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Abstract： In order to improve the efficiency for solving MINLP problems, we present in this 

paper three computational strategies.  These include multiple-generation cuts, hybrid methods 

and partial surrogate cuts for the Outer Approximation and Generalized Benders Decomposition.  

The properties and convergence of the strategies are analyzed.  Five new MINLP algorithms are 

described based on the proposed strategies, and their implementation is discussed.  Results of 

numerical experiments are reported for benchmark MINLP problems to demonstrate the efficiency 

of the proposed methods.   
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1. Introduction 

MINLP is the most general mathematical programming model including discrete and continuous 

variables, constraints with linear and nonlinear functions.  Its applications are common in 

Process System Engineering(PSE), such as process synthesis, planning and scheduling, blending 

problems, and enterprise-wide optimization
[1-15]

.  Most common methods for MINLP include 

Branch and Bound(B&B), Outer Approximation(OA), Generalized Benders Decomposition(GBD), 
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Branch and Cut(B&C), Extended Cutting Plane Method(ECP).  Reviews can be found in 

Grossmann, Belotti and Bonami
[16-18]

.  There are several typical characteristics in process 

industries different from discrete manufacture industries, such as complex process networks, 

reaction mechanisms, fluid material flow that often involves nonlinear relationships among the 

flow variables.  This has motivated the development of MINLP methods. 

The paper is organized as follows.  In section 2, we review the Outer-Approximation algorithm 

and Generalized Benders Decomposition.  The advantages and disadvantages of these algorithms 

are summarized in order to introduce the motivation of our work.  In section 3, three core 

improved strategies are presented in detail with theoretical analysis for their optimal properties 

and convergence.  In section 4, five algorithms are described based on the strategies described in 

section 3.  In section 5, we implement the proposed algorithms on benchmark MINLP test 

problems, and compare the performances with basic OA and GBD.  Finally, we draw 

conclusions based on the performance of the proposed methods. 

2. Background 

MINLP models are usually classified into convex and nonconvex according to the 

convexity/nonconvexity of continuous model with relaxed discrete variables.  According to 

separability of discrete and continuous variables, separable and nonseparable MINLP are also 

defined.  This paper focuses on solving convex MINLP problems. 

The general form of a convex MINLP model is as follows.
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where the nonlinear function : nf R R  and vector functions g : n pR R are assumed to be 

continuous differentiable and convex on the compact polyhedral convex set X, and Y is a finite 

discrete/integer variable set.  Usually the discrete variables appear in linear form, therefore the 

MINLP formulation is reduced to formulation (1.2).  
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Major methods for solving MINLP include OA, GBD, B&B, B&C, ECP methods
[16]

.  OA and 

GBD are two common methods for solving MINLP problems.  

OA is a decomposition method that divides an MINLP into an NLP sub-problem with fixed 

integer variables, and an MILP master problem with first-order approximation of nonlinear 

functions.  From the solution of the NLP subproblem, assuming it is feasible, we obtain an upper 

bound of the primal problem, while solving the MILP master problem, a lower bound of the 

primal problem is obtained.  The NLP sub-problem and MILP master problem are solved in a 

cycle of iterations in order to successively update the lower bound and the upper bound of primal 

MINLP problem, until the relative gap of those bounds lies within a tolerance
[19-23]

.   

The theory of OA method is that it first decomposes discrete and continuous variables through a 
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cutting plane MILP approximation for the search in the discrete variable space, then determines 

the optimal continuous point for each fixed discrete variable, and finally constructs cutting planes 

with linear supports on those points from the NLP subproblem that approximate the nonlinear 

feasible region and objective function. 

GBD is derived from Benders Decomposition method for solving MILP, which is also 

decomposition method
[23, 24]

.  GBD is different from OA in the construction of the master 

problem.  The master problem of GBD is a pseudo-integer programming problem, which is 

constructed by the y-space projection of Lagrange cuts based on dual information of the NLP 

subproblem.  These cuts can be interpreted as a surrogate of the supporting hyperplanes in OA.  

