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with Unobserved Heterogeneity∗
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Abstract

We adapt the Expectation-Maximization (EM) algorithm to incorporate unobserved hetero-

geneity into conditional choice probability (CCP) estimators of dynamic discrete choice problems.

The unobserved heterogeneity can be time-invariant, fully transitory, or follow a Markov chain.

By exploiting finite dependence, we extend the class of dynamic optimization problems where

CCP estimators provide a computationally cheap alternative to full solution methods. We also

develop CCP estimators for mixed discrete/continuous problems with unobserved heterogeneity.

Further, when the unobservables affect both dynamic discrete choices and some other outcome,

we show that the probability distribution of the unobserved heterogeneity can be estimated in a

first stage, while simultaneously accounting for dynamic selection. The probabilities of being in

each of the unobserved states from the first stage are then taken as given and used as weights in

the second stage estimation of the dynamic discrete choice parameters. Monte Carlo results for

the three experimental designs we develop confirm that our algorithms perform quite well, both

in terms of computational time and in the precision of the parameter estimates.
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1 Introduction

Standard methods for solving dynamic discrete choice models involve calculating the value func-

tion either through backwards recursion (finite-time) or through the use of a fixed point algorithm

(infinite-time).1 Conditional choice probability (CCP) estimators, originally proposed by Hotz and

Miller (1993), provide an alternative to these computationally-intensive procedures by exploiting

the mappings from the value functions to the probabilities of making particular decisions. CCP

estimators are much easier to compute than Maximum Likelihood (ML) estimators based on ob-

taining the full solution and have experienced a resurgence in the literature on dynamic games.2

The computational gains associated with CCP estimation give researchers considerable latitude to

explore different functional forms for their models.

Nevertheless, there are at least two reasons why researchers have been reticent to employ CCP

estimators in practice.3 First, many believe that CCP estimators cannot be easily adapted to handle

unobserved heterogeneity.4 Second, the mapping between conditional choice probabilities and value

functions is simple only in specialized cases, and seems to rely heavily on the Type I extreme value

distribution to be operational.5

This paper extends the application of CCP estimators to handle rich classes of probability

distributions for unobservables. We develop estimators for dynamic structural models where there

is time dependent unobserved heterogeneity and relax restrictive functional form assumptions about

its within period probability distribution. In our framework, the unobserved state variables follow
1The full solution or nested fixed point approach for discrete dynamic models was developed in Miller (1984), Pakes

(1986), Rust (1987) and Wolpin(1984), and further refined by Keane and Wolpin (1994, 1997).
2Aguirregabiria and Mira (2008) have recently surveyed the literature on estimating dynamic models of discrete

choice. For applications of CCP estimators to dynamic games in particular, see Aguirregabiria and Mira (2007),

Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2004), and Pesendorfer and Schmidt-Dengler (2003).
3A third reason is that to perform policy experiments it is often necessary to solve the full model. While this is

true, using CCP estimators would only involve solving the full model once for each policy simulation as opposed to

multiple times in a maximization algorithm.
4Several studies based on CCP estimation have included fixed effects estimated from another part of the econometric

framework. For example see Altug and Miller (1998), Gayle and Miller (2006) and Gayle and Golan (2007). As

discussed in the text below, our approach is more closely related Aguirregaberia and Mira (2007), who similarly use

finite mixture distributions in estimation.
5Bajari, Benkard and Levin (2007) provide an alternative method for relaxing restrictive functional form assump-

tions on the distributions of the unobserved disturbances to current utility. Building off the approach of Hotz et al.

(1994), they estimate reduced form policy functions in order to forward simulate the future component of the dynamic

discrete choice problem.
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from a finite mixture distribution. The framework can readily be adapted to cases where the

unobserved state variables are time-invariant, such as is standard in the dynamic discrete choice

literature,6 as well as to cases where the unobserved states transition over time and, in the limit,

are time independent. In this way we provide a unified approach to rectifying the two limitations

commonly attributed to CCP estimators.

Our estimators adapt the EM algorithm, and in particular its application to sequential likelihood

estimation developed in Arcidiacono and Jones (2003), to CCP estimation techniques. We construct

several related algorithms for obtaining these estimators, derive their asymptotic properties, and

investigate the small sample properties via three Monte Carlo studies. We show how to implement

the estimator on a wide variety of dynamic optimization problems and games of incomplete infor-

mation with discrete and continuous choices. To accomplish this, we generalize the concept of finite

dependence developed in Altug and Miller (1998) to models where finite dependence is defined in

terms of probability distributions rather than exact matches.

Our baseline algorithm iterates on three steps. First, given an initial guess on the parameter

values and on the conditional choice probabilities (CCP’s) where the conditioning is also on the

unobserved state, we calculate the conditional probability of being in each of the unobserved states.

We next follow the maximization step of the EM algorithm where the likelihood is calculated as

though the unobserved state is observed and the conditional probabilities of being in each of the

unobserved states are used as weights in the maximization. Finally, the CCP’s for each state (both

observed and unobserved) are updated using the new parameter estimates, recognizing the correlated

structure of the unobservables when appropriate. The updated CCP’s can come from the likelihoods

themselves, or can be formed from an empirical likelihood as a weighted average of discrete choice

decisions observed in the data, where the weights are the conditional probabilities of being in each

of the unobserved states.

Our algorithm can be modified to situations where the data not only include records of discrete

choices, but also outcomes on continuous choices, such as costs, sales, profits, and so forth that
6Aguirregabiria and Mira (2007) and Buchinsky, Hahn and Hotz (2005) both incorporate a time-invariant effect

drawn from a finite mixture within their CCP estimation framework. Aguirregabiria and Mira (2007), in an algorithm

later extended by Kasahara and Shimotsu (2007b), show how to incorporate unobserved characteristics of markets

in dynamic games, where the unobserved heterogeneity is a time-invariant effect in the utility or payoff function.

Our analysis also demonstrates how to incorporate unobserved heterogeneity into both the utility functions and the

transition functions, and thereby account for the role of unobserved heterogeneity in dynamic selection. Buchinsky et

al (2005) use the tools of cluster analysis, seeking conditions on the model structure that allow them to identify the

unobserved type of each agent as the number of time periods per observation grows.
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are also affected by the unobserved state variables. With observations on such outcomes, and

the empirical distribution of the dynamic discrete choice decisions, we show how to estimate the

distribution of unobserved heterogeneity in a first stage. The estimated probabilities of being in

particular unobserved states obtained from the first stage are then used as weights when estimating

the second stage parameters, namely those parameters entering the dynamic discrete choice problem

that are not part of the first stage outcome equation. We show how the first stage of this modified

algorithm can be paired with estimators proposed by Hotz et al (1994) and Bajari et al (2007) in the

second stage. Our analysis complements their work by extending their applicability to unobserved

time dependent heterogeneity.

We illustrate the small sample properties of our estimator using a set of Monte Carlo experiments

designed to highlight the wide variety of problems that can be estimated with the algorithm. The

first is a finite horizon model of teen drug use and schooling decisions where individuals learn about

their preferences for drugs through experimentation. Here we illustrate both ways of updating the

CCP’s, using either the likelihoods themselves or the conditional probabilities of being in each of

the unobserved states as weights. The second is a dynamic entry/exit example with unobserved

heterogeneity in the demand levels for particular markets which in turn affects the values of entry

and exit. The unobserved states are allowed to transition over time and the example explicitly

incorporates dynamic selection. We estimate the model both by updating the CCP’s with the model

and by estimating the unobserved heterogeneity in a first stage. Our final Monte Carlo illustrates

the performance of our methods in mixed discrete/continuous settings in the presence of unobserved

heterogeneity. In particular, we focus on firms making discrete decisions about whether to run their

plants and then, conditional on running, continuous decisions as to how much to produce. For all

three sets of Monte Carlos, the estimators perform quite well both in terms of the precision of the

estimates as well as the speed at which the estimates are obtained.

The techniques developed here are being used to estimate structural models in environmental

economics, labor economics, and industrial organization. Bishop (2007) applies the reformulation

of the value functions to the migration model of Kennan and Walker (2006) to accommodate state

spaces that are computationally intractable using standard techniques. Joensen (2007) incorporates

unobserved heterogeneity into a CCP estimator of educational attainment and work decisions. Fi-

nally, Finger (2007) estimates a dynamic game using our two-stage estimator to obtain estimates of

the unobserved heterogeneity parameters in a first stage.

The rest of the paper proceeds as follows. Section 2 sets up the basic framework for our analysis.
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Section 3 shows that, for many cases, the differences in conditional valuation functions only depend

upon a small number of conditional choice probabilities. Section 4 extends the basic framework

as well as applying the results of section 3 to the case when continuous choices are also present.

Section 5 shows how to incorporate unobserved heterogeneity–including unobserved heterogeneity

that transitions over time–into the classes of problems discussed in the preceding sections. Section 5

also shows how the parameters governing the unobserved heterogeneity can often be estimated in a

first stage. Section 6 presents the asymptotics. Section 7 reports a series of Monte Carlos conducted

to illustrate both the small sample properties of the algorithms as well as the broad classes of models

that can be estimated using these techniques. Section 8 concludes. All proofs are in the appendix.

2 A Framework for Analyzing Discrete Choice

Consider a dynamic programming problem in which an individual makes a series of discrete choices

dt over his lifetime t ∈ {1, . . . , T} for some T ≤ ∞. The choice set has the same cardinality K at

each date t, so we define dt by the multiple indicator function dt = (d1t, . . . , dKt) where dkt ∈ {0, 1}

for each k ∈ {1, . . . ,K} and ∑K

k=1
dkt = 1

A vector of characteristics (zt, εt) fully describes the individual at each time t, where εt ≡ (ε1t, . . . , εKt)

is independently and identically distributed over time with continuous support and distribution func-

tion G (ε1t, . . . , εKt), and the vector zt evolves as a Markov process, depending stochastically on the

choices of the individual. The probability of zt+1 conditional on being in zt and making choice k at

time t is given by fk (zt+1 |zt ) with the cumulative distribution function given by Fk (zt+1 |zt ). At

the beginning of each period t the individual observes (zt, ε1t, . . . , εKt). The individual then makes

a discrete choice dt to sequentially maximize the expected discounted sum of utilities

E

{∑T

t=1

∑K

k=1
βt−1dkt [uk (zt) + εkt]

}
where uk (zt) + εkt denotes the current utility of an individual with characteristics zt from choosing

dkt = 1. The discount factor is denoted by β ∈ (0, 1) , and the state zt is updated at the end of each

period.

