-
tem will provide. So a lot of attention is given to the functionality of the system, from the user’s
perspective, but little attention is given to what the system should not do. In one discussion on
requirements prioritization for a specific large system, ease of use was assigned a higher priority
than security requirements. Security requirements were in the lower half of the prioritized re-
quirements. This occurred in part because the only security requirements that were considered had
to do with access control.

Current research recognizes that security requirements are negative requirements. General secu-
rity requirements, such as “the system shall not allow successful attacks,” are therefore generally
not feasible, because there is no agreement on ways to validate them other than to apply formal
methods to the entire system, including COTS components. We can, however, identify the essen-
tial services and assets that must be protected. We are able to validate that mechanisms such as
access control, levels of security, backups, replication, and policy are implemented and enforced.
We can also validate that the system will properly handle specific threats identified by a threat
model and correctly respond to intrusion scenarios.

Many methods have been developed that facilitate this kind of requirements analysis and the de-
velopment of security requirements. The objective of this report is to provide an overview of vari-
ous security requirements engineering methods and to compare them with one developed at the
Software Engineering Institute, the Security Quality Requirements Engineering (SQUARE) me-
thod.

2 | CMU/SEI-2007-TN-021

2 Methods and Practices

Many requirements engineering research projects undertaken in recent years have resulted in the
development of methods and processes that can be used in identifying security requirements.
These are some of them:

• Security Quality Requirements Engineering (SQUARE) is a process aimed specifically at
security requirements engineering.

• The Comprehensive, Lightweight Application Security Process (CLASP) approach to secu-
rity requirements engineering [OWASP 2007] is a life-cycle process that suggests a number
of different activities across the development life cycle to improve security. Among these is
a specific approach for security requirements.

• Core security requirements artifacts [Moffett 2004] takes an artifact view and starts with the
artifacts that are needed to achieve better security requirements.

• The Security Requirements Engineering Process (SREP) [Mellado 2007] is a nine-step proc-
ess that is based partially on SQUARE but incorporates consideration of the Common Crite-
ria and notions of reuse.

• Security patterns are useful in going from requirements to architectures and then designs
[Haley 2007, Rosado 2006, Weiss 2007].

• Tropos is a self-contained life-cycle approach [Giorgini 2007]. It is very specific in terms of
how to go about requirements specification.

• Other useful techniques are the use of attack trees in security requirements engineering [Elli-
son 2003] and misuse and abuse cases [Alexander 2003, Fernandez 2007, Sindre 2000].
Formal specification approaches to security requirements, such as Software Cost Reduction
(SCR) [Heitmeyer 2002] have also been useful. The higher levels of the Common Criteria
[CCEVS 2007] provide similar results.

These are described in more detail below.

2.1 OVERVIEW OF THE SQUARE PROCESS

Security Quality Requirements Engineering (SQUARE) is a process model developed at Carnegie
Mellon University [Mead 2005a, Mead 2005b]. This process provides a means for eliciting, cate-
gorizing, and prioritizing security requirements for information technology systems and applica-
tions. The focus of this methodology is to build security concepts into the early stages of the de-
velopment life cycle. The model can also be used for documenting and analyzing the security
aspects of fielded systems and for steering future improvements and modifications to those sys-
tems.

Subsequent to initial development, SQUARE was applied in a series of client case studies. Carne-
gie Mellon graduate students worked on this project during the summer and fall of 2004 and the
summer of 2005. The case study results were published [Chen 2004, Gordon 2005, Xie 2004].
Prototype tools were also developed to support the process. The draft process was revised and
baselined after completion of the case studies; the baselined process is shown in Table 1. In prin-
ciple, Steps 1-4 are actually activities that precede security requirements engineering but are nec-

 SOFTWARE ENGINEERING INSTITUTE | 3

essary to ensure that it is successful. Detailed discussion of the method can be found in Security
Quality Requirements Engineering (SQUARE) Methodology [Mead 2005a].

Table 1: The SQUARE Process

Step Input Techniques Participants Output

1 Agree on definitions Candidate defini-
tions from IEEE
and other stan-
dards

Structured inter-
views, focus group

Stakeholders,
requirements team

Agreed-to defini-
tions

2 Identify security goals Definitions, candi-
date goals, busi-
ness drivers, poli-
cies and
procedures, ex-
amples

Facilitated work
session, surveys,
interviews

Stakeholders,
requirements en-
gineer

Goals

3 Develop Artifacts Potential artifacts
(e.g., scenarios,
misuse cases,
templates, forms)

Work session Requirements
engineer

Needed artifacts:
scenarios, misuse
cases, models,
templates, forms

4 Perform risk assess-
ment

Misuse cases,
scenarios, security
goals

Risk assessment
method, analysis
of anticipated risk
against organiza-
tional risk toler-
ance, including
threat analysis

Requirements
engineer, risk
expert, stake-
holders

Risk assessment
results

5 Select elicitation tech-
niques

Goals, definitions,
candidate tech-
niques, expertise
of stakeholders,
organizational
style, culture, level
of security needed,
cost/benefit analy-
sis, etc.

Work session Requirements
engineer

Selected elicitation
techniques

6 Elicit security require-
ments

Artifacts, risk as-
sessment results,
selected tech-
niques

Accelerated Re-
quirements Me-
thod (ARM), Joint
Application Devel-
opment (JAD),
interviews, sur-
veys, model-based
analysis, check-
lists, lists of reus-
able requirements
types, document
reviews

Stakeholders facili-
tated by require-
ments engineer

Initial cut at secu-
rity requirements

4 | CMU/SEI-2007-TN-021

Step Input Techniques Participants Output

7 Categorize require-
ments as to level (sys-
tem, software, etc.)
and whether they are
requirements or other
kinds of constraints

Initial require-
ments, architecture

Work session
using a standard
set of categories

Requirements
engineer, other
specialists as
needed

Categorized re-
quirements

8 Prioritize requirements Categorized re-
quirements and
risk assessment
results

Prioritization me-
thods such as
AHP, Triage, Win-
Win, etc.