As there are no continuous variables in the GBD master problem, the lower bound is weaker than 

the one of OA.  Therefore, the total number of iterations for GBD is larger than in OA.  

However, GBD requires less CPU time for solving the pseudo-integer programming master 

problem than OA requires for solving its MILP master problem. 

As for the other MINLP algorithms, B&B relies on a tree search in which NLP subproblems are 

solved at each node 
[25, 26]

.  If these NLP subproblems are expensive to solve, the computational 

requirements of B&B can be very high.  The LP/NLP based B&B method is one that involves 

branch and cut search in which the branch and bound method for the MILP of OA is integrated 

with NLP subproblems which are normally solved at integer feasible nodes.  The LP/NLP based 

B&B generally requires less computational effort than OA, but it is more difficult to implement
[27, 

28]
.  ECP involves the successive solution of MILP master problems generating supporting 

hyperplanes for the most violated constraints
[29]

.  Since the ECP method converges the nonlinear 

part with the MILP subproblems, its convergence can be slow.  Among recent developments in 
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the solution of convex MINLP problems, Bonami et al. has proposed a new algorithm based on 

Branch & Bound and polyhedral outer-approximation in order to solve large scale MINLP 

problems
[30]

.  

The MINLP models from real applications in PSE often include many discrete variables, and 

complex nonlinearities in the continuous variables.  Many discrete variables implies a large 

combinatorial search space.  Complex nonlinearities can lead to nonconvexities making the 

global optimum solution difficult to obtain.  Furthermore, MINLP models can also lead to 

infeasible NLP subproblems, which in turn can lead to weak cutting planes.  Additional specific 

limitations that arise in OA and GBD are described below.      

Although OA is one of the common MINLP algorithms with good performance for many cases, 

there are some cases while it may have poor performance.  For example, when solving the 

convex MINLP problem CLAY55M with DICOPT
 [31]

, the number of iterations and CPU time can 

be very large as shown in Figure 1, due to the fact that there are many infeasible subproblems.  

Furthermore, the MILP master problem in OA grows in size as iterations proceed, making the 

successive solution of the master problem increasingly expensive.      

A major limitation of GBD is that the gap between the lower and the upper bounds is often large, 

which leads to a large number of iterations.  An example is given in Figure 2 where solving the 

MINLP problem CSCHED1
 [32]

, many iterations are required to increase the initial bounds which 

are very weak. 

Also, GBD may fail to converge if there are many discrete variables
 [19]

.  If the discrete variables 

have few constraints in the MINLP, then the NLP subproblems are likely to be infeasible.  

Furthermore, the GBD infeasibility cuts tend to be weak, so there are almost no changes in the 
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lower bound.  As specific examples, GBD fails to converge in test 4 from Duran& 

Grossmann
[19]

and CSCHED4 from minlplib because most of the subproblems are infeasible.  

 

Fig. 1.  CPU times of each iteration for CLAY55M with DICOPT 

 

Fig. 2.  Lower bounds of CSCHED1 with GBD 

Our work is aimed at designing and implementing improved OA and GBD algorithms.  Based on 

the theory of OA and GBD methods, three improved strategies are proposed, and their properties 

are analyzed, namely multi-generation cuts(MC), hybrid GBD(H-GBD) and partial surrogate 

cuts(PSC).  Five MINLP algorithms are developed through combination of these improved 

strategies with basic OA and GBD, which are MC-OA, MC-GBD, H-GBD, PSC and MC-PSC.  

As will be shown, encouraging results are obtained with these methods. 
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3. Three Improved MINLP Solution Strategies 

In order to improve the solution efficiency of OA and GBD methods, three strategies are described 

in this section, which are multi-generation cuts(MC), hybrid GBD(H-GBD) and partial surrogate 

cuts(PSC).  