Let dot ≡ (do1t, . . . , d
o
Kt) denote the optimal decision rule given the current values of the state

variables. Let V (zt) be the expected value of lifetime utility at date t as a function of the current

state zt but integrating over εt:

V (zt) = E

{∑T

τ=t

∑K

k=1
βτ−tdokτ [uk (zτ ) + εkτ ] |zt

}
5



The conditional valuation functions are given by current period utility for a particular choice net of

εt plus the expected value of future utility. The expectation is taken with respect to next period’s

state variables conditional on the current state variables zt and the choice j ∈ {1, . . . ,K}:

vj (zt) = uj (zt) + β
∑

zt+1

V (zt+1) fj (zt+1 |zt )

The inversion theorem of Hotz and Miller (1993) for dynamic discrete choice models implies there

is a mapping from the conditional choice probabilities, defined by

pj (zt) =
∫
djt (zt, εt) dG (ε1t, . . . , εKt)

to differences in the conditional valuation functions which we now denote as

ψkj [p (zt)] = vk (zt)− vj (zt)

The inversion theorem can then be used to formulate the expected contribution of εt conditional

on the choice. The expected contribution of the εkt disturbance to current utility, conditional on

the state zt, is found by integrating over the region in which the jth action is taken, so appealing to

the representation theorem∫
[djt (zt, εt) εjt] dG (εt) =

∫
1 {εjt − εkt ≥ vk (zt)− vj (zt)) for all k ∈ {1, . . . ,K}} εjtdG (εt)

=
∫

1
{
εjt − εkt ≥ ψkj [p (zt)] for all k ∈ {1, . . . ,K}

}
εjtdG (εt)

≡ wj [ψ [p (zt)]]

where ψ [p (zt)] ≡
(
ψ1

1 [p (zt)] , . . . , ψK1 [p (zt)]
)
. It now follows that the conditional valuation func-

tions can be expressed as the sum of future discounted utility flows for each of the choices, weighted

by the probabilities of each of these choices being optimal given the information set and then inte-

grated over the state transitions. These discounted utility flows for each of the choices include the

expected contribution of εt conditional on each of the choices being optimal. Hence, we can express

vj(zt) as:

vj (zt) = uj (zt) + E

{∑T

τ=t+1

∑K

k=1
βτ−tpk (zτ ) (uk (zτ ) + wk [ψ[p (zτ )]]) |djt = 1, zt

}
Two issues then remain for estimating dynamic discrete choice models using conditional choice

probabilities. First, the mappings between the conditional probabilities and the expected εt contri-

butions need to be explicit and we discuss a class of such models in the next subsection. Second,

for a broad class of models the representation theorem itself can be used to avoid calculating con-

ditional choice probabilities, flow utility terms, and transitions on the states across the T periods.
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Indeed, as we show in section 3, it is often the case that only one-period-ahead transitions and choice

probabilities are needed to fully capture the future utility terms.

2.1 Example 1: Generalized Extreme Value Distributions

We now illustrate how to map conditional choice probabilities into the expected contribution of εt

as expressed through each wk [ψ [p (zt)]]. Suppose εt is drawn from the distribution function

G (ε1t, ε2t, . . . , εKt) ≡ exp
[
−H

(
e−ε1t , e−ε2t , . . . , e−εKt

)]
where H (Y1, Y2, . . . , YK) satisfies the properties outlined for the generalized extreme value distribu-

tion in McFadden (1978).7 We first establish that essentially no computational cost is incurred from

computing wk (ψ[p(zt]) when the assumption of generalized extreme values holds and the mapping

ψ[p(zt)] is known. In particular, Lemma 1 shows there is a log linear mapping relating the expected

value of the disturbance to the specification of H (Y1, Y2, . . . , YK) .

Lemma 1 If εt is distributed generalized extreme value, then

wk (ψ [p (zt)]) = γ + logH
(
eψ

1
k[p(zt)], eψ

2
k[p(zt)], . . . , eψ

K
k [p(zt)]

)
The lemma demonstrates that the difficulty in mapping conditional choice probabilities into the

expected contribution of εt comes from obtaining the inverse ψ[p(zt)], and not from mapping ψ into

wk (ψ).8 The former mapping does, however, have a closed form in the nested logit case. Suppose

there are R clusters and Kr alternatives within each cluster. Each period the person makes a choice

by setting dkrt = 1 for some r ∈ {1, . . . , R} and k ∈ {1, . . . ,Kr}. We denote by pkrt the probability

of making choice k in cluster at time t when the state is zt, and define prt as the choice probability

associated with the rth cluster. That is

prt =
∑Kr

k=1
pkrt

7The properties are that H (Y1, Y2, . . . , YK) is a nonnegative real valued function of (Y1, Y2, . . . , YK) ∈ RJ+, ho-

mogeneous of degree one, with limH (Y1, Y2, . . . , YK) → ∞ as Yk → ∞ for all k ∈ {1, . . . ,K} , and for any distinct

(i1, i2, . . . , ir) , the cross derivative ∂H (Y1, Y2, . . . , YK) /∂Yi1 , Yi2 , . . . , Yir is nonnegative for r odd and nonpositive for

r even.
8The expression given in Lemma 1 can also be used to derive welfare effects outside of the conditional choice

probability case. The differences in the v’s can be substituted back in for ψ giving the expected ε as a function of

the parameters of the model. Hence, rather than attempting to draw errors from complicated GEV distributions in

order to simulate welfare changes, the expected errors conditional on the choice can be calculated directly. As shown

in Cardell (1997), even simulating draws from a nested logit distribution is difficult.
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The distribution function of the disturbances, G (εt) ≡ G (ε11t, ε12t, . . . , ε21t, . . . , εRKRt) , is defined

through H (Y ) ≡ H (Y11, Y12, . . . , Y21, . . . , YRKR) by

H (Y ) =
∑R

r=1

[∑Kr

k=1
Y δr
kr

]1/δr

Bearing in mind that ψ [p (zt)] and (w1 (ψ) , . . . , wK (ψ)) typically enter linearly in CCP estimation,

Lemma 2 below demonstrates that applying a CCP estimator to discrete choice dynamic models

with a nested logit structure does not pose substantial computational challenges over and above

the multinomial logit structure. Yet relaxing the multinomial logit assumption adds significantly to

the flexibility of the estimator by introducing parameters that define the distribution of unobserved

heterogeneity, in essentially the same way as in the static literature on random utility models.

Lemma 2 The differences in the conditional valuation functions in the nested logit framework can

be expressed as

vkrt − vjst =
1
δr

log (pkrt)−
1
δs

log (pjst) +
(

1− 1
δr

)
log (prt)−

(
1− 1

δs

)
log (pst)

and the expected value of the disturbance conditional on an optimal choice can be written

E [εjst |djst = 1] = γ − 1
δs

log(pjst)−
(

1− 1
δs

)
log (pst) + log

{∑R

r=1
p
1−1/δr
rt

[∑Kr

j=1
p
δs/δr
jrt

]1/δs
}

It is straightforward to generalize this framework to hierarchical clusters beyond two levels, and

also to models where δr depends on the state z. Conversely, when all clusters are symmetric to the

extent that δ = δr = δs, the differences in conditional valuation functions simplify to

vkrt − vjst =
1
δ

[log (pkrt)− log (pjst)] +
(

1− 1
δ

)
[log (prt)− log (pst)]

while the expected value of the disturbance conditional on making the kth choice in cluster s becomes

E [εjst |djst = 1] = γ − 1
δ

log(pjst)−
(

1− 1
δ

)
log (pst)

Specializing further, the multinomial logit is obtained by setting δ = 1.

3 Finite Dependence

While Section 2 explored the mapping between CCP’s and expected error contributions, in this

section we exploit the Hotz-Miller inversion theorem directly to avoid calculating T period ahead

conditional choice probabilities, flow utility terms, and transitions on the state variables. We show
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that when a problem exhibits finite time dependence, a term we define below, the number of future

conditional choice probabilities needed may shrink dramatically. This result relies upon two features

of dynamic discrete choice problems. First, estimation relies upon differences in conditional valuation

functions not the conditional valuation functions themselves. Second, the future utility terms can

always be expressed as the conditional valuation function for one of the choices plus a term that

only depends upon the differences in the conditional valuation functions. This latter term can then

be expressed as a function of the CCP’s. Hence, a sequence of normalizations on the future utility

terms with respect to particular choices may lead to a cancellation of future utility terms after a

particular point in time once we difference across the two alternatives. The rest of this section defines

the class of models covered by finite dependence as well as showing how many future conditional

choice probabilities are needed in estimation. We show that finite dependence covers a broad class

of models in labor economics and industrial organization including but not limited to models with

a terminal state or renewal.9

We begin by generalizing the concept of finite dependence developed in Altug and Miller (1998)

to accommodate models where the outcome of choices on the state variables is endogenously random,

as follows:

Definition 1 Denote by λ(j, zt) ≡ {λt(j, zt), ..., λt+ρ(j, zt)} a stochastic process of choices defined

for at least ρ periods, starting at period t where the state at period t is zt, the initial choice in

the sequence is j, and the choice at period τ ∈ {t, . . . , t+ ρ} is conditional on the current state

zτ (stochastically determined by realizations of the choice process). Also let κτ (z|j, zt) denote the

probability of state z ∈ Z occurring at date τ, given the process λ(j, zt) and conditional only on zt

and djt = 1. A pair of choices, j ∈ {1, 2, . . . , J} and j′ ∈ {1, 2, . . . , J} , exhibits ρperiod dependence

for a state zt, if there exists a process λ(j, zt) with the property that κt+ρ(z|j, zt) = κt+ρ(z|j′, zt) for

all zt and t ∈ {1, 2, . . . , T} .

The basis for finite dependence comes from expanding the conditional valuation function vj(zt)

associated with choice j at time t one period into the future. For ease of notation, denote λτ (j) =

λτ (j, zt). For the choice λt+1 (j) the Hotz-Miller inversion theorem implies vj(zt) can be expressed

9Following Hotz and Miller (1993), a state is called terminal, and a choice which directly leads to it are called

terminating, if there are no futher decisions to be made in the dynamic program or game. In a renewal model, the

initial state that can be reached from every other state via some decision sequence.
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as:

vj(zt) = uj(zt)+β
∑

zt+1

{
vλt+1(j)(zt+1) +

K∑
k=1

pk(zt+1)
(
ψkλt+1(j)(p(zt+1)) + wk[ψ[p(zt+1)]]

)}
fj(zt+1|zt)

(1)

Forming an equivalent expression for vj′ (zt) , suppose the expected value of vλ(j)(zt+1) under the

distribution fj(zt+1|zt) equals the expected value of vλt+1(j′)(zt+1) under the distribution fj′(zt+1|zt)∑
zt+1

vλt+1(j)(zt+1)fj(zt+1|zt) =
∑

zt+1

vλt+1(j′)(zt+1)fj′(zt+1|zt)

The difference vj(zt) − vj′(zt) could then be expressed in terms of this period’s utilities and terms

depending on next periods conditional choice probabilities p(zt+1), plus the transition probabilities

alone. Intuitively, aside from the two t period disturbances εjt and εj′t, taking action j versus j′

in period t would not matter if they are followed by actions λ (j) and λ (j′) respectively, and also

compensated for nonoptimal behavior by terms that are functions solely of the one-period-ahead

conditional choice probabilities. Proposition (1), which follows directly from an induction argument,

provides sufficient conditions for finite dependence to hold.