Stakeholders facili-
tated by require-
ments engineer

Prioritized re-
quirements

9 Requirements inspec-
tion

Prioritized re-
quirements, candi-
date formal inspec-
tion technique

Inspection method
such as Fagan,
peer reviews, etc.

Inspection team Initial selected
requirements,
documentation of
decision-making
process and ra-
tionale

2.1.1 How to Apply SQUARE

The SQUARE process is best applied by the project’s requirements engineers and security ex-
perts, in the context of supportive executive management and stakeholders. We believe the proc-
ess works best when elicitation occurs after risk assessment has been done (Step 4) and when se-
curity requirements are specified prior to critical architecture and design decisions. Thus critical
business risks will be considered in the development of the security requirements.

Step 1, Agree on Definitions, is needed as a prerequisite to security requirements engineering. On
a given project, team members will tend to have definitions in mind, based on their prior experi-
ence, but those definitions will not necessarily agree [Woody 2005]. For example, to some gov-
ernment organizations, security has to do with access based on security clearance levels, whereas
to others security may have to do with physical security or cyber security. It is not necessary to
invent definitions. Most likely, sources such as IEEE and SWEBOK will provide a range of defi-
nitions to select from or tailor. A focus group meeting with the interested parties can enable the
selection of a consistent set of definitions for the security requirements activity.

Step 2, Identify Security Goals, should be done at the organizational level and is needed to de-
velop the information system. This provides a consistency check with the organization’s policies
and operational security environment. Stakeholders from different areas often have different
goals. For example, a stakeholder in human resources may be concerned about maintaining the
confidentiality of personnel records, whereas a stakeholder in a financial area may be concerned
with ensuring that financial data is not accessed or modified without authorization. It is important
to have a representative set of stakeholders, including those with operational expertise. Once the
goals of the various stakeholders have been identified, they will need to be prioritized. In the ab-
sence of consensus, an executive decision may be necessary to prioritize goals.

Step 3, Develop Artifacts, supports all the subsequent activities. It is often the case that organiza-
tions do not have a documented concept of operations for a project, succinctly stated project
goals, documented normal usage and threat scenarios, misuse cases, and other documents needed
to support requirements definition. This means that either the entire requirements process is built
on a foundation of sand or a lot of time is spent backtracking to try to obtain such documentation.

 SOFTWARE ENGINEERING INSTITUTE | 5

Step 4, Perform Risk Assessment, requires an expert in risk assessment methods, the support of
the stakeholders, and the support of a requirements engineer. There are a number of risk assess-
ment methods to select from. A specific method can be recommended by the risk assessment ex-
pert, based on the needs of the organization. The artifacts from Step 3 provide the input to the risk
assessment process. The outcomes of the risk assessment can help in identifying the high-priority
security exposures. Organizations that do not perform risk assessment typically do not have a log-
ical approach to considering organizational risk when identifying security requirements but tend
to select mechanisms, such as encryption, without really understanding the problem that is being
solved.

Step 5, Select Elicitation Technique, becomes important when there are several classes of stake-
holders. A more formal elicitation technique, such as the Accelerated Requirements Method
[Hubbard 1999], Joint Application Design [Wood 1989], or structured interviews can be effective
in overcoming communication issues when there are stakeholders with different cultural back-
grounds. In other cases, elicitation may simply consist of sitting down with a primary stakeholder
to try to understand that stakeholder’s security requirements needs.

Step 6, Elicit Security Requirements, is the actual elicitation process using the selected technique.
Most elicitation techniques provide detailed guidance on how to perform elicitation. This builds
on the artifacts that were developed in earlier steps, such as misuse and abuse cases, attack trees,
threats, and scenarios.

Step 7, Categorize Requirements, allows the requirements engineer to distinguish among essential
requirements, goals (desired requirements), and architectural constraints that may be present. Re-
quirements that are actually constraints typically occur when a specific system architecture has
been chosen prior to the requirements process. This is good, as it allows assessment of the risks
associated with these constraints. This categorization also helps in the prioritization activity that
follows.

Step 8, Prioritize Requirements, depends not only on the prior step but may also involve perform-
ing a cost/benefit analysis to determine which security requirements have a high payoff relative to
their cost.

Step 9, Requirements Inspection, can be done at varying levels of formality, from Fagan Inspec-
tions to peer reviews. Once inspection is complete, the organization should have an initial set of
prioritized security requirements. It should also understand which areas are incomplete and must
be revisited at a later time. Finally, the organization should understand which areas are dependent
on specific architectures and implementations and should expect to revisit those as well.

2.2 THE COMPREHENSIVE, LIGHTWEIGHT APPLICATION SECURITY PROCESS

The following overview of the Comprehensive, Lightweight Application Security Process
(CLASP) is extracted from the Build Security In Web site article “Introduction to the CLASP
Process” [Graham 2006].

The CLASP Process is presented through five high-level perspectives called CLASP Views. These
views allow CLASP users to quickly understand the CLASP Process, including how CLASP
process components interact and how to apply them to a specific software development life cycle.

These are the CLASP Views:

6 | CMU/SEI-2007-TN-021

• Concepts View
This view provides a high-level introduction to CLASP by briefly describing, for example,
the interaction of the five CLASP Views, the seven CLASP Best Practices, the CLASP Tax-
onomy, the relation of CLASP to security policies, and a sample sequence for applying
CLASP process components.

• Role-Based View
This view contains role-based introductions to the CLASP Process.

• Activity-Assessment View
This view helps project managers assess the appropriateness of the 24 CLASP Activities and
select a subset of them. CLASP provides two sample road maps (legacy and new-start) to
help select applicable activities.

• Activity-Implementation View
This view contains the 24 security-related CLASP Activities that can be integrated into a
software development process. The activities phase of the SDLC translates into executable
software any subset of the 24 security-related activities assessed and accepted in Activity
Assessment.