3.1. Multi-generation Cuts 

When solving MINLP problems with OA or GBD, cuts are accumulated for constructing the 

master problem in order to predict the lower bounds of MINLP.  The OA cuts at the kth iteration 

are given by the supporting hyperplanes in equations (3.1), which are the same for feasible or 

infeasible NLP subproblems. 
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                   (3.1) 

The GBD cuts at the kth iteration are given by equation (3.2), which involve feasible cuts in KFS, 

and infeasible cuts in KIS, where KFS is the set of feasible subproblems, and KIS the set of 

infeasible subproblems. 
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       (3.2) 

The idea of MC is that instead of generating one single cut per iteration, that a number of cuts be 

generated at each iteration to improve the approximation of the MILP.  This requires solving 

multiple NLP subproblems at each iteration.  The diagram of multi-generation cuts is shown in 

Figure 3, and the specific steps in this strategy are as follows: 

Step1. While solving the master MILP problem, obtain a set of multiple integer solutions, 
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including the optimal and suboptimal solutions. 

Step2. Fix the integer variables from the S solutions obtained in the MILP master problem in step 

1, and solve the S NLP sub-problems. 

Step3. Multiple linear supporting cuts are derived from the S solutions in step 2 and added to the 

MILP master problem. 

NLP NLPNLP

MILP with MC

 

Fig. 3.  The diagram of multi-generation cuts 

Given S multiple solutions of NLP subproblems in kth iteration,  , ,, , 1,2, ,k s k sx y s S  , the 

corresponding OA cuts are as follows. 
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           (3.3) 

Similarly, the multiple cuts for GBD are given by equation(3.4). 
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     (3.4) 

To generate multiple solutions for the MILP master problems, a two-phase implementation of 

branch and cut is used, in which the optimal solution is found in the first phase, and the second 

phase consists in exploring the branch tree to obtain multiple solutions
[33]

.  By selecting 

appropriate parameters for the MILP solver, multiple solutions can be obtained according to the 

required quality or diversity.  The criterion for selecting multiple solutions is based on the best 
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objective function values.  Also, note that since the NLP subproblems are independent they can 

be solved in parallel. 

In MC, the upper bound corresponds to the incumbent with the best solution of the NLP 

subproblems generated in one iteration if it is better than current upper bound.  The lower bound 

corresponds to the solution of the MILP master problem, which increases monotonically.    

The MC procedure strengthens the approximation of the master problem, with which improved 

lower bounds are obtained.  Therefore, the total number of iterations of OA or GBD algorithms 

with MC is reduced, which also means solving fewer MILP problems.  The main computational 

bottleneck for OA or GBD algorithms is often solving the MILP master problem.  However, the 

total CPU computational time of the MC algorithm can be expected to decrease in many problems. 

The following theorem trivially holds for this strategy.    

Theorem 1. The MC strategy does not change the optimal solution of OA or GBD algorithm for 

convex MINLP problems.  

In order to optimize and balance the CPU times for solving the MILP master and the NLP 

subproblems, we can refine the MC strategy into an adaptive version of MC, where we set a larger 

number for S at the beginning, and reduce it progressively with the consideration that the master 

problem will be more time consuming as more cuts are added.      

We can simply set S as a decreasing sequence of numbers.  For example, we set S as {6,4,2}, and 

fixed the iterations steps as 10, which means the S is equals to 6 for the first 10 iterations, and 

changes to 4 from 11
th
 iteration until 20

th
 one, then it changes to 2 until the termination of method.    

The other extension is to adjust the size of set S according to a maximum CPU time.  In this way, 

when the CPU time exceeds a maximum value, we reduce the size of S. 
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3.2. Hybrid GBD 

The relative advantages of the two MINLP methods, which are simpler master problem for GBD 

and tighter lower bound for OA, motivates the use of the two methods in different solution stages.   

In the improved hybrid strategy, GBD is used to solve the problem in the first stage to derive cuts 

that provide a rough approximation of the projected feasible region.  OA is then used in the 

second stage with these cuts to complete the convergence of the solution procedure.  In this 

hybrid scheme, the CPU time of the MILP master problem is smaller with GBD, and the larger 

when one switches to OA.    

The following theorem trivially holds for the hybrid strategy. 

Theorem 2. The hybrid strategy of OA and GBD does not change the optimal solution of OA or 

GBD algorithm for convex MINLP problems. 