Proposition 1 Differences in conditional valuation functions can be expressed in terms of future

conditional choice probabilities up to ρ periods ahead if ρ-period finite dependence holds across all

dates t ∈ {1, 2, . . . , T}, states zt ∈ Z and initial choices dt. In that case there exists a choice process

λ(j, zt) defined for all j ∈ {1, 2, . . . ,K} , τ ∈ {1, 2, . . . , T} and zt ∈ Z such that:

vj (zt)− vj′ (zt) = uj(zt)− uj′(zt)

+
t+ρ∑

τ=t+1

K∑
k=1

∑
zt+1

βτ−tpk(zτ )
{
ψkλτ (j) [p(zτ )] + uk(zτ ) + wk [ψ[p(zτ )]]

}
κτ (zτ |j, zt)

−
t+ρ∑

τ=t+1

K∑
k=1

∑
zt+1

βτ−tpk(zτ )
{
ψkλτ (j′) [p(zτ )] + uk(zτ ) + wk [ψ[p(zτ )]]

}
κτ (zτ |j′, zt)

We illustrate the finite dependence property with some examples that highlight the broad class

of models that satisfy the finite dependence assumption, starting with renewal problems where only

one-period-ahead CCP’s are necessary to calculate the expected future utility differences.10

10The finite dependence property is also illustrated in the migration model of Bishop (2007), in which individu-

als choose among over fifty locations where to live. With state variables transitioning across locations, the finite

dependence assumption allows Bishop to effectively reduce the dynamic discrete problem to a three period decision.
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3.1 Example 2: Renewal

In renewal problems, such as Miller’s (1984) job matching model or Rust’s (1987) machine mainte-

nance problem, the agent has an option to nullify all previous history by taking a renewal action,

namely starting a new job in the job matching model, or replacing the bus engine in the maintenance

problem. Formally, the first choice, say, is a renewal action if and only if f1(zt+1|zt) = f1(zt+1) for

all z ∈ Z. Renewal problems satisfy the finite dependence assumption, because for any two choices

j and j′ made in period t, the state at the beginning of period t+ 2 will be identical if the renewal

action is taken in period t+ 1. Denoting the renewal action by the first choice

v1 (zt) ≡ u1 (zt) + β
∑

zt+1

V (zt+1) f1 (zt+1) ≡ u1 (zt) + βV ∗

Models with terminal states also have this property.

Suppose the disturbance associated with the renewal action (such as engine replacement), is in-

dependent of the disturbances associated with the other choices (such as different types of repair and

servicing combined with different types of usage), which might be correlated with each other in any

way the generalized extreme value distribution permits. WhenG (εt) ≡ exp [−H (e−ε1t , e−ε2t , . . . , e−εKt)]

is generalized extreme value, this is equivalent to saying

H (Y1, ..., YK) ≡ H (Y2, ..., YK) + Y1

where G (εt) ≡ exp
[
−H (e−ε2t , . . . , e−εKt)

]
is any generalized extreme value distribution of dimen-

sion K − 1. In this case, Lemma 3 establishes that the likelihood of any decision depends only on

current flow utilities, the one-period-ahead probabilities of transitioning to each of the states, and

the one-period-ahead probabilities of the renewal action.11

Lemma 3 If H (Y1, ..., YK) ≡ H (Y2, ..., YK) + Y1 in the generalized extreme value model and the

first choice is a renewal action then

vj(zt) = uj(zt) + β

(∑
zt+1

[u1(zt+1)− log p1 (zt+1)] fj(zt+1|zt)dzt+1 + γ + βV ∗
)

(2)

11When zt contains observed variables only, estimation proceeds as in the static problem. Note that in estimation

we work with differences in conditional valuation functions. Since the last term in (2) is the same across all choices,

the last term cancels out. The second to last term can be calculated outside the model by estimating the transitions

on the state variables , for example by using a cell estimator to obtain an estimate of the probability of the renewal

action. The first-stage estimate of the second term is then just subtracted off the flow utility in estimation. Note

that this method applies whether the model is stationary or not, whether or not it has a finite or infinite horizon, and

accommodates a rich pattern of correlations between nonrenewal choices.
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Since the likelihood of any choice only depends upon differences in the conditional valuation func-

tions, the constant (γ + βV ∗) cancels out.

3.2 Example 3: Dynamic Entry and Exit

Several empirical studies investigate the dynamics of entry and exit decisions.12 To further illustrate

finite dependence and demonstrate its applicability to this topic, we develop a prototype model of

an infinite horizon dynamic entry/exit game, estimated in our second Monte Carlo study of N

distinct markets. Suppose a typical market is served by at most two firms, with up to one firm

entering each market every period. Potential entrants choose whether to enter the market or not,

and incumbents choose whether to exit or not. Choices by the incumbent and a potential entrant

are made simultaneously. If an incumbent exits, it disappears forever, and firms only have one

opportunity to enter.

The systematic component of the realized profit flow of a firm in period t, denoted by u (Et,Mt, zt),

depends on whether the firm is an entrant, Et = 1, or an incumbent, Et = 0, whether the firms

operates as a monopolist, Mt = 1, or a duopolist, Mt = 0, and the state of demand, zt ∈ {0, 1}.

The state of demand transitions over time according to the Markov process f(zt+1|zt). Finally, an

independent and identically distributed Type I extreme value shock affects both the profits associ-

ated with participating or not participating in the market. These profit shocks are unobserved to

rival firms and the firm’s future profit shocks are independent over time and unknown to the firm.

The state variables determining the firm’s expected value from entering or remaining in the

industry depend upon whether the firm is an entrant Et = 1 or an incumbent Et = 0; whether

there is an incumbent rival, which we denote by Rt = 0, or not (by setting Rt = 1); and the state

of demand zt. Let p0 (Et, Rt, zt) denote the probability of not entering or exiting, and similarly

let p1 (Et, Rt, zt) denote the probability of remaining in or entering the market. In a symmetric

equilibrium p0(Et, 0, zt) is the probability that a potentially entering rival stays out when facing

competition from the firm as an incumbent, and p0(0, Rt, zt) is the probability that an incumbent

rival exits. We can then express the expected value from entering as the sum of the disturbance ε1t

plus:

v1(Et, Rt, zt) ≡ EtRt
{
u(1, 1, zt) + β

∑1

zt+1=0
V (0, 1, zt+1)f(zt+1|zt)

}
(3)

+ (1− EtRt)
∑1

k=0
pk(Et, Rt, zt)

{
u(Et, 1− k, zt) + β

∑1

zt+1=0
V (0, 1− k, zt+1)f(zt+1|zt)

}
12See, for example, Beresteanu and Ellickson (2006), Collard-Wexler (2006), Dunne et al. (2006), and Ryan (2006).
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where V (0, Rt+1, zt+1) is the expected value of an incumbent firm at the beginning of period t + 1

conditional on Rt+1 and zt+1. The first expression on the right side of (3) reflects the fact that

when EtRt = 1, the firm enjoys monopoly rents of u(1, 1, zt) for at least one period if it enters.

Otherwise the rent is shared by the duopoly with probability p1(Et, Rt, zt), as indicated in the

second expression. Since this framework has a terminating state, the previous example establishes

that the conditional valuation function for entering/remaining can be expressed as:

v1(Et, Rt, zt) = EtRt

{
u(1, 1, zt)− β

∑1

zt+1=0
log[p0(0, 1, zt+1)]f(zt+1|zt)

}
+ βγ (4)

+ (1− EtRt)
∑1

k=0
pk(Et, Rt, zt)

{
u(Et, 1− k, zt)− β

∑1

zt+1=0
log[p0(0, 1− k, zt+1)]f(zt+1|zt)

}
where the value of exiting has been normalized to zero. Similar to the renewal case, everything

except for flow profit terms can be calculated outside of the model where the calculations only

involve one-period-ahead transition probabilities on the states as well as current and one-period-

ahead probabilities of rival and own actions.

3.3 Example 4: Female Labor Supply

We now consider a case when more than one-period-ahead conditional choice probabilities are needed

in estimation. In particular, we consider female labor supply where experience on the job increases

human capital in an uncertain way, thus extending previous work on human capital accumulation

on the job by Altug and Miller (1998), Gayle and Miller (2006) and Gayle and Golan (2007), where

it is measured as an observed deterministic variable. Each period a woman chooses whether to work

by setting dt = 1, versus stay at home by setting dt = 0. Earnings at work depend upon her human

capital, denoted by ht, and participation in the previous period dt−1. Human capital ht increases

stochastically by z ∈ {1, 2, ...Z} , where f(z) is the probability of drawing z. At the beginning of

period t the woman receives utility of uj (ht, dt−1) from setting dt = j ∈ {0, 1} plus a choice specific

disturbance term denoted by εjt that is distributed Type 1 extreme value. Her goal is to maximize

expected lifetime utility, the expected discounted sum of current utilities, by sequentially choosing

whether to work or not each period until T. To show there is two period dependence in this model,

we note that if the woman participates in period t and then does not participate in periods t+1 and

t + 2, her state variables in period t + 3 have the same probability distribution as if she does not

participate in period t but participates in period t+ 1 instead and then finally does not participate

at t + 2. Applying Proposition 1, we obtain the difference in the conditional valuation functions

directly:
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Lemma 4 The difference in conditional valuation functions between working and not working are

given by:

[v1(ht, dt−1)− u1(ht, dt−1)]− [v0(ht, dt−1)− u0(ht, dt−1)] (5)

=
∑Z

z=1

{
β [u0 (ht + z, 1)− log p0(ht + z, 1)] + β2 [u0 (ht + z, 0)− log p0(ht + z, 0)]

}
f (z)

−β [u1 (ht, 0)− log p1(ht, 0)]−
∑Z

z=1

{
β2 [u0 (ht + z, 1)− log p0(ht + z, 1)]

}
f (z)

Here the future utility terms are expressed as a function of the one-period-ahead flow utilities,

the two-period ahead transitions on the state variables, and the two-period-ahead conditional choice

probabilities.

4 Continuous Choices

Our framework is readily extended to incorporate continuous choices as follows. We now suppose

that in addition to the discrete choices dt = (d1t, . . . , dKt), an individual also makes a sequence of

continuous choices ct over his lifetime t ∈ {1, . . . , T}. At each time t, the individual is now described

by a vector of characteristics (zt, εt) , where εt ≡ (ε0t, . . . , εKt) is independently and identically

distributed over time with continuous support and distribution function G0 (ε0t)G (ε1t, . . . , εKt) ,

and zt is defined as before. Conditional on discrete choice k ∈ {1, . . . ,K} and continuous choice c,

the transition probability from zt to zt+1 is denoted by fck (zt+1 |ct, zt ). At the beginning of each

period t the individual observes (zt, ε1t, . . . , εKt) , and makes a discrete choice dt. The individuals

then observes ε0t and chooses ct,. Both the discrete and choices are chosen to sequentially maximize

the expected discounted sum of utilities

E

{∑T

t=1

∑K

k=1
βt−1dkt [Uk (ct, zt, ε0t) + εkt]

}
where Uk (c, zt, ε0t)+εkt denotes the current utility an individual with characteristics (zt, εt) receives

from choosing (c, k) . We write cokt ≡ ck (zt, ε0t) for the optimal continuous choice the person would

make conditional on discrete choice k ∈ {1, . . . ,K} after observing ε0t.13

13The two most closely related papers to ours that incorporate both continuous and discrete choices are Altug and

Miller (1998) and Bajari et al (2007). There are important differences between the three approaches, but one similarity

is that we follow Bajari et al (2007) by including an independently distributed disturbance term, or private shock, and

exploiting a monotonicity assumption relating that shock ε0t to the continuous choice. They explicitly treat the case

where there is a single continuous choice variable, but also note the difficulties in extending their approach to models

where there is more than one continuous choice. In Altug and Miller (1998) choices may be discrete or continuous,
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Substituting cokt into current utility Uk (cokt, zt, ε0t) and transition fck (zt+1 |cot , zt ) , then integrat-

ing over ε0 yields the expected payoff of setting dkt = 1 given zt net of εkt

uk (zt) =
∫
Uk [ck (zt, ε0t) , zt, ε0t] dG (ε0t)

along with the state transition

fk (zt+1 |zt ) ≡
∫
fck (zt+1 |ck (zt, ε0t) , zt ) dG0 (ε0t)

for each k ∈ {1, . . . ,K} . In this section we reinterpret uk (zt) and fk (zt+1 |zt ) as reduced forms for

Uk (cokt, zt, ε0t) and fck (zt+1 |cokt, zt ) respectively, derived endogenously from the primitives and the

optimal continuous choice rule. Data on (zt, ct, dt) provide information linking the reduced form to

the structural primitives. By exploiting these connections and adapting the methods we develop

for estimating the reduced form uk (zt) and fk (zt+1 |zt ), we can extend our estimation techniques

to a mixture of discrete and continuous variables and thus estimate the primitives Uk (ct, zt, ε0t) ,

fck (zt+1 |ct, zt ) and G0 (ε0t).