• Vulnerability View
This view contains a catalog of the 104 underlying “problem types” identified by CLASP
that form the basis of security vulnerabilities in application source code. CLASP divides the
104 problem types into five high-level categories. An individual problem type in itself is of-
ten not a security vulnerability; frequently, it is a combination of problems that lead to a vul-
nerability in source code.
Associated with the Vulnerability View are the CLASP Vulnerability Use Cases, which de-
pict conditions under which security services are vulnerable to attack at the application layer.
The use cases provide CLASP users with easy-to-understand, specific examples of the rela-
tionship between security-unaware source coding and possible resulting vulnerabilities in ba-
sic security services.

Within a software development project, the CLASP Best Practices are the basis of all security-
related software development activities—whether planning, designing, or implementing—
including the use of all tools and techniques that support CLASP.

These are the CLASP Best Practices:

• Institute awareness programs.

• Perform application assessments.

• Capture security requirements.

• Implement secure development practices.

• Build vulnerability remediation procedures.

• Define and monitor metrics.

• Publish operational security guidelines.

 SOFTWARE ENGINEERING INSTITUTE | 7

2.3 CORE SECURITY REQUIREMENTS ARTIFACTS

Core security requirements artifacts provides a framework that includes traditional requirements
engineering approaches to functional requirements and an approach to security requirements en-
gineering that focuses on assets and harm to those assets. There are several fundamental ideas.
One notion is that requirements engineering, including security requirements engineering, needs
to focus on the what rather than the how. Another, following Michael Jackson’s frameworks ap-
proach, is that security is not a feature of software alone, but also of the real world. This leads to
the notion of different views. A third is that security requirements serve to constrain end-user
functional requirements. Finally, the nature of arguments about security is discussed, with the idea
that arguments about security must be grounded in the real-world situation in which security
claims are made. This approach results in a specific process for security requirements engineering.

2.4 SECURITY REQUIREMENTS ENGINEERING PROCESS

As noted before, Security Requirements Engineering Process (SREP) incorporates notions of the
Common Criteria and reuse. These are the SREP activities:

• Agree on definitions

• Identify vulnerable and/or critical assets

• Identify security objectives and dependencies

• Identify threats and develop artifacts

• Risk assessment

• Elicit security requirements

• Categorize and prioritize requirements

• Requirements inspection

• Repository improvement

2.5 SECURITY PATTERNS

The definition of a security pattern used in some sources is as follows: “A security pattern de-
scribes a particular recurring security problem that arises in specific contexts and presents a well-
proven generic scheme for its solution. According to their level of abstraction, patterns can be
divided into architectural patterns and design patterns” [Buschmann 1996, Rosado 2006, Weiss
2007]. Table 2 shows a mapping between security requirements, architectural patterns, design
patterns, and security standards [Rosado 2006]. As you can see, security patterns can be extremely
useful in an overall life-cycle approach, although they are likely to be most useful after security
requirements are identified.

8 | CMU/SEI-2007-TN-021

Table 2: Relationship Between Requirements, Patterns, and Standards

Security Requirements Architectural Patterns Design Patterns Security Standards

Authentication QoP
Role-based security
Assertion coordinator
Data filter
Check point
SSO
Cryptographic
Direct authentication

Assertion builder
SSO Delegation
Sender authentication
Authenticator
Credential tokenizer

LibAlliance SASL based
authentication service;
SAML 2.0WS-Security
+ SAML 2.0 +
Kerberos Token
ProfileXML Key
Management
SystemWS-Security +
XML Digital Signature
SAML 2.0 +
WS-Security + SAML
Token Profile + XML
Digital Signature
SAML 2.0, Liberty
Alliance Project ID-FF
1.1, WS-Federation

 Brokered authentication Security token service,
X.509 PKI, Kerberos

WS-Security + SAML
2.0 + Kerberos Token
Profile

Authorization PEP + PDP + PRP +
PIP + PAP
Data Filter
Bodyguard
Check point, Firewall

XML firewall filter
Assertion builder
Authorization
RBAC
Session

WS-Policy +
WS-SecurityPolicy;
XACML Profile; XrML
ODRLWS-Authorization

Confidentiality QoP, Encryption,
Cryptographic,
Layered security

Message inspector,
Information secrecy,
Secure pipe, Session

WS-Security + XML
Encryption

Integrity QoP
Firewall
Data filter
Layered security

Message inspector,
Secure pipe, Message
integrity, Secure
message router,
Authoritative source of
data multilevel security

WS-Security + XML
Digital Signature

Audit Check point
Single access point

Audit interceptor
Secure logger

2.6 TROPOS

Tropos addresses four software development phases called Early Requirements, Late Require-
ments, Architectural Design, and Detailed Design. It uses a specific modeling approach, with
graphical representation, to develop goal and plan models. Modeling activities include actor mod-
eling, dependency modeling, production of actor diagrams, and plan modeling. Goals are decom-
posed into subgoals. Although Tropos has been in existence for some time, it was recognized that
there was a need for Tropos to address security requirements. This led to the development of Se-
cure Tropos.

Secure Tropos enables security constraints to be expressed throughout the development life cycle.
In addition, concepts of trust, ownership, and delegation were introduced. Secure Tropos ad-
dresses the same four software development phases as Tropos, with security enhancements and

 SOFTWARE ENGINEERING INSTITUTE | 9

modeling of specific security features. Secure Tropos has continued to be refined and developed
and has been the subject of case studies. It has also been introduced in academic courses.

2.7 USE OF ATTACK TREES FOR MODELING AND ANALYSIS

The notion of attack trees as a method for modeling attacks has been described extensively in the
literature [Schneier 2000]. The work by Ellison and Moore explores the use of attack trees in the
development of intrusion scenarios, which can then be used to identify security requirements [El-
lison 2003, Moore 2001]. A small attack tree example is shown in Figure 1.