GBD cuts of infeasible NLP subproblems are weak because the discrete variables are only loosely 

constrained with each infeasibility cut.  In contrast for OA, the cuts of infeasible NLPs are tighter 

than the GBD cuts since they provide an outer approximation in the full space.  In order to 

improve the performance of H-GBD, in the first stage, we add OA cuts when the subproblem is 

infeasible, but add GBD cuts when the subproblem is feasible.  

It is interesting to note that the hybrid scheme where OA is used in the first stage and GBD in the 

second stage, does not yield good results, because the GBD cuts are weaker, which is not 

favorable for final convergence. 

3.3. Partial Surrogate Cuts 

Quesada & Grossmann
[27]

 proposed the concept of partial surrogate cuts, which are special types 

cuts for MINLP problems.  The idea is to partition the continuous variables x into linear w and 
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nonlinear v variables, with which the MINLP becomes,       
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where (w, v) are linear and nonlinear continuous variables, respectively, according to their 

occurrence in linear/nonlinear terms.  The projection onto nonlinear terms is as follows in PSC, 
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where v
k
 is the solution of the NLP subproblem.  When the NLP subproblem is infeasible, the 

corresponding partial surrogate cut is, 

     2(v ) v 0
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The MILP master problem of PSC is then as follows
[27]
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Compared with the GBD cuts, the PSC keeps the continuous variables in the Lagrangian cut, and 

in all the linear constraints.  As Quesada & Grossmann pointed out
[27]

, the lower bounds from the 

master problem OA, PSC and GBD obey the following relationship, 

GBD PSC OALB LB LB                           (3.9) 

The PSC method can be regarded as a combination of OA and GBD with dual cuts and linear 

constraints.  Considering that there are often many linear constraints in MINLP models, the PSC 



12 
 

strategy can be expected to have good computational performance solving these types of MINLP 

problems. 

Theorem 3. The decomposition method based on PSC converges to the optimal solution of 

convex MINLP.  

Since the PSC cuts are rigorously derived from a combination of KKT conditions and OA cuts, 

these cuts do not cut off feasible solutions of convex MINLP models.  Therefore, the 

decomposition method based on PSC converges to the optimal solution of convex MINLP.  

We should note that the MC strategy can be applied to PSC.  The extension of H-GBD can also 

be used in PSC.  That is when the subproblem is infeasible, generating OA cuts instead of PSC 

infeasible cuts to accelerate convergence.  

4. Improved MINLP algorithms 

We describe five improved MINLP algorithms based on the proposed strategies described in 

Section 3, including MC, H-GBD, and PSC using the basic OA and GBD algorithms.  Applying 

the strategy of MC to OA and GBD, the improved algorithms are defined as MC-OA and 

MC-GBD.  The H-GBD is the third algorithm.  The PSC method makes use of partial surrogate 

cuts in the MILP master problem.  MC-PSC method is the combination multi-generation cuts 

with the decomposition method of PSC.  The proposed framework of improved algorithms is 

illustrated in Figure 4.  The termination condition is same for OA or GBD, when the upper or 

lower bounds lie within a specified tolerance.   
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OA GBD

PSC MC-GBDH-GBDMC-OA

MC-PSC

 

Fig. 4.  The Framework of Improved MINLP Algorithms 

5. Numerical Experiments 

The improved algorithms were implemented on GAMS 24.2
[34]

.  The computer operating system 

is Windows 7, and quad CPU 2.6 GHz.  The solutions of the NLP problems are obtained using 

the CONOPT3 solver, and the solutions of the MILP problems are obtained using CPLEX12.6.  

The NLP problems are not solved in parallel.  The test instances are 19 benchmark MINLP 

models from Trespalacios and Grossmann
[31]

 and minlplib
[32]

. 

Since integer cuts are used for all methods, the termination criteria for all algorithms are either 

when a crossover occurs, or the relative gap between incumbent upper and lower bound is within a 

specified tolerance, which is set 0.001.  For GBD, as well as for MC-GBD, PSC and MC-PSC 

we add OA cuts when subproblem is infeasible, and relevant cuts when feasible.   