4.1 Two representations of the reduced form

More specifically, we exploit two representations derived below. They rely on the identity that,

given the state and discrete choice dkt = 1, the probability distribution for ε0 induces a distribution

on to c (zt, k, ε0t) defined by

Pr {ct ≤ c |k, zt } =
∫

1 {c (zt, k, ε0t) ≤ c} dG0 (ε0t) ≡ Hk (ct |zt )

Both representations assume monotonicity conditions relating the optimal continuous choice cot to

the value of the unobservable ε0t.

The first representation holds when c (zt, k, ε0t) is strictly monotone (increasing) in ε0t. Under

this assumption the cumulative distribution functions G0 (ε) and Hk (c |z ) are related through the

optimal decision rule ck (zt, ε0t) by the equations

G0 (ε) = Pr [ε0 ≤ ε] = Pr [ck (zt, ε0t) ≤ ck (zt, ε)] = Hk (ck (zt, ε) |zt )

for all state and choice coordinate pairs (z, k) . It now follows that

ε0t = G−1
0 [Hk (cokt |zt )]

and all decisions in period t, whether discrete or continuous, are made simultaneously. However they do not include a

variable corresponding to ε0t, so the policy function for the continuous choice c is a mapping from the discrete choice

k and the state z alone. This facilitates their use of Euler equations to form orthogonality conditions in estimation,

the continuous choice variable is a mapping of (z, k) .
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Hence the reduced form utility and reduced form transition can be expressed as

uk (zt) =
∫
Uk
[
cokt, zt, G

−1
0 [Hk (cokt |zt )]

]
dHk (cokt |zt )

and

fk (zt+1 |zt ) =
∫
fck (zt+1 |cokt, zt ) dHk (cokt |zt )

respectively. Given a parametric form for G0 (ε), the induced dynamic discrete choice model can be

estimated using the approach described in the other sections in this paper.

The second representation of uk (zt) holds when cokt satisfies a first order condition of the form

U1k (cokt, zt, ε0t) +
∑

zt+1

βV (zt+1)
∂fck (zt+1 |cokt, zt )

∂c
= 0

and the marginal utility of consumption U1k (cokt, zt, ε0t) ≡ ∂Uk (cokt, zt, ε0t) /∂c is strictly monotone

in ε0 for all (k, c, z) . The latter assumption implies U1k (cokt, zt, ε0t) has a partial inverse in ε0t,

denoted λ (u, k, c, z) , meaning that for all (ε, k, c, z)

ε0t = λk [U1k (cokt, zt, ε0t) , c
o
kt, zt]

In that case the monotonicity assumption implies

ε0t = −λk
(∑

zt+1

βV (zt+1)
∂fck (zt+1 |cokt, zt )

∂c
, cokt, zt

)
and hence uk (zt) can be expressed as

uk (zt) ≡
∫
Uk

[
cokt, zt,−λk

(∑
zt+1

βV (zt+1)
∂fck (zt+1 |cokt, zt )

∂c
, cokt, zt

)]
dHk (cokt |zt )

Given finite dependence of length ρ, we may express V (zt+1) using its finite dependent representa-

tion, and thus ignore all the utility terms following period t+ρ+1 in V (zt+1) .They are independent

of zt+1 and therefore have no effect on the integrand since

∑
zt+1

∂fck (zt+1 |cokt, zt )
∂c

= 0

Given a parametric form for Uk (c, z, ε0) we can determine λk (u, c, z) up to a parameterization

and estimate the parameters from the induced discrete choice model together with orthogonality

conditions constructed from the first order condition.

The monotonicity condition used in the first representation applies to the policy function for the

continuous variable, so whether it is satisfied or not is partly determined by the definition of the

probability transition which depends on the continuous choice. The monotonicity condition in the
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second representation relies on regularity conditions that support an optimal interior solution, to

be exploited in estimation, but does not impose any additional restrictions on the way continuous

choices affect the transition probability. Another advantage of using the second representation is

that it is not necessary to specify G0 (ε) parametrically in order to estimate the other primitives of

the model.

4.2 Example 5: Plant Production

At the beginning of each period t the owner manager of a manufacturing plant chooses between

operating his plant by setting d2t = 1, or temporarily idling it by setting d1t = 1. For each discrete

choice k ∈ {1, 2} we model the costs of setting dkt = 1 as αk + εkt, where αk is the systematic

component and εkt is a random variable, identically and independently distributed Type 1 extreme

value. Three factors determine the net revenue generated from operating the plant and setting

d2t = 1: the condition of the plant z2t ∈ {1, ..., Z2}, where higher levels of z2 indicate that the

plant is in worse condition; the variable input the manager assigns to determine the scale of the

production function, which is a continuous choice variable denoted by ct ∈ (0,∞); and two demand

shocks. One of the shocks, denoted by ε0t, is distributed N(0, σ2) and is independent across time.

The other, denoted by z1t, evolves stochastically but does not depend upon the choice. We interpret

z1t as a long run trend in demand (for example high or low) and ε0t as indicating changes in demand

elasticity and the attractiveness of different market segments. Given the condition of the plant z2t,

and the state of demand (ε0t, z1t) , net revenue from operating the plant in period t and choosing ct

is a quadratic in the logarithm of ct. The coefficient on the linear term is (ε0t + α3z1t), the coefficient

on the quadratic term is α4z2t,, and α3 > 0 > α4. Increasing inputs ct raises the probability that the

machinery is in bad condition B next period t + 1, according to the formula γ0/ (γ0 + cγ1t ) , where

γ0, γ1 > 0.

In terms of our previous notation, zt ≡ (z1t, z2t) and the systematic component to the utility

from idling the plant is

U1 (ct, zt, ε0t) = u1 (zt) = α1

When the plant runs, utility is given by:

U2 (ct, zt, ε0t) = (ε0t + α3z1t) ln ct + α4z2t (ln ct)
2 + α2
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The first reduced form of current utility from operating this plant in this example is therefore

u2 (zt) =
∫ {(

Φ−1

[
H2 (ct |zt )

σ

]
+ α3z1t

)
ln ct + α4z2t (ln ct)

2

}
dH2 (ct) + α2

where Hc2 (ct |zt ) is the distribution for ct when the plant runs, and Φ (·) is the standard normal

distribution function.

To derive the second representation, it is straightforward to check that an interior solution is

optimal and the conditional value functions are bounded. Consequently the optimal input choice

for operating the plant must satisfy the first order and second order conditions for an optimum, and

in this case the former can be expressed as

ε0t+α3z1t+2α4z2t (ln ct) =

∑
zt+1

[V (z1t+1, z2t)− V (z1t+1, z2t + 1)] f(z1t+1|z1t)

 γ0γ1c
γ1
t (γ0 + cγ1t )−2

(6)

Given the Type I extreme value distributions for the costs of idling or running the plant, we know

that V (·) can be expressed as v1(·) − ln(p1(·)) + γ where γ is Euler’s constant. But, because the

choice to idle is a renewal action for z2, v1(z1t+1, z2t) = v1(z1t+1, z2t + 1). Hence, we can write

equation (6) as:

ε0t+α3z1t+2α4z2t (ln ct) =

∑
zt+1

[ln (p1 (z1t+1, z2t + 1))− ln (p1 (z1t+1, z2t))] f(z1t+1|z1t)

 γ0γ1c
γ1
t (γ0 + cγ1t )−2

(7)

Substituting for ε0t in U2 (ct, zt, ε0t) and integrating over ct implies that the alternative repre-

sentation of current utility conditional on operating the plant is

u2 (zt) = α2+
∫ {(

γ0γ1c
γ1
t (γ0 + cγ1t )−2 ln ct

∑
zt+1

[ln (p1 (z1t+1, z2t + 1))− ln (p1 (z1t+1, z2t))] f(z1t+1|z1t)
)

−α4z2t (ln ct)
2

}
dH2 (ct |zt ) (8)

Totally differentiating the first order condition with respect to ε0t and ct, and appealing to the second

order condition, it immediately follows that the second monotonicity condition is satisfied in this

example, so the consumption policy function is strictly monotone increasing in ε0t, thus establishing

that both representations apply to one of the discrete choices. Finally we note that although the

monotonicity conditions only apply to one discrete choice, this is sufficient for estimation purposes

in this example, as we later demonstrate in our Monte Carlo application.
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5 The Algorithm

This section develops algorithms for estimating dynamic optimization problems and games of in-

complete information where there is unobserved heterogeneity that evolves over time as a stochastic

process. We consider a panel data set of N individuals. We observe T choices for each individual

n ∈ {1, . . . ,N}, along with a sub-vector of their state variables. Observations are independent

across individuals. We partition the state variables znt into those observed by the econometrician,

xnt ∈ {x1, . . . xX}, and those that are not observed, snt ∈ {1, . . . S}. The nth individual’s unobserved

state at time t, snt, may affect both the utility function and the transition functions on the observed

variables and may also evolve over time. The initial probability of being assigned to unobserved

state s is πs. Unobserved states follow a Markov process with πjk dictating the probability of tran-

sitioning from state j to state k. When unobserved heterogeneity is permanent, πjk = 0 for j 6= k,

and we write πjj = πj . When the unobserved states are completely transitory and there is no serial

dependence, the elements of any given column in the transition matrix have the same value, and we

write πjk = πk. We denote by π the (S + 1) × S matrix of initial and transitional probabilities for

the unobserved states. The structural parameters that define the utility outcomes for the problem

are denoted by θ ∈ Θ and the set of CCP’s, denoted by p, are treated as nuisance parameters in the

estimation.