Open Safe

Pick Lock
I

Learn Combo Cut Open Safe
P

Install
Improperly

I

Find Written
Combo

I
Get Combo
from Target

Threaten
I

Blackmail Bribe Eavesdrop
I P

Listen to
Conversation

P

Get Target to
State Combo

I
P = Possible
I = Impossible

Figure 1: Attack Tree Example

Once fault trees have been used to model intrusions, they can also be used to help identify re-
quirements for intrusion detection systems, as described by Ellison and Moore. Alternatively,
fault tree analysis can be used to identify other security requirements, once the fault trees have
been used to model intrusion behavior. Formal use of fault trees suggests the possibility of formal
analysis, which could be a great advantage in developing a set of consistent and complete re-
quirements.

2.8 MISUSE AND ABUSE CASES

A security misuse case, a variation on a use case, is used to describe a scenario from the point of
view of the attacker [Alexander 2003, Sindre 2000, Sindre 2002]. Since use cases have proven
useful in documenting normal use scenarios, they can also be used to document intruder usage

10 | CMU/SEI-2007-TN-021

scenarios and ultimately to identify security requirements or security use cases [Firesmith 2003].
A similar concept has been described as an abuse case [McDermott1999, McDermott 2001].

One obvious application of a misuse case is in eliciting requirements. Since use cases are used
successfully for eliciting requirements, it follows that misuse cases can be used to identify poten-
tial threats and to elicit security requirements. In this application, the traditional user interaction
with the system is diagrammed simultaneously with the hostile user’s interactions. An example of
this is shown in Figure 2 [Alexander 2003].

Copy another student’s work

Tamper with scores

Tamper with exercise
Malicious
Student

Browse exercise with Scalpel

Capture lab host

Nazgul

Script
Kiddie

Root lab host

Vandalize lab host

Browse exercise with Warez

Figure 2: Abuse Case Diagram for an Internet-Based Information Security Laboratory

Alternatively, abuse cases tend to show the “abuse” side of the system, in contrast to traditional
use cases. The contrast between use and abuse cases is shown in Table 3 [McDermott 1999].

Table 3: Contrast Between Use and Abuse Cases

Use Case Abuse Case

• A complete transaction between one or more ac-
tors and a system

• UML-based use case diagrams

• Typically described using natural language

• A family of complete transactions between one or
more actors and a system that results in harm

• UML-based use case diagrams

• Typically described using natural language. A
tree/DAG diagram may also be used.

• Potentially one family member for each kind of
privilege abuse and for each component that might
be exploited

• Includes a description of the range of security privi-
leges that might be abused

• Includes a description of the harm that results from
an abuse case

2.9 FORMAL METHODS

Formal methods are typically used in the specification and verification of secure systems. From a
life-cycle viewpoint, the specification typically represents either formal requirements or a formal
step between informal requirements and design.

 SOFTWARE ENGINEERING INSTITUTE | 11

Some formal methods are applied to security standards, such as the Common Criteria. Organiza-
tional objectives are translated into the specification of all relevant security functions in a planned
system. The subset of specifications to be implemented is identified and further assessment or risk
analysis takes place [Leiwo 1999a]. The Common Criteria is used during the second, or evaluation,
phase. The Kruger-Eloff process, based on the Common Criteria, is used for evaluation of informa-
tion security. Another method focuses more generally on information security policy specification
[Ortalo 1998]. A formal specification language is described, and in a case study the method is ap-
plied to the description of security requirements for a medium-size banking organization. This me-
thod provides flexibility and expression to correspond to specific organizational needs.

The B formal method is used specifically to support the design and validation of the transaction
mechanism for smart card applications. The mathematical proofs provide confidence that the de-
sign of the transaction mechanism satisfies the security requirements [Sabatier 1999].

An interesting contribution is a model that focuses on modeling the organization in which infor-
mation security is developed [Leiwo 1999b]. The organization is described in layers of abstrac-
tion. In addition, a notation for expressing security requirements is described, under a framework
of harmonization functions and merging of requirements. A case study that focuses on the security
requirements for sharing of patient data among hospitals and medical practitioners is described.

2.9.1 Software Cost Reduction

Software Cost Reduction (SCR) is a formal method based on a tabular representation of specifica-
tions and analysis of the requirements for complex systems. It was originally developed to docu-
ment the behavior of the A-7E aircraft [Heninger 1980] and has been augmented with a tool suite
and applied to many complex and safety-critical systems [Heitmeyer 2002]. Figure 3 shows the
relationship between the System Requirements Specification (SRS), the System Design Specifica-
tion (SDS), and the Software Requirements Specification (SoRS).

System Req.
Specification

System Design
Specification

Software Req.
Specification

M

{

{

SOFTWARE

input
vars.

output
vars.

Input Device
Interf. Module

Device-Independ.
Module

Output Device
Interf. Module

M
~ ~

C

D_IN REQ
~

{
D_OUT

CSYSTEM

NAT

…
REQ

…

sensors actuators

Figure 3: Relationship Between the SRS, the SDS, and the SoRS

12 | CMU/SEI-2007-TN-021

This decomposition is commonly used in many large DoD and other government systems. The
SCR notation is used for specification. According to Heitmeyer and Bharadwaj,

To specify the required system behavior in a practical and efficient manner, the SCR method
uses terms and mode classes. A term is an auxiliary variable that helps keep the specification
concise. A mode class is a special case of a term, whose values are modes. Each mode de-
fines an equivalence class of system states, useful in specifying the required system behavior.
In SCR specifications, we often use prefixes in variable names. In SCR specifications, we of-
ten use the following prefixes in variable names: “m” to indicate monitored variables, “t”
for terms, “mc” for mode classes, “c” for controlled variables, “i” for input variables, and
“o” for output variables.
Conditions and events are important constructs in SCR specifications. A condition is a pre-
dicate defined on one or more state variables (a state variable is a monitored or controlled
variable, a mode class, or a term). An event occurs when a state variable changes value
[Bharadwaj 2003].

Table 4 is an example of an SCR table.

Table 4: Condition Table Defining the Value of Term tRemLL

Mode Class = mcStatus Trac.