5.1. MC-OA   

We set ∣S∣ as 2, 3 and 4 in MC.  OA means the special case of MC-OA with ∣S∣ equal to 1.  

MC-OAN means OA with ∣S∣ equals to N.  For example, MC-OA2 means the number of 

multi-generation solution is 2.  The percentage of problem solved vs. CPU time by OA and 

MC-OA is shown in Figure 5, based on 19 test instances.  As can be seen, the MC-OA methods 

perform much better than OA with increasing solution time.  For the three MC-OA methods, 
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MC-OA3 performs better than MC-OA2 and MC-OA4, and MC-OA4 performs a little better than 

MC-OA2 in general.  

 

Fig. 5.  Comparing CPU performance of MC-OA with basic OA 

The number of iterations for 12 test instances is summarized in Table 1, a subset of the 19 test 

instances.  Cases1-4 represents csched1a, 1, 2a, 2, and Cases5-12 are CLAY42-55.  

Table 1. Computational Results for MC-OA: Statistics number of Iterations 

Method Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10 Case11 Case12 

DICOPT  4 10 88 215 88 593 362 347 40 645 66 516 

OA  4 7 111 92 9 10 20 18 11 10 18 26 

MC-OA2 4 6 54 133 6 8 11 13 6 7 10 16 

MC-OA3 3 7 22 85 4 7 8 12 7 6 7 15 

MC-OA4 2 5 25 102 4 6 7 9 6 6 7 13 

%Max Reduce 50 28 80 8 56 40 65 50 45 40 61 50 

%Min Reduce 0 0 51 -45 33 20 45 28 36 30 44 38 

Compared with DICOPT, there are significant reductions in the number of iterations for MC-OA, 

and even with OA.  Compared with OA, the maximum percentage reduction of iterations is 80%, 
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and the smallest one is 8% in the best case.  And in the worst case, the maximum percentage 

reduction of iterations is 51%, and the smallest one is -45%, which occurs only for one instance.    

The performance of DICOPT is worse than our implementation of OA for the case when there are 

many infeasible subproblems, although the linearizations of infeasible NLP subproblem is set in 

DICOPT.  This difference is probably due to the fact that in DICOPT the augmented penalty with 

slacks is used in the objective function.  It is clear that if parallel computation were used for the 

NLP problems, the performance of MC-OA can be further improved.  

5.2. MC-GBD 

For MC-GBD, we set the size of multiple solution ∣S∣ as 2, 3, 4, 5, 6, as more iterations are 

required for GBD than for OA.  The percentage of problems solved vs. CPU time by GBD and 

MC-GBD is shown in Figure 6, based on the same 19 test instances.  The performance of 

MC-GBD is better than GBD, but not as much as with MC-OA.  That is expected as the number 

of GBD cuts is less than in the case of OA cuts. 

 

Fig. 6.  Comparing CPU performance of MC-GBDs with basic GBD 

The iterations for 12 test instances are summarized in Table 2, which are the same MINLP case as 

with MC-OA.  Compared with basic GBD, the maximum percentage reduction of iterations is 
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91%, and the smallest one is 50% in the best case.  In the worst case, the maximum percentage 

reduction of iterations is 77%, and the smallest one is -65%.  For some complex or large-scale 

MINLP cases, ∣S∣ of MC-GBD could be set to larger values than for OA, considering that more 

iterations are required for GBD than for OA. 

Table 2. Computational Results for MC-GBD: Statistics number of Iterations 

Method Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10 Case11 Case12 

DICOPT  4 10 88 215 88 593 362 347 40 645 66 516 

GBD 11 399 451 1079 12 13 19 20 8 10 18 28 

MC-GBD2 8 93 160 1193 7 9 11 17 5 13 12 18 

MC-GBD3 5 54 136 1775 6 8 10 13 7 8 9 13 

MC-GBD4 2 37 102 364 5 6 9 9 7 10 7 12 

MC-GBD5 2 41 182 310 5 6 8 10 6 5 5 11 

MC-GBD6 2 38 92 798 5 5 7 7 4 7 5 11 

% Max Reduce 82 91 80 64 58 62 63 65 50 50 72 61 

% Min Reduce 27 77 60 -65 42 31 42 15 13 -30 33 36 

5.3. H-GBD 

The H-GBD methods are different when specifying the number of iterations for the GBD stage.  