5.1 Data on discrete choices

Let L (dnt |xnt, s; θ, π, p) be the likelihood of observing individual n make choice dnt at time t, condi-

tional on being in state (xnt, s) , given structural parameter θ and CCP’s p. Forming their product

over the T periods we obtain the likelihood of any given path of choices and (dn1 . . . , dnT ) , condi-

tional on the (xn1 . . . , xnT ) sequence and the unobserved state variables (s (1) . . . , s (T )). Integrating

the product over the initial unobserved state with probabilities πj and the subsequent transitions

πjk then yields the likelihood of observing the choices dn conditional on xn given (θ, π, p) :

L (dn |xn, θ, π, p) ≡
∑S

s(1)

∑S

s(2)
...
∑S

s(T )
πs(1)L (dn1 |xn1, s (1) ; θ, π, p)

×
∏T

t=2
πs(t−1),s(t)L (dnt |xnt, s (t) ; θ1, π, p)

Therefore the log likelihood for the sample is:

∑N

n=1
logL (dn |xn, θ, π, p) (9)
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When unobserved heterogeneity is permanent, the log likelihood for the sample reduces to:∑N

n=1
log
(∑S

s=1

∏T

t=1
πsLnst

)
When the mixing distribution has no state dependence, the log likelihood for the sample reduces to:∑N

n=1
log
(∑S

s=1

∏T

t=1
πsLnst

)
=
∑N

n=1

∑T

t=1
log
(∑S

s=1
πsLnst

)
Directly maximizing the log likelihood for such problems can be computationally infeasible. An

alternative to maximizing (9) directly is to iteratively maximize the expected log likelihood function

as follows.14 Given estimates of π(m), the initial probabilities of being in each of the unobserved

states and later transitions, and p(m−1), estimates of the CCP’s obtained from the previous iteration,

the mth iteration maximizes:∑N

n=1

∑S

s=1

∑T

t=1
q
(m)
nst logL

(
dnt

∣∣∣xnt, s; θ, π(m), p(m−1)
)

(10)

with respect to θ to obtain θ(m). Here, q(m)
nst = qst

(
dn, xn, θ

(m−1), π(m−1), p(m−1)
)
, and is formally

defined below as the probability that individual n is in state s at time t given parameter values

(θ, π, p) , and conditional on the all the data about n. The information from the data is then

(dn, xn) ≡ (dn1, xn1, . . . , dnT , xnT ).

To define qst (dn, xn, θ, π, p), let Lst (dn |xn, θ, π, p) denote the joint probability of state s oc-

curring at date t for the nth individual and observing the choice sequence dn, conditional on the

exogenous variables xn, when the parameters take value (θ, π, p) . Abbreviating L (dnt |xnt, s; θ, π, p)

by Lnst, we define Lst (dn |xn, θ, π, p) by:

Lst (dn |xn, θ, π, p)

=
S∑
s(1)

...

S∑
s(t−1)

S∑
s(t+1)

...

S∑
s(T )

 T∏
r=2,r 6=t,r 6=t+1

πs(r−1),s(r)Ln,s(r),r

(πs(1)Ln,s(1),1πs(t−1),sLnstπs,s(t+1)Ln,s(t+1),t+1

)
where the summations of s(1) and so on are over s ∈ {1, . . . , S} . When unobserved heterogeneity is

permanent, Lst (dn |xn, θ, π, p) simplifies to

Lst (dn |xn, θ, π, p) =
(∏T

r=2
Lnsr

)
(πsLns1)

for all t. Summing over all states s ∈ S at any time t returns the likelihood of observing the choices

dn conditional on xn given (θ, π, p) :

L (dn |xn, θ, π, p) =
∑S

s=1
Lst (dn |xn, θ, π, p)

14For applications of the EM algorithm in time series models with regime-switching, see Hamilton (1990).
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Therefore the probability that individual n is in state s at time t given the parameter values (θ, π, p)

conditional on all the data for n is:

qst (dn, xn, θ, π, p) ≡
Lst (dn |xn, θ, π, p)
L (dn |xn, θ, π, p)

(11)

Note that the denominator is the same across all time periods and all states. When the transitions

are independent, the nth individual’s previous and future history is not informative about the current

state, and in this case qst (dn, xn, θ, π, p) reduces to

qst (dn, xn, θ, π, p) =
πsLnst∑S

s′=1 πs′Lns′t
To make the algorithm operational we must explain how to update π, the probabilities for the

initial unobserved states and their transitions, θ, the other structural parameters, and p, the CCP’s.

The updating formula for the transitions is based on the identities:

πjk ≡ Pr {k |j } =
Pr {k, j}
Pr {j}

=
En {E [snkt |dn, xn, snjt−1 ]E [snjt−1 |dn, xn ]}

En {E [snjt |dn, xn ]}
≡
En
[
qnkt|jqnjt

]
En [qnjt]

where the n subscript on an expectations operator indicates that the integration is over the whole

sample population, snkt is an indicator for whether individual n is in state k at time t and qnts|j ≡

E [sntk |dn, xn, sn,t−1,j ] denotes the probability of individual n being type k at time t conditional

on the data and also on being in unobserved state j at time t − 1. This conditional probability is

defined by the expression:

qnkt|j =
πjkLnkt

(∑S
s(t+1) ...

∑S
s(T )

∏T
r=t+1 πs(r−1),s(r)Ln,s(r),r

)
∑S

s′=1 πjs(t)Lns(t)t
(∑S

s(t+1) ...
∑S

s(T )

∏T
r=t+1 πs(r−1),s(r)Ln,s(r),r

)
Averaging qnkt|jqnjt over the sample to approximate the joint probability En

[
qnkt|jqnjt

]
, and aver-

aging qnjt over it to estimate En [qnjt] , we update πjk using:

π
(m+1)
jk =

∑N
n=1

∑T
t=2 q

(m)
nkt|jq

(m)
njt∑N

n=1

∑T
t=2 q

(m)
njt

(12)

Setting t = 1 yields the conditional probability of the nth individual being in unobserved state s

in the first time period. We update the probabilities for the initial states by averaging the conditional

probabilities obtained from the previous iteration over the sample population:

π(m+1)
s =

1
N

∑N

n=1
q
(m)
ns1 (13)

In a Markov stationary environment, the unconditional probabilities reproduce themselves each

period. In that special case we can average over all the periods in the sample in the update formula
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for π to obtain

π(m+1)
s =

1
NT

∑T

t=1

∑N

n=1
q
(m)
nst

The other component to update is the vector of conditional choice probabilities. In contrast to

models where unobserved heterogeneity is absent, initial consistent estimates of p cannot be cheaply

computed prior to structural estimation, but must be iteratively updated along with (θ, π). One

way of updating the CCP’s is to substitute in the likelihood evaluated at the previous iteration. Let

lk (xnt, s; θ, π, p) denote the conditional likelihood of observing choice k ∈ {1, . . . ,K} for the state

(x, s) when the parameters are (θ, π, p) , which implies

L (dnt |xnt, s; θ, π, p) =
∑K

k=1
dntklk (xnt, s; θ, π, p)

One updating rule for p is:

p
(m+1)
kxs = lk

(
x, s; θ(m+1), π(m+1), p(m)

)
(14)

Another way of updating p comes from exploiting the identities

Pr {dnkt |x, s}Pr {s |x} = Pr {dnkt, s |x} ≡ E [dnkt(snt = s) |x ] = E [dnktE {snt = s |dn, xn } |x ]

where the last equality follows from the law of iterated expectations and the fact that dn includes

dnkt as a component. From its definition

qnst = E [snt = s |dn, xn ]

Again applying the law of iterated expectations we obtain

Pr {s |x} = E {E [snt = s |dn, xn ] |x}

Dividing the first identity through by Pr {s |x} , and substituting E [qnst |x ] for E [snt = s |dn, xn ]

throughout it now follows that

pkxs ≡ Pr {dnkt |x, s} =
E [dnktqnst |x ]
E [qnst |x ]

In words, of the fraction of the total population with characteristic x in state s, the portion choosing

the kth action is pkxs. This formulation suggests a second way of updating p, using the weighted

empirical likelihood:

p
(m+1)
kxs =

∑T
t=1

∑N
n=1 dnktq

(m+1)
nst I(x = xnt)∑T

t=1

∑N
n=1 q

(m+1)
nst I(x = xnt)

(15)

where I(x = xnt) is the indicator function for x.
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Using (14) to update the CCP’s rather than (15) imposes more restrictions from the underlying

theory. To prove this claim, first note that the framework is not identified if the dimension of p,

denoted dim (p) , is strictly less than dim (θ) + dim (π) . Typically parameters are used to estimate

the process governing unobserved heterogeneity, ensuring dim (p) > dim (θ). (Indeed this strict

inequality is met in all practical applications of CCP estimation.) Consequently the number of

equations used to determine p from (14), obtained from the first order conditions by maximizing

(10), is strictly less than the number used to determine p from (10). Hence the converged values of

(14) satisfy overidentifying restrictions that result in greater precision than the converged values of

(15), leading to lower standard errors in the structural parameters (θ, π) . However, there may be

cases when updating with the data is computationally much simpler than updating from the model.

Further, the modified algorithm we propose in the next subsection, for estimating models where not

only choices but also other outcomes are observed that are related to the unobserved state variables,

builds on the updating method given in (15).

We have now defined all the pieces necessary to implement the algorithm. It is triggered by

setting values for the structural parameters, θ(1), the initial distribution of the unobserved states plus

their probability transitions, π(1), and the conditional choice probabilities p(1). Natural candidates for(
θ(1), π(1), p(1)

)
come from estimating a model without any unobserved heterogeneity and perturbing

the estimates obtained. Each iteration in the algorithm has four steps. Given
(
θ(m), π(m), p(m)

)
the

(m+ 1)th proceeds as follows:

Step 1 Compute q(m+1)
nst and q(m+1)

nst|j for each (n, s, t, j) using (11) with parameters
(
θ(m), π(m), p(m)

)
.

Step 2 Compute π(m+1) from (13) and (12) using q(m+1)
nst and q

(m+1)
nst|j .

Step 3 Obtain θ(m+1) by maximizing (10) with respect to θ evaluated at π(m+1), p(m) and q
(m+1)
nst .

Step 4 Update p(m+1), using either (14) or (15).

Let (θ∗, π∗, p∗) denote the converged values of the structural parameters and CCP estimators

from the EM algorithm. Following the arguments in Arcidiacono and Jones (2003), the EM solution

satisfies the first order conditions derived from maximizing (9) with respect to θ given p∗.

5.2 Auxiliary data on continuous choices and outcomes

When there is auxiliary data that depend upon the unobserved heterogeneity to supplement the

discrete choice data, the estimator we have just described can be modified and applied to a broader
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class of models than those satisfying finite dependence. This situation arises when the conditional

transition probability for the observed state variables depends on the current values of the unob-

served state variables, when there is data on a payoff of a choice that depends on the unobserved

heterogeneity, when data exists on some other outcome that is determined by the unobserved state

variables, or when a first order condition fully characterizes a continuous choice that is affected by

the unobserved heterogeneity.

The modified algorithm is implemented by updating the conditional choice probabilities using

equation (15), an empirical estimator of the fraction of people in any given state making a particular

choice. When information is available on both the individual choices and an outcome, this method

for updating the conditional choice probabilities implies that we can substitute the empirical esti-

mator into the likelihood for observing a sequence of outcomes without estimating all the structural

parameters that affect the decision itself.

Denote by cnt the outcome observed for individual n at time t. For example cnt might be

a continuous choice satisfying a first order condition. Conditional on xnt, the observed exoge-

nous variables and s, the unobserved state, we express the likelihood of choosing cnt by L1nst ≡

L1 (cnt |dnt, xnt, s; θ1 ) with parameter vector θ1. Appealing to the definition of conditional proba-

bility, the joint likelihood for (cnt, dnt, xnt), can be decomposed multiplicatively into the product

L1nstL2nst, where L2nst ≡ L2 (dnt |xnt, s; θ2, π, p) is now the likelihood associated with the discrete

choice, and is parametrized by θ2. We permit, but do not require, θ1 and θ2 to overlap.