Mode Condition

unoccupied true false FM3

occupied mIndoorLL > tCurrentLSVal mIndoorLL ≤ tCurrentLSVal FM1

temp_empty mIndoorLL > tCurrentLSVal
 OR tOverride

mIndoorLL ≤ tCurrentLSVal
 AND NOT tOverride

FM1,
FM6

tRemLL 0 tCurrentLSVal – mIndoorLL FM1

For systems that require a rigorous specification method, SCR would seem to be a good choice. It
is probably not as useful in the early requirements stages, for example during elicitation, and may
have the most utility in the specification activity that tends to occur between requirements and
design activities.

2.9.2 Common Criteria1

The Common Criteria enables an objective evaluation to validate that a particular product or sys-
tem satisfies a defined set of security requirements. Although the focus of the Common Criteria is
evaluation, it presents a standard that should be of interest to those who develop security require-
ments.

The Common Criteria (CC) was developed through a combined effort of six countries: the United
States, Canada, France, Germany, the Netherlands, and the United Kingdom. This effort built on
earlier standards, including Europe’s Information Technology Security Evaluation Criteria
(ITSEC), the United States’ Trusted Computer System Evaluation Criteria (TCSEC), and the Ca-
nadian Trusted Computer Product Evaluation Criteria (CTCPEC) [Caplan 1999]. A Common Cri-

1 Much of the material in this section is drawn from the report International Liability Issues for Software Quality

[Mead 2003]. A definitive source of current information about the Common Criteria is the CCEVS Web site
[CCEVS 2007].

 SOFTWARE ENGINEERING INSTITUTE | 13

teria evaluation provides an objective way to validate that a particular product satisfies a defined
set of security requirements. The focus of the Common Criteria is the evaluation of a product or
system rather than the development of requirements. Nevertheless, its evaluation role makes it of
interest to those who develop security requirements. The Common Criteria allows for seven Eval-
uation Assurance Levels (EALs), which will be described further.

Common Criteria Overview

The Common Criteria contains a grouping of 60 security functional requirements in 11 classes
[Abrams 2000]. This grouping allows specific classes of requirements to be evaluated in a stan-
dard way to arrive at an Evaluation Assurance Level.

A package is an intermediate combination of requirements components that allows expression of a
set of functional or assurance requirements that meet a subset of security objectives. A Protection
Profile (PP) is an implementation-independent set of security requirements for a class of Targets
of Evaluation (TOEs) that meet specific consumer needs. A TOE is basically an IT product or
system, together with its documentation and administration, that is the subject of a CC evaluation.
A PP allows security requirements to be expressed using a template in an implementation-
independent way, and is thus reusable. This provides benefits when implementing a family of re-
lated products or a product line. A Security Target (ST) contains a set of security requirements
that can be stated explicitly. An ST includes detailed, product-specific information. It can be
viewed as a refinement of the PP and forms the agreed-on basis for evaluation.

Functional and assurance security requirements are the basis for the Common Criteria. There are
seven Evaluation Assurance Levels (EALs). The higher the level, the more confidence you can
have that the security functional requirements have been met. The levels are as follows:

• EAL1: Functionally Tested. Applies when you require confidence in a product’s correct op-
eration but do not view threats to security as serious. An evaluation at this level should pro-
vide evidence that the target of evaluation functions in a manner consistent with its docu-
mentation and that it provides useful protection against identified threats.

• EAL2: Structurally Tested. Applies when developers or users require low to moderate inde-
pendently assured security but the complete development record is not readily available. This
situation may arise when there is limited developer access or when there is an effort to se-
cure legacy systems.

• EAL3: Methodically Tested and Checked. Applies when developers or users require a mod-
erate level of independently assured security and require a thorough investigation of the tar-
get of evaluation and its development, without substantial reengineering.

• EAL4: Methodically Designed, Tested, and Reviewed. Applies when developers or users
require moderate to high independently assured security in conventional commodity prod-
ucts and are prepared to incur additional security-specific engineering costs.

• EAL5: Semi-Formally Designed and Tested. Applies when developers or users require high,
independently assured security in a planned development and require a rigorous development
approach that does not incur unreasonable costs from specialist security engineering tech-
niques.

14 | CMU/SEI-2007-TN-021

• EAL6: Semi-Formally Verified Design and Tested. Applies when developing security targets
of evaluation for application in high-risk situations in which the value of the protected assets
justifies the additional costs.

• EAL7: Formally Verified Design and Tested. Applies to the development of security targets
of evaluation for application in extremely high-risk situations, as well as when the high value
of the assets justifies the higher costs.

 SOFTWARE ENGINEERING INSTITUTE | 15

3 Comparing Methods

It should be noted that in comparing SQUARE to the other methods we’ve described, we are to
some extent dealing with apples and oranges. Some of the methods apply to the entire life cycle,
not just requirements engineering. Some of them are processes specifically aimed at security re-
quirements engineering, in a similar fashion to SQUARE. A third category encompasses specific
methods that could be applied within a variety of processes, including SQUARE.

The Tropos material by Giorgini et al. is a self-contained life-cycle approach. It’s not likely that
an engineer would use both Tropos and SQUARE. If he or she were using Tropos, he or she
would use it throughout. As noted earlier, CLASP is a life-cycle process that suggests a number of
different activities across the development life cycle in order to improve security.

The Core Artifacts approach is not inconsistent with SQUARE, in that the goals and some of the
process steps are similar, but it is a different process for arriving at security requirements.

Fernandez’s use of misuse cases and attack patterns is consistent with SQUARE, as we have used
misuse cases and attack trees as part of the process. However, there is less detail on how to use
these specifically in the requirements area than the SQUARE process provides. Weiss’s material
on security patterns is consistent with SQUARE and could be used as part of the SQUARE proc-
ess. Specifically, security patterns could be used to help identify and document security require-
ments. The security patterns described by Rosado fall into the architecture domain and would be
most useful once requirements are in place.

SREP is quite similar to SQUARE. The following is a comparison of SREP and SQUARE.