In the experiments, we usually set the iterations of the GBD stage to less than 1/3 of the total 

iterations when solving with OA.  For example, for case 3, since the total number of iterations 

with OA is 111, we set iterations of the GBD stage as 15, 20, 25 and 30 respectively for H-GBD1, 

2, 3 and 4.  

The comparison results of CPU times and number of iterations are shown in Figure 7 and Table 3.  
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Although the efficiency of H-GBD is not significant in iterations compared with OA, the solution 

CPU times of H-GBD are smaller than OA with increased problem size.  For the same test 

instances, the performance of H-GBD is better than GBD, and nearly the same with OA.  That 

means the performance of H-GBD is not worse than one of OA, and even better than the latter in 

some instances. 

 

Fig. 7.  Comparing CPU performance of H-GBD with OA and GBD 

Table 3. Computational Results for H-GBD: Statistics number of Iterations 

Method Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10 Case11 Case12 

OA 4 7 111 92 9 10 20 18 11 10 18 26 

GBD 11 399 451 1079 12 13 19 20 8 10 18 28 

H-GBD1 4 15 51 79 10 12 20 18 11 8 14 25 

H-GBD2 5 16 73 101 10 12 20 19 15 11 14 26 

H-GBD3 6 17 65 135 11 13 20 21 12 9 11 34 

H-GBD4 7 18 48 155 15 13 20 24 17 13 19 33 
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5.4. PSC and MC-PSC 

PSC and MC-PSC2 are used to solve 12 test instances, which is a subset of the larger former test 

problems.  The iterations and CPU times are shown in Figure 8 and Table 4.  As can be seen, the 

performance of PSC is much better than GBD.  Compared to OA, PSC generally improves the 

computational performance.  The performance of MC-PSC2 is almost as good as PSC.    

 

Fig. 8.  Comparing CPU performance of PSC / MC-PSC2 with OA / GBD 

Table 4. Computational Results for PSC and MC-PSC: Statistics number of Iterations 

Method Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 Case9 Case10 Case11 Case12 

GBD 11 399 451 1079 12 13 19 20 8 10 18 28 

PSC 4 7 88 70 15 13 15 19 16 10 12 27 

MC-PSC2 3 6 27 78 14 7 10 18 7 9 8 14 

OA 4 7 111 92 9 10 20 18 11 10 18 26 
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6. Conclusion 

In this paper, three MINLP solution strategies have been presented, multi-generation cuts, hybrid 

with GBD and partial surrogate cuts in order to improve the performance of the MINLP 

algorithms.  MC reduces the total number of iterations, therefore, decreasing the CPU solution 

times of the master problem.  H-GBD is used to control the problem size of master problem.  

PSC provides a novel approach for decomposition MINLP methods that are characterized by a 

large number of linear constraints.  Five improved MINLP algorithms are described and 

implemented to increase solution efficiency: MC-OA, MC-GBD, H-GBD, PSC and MC-PSC.  

Through the testing of certain MINLP benchmark problems, the efficiency of these methods has 

been illustrated.  MC-OA performs best on average among all the methods.  H-GBD can be 

faster than OA on some instances.  PSC has shown improved performance compared to OA.  

MC-GBD and MC-PSC are not as effective as MC-OA.   

For general MINLP instances, MC-OA is generally the preferred choice.  When the master 

problem of OA is large, PSC(MC-PSC), H-GBD, MC-GBD are suggested in the given order, 

since the master problems are smaller than OA.  It should be noted that when there are many 

discrete variables and many infeasible subproblems, OA cuts should be added to the stage for 

generating partial surrogate or GBD infeasible cuts.   
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