The modified algorithm proceeds in two stages, first adapting the algorithm described above

to estimate (θ1, π, p) , and in a second stage estimating θ2 (or θ2 − θ2 ∩ θ1) with standard CCP

estimation techniques developed for models where there is no time dependent heterogeneity. The

first stage is an EM algorithm for iteratively estimating the structural parameters (θ1, π, p) that

characterize a behavioral model for explaining (cnt, dnt, xnt). The full structure of the model is

imposed on the continuous choices. However, the discrete choices are exogenously generated by

a multinomial distribution that depends on the partially observed state variables but is otherwise

unrestricted, thus breaking the parametric links provided by the discrete choice optimization. At

the mth iteration, θ1 and p are chosen to maximize the expected log likelihood

∑N

n=1

∑S

s=1

∑T

t=1
q
(m)
nst

[∑K

k=1
dnktI(x = xnt)log(pkxs) + logL1 (cnt |dnkt, xnt, s; θ1 )

]
(16)

where as before, q(m)
nst is the probability that each individual n is of type s at each time period t condi-

tional on the sample (cn, dn, xn) , defined using (11) evaluated at parameters
(
θ
(m−1)
1 , π(m−1), p(m−1)

)
.

24



Differentiating (16) with respect to pkxs yields the following set of equations from the first order

conditions for each (j, k) pair and every s∑N
n=1 q

(m)
nst dnktI(x = xnt)

p
(m+1)
kxs

=
∑N

n=1 q
(m)
nst dnjtI(x = xnt)

p
(m+1)
jxs

(17)

Multiplying both sides of (17) through by p(m+1)
kxs , and then summing both sides over j ∈ {1, . . . ,K} ,

we obtain (15). The resulting p(m+1), derived from a model where there are no restrictions on

discrete choice behavior, is in the same spirit as the second way of updating the CCP’s in the

original algorithm.

Formally, the (m+ 1)th iteration proceeds as follows:

Step 1 After substituting L1nst for Lnst in (11), compute q(m+1)
nst and q

(m+1)
nst|j for each (n, s, t, j) ,

given parameters
(
θ
(m)
1 , π(m), p(m)

)
.

Step 2 Compute π(m+1) from (13) and (12) using q(m+1)
nst and q

(m+1)
nst|j .

Step 3 Maximize (16) with respect to θ1 and p evaluated at q(m+1)
nst , to obtain θ

(m+1)
1 and p(m+1),

where the formula for p(m+1) comes from (15).

This estimation procedure is an EM algorithm for an optimally chosen continuous choice, or an

exogenous transition outcome, when the parametric restrictions implied by sequentially optimizing

over the discrete choices are not imposed in estimation. Appealing to standard properties of the

EM algorithm, the algorithm is (globally) monotone increasing.

Having achieved convergence in the first stage, there are several methods for estimating θ2, the

parameters determining the (remaining) preferences over choices by substituting our stage estima-

tors for (π, p), denoted (π̂, p̂) , into the second stage econometric criterion function. If the model

satisfies finite dependence, then the appropriate representation can be used to express the condi-

tional valuation functions in conjunction with standard optimization methods. Alternatively, the

simulation estimators of Hotz et al (1994) or Bajari et al (2007) can be applied directly, regardless

of whether the model satisfies the limited dependence property or not. The second-stage estimation

problem is the same as when all state variables are observed. That is, from the N × T data set,

create a data set that is N × T × S where this second data set has, for each observation in each

time period, each possible value of the unobserved state. The second-stage estimation then weights

each (n, t, s) observation using the first stage estimated probability weights q̂nst.
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5.3 Example 6: Simulation Estimation

For example, to implement the algorithm of Hotz et al (1994), we appeal directly to the repre-

sentation theorem.15 Namely, for each unobserved state we can stack the (K − 1) mappings from

the conditional choice probabilities into the differences in conditional valuation functions for each

individual n in each period t:

ψ2
1 [pn1t]− (vn21t − vn11t)

...

ψK1 [pn1t]− (vnK1t − vn11t)
...

ψ2
1 [pnSt]− (vn2St − vn1St)

...

ψK1 [pnSt]− (vnKSt − vn1St)


=



0
...

0
...

0
...

0


(18)

where the second to last subscript on both the conditional choice and the conditional valuation func-

tions is the unobserved state. Future paths are simulated by drawing future choices and transition

paths of the observed and unobserved state variables for each initial choice and each initial observed

and unobserved state. With the future paths in hand, it is possible to form future utility paths

given the sequence of choices and these future utility paths can be substituted in for the conditional

valuation functions. Estimation can then proceed by minimizing, for example, the weighted sum of

each of the squared values of the left hand side of (18) with respect to θ2.

An advantage of using this two stage procedure is that it enlarges the class of models which can

be estimated. Although the first estimation method described is computationally feasible for many

problems with finite time dependence, not all dynamic discrete choice models have that property.

Rather than assuming the model exhibits finite time dependence, one could estimate a stationary

Markov model lacking this property, by estimating the distribution of unobserved heterogeneity

in the first stage. These estimates could then be combined with non-likelihood based estimation

methods in the second stage. Because the second method estimates the distribution of unobserved

heterogeneity without fully specifying the dynamic optimization problem, another advantage of the

second method is that the likelihood function for the discrete choices is not fully parametrically

specified. Consequently the structural parameters estimated in the first stage are robust to different

specifications of the within period probability distribution for the unobservable variables and the

additively separable parts of the utility that are not directly functions of the outcomes and continuous
15Finger (2007) applies our two-stage estimator to the Bajari, Benkard, and Levin (2007) algorithm.
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choices. A third advantage is computational; sequential estimation is usually easier to implement

than simultaneous estimation, and the first stage algorithm is monotone increasing. Against these

three advantages is the loss in asymptotic efficiency.

6 Large Sample Properties

The defining equations for this CCP estimator come from three sources. First are orthogonality

conditions for θ, the parameters defining utility and the probability transition matrix for the observed

states, which are analogous to the score for a discrete choice random utility model with nuisance

parameters used in defining the payoffs. Second are the orthogonality conditions for the initial

distribution of the unobserved heterogeneity and its transition probability matrix π, again computed

from the likelihood as in a random effects model. Third are the equations which define the nuisance

parameters as estimators of the conditional choice probabilities p. This section, together with

accompanying material in the appendix, lays out the equations defining our estimator and discusses

its asymptotic properties.

Let (ϕ∗, p∗) solve our algorithm in the discrete choice model, where ϕ ≡ (θ, π) is the vector of

structural parameters. For any fixed set of nuisance parameters p, the solution to the EM algorithm

satisfies the first order conditions of the original problem (9). Consequently setting p = p∗ in the

original problem implies the first order conditions for the original problem are satisfied. It now

follows that the large sample properties of our estimator can be derived by analyzing the score for

(9) augmented by a set of equations that solve the conditional choice probability nuisance parameter

vector p, either the likelihoods or the weighted empirical likelihoods, as discussed in the previous

section.

In Section 5 we defined the conditional likelihood of (ϕ, p) upon observing dn given xn, which we

now denote as L (dn |xn;ϕ, p) ≡ L (dn |xn; θ, π, p). The paragraph above implies that (ϕ∗, p∗) solves

1
N
∑N

n=1

∂ log [L (dn |xn;ϕ∗, p∗ )]
∂ϕ

= 0

When the choice specific likelihood is used to update the nuisance parameters, the definition of

the algorithm implies that upon convergence, p∗jxs = Lj (x, s;ϕ∗, p∗) for each (j, x, s) . Stacking

Lj (x, s;ϕ∗, p∗) for each choice j and each value (x, s) of state variables to form L (ϕ, p) , a J×X×S

vector function of the parameters (ϕ, p) , our estimator satisfies the JXS additional parametric

restrictions L (ϕ∗, p∗) = p∗. When the weighted empirical likelihoods are used instead, this condition
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is replaced by the JSX equalities

p∗jxs
∑T

t=1

∑N

n=1
I(x = xnt)qst (dn, xn, ϕ∗, p∗) =

∑T

t=1

∑N

n=1
dnjtI(x = xnt)qst (dn, xn, ϕ∗, p∗)

Forming the SX dimensional vector qt (dn, ϕ, p) from stacking the terms I(x = xnt)qst (dn, xn, ϕ∗, p∗)

for each state (x, s) and the JSX dimensional vector q(n,t)st (dn, ϕ, p) from I(x = xnt)qst (dn, xn, ϕ, p),

we rewrite this alternative set of restrictions in vector form as[
1
NT

∑T

t=1

∑N

n=1
qt (dn, ϕ∗, p∗)

]
Cp∗ =

1
NT

∑T

t=1

∑N

n=1
q
(n,t)
st (dn, ϕ∗, p∗)

where C is the SX × JSX block diagonal matrix

C ≡


1 1 1 . . . 0 0 0

. . . . . . . . .

0 0 0 . . . 1 1 1


The main result of this section is that if the model is identified under standard regularity con-

ditions, then it can be estimated with a CCP estimator.16 For the next proposition implies that,

unless the model is unidentified, the algorithms described in Section 5 do not asymptotically have

multiple limit points. If the algorithm converges to different limits from different starting values for

a given sample size, and this persists as the sample size grows, then a consistent estimator does not

exist.

Proposition 2 Suppose the data {dn, xn} are generated by ϕ0, exhibiting conditional choice prob-

abilities p0. If ϕ1 satisfies the vector of moment conditions

E

[
∂ log [L (dn |xn;ϕ1, p1 )]

∂ϕ

]
= 0

where the expectation is taken over (dn, xn) in the sample population and L (ϕ1, p1) = p1, then under

standard regularity conditions ϕ0 and ϕ1 are observationally equivalent.

Turning to the large sample properties of the CCP estimator, if ϕ0 ∈ Ψ is identified, then ϕ∗

is consistent, converges at rate
√
N , and is asymptotically normal, as can be readily established by

appealing to well known results in the literature. The asymptotic covariance matrix is laid out in

the appendix.
16Kasahara and Shimotsu (2006) have recently proved that when the unobserved heterogeneity is a finite mixture

over a set of time-invariant effects in the utility function (but does not affect state transitions), knowing the time-

invariant effects does not help with identification provided the number of observations on each person is of reasonably

large.
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The extension to continuous choice and other outcomes is straightforward. There are two extra

features to account for, the conditional distribution of the continuous choices, and the adjustment

of the reduced form utility uj (z) ≡ uj (z;ϕ) formed by replacing the expectations operator with

its sample average. When there is a first order condition defining the optimality conditions for the

continuous choices, we have

ε0 = λ

(
∂Uj (c, z, ε0)

∂c
, j, c, s

)
from which the likelihood for c can be formed directly conditional on the action and the state

(since by assumption c is monotone in ε0). Similarly the parameters entering πj (s′ |c, s;ϕ) can be

estimated directly from the state transitions after conditioning on the choices and current state. For

expositional purposes we assume here both conditional likelihoods are appended to the likelihood

defined for the discrete part of the problem to increase the efficiency of the estimator. However in

some applications it might be easier to estimate either or both conditional likelihoods separately, in

which case the asymptotic corrections would be made in an analogous way to the corrections for p∗.

The likelihood must also be modified because we form approximate sample averages of Uj (z, c, ε0;ϕ)

using one of the two representations described in Section 4, rather than using its population expec-

tation over ε0, namely uj (z;ϕ) , in estimation. Here we analyze the first representation of uj (z;ϕ)

and assume that G0 (ε0) and πj (z′ |c, s) are parametrically specified by G0 (ε0;ϕ) and πj (z′ |c, z;ϕ).