SQUARE steps:

1. Agree on definitions

2. Identify security goals

3. Develop artifacts to support security requirements definition

4. Perform risk assessment

5. Select elicitation techniques

6. Elicit security requirements

7. Categorize requirements

8. Prioritize requirements

9. Requirements inspection

SREP activities:

1. Agree on definitions (SQUARE step 1)

2. Identify vulnerable and/or critical assets (not called out in SQUARE)

3. Identify security objectives and dependencies (overlaps SQUARE step 2)

4. Identify threats and develop artifacts (overlaps SQUARE step 3)

5. Risk assessment (SQUARE step 4)

16 | CMU/SEI-2007-TN-021

6. Elicit security requirements (SQUARE step 6)

7. Categorize and prioritize requirements (SQUARE steps 7 and 8)

8. Requirements inspection (SQUARE step 9)

9. Repository improvement (not part of SQUARE)

As noted earlier, formal methods can be used in the specification and verification of requirements
for secure systems. From a life-cycle viewpoint, the specification typically represents either for-
mal requirements or a formal step between informal requirements and design. The elicitation ap-
proaches used in SQUARE do not lead directly to formal specifications, but approaches such as
SCR or the higher levels of the Common Criteria could be used as a follow-on to the SQUARE
process when formal specifications are called for.

We recommend that organizations follow a systematic approach in selecting a requirements engi-
neering method. For example, when we evaluated requirements elicitation methods (one of the
SQUARE steps) in a case study, we developed a table of desired attributes and assessed how well
we thought each method satisfied the attributes. This could also be done with weights assigned to
the attributes. An example is shown in Table 5.

Table 5: Comparison of Elicitation Techniques

 Misuse
Cases

SSM QFD CORE IBIS JAD FODA CDA ARM

Adaptability 3 1 3 2 2 3 2 1 2

CASE Tool 1 2 1 1 3 2 1 1 1

Client Acceptance 2 2 2 2 3 2 1 3 3

Complexity 2 2 1 2 3 2 1 1 2

Graphical Output 2 2 1 1 2 1 2 2 3

Implementation
Duration

2 2 1 1 2 1 2 2 3

Learning Curve 3 1 2 1 3 2 1 1 1

Maturity 2 3 3 3 2 3 2 2 1

Scalability 1 3 3 3 2 3 2 1 2

Scale: 3 = very good, 2 = fair, 1 = poor.

For requirements engineering methods in general, no doubt the attributes would differ somewhat.

 SOFTWARE ENGINEERING INSTITUTE | 17

4 Conclusions and Trends in Security Requirements
Engineering

In short, there is no single right answer when it comes to security requirements engineering. A lot
depends on the processes that are already in place in a particular organization. Some organizations
may prefer a detailed, specific method, whereas other organizations may prefer an approach that
allows them to select methods to incorporate into existing processes. Another factor is the extent
to which the project or organization is mission critical. This can dictate the level of formality used
in requirements engineering and the need for assurance levels such as those provided by the
Common Criteria.

Many organizations are realizing that security requirements need to be addressed early in the life-
cycle process. It is a very active research area, with a wide variety of methods and tools under
development. Some organizations, such as Microsoft, already have security requirements engi-
neering methods incorporated into their life-cycle processes. At present, there is no consensus on
a single best approach to security requirements engineering. However, many organizations intui-
tively feel that attention to this area will pay off in supporting their business goals.

There are a number of conferences and workshops that have been held over the last few years on
the subject of security requirements. This is a trend that is likely to continue, as additional work-
shops of this type are already showing up on the calendar.

Another trend, which is somewhat unfortunate, is that many industrial organizations feel that their
internal processes give them a competitive edge, so they are unwilling to publish or discuss the
details. It was surprising to find that many organizations seem to have established processes for
engineering security requirements when so few have published their methods.

18 | CMU/SEI-2007-TN-021

Sources and Funding

Many of the techniques described in this report appear on the Build Security In Web site, which is
sponsored by the U.S. Department of Homeland Security and developed by the SEI. Others ap-
pear in the book Integrating Security and Software Engineering, edited by Mouratidis and Gior-
gini. Much of the SQUARE material is drawn from various reports, papers, and book chapters
authored by Mead, notably the BSI Web site articles and a chapter in the Mouratidis and Giorgini
book. The section on the Common Criteria is extracted from the Build Security In Web site article
“The Common Criteria” [Mead 2006].

This project is financially supported by the Software Engineering Institute, CyLab, and the Heinz
School at Carnegie Mellon University.

 SOFTWARE ENGINEERING INSTITUTE | 19

References

URLs are valid as of the publication date of this document.

[Abrams 2000]
Abrams, M. D. & Brusil, P. J. “Application of the Common Criteria to a System: A Real-World
Example.” Computer Security Journal 16, 2 (Spring 2000): 11-21.

[Alexander 2003]
Alexander, I. “Misuse Cases: Use Cases with Hostile Intent.” IEEE Software 20, 1 (January-
February 2003): 58-66.

[Bharadwaj 2003]
Bharadwaj, R. “How to Fake a Rational Design Process Using the SCR Method,” 3-4. SEHAS’03
International Workshop on Software Engineering for High Assurance Systems. Portland, OR,
May 9-10, 2003. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2003. http://www.sei.cmu.edu/community/sehas-workshop/.

[Buschmann 1996]
Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter; & Stal, Michael. Pat-
tern-Oriented Software Architecture: A System of Patterns. Chichester, NY: John Wiley & Sons,
1996 (ISBN 0-471-95869-7).

[Caplan 1999]
Caplan, K. & Sanders, J. L. “Building an International Security Standard.” IEEE IT Professional
1, 2 (March/April 1999): 29-34.

[CCEVS 2007]
The Common Criteria Evaluation and Validation Scheme. http://www.niap-ccevs.org/cc-scheme/
(2007).

[Chen 2004]
Chen, P.; Mead, N. R.; Dean, M.; Ojoko-Adams, D.; Osman, H.; Lopez, L.; & Xie, N. System
Quality Requirements Engineering (SQUARE) Methodology: Case Study on Asset Management
System (CMU/SEI-2004-SR-015, ADA431068). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04sr015.html.