(Analyzing the second representation proceeds in a similar way.) In this case we approximate the

mapping uj (z;ϕ) with

u
(N )
j (z;ϕ) =

1
N
∑N

n=1
Uj
(
cosj , z,G

−1
0

[
πj
(
cosj |z ;ϕ

)]
;ϕ
)

To account for the effects of this substitution within the likelihood, we approximate L (dn |xn;ϕ, p)

with L (dn |xn;u, ϕ, p) , where and L (ϕ, p) with L (u, ϕ, p) , where approximating functions such

as u(N )
j (z;ϕ) , are substituted for uj (z;ϕ) in the likelihood. The estimator is defined as the two

equation vectors

L
[
u(N ) (z;ϕ∗) , ϕ∗, p∗

]
= p∗

and

0 =
1
N
∑N

n=1

∂ log
[
L
(
dn
∣∣xn;u(N ) (z;ϕ∗) , ϕ∗, p∗

)]
∂ϕ

The asymptotic covariance matrix, derived in the appendix, accounts for replacing uj (z;ϕ) with

u
(N )
j (z;ϕ) in estimation.
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7 Small Sample Performance

To evaluate the finite sample performance of our estimators we conducted three Monte Carlo studies

with the purpose of illustrating the versatility of the estimators. The Monte Carlos illustrate the

performance of the algorithms along a number of dimensions. We compare full information maximum

likelihood to CCP estimates with the different ways of updating the CCP’s. We show how well the

algorithms perform in a dynamic game with incomplete information. We include cases where the

probability of the renewal action is small, and test the performance of the algorithm that estimates

the parameters governing the unobserved heterogeneity in a first stage. Finally, we examine the

performance of the algorithms when individuals make both continuous and discrete choices.

7.1 Monte Carlo 1: Experimenting with drugs

The first Monte Carlo focuses on a simple learning framework where individual preferences are

shaped by experience in ways that the econometrician does not observe. In our model youths have

repeated opportunities to experiment with drugs. Experimentation leads individuals to discover

their preferences for drugs, though there is a withdrawal cost to stop this acquired habit. We

compare our estimates from using both methods for updating the probability distribution for the

unobservables with the ML estimator, which is relatively cheap to compute because of the simple

structure of the model.

In each period t a teenager decides among three alternatives, which following our notational

convention are defined by djt ∈ {0, 1} for j ∈ {0, 1, 2} and t ∈ {1, . . . , T} where d0t + d1t + d2t = 1.

He or she can drop out of school (d0t = 1), stay in school and do drugs (d1t = 1), or stay in

school and abstain from drugs (d2t = 1). There are three types of teenagers, who we characterize

by the two indicator variables At ∈ {0, 1} and Bt ∈ {0, 1} . First, those who have never taken

drugs, and therefore do not know their preference at time t, denoted by setting At = 1. Next,

those who have found through experimentation that they have a high preference for drugs, denoted

by setting (At,Bt) = (0, 1); and finally those who have found through experimentation that they

have a low preference for drugs, that is (At,Bt) = (0, 0). Trying drugs for one period fully reveals

an individual’s type. Amongst those who have not tried drugs, the probability of having a high

preference is π. Breaking a drug habit is modeled with a one period withdrawal cost incurred when

(d1t−1, d2t) = (1, 1).

The state variables in this model are (At,Bt, d1t−1) . Setting as initial values (A0,B0) = (1, 0) ,
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our discussion implies the law of motion for (At,Bt) is At+1

Bt+1

 =

 At(1− d1t)

(1−At +Atd1t)ζ


where ζ is an independently distributed Bernoulli random variable with probability π. Hence, π is

the population probability of being in the high state.

We denote the baseline utility of attending school by α0, the baseline utility of setting d1t = 1 and

using drugs by α1, the additional utility from having the high preference for drugs (Bt = 1) and using

them by α2, and we let α3 denote a one period withdrawal cost incurred when (d1t−1, d2t) = (1, 1).

Dropping out of school by setting d0t = 1 is a terminal state, with utility normalized to the choice-

specific disturbance ε0t. Note that if the individual uses drugs then no withdrawal cost is paid,

implying d1t−1 is irrelevant. Similarly if the individual does not use drugs, the only relevant state

variable for current utility is whether he or she used them last period, not the level of addiction.

We assume that (ε0t, ε1t, ε2t) are distributed generalized extreme value, with ε0t independent of the

nest (ε1t, ε2t) , thus reflecting the idea that options within school are more related to each other than

either of them is to dropping out. The nesting parameter is denoted by δ.17

Given this payoff structure, the flow utilities from the two schooling choices net of the choice-

specific disturbance can be expressed as:

u1 (At,Bt, ζt) = α0 + α1 + α2ζ

u2 (d1t−1) = α0 + α3d1t−1

From the individual’s perspective, the expected flow utility from trying drugs for the first time at t

is α0 +α1 +α2π+ ε1t. Since dropping out leads to a terminal state, it follows from our discussion in

Section 3 that the conditional valuation functions vj (At,Bt, d1t−1) for j ∈ {1, 2} may be expressed

as

v1 (At,Bt, d1t−1) = α0 + α1 + α2 (Bt +Atπ)− (1−At)β ln p0 (0,Bt, 1)

−Atβ [π ln p0 (0, 1, 1)− (1− π) ln p0 (0, 0, 1)] + βγ

v2 (At,Bt, d1t−1) = α0 + α3d1t−1 − β ln [p0 (At,Bt, 0)] + βγ

Note that the expressions above would be exactly the same if the error structure followed a multino-

mial logit rather than a nested logit. However, a model generated under a multinomial logit would
17These assumptions correspond to those made in our companion paper, Arcidiacono, Kinsler and Miller (2008),

which applies a CCP/EM estimator to the NLSY data on youth to investigate drug abuse and its consequences within

a generalization of the prototype model presented here.
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yield different values for the true conditional choice probabilities than those of the nested logit.

For each simulation we create 5000 simulated individuals with at most 5 periods of data. Some

individuals have less than five observations because no further decisions occur once the simulated

individual leaves school. We assume that the data would show drug usage at school d1t, so that

At can be simply constructed, but that Bt would be unobserved, thus violating the conditional

independence assumption. We estimated the model using three different methods, namely maxi-

mum likelihood, a CCP estimator that updates with the likelihood functions, and a CCP estimator

updated by a weighted empirical likelihood. Each simulation was performed 100 times.

Table 1 shows that one of the CCP estimators performs nearly as well as ML, while using the

other entails a noticeable efficiency loss. Every estimated coefficient is unbiased, each lying within

one standard deviation of its true value. This attractive feature is replicated in all three of our

experimental designs. In this design updating the CCP’s with the likelihood yields standard errors

on each coefficients that are within 10 percent of the standard errors obtained using ML. Thus the

efficiency loss in data sets of moderate sizes appears small. Updating the CPP’s with the weighted

empirical likelihoods generated less precise estimates. Depending on the coefficient, the increase

above the ML standard deviation ranges from negligible, for the discount factor β, to a magnitude

of almost three, for the withdrawal cost α3. This efficiency loss appears to be driven by only

using data on discrete choices to estimate the unobserved heterogeneity parameters. As we show

in the next Monte Carlo, having additional data on a continuous outcome that is also affected by

the unobserved heterogeneity leads to little difference between techniques that use the empirical

likelihood to update the CCP’s and those that use the model.

7.2 Monte Carlo 2: Entry and exit in oligopoly

Next we analyze a parameterization of the entry/exit game described in Section 4.3. This Monte

Carlo has four distinctive features to focus on. First, unobserved heterogeneity affects both the

dynamic discrete choice decisions and another outcome. Since this other outcome is also affected by

the dynamic discrete choice, we must account for dynamic selection issues in estimation. Second, in

contrast to the first experimental design, the unobserved heterogeneity is modeled as a stationary

Markov process, an appealing assumption for an unobserved demand process. Third, we evaluate

the estimator when the unobserved heterogeneity and the parameters in the outcome equation are

estimated in a first stage, and only the parameters of the dynamic discrete choice decisions are

estimated in the second stage. Finally, we exploit the finite dependence property of the entry/exit
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game, and evaluate the performance of our estimator when the renewal action is a low probability

event.

In this model the state of demand for the market, st ∈ {0, 1}, is unobserved by econometricians

but observed by firms when they make their entry and exit decisions. Demand is in the low (high)

state at time t when st = 0 (st = 1). The probability of a market being in the low state at t+1 given

it was in the low state at time t is given by πLL, with the corresponding probability of a persisting

in the high state given by πHH . Current profits for staying in or entering a market net of the profit

shock are given by u (Et,Mt, st), which is linear in the state variables:

u (Et,Mt, st) = α1(1− st) + α2st + α3(1−Mt) + α4Et + εt (19)

As in section 3.2, Et is an indicator for entry (versus incumbency), and Mt is a monopoly (versus

duopoly) indicator. Substituting (19) into the conditional valuation function for staying in the

market given in equation (4) yields:18

v1(Et, Rt, st) = EtRt

{
α1(1− st) + α2st − β

∑1

st+1=0
ln[p0(0, 1, st+1)]π(st+1|st)

}
+ (1− EtRt)

∑1

k=0
pk(Et, Rt, st)

{
α1(1− st) + α2st + α3(1− k) + α4Et

−β
∑1

st+1=0
ln[p0(0, 1− k, st+1)]π(st+1|st)

}
+ βγ

where, as in Section 3.2, Rt = 1 indicates that there is no incumbent rival. The Type I extreme

value profit shocks imply that the probability of entering or staying in the market is given by:

p(Et, Rt, st) =
exp (v1(Et, Rt, st))

1 + exp (v1(Et, Rt, st))
(20)

We also assume that the researcher has data on some measure of demand for each market in each

time period. Demand in market n at time t is given ynt, with the number of firms in the market

given Int. We assume ynt follows:19

ynt = γ1(1− snt) + γ2snt + γ3(Int = 1) + γ4(Int = 2) + ζnt (21)

where ζnt is measurement error which we assume is normal and independently distributed.20

18Note that the zt’s and f(·)’s have been replaced by st’s and π(·)’s to indicate that the state variable is unobserved

to the econometrician.
19We assume that the measure of demand is observed even when there are no firms in the market. The Monte

Carlos were not sensitive to this assumption, though in this case one less parameter would be estimated.
20Alternatively, it is a shock to demand that was unobserved by the firms until after their entry/exit decisions had

been made.
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Generating the data for the Monte Carlos proceeds in two steps. After setting the structural

parameters, we choose an initial set of conditional choice probabilities, and iterated on (20) until

a fixed point is reached. The inversion theorem guarantees that every fixed point corresponds to a

Markov perfect equilibrium.21 Next, we draw paths, both for entry and exit as well as for the y’s

and s’s, for particular markets given the probabilities found in the first step as well as the α’s and

the γ’s. Each data set had observations on 3000 markets, simulated over 5 periods.22 We conducted

100 simulations.