[Ellison 2003]
Ellison, R. J. & Moore, A. P. Trustworthy Refinement Through Intrusion-Aware Design
(CMU/SEI-2003-TR-002, ADA414865). Pittsburgh, PA: Software Engineering Institute, Carne-
gie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports/03tr002.html.

[Fernandez 2007]
Fernandez, E.; Larrondo-Petrie, M.; Sorgente, T.; & Vanhilst, M. “A Methodology to Develop
Secure Systems Using Patterns,” 107-126. Integrating Security and Software Engineering. Edited
by H. Mouratidis and P. Giorgini. Hershey, PA: Idea Group Publishing, 2007 (ISBN 1-599-
04147-2).

20 | CMU/SEI-2007-TN-021

http://www.niap-ccevs.org/cc-scheme/
http://www.sei.cmu.edu/community/sehas-workshop/
http://www.sei.cmu.edu/publications/documents/04.reports/04sr015.html
http://www.sei.cmu.edu/publications/documents/03.reports/03tr002.html

[Firesmith 2003]
Firesmith, D. G. “Security Use Cases.” Journal of Object Technology 2, 3 (May-June 2003): 53-
64. http://www.jot.fm/issues/issue_2003_05/column6.

[Giorgini 2007]
Giorgini, P.; Mouratidis, H.; & Zannone, N. “Modelling Security and Trust with Secure Tropos,”
160-189. Integrating Security and Software Engineering. Edited by H. Mouratidis and P. Gior-
gini. Hershey, PA: Idea Group Publishing, 2007 (ISBN 1-599-04147-2).

[Gordon 2005]
Gordon, D.; Stehney, T.; Wattas, N.; Mead, N. R.; & Yu, E. System Quality Requirements Engi-
neering (SQUARE) Methodology: Case Study on Asset Management System, Phase II (CMU/SEI-
2005-SR-005, ADA441304). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2005. http://www.sei.cmu.edu/publications/documents/05.reports/05sr005.html.

[Graham 2006]
Graham, Dan. “Introduction to the CLASP Process.” Build Security In, 2006.
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/548.html.

[Haley 2007]
Haley, C.; Laney, R.; Moffett, J.; & Nuseibeh, B. “Arguing Satisfaction of Security Require-
ments,” 16-43. Integrating Security and Software Engineering. Edited by H. Mouratidis and P.
Giorgini. Hershey, PA: Idea Group Publishing, 2007 (ISBN 1-599-04147-2).

[Heitmeyer 2002]
Heitmeyer, C. “Software Cost Reduction.” Encyclopedia of Software Engineering, 2nd ed. Edited
by John J. Marciniak. New York, NY: John Wiley and Sons, 2002 (ISBN 978-0-471-37737-6).

[Heninger 1980]
Heninger, K. L. “Specifying Software Requirements for Complex Systems: New Techniques and
their Application.” IEEE Transactions on Software Engineering SE-6, 1 (January 1980): 2-13.

[Hubbard 1999]
Hubbard, R. “Design, Implementation, and Evaluation of a Process to Structure the Collection of
Software Project Requirements.” PhD diss., Colorado Technical University, 1999.

[Leiwo 1999a]
Leiwo, J. “A Mechanism for Deriving Specifications of Security Functions in the CC Frame-
work,” 416-425. 10th International Workshop on Database and Expert Systems Applications. Flo-
rence, Italy, Sept. 1-3, 1999. Berlin, Germany: Springer-Verlag, 1999.

[Leiwo 1999b]
Leiwo, J.; Gamage, C.; & Zheng, Y. “Organizational Modeling for Efficient Specification of In-
formation Security Requirements,” 247-260. Advances in Databases and Information Systems:
Third East European Conference, ADBIS’99. Maribor, Slovenia, Sept. 13-16, 1999. Berlin, Ger-
many: Springer-Verlag, 1999 (Lecture Notes in Computer Science Vol. 1691).

[McDermott 1999]
McDermott, J. & Fox, C. “Using Abuse Case Models for Security Requirements Analysis,” 55-
64. Proceedings of the 15th Annual Computer Security Applications Conference. Scottsdale, AZ,
Dec. 6-10, 1999. Los Alamitos, CA: IEEE Computer Society Press, 1999.

 SOFTWARE ENGINEERING INSTITUTE | 21

http://www.jot.fm/issues/issue_2003_05/column6
http://www.sei.cmu.edu/publications/documents/05.reports/05sr005.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/548.html

[McDermott 2001]
McDermott, J. “Abuse-Case-Based Assurance Arguments,” 366-374. Proceedings of the 17th
Annual Computer Security Applications Conference. New Orleans, LA, Dec. 10-14, 2001. Los
Alamitos, CA: IEEE Computer Society Press, 2001.

[Mead 2003]
Mead, N. International Liability Issues for Software Quality (CMU/SEI-2003-SR-001,
ADA416434). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2003.
http://www.sei.cmu.edu/publications/documents/03.reports/03sr001.html.

[Mead 2005a]
Mead, N. R.; Hough, E.; & Stehney, T. Security Quality Requirements Engineering (SQUARE)
Methodology (CMU/SEI-2005-TR-009). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tr009.html.

[Mead 2006]
Mead, N. R. “The Common Criteria.” Build Security In, 2006. https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/best-practices/requirements/239.html.

[Mellado 2007]
Mellado, D.; Fernandez-Medina, E.; & Piattini, M. “A Common Criteria Based Security Re-
quirements Engineering Process for the Development of Secure Information Systems.” Computer
Standards & Interfaces 29, 2 (February 2007): 244-253.

[Moffett 2004]
Moffett, J.D.; Haley, C.B.; & Nuseibeh, B. Core Security Requirements Artefacts (Technical Re-
port 2004/23, ISSN 1744-1986). Open University, 2004.

[Moore 2001]
Moore, A. P.; Ellison, R. J.; & Linger, R. C. Attack Modeling for Information Security and Sur-
vivability (CMU/SEI-2001-TN-001, ADA388771). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 2001.
http://www.sei.cmu.edu/publications/documents/01.reports/01tn001.html.

[NIST 2002]
National Institute of Standards and Technology. “Software Errors Cost U.S. Economy $59.5 Bil-
lion Annually” (NIST 2002-10). http://www.nist.gov/public_affairs/releases/n02-10.htm (2002).

[Ortalo 1998]
Ortalo, R. “A Flexible Method for Information System Security Policy Specification,” 67-84. 5th
European Symposium on Research in Computer Security – Proceedings. Louvain-la-Neuve, Bel-
gium, Sept. 16-18. Berlin, Germany: Springer-Verlag, 1998. (Lecture Notes in Computer Science
Vol. 1485.)

[OWASP 2007]
OWASP CLASP Project. http://www.owasp.org/index.php/Category:OWASP_CLASP_Project
(2007).

22 | CMU/SEI-2007-TN-021

http://www.sei.cmu.edu/publications/documents/03.reports/03sr001.html
http://www.sei.cmu.edu/publications/documents/05.reports/05tr009.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/239.html
https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-practices/requirements/239.html
http://www.sei.cmu.edu/publications/documents/01.reports/01tn001.html
http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.owasp.org/index.php/Category:OWASP_CLASP_Project

[Rosado 2006]
Rosado, David G.; Gutiérrez, Carlos; Fernández-Medina, Eduardo; Piattini, Mario. “Security Pat-
terns and Requirements for Internet-Based Applications.” Internet Research 16, 5 (2006): 519-
536.

[Sabatier 1999]
Sabatier, D. & Lartigue, P. “The Use of the B Formal Method for the Design and Validation of
the Transaction Mechanism for Smart Card Applications,” 348-368. FM ’99: World Congress on
Formal Methods, Vol. I. Toulouse, France, Sept. 20-24, 1999. Berlin, Germany: Springer-Verlag,
1999. (Lecture Notes in Computer Science Vol. 1708.)

[Schneier 2000]
Schneier, B. Secrets and Lies: Digital Security in a Networked World. New York, NY: John Wi-
ley & Sons, 2000.

[Sindre 2000]
Sindre, G. & Opdahl, A. “Eliciting Security Requirements by Misuse Cases,” 120-130. Proceed-
ings of TOOLS Pacific 2000. Sydney, Australia, Nov. 20-23, 2000. Los Alamitos, CA: IEEE
Computer Society Press, 2000.

[Sindre 2002]
Sindre, Guttorm; Opdahl, Andreas L.; & Brevik, Gøran F. “Generalization/Specialization as a
Structuring Mechanism for Misuse Cases.” Proceedings of the 2nd Symposium on Requirements
Engineering for Information Security (SREIS'02). Raleigh, NC, October 15-16, 2002.
http://www.sreis.org/old/2002/finalpaper6.pdf.

[Soo Hoo 2001]
Soo Hoo, Kevin; Sudbury, Andrew W.; & Jaquith, Andrew R. “Tangible ROI through Secure
Software Engineering.” Secure Business Quarterly 1, 2 (2001).

[Weiss 2007]
Weiss, M. “Modelling Security Patterns Using NFR Analysis,” 127-141. Integrating Security and
Software Engineering. Edited by H. Mouratidis and P. Giorgini. Hershey, PA: Idea Group Pub-
lishing, 2007 (ISBN 1-599-04147-2).

[Wood 1989]
Wood, Jane & Silver, Denise. Joint Application Design: How to Design Quality Systems in 40%
Less Time. New York, NY: Wiley, 1989 (ISBN 0-471-50462-9).

[Woody 2005]
Woody, C. Eliciting and Analyzing Quality Requirements: Management Influences on Software
Quality Requirements (CMU/SEI-2005-TN-010, ADA441310). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/publications/documents/05.reports/05tn010.html.

[Xie 2004]
Xie, N.; Mead, N. R.; Chen, P.; Dean, M.; Lopez, L.; Ojoko-Adams, D.; & Osman, H. SQUARE
Project: Cost/Benefit Analysis Framework for Information Security Improvement Projects in
Small Companies (CMU/SEI-2004-TN-045, ADA431118). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2004.
http://www.sei.cmu.edu/publications/documents/04.reports/04tn045.html.

 SOFTWARE ENGINEERING INSTITUTE | 23

http://www.sreis.org/old/2002/finalpaper6.pdf
http://www.sei.cmu.edu/publications/documents/05.reports/05tn010.html
http://www.sei.cmu.edu/publications/documents/04.reports/04tn045.html

24 | CMU/SEI-2007-TN-021

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY

(Leave Blank)
2. REPORT DATE

August 2007
3. REPORT TYPE AND DATES

COVERED
Final

4. TITLE AND SUBTITLE
How To Compare the Security Quality Requirements Engineering (SQUARE) Method with
Other Methods

5. FUNDING NUMBERS
FA8721-05-C-0003

6. AUTHOR(S)
Nancy R. Mead

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2007-TN-021

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)
The Security Quality Requirements Engineering (SQUARE) method, developed at the Carnegie Mellon Software Engineering Institute,
provides a systematic way to identify security requirements in a software development project. This report describes SQUARE and then
describes other methods used for identifying security requirements, such as the Comprehensive, Lightweight Application Security Proc-
ess, the Security Requirements Engineering Process, and Tropos, and compares them with SQUARE. The report concludes with some
guidelines for selecting a method and a look at some related trends in requirements engineering.

14. SUBJECT TERMS
information security improvement, misuse cases, requirements engineering, system survivabil-
ity, requirements elicitation, security requirements, system security, SQUARE

15. NUMBER OF PAGES
35

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	How To Compare the Security Quality Requirements Engineering (SQUARE) Method with Other Methods
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	1 Background: The Importance of Requirements Engineering
	2 Methods and Practices
	3 Comparing Methods
	4 Conclusions and Trends in Security Requirements Engineering
	Sources and Funding
	References