The estimates from the Monte Carlos are presented in Table 2. The first set of columns corre-

sponds to our base CCP algorithm described in section 5 where the updating of the CCP’s comes

from the model. The second set involves estimating the parameters governing the unobserved vari-

ables, the conditional probabilities of being in each of the unobserved states, and the parameters

of the demand equation in a first stage. The likelihood contributions of the entry/exit choices are

calculated from the data in this first stage as opposed to solving out the dynamic discrete choice

problem. We then use the conditional probabilities of being in a particular state as weights in a

second stage maximization of the dynamic discrete choice problem. The exit probabilities used to

form the future value terms are then calculated from the data. The data generating process for these

first two sets of columns yields probabilities of exiting a market between 4% and 10% for monopolies

and between 13% and 22% for duopolies.

The small sample distribution of the base CCP estimator and the CCP estimator where unob-

served heterogeneity is estimated in a first stage yield estimates hardly differ. Both sets of structural

estimators are unbiased and the standard deviations are low. These results suggest that the ef-

ficiency gains from using the base method are not overwhelming when compared to the two stage

method.

Of particular interest are the coefficients on monopoly and duopoly in the demand equation. If

the unobserved heterogeneity is ignored, and the demand outcome equation is estimated by OLS, the

coefficients are -0.18 and -0.41 respectively, significantly biased upward relative to the true values of -

0.3 and -0.7. Firm entry has a much greater effect than an OLS estimator would predict. In contrast,

CCP techniques that control dynamic selection capture the competitive effects quite precisely. This

finding demonstrates the value of the CCP estimator in controlling for dynamic selection, even in

situations where estimating product demand is the main empirical objective, as opposed to other

goals such as recovering primitives that define the fixed costs of firms which partially determine
21An alternative approach would be to use the algorithm developed by Pakes and McGuire (1994).
22This is roughly the number of U.S. counties.
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their entry decisions.

The final set of columns again uses the baseline algorithm with the CCP’s updated using the

model. Here, however, we significantly lower the probability of exiting by increasing the demand

in the low state. We adjusted the data generating process so that the probability of exiting fell

to between 1% and 1.6% for monopolists and 2.3% and 5% for duopolists, thereby reducing the

probability of the terminating action. As one might anticipate, most of the standard errors increase

with the standard error almost doubling for the entry cost coefficient. Overall, however, the estimates

are precise and centered around the true values.

We also estimated the model without using any of the data on demand, but in this case our

estimator performed poorly when the unobserved demand state was modeled as a Markov process.

However when we simplified the model to eliminate demand transitions, by setting pHH = pLL = 1,

and treated unobserved demand as a time-invariant effect, the resulting estimates were centered

around the true parameter values with tight standard deviations.23 This last set of results suggests

that unless some (error ridden) data on the unobserved process is available, estimating the unob-

served process from data on discrete choices alone could flounder. Hence, the method performs well

either when the unobserved heterogeneity transitions over time and data is available on another

outcome measure or when the unobserved heterogeneity is permanent.

7.3 Monte Carlo 3: Scheduling

Our last study is based on the scheduling problem we described in Section 4.3, where there are both

continuous and discrete choices. In this design we also investigate the role of observed heterogeneity

in the estimation of unobserved processes.24 We treat the state of demand, z1t as unobserved and

we therefore label z1t as st. Three parameters govern the transitions in the state of demand between

L and H, where πLL is the probability of persisting in state L, πHH is the probability of persisting

in state H, and πL is the initial probability of beginning in state L. The state of the plant, z2t is

treated as observed and we therefore label z2t as xt. We allow the state of the plant to take on

either two or four values to test the sensitivity of the estimates in increases in the dimensionality of

the observed states.
23These results are available from the authors upon request.
24Kashahara and Shimotsu (2007) analyze how the identification of dynamic discrete choice with unobserved het-

erogeneity is partly determined the number of states observed by the econometrician.
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We can then substitute in for z1t and z2t in equation (6) with st and xt which yields:

ε0t+α3st+2α4xt (ln ct) =

∑
st+1

[ln (p1 (st+1, xt + 1))− ln (p1 (st+1, xt))] f(s1t+1|s1t)

 γ0γ1c
γ1
t (γ0 + cγ1t )−2

(22)

Appealing to the monotonicity between ε0t and cot , the next lemma gives the probability distribution

of cot conditional on the state variables and operating the plant.

Lemma 5 Define the mapping Υ (st, xt, ct) as

Υ (st, xt, ct) ≡ α3st + 2α4xt (ln ct)

−

∑
st+1

[ln (p1 (st+1, xt + 1))− ln (p1 (st+1, xt))] f(s1t+1|s1t)

 γ0γ1c
γ1
t (γ0 + cγ1t )−2

Recalling σε0t is distributed as a standard normal random variable with distribution function Φ (·),

then

Pr {cot ≤ c |st, xt } = Φ [Υ (st, xt, c) /σ]

If the state vector was observed, and the conditional choice probabilities were known as a mapping

from the states, then an ML estimator could be obtained from data on (st, xt, ct), by maximizing

N∑
n=1

T∑
t=1

{
log
[
∂Υ (snt, xnt, ct)

∂c

]
+ log φ [Υ (snt, xnt, ct) /σ]− log σ

}
with respect to (γ0, γ1, σ, α3, α4) where φ(·) is the probability density function for a standard normal

variable. The demand state transitions (πLL, πHH , πL, ) could be separately estimated from data on

st alone and, in a second stage, a CCP estimator could be used to recover the fixed costs α2 − α1.

However, with st unobserved, we can use the methods developed in this paper to estimate the model

and investigate its finite sample performance.

We solve the model for 3000 plants each running for 5 periods, and perform 100 Monte Carlo

simulations. Estimation follows the first method where the conditional choice probabilities are

updated using the model itself. The maximization part of the EM algorithm proceeds in three

stages. Having solved and simulated the model, we then estimate the parameters governing the

continuous choice decision. Next, the CCP’s are updated. Finally, values for the expected value

of utility from the continuous choice and also the future utility term, estimated from the first two

stages, are substituted into a logit model to estimate the one remaining parameter, the fixed cost

of operating the plant.
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The true parameters, the average value of the estimates, and the standard deviation of these

estimates are given in Table 3. The first set of columns gives the case where the state of the

plant, x, takes on only two values, while the second set of columns allows x to take on one of

four values. The estimator performs well under both designs; the means of the estimates are well

within three significant digits and one standard deviation of the true parameter values. Nevertheless

the usefulness of having observed variation in covariates is evident. The parameters governing

unobserved heterogeneity are more precisely estimated when x takes on four values than when x

takes on only two values both difference between the means and the true values, as well as their

standard deviations, fall.

8 Conclusion

Estimation of dynamic discrete choice models is computationally costly, particularly when imple-

menting controls for unobserved heterogeneity. CCP estimators provide a computationally cheap

way of estimating dynamic discrete choice problems. In this paper we extend the class of models that

are easily adapted to the CCP framework by both exploiting the finite dependence property present

in many dynamic discrete choice problems and showing how to incorporate unobserved heterogene-

ity into CCP estimation. Unobserved states are accounted for via finite mixture distributions. The

computational simplicity of the estimator allows the unobserved state variables to follow a Markov

chain and allows for the estimation of mixed discrete and continuous choice processes. Our baseline

algorithm builds upon the insights of the EM algorithm: it iterates between updating the condi-

tional probabilities of being a particular type, updating the CCP’s for any given state (observed and

unobserved), forming the expected future conditional valuation functions as mappings of the CCP’s

(using the finite dependence representation), and maximizing a likelihood function where the future

values terms are in large a part a function of the CCP’s.

The baseline method forms the likelihood to obtain estimates of the CCP’s, but our algorithm

can be adapted to outcomes besides the discrete choices themselves, including but not limited to first

order conditions for continuous choices. For these cases, we show how to estimate the parameters

governing the unobserved heterogeneity in a first stage. Rather than the using likelihood itself, we

update the CCP’s using the empirical distribution of discrete choices weighted by the estimated

probabilities of being in particular unobserved states conditional on the whole sample. As a stand

alone, this is a flexible estimator of outcomes that are affected by discrete choices where we need

to specifically account for dynamic selection. The estimator does so by neither taking a strong
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stand on the idiosyncratic effects that help determine the discrete choices, nor making assumptions

about the parametric specification of discrete choice specific costs and benefits. This approach also

serves as a first stage estimator for blending unobserved heterogeneity into non-likelihood based

approaches such as Hotz et al. (1994) and Bajari, Benkard, and Levin (2007) in a second stage.25

The conditional probabilities of being in particular unobserved states are estimated in the first stage

and are then used as weights when estimating the parameters of the second stage.

We illustrated the small sample properties of our estimator using a set of Monte Carlo experi-

ments designed to highlight the wide variety of problems that can be estimated with the algorithm.

The first Monte Carlo illustrated both ways of updating the CCP’s, using either the likelihoods

themselves or the conditional probabilities of being in each of the unobserved states as weights, and

compared the estimates to those produced by full information maximum likelihood. The second

was a dynamic entry/exit example where the value of being in a market was in part affected by

unobserved heterogeneity in the demand levels for particular markets. The unobserved states were

allowed to transition over time and the example explicitly incorporated dynamic selection. We es-

timated the model both by updating the CCP’s with the model and by estimating the unobserved

heterogeneity in a first stage. Our final Monte Carlo illustrated the performance of our methods in

mixed discrete/continuous settings in the presence of unobserved heterogeneity. For all three sets

of Monte Carlos, the estimators performed quite well both in terms of the precision of the estimates

as well as the speed at which the estimates are obtained.

9 Appendix

9.1 Proof of Lemma 1

Abbreviating, let vkt ≡ vk (zt) , H0t ≡ H (ev1t , ev2t , . . . , evKt) , and Gk (εt) ≡ ∂G (εt) /εkt. Using the

assumption thatH (Y1, Y2, . . . , YK) is homogeneous of degree one, and therefore the partial derivative

Hk (Y1, Y2, . . . , YK) is homogenous of degree zero, we obtain the density of εkt when the kth choice

is optimal

Gk (vkt + εkt − v1t, . . . , vkt + εkt − vKt) = Hk (ev1t , . . . , evKt) exp
[
−H0e

−vkt−εkt
]
e−εkt

25See Finger (2007) for an example of our method used in conjunction with Bajari, Benkard, and Levin’s method.
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Integrating over Gk (εt) yields the conditional choice probability

pk (zt) =
∫
Gk (vkt + εk − v1t, . . . , εk, . . . , vkt + εk − vKt) dεk (23)

= Hk (ev1t , . . . , evKt)
∫

exp
[
−H0te

−vkt−εk
]
e−εkdεk

= evktHk (ev1t , . . . , evKt) /H0t

The expected contribution of the disturbance from the kth choice is∫
dktεktdG (εt) =

∫
εkGk (vkt + εk − v1t, . . . , vkt + εk − vKt) dεk

= Hk (ev1t , . . . , evKt)
∫
εk exp

[
−H0te

−vkt−εk
]
e−εkdεk

= evktHk (ev1t , . . . , evKt) [γ − vkt + logH0t] /H0t

where the last line uses the property that the mean of a Type 1 extreme value distribution with pa-

rameter a is (γ + log a) and γ = 0.57 . . . is Euler’s constant. Taking the quotient yields wk (ψ [p (zt)])

as a function of ψ [p (zt)]

wk (ψ [p (zt)]) = γ + log
(
H0te

−vkt
)

= γ + logH
(
eψ

1
k[p(zt)], eψ

2
k[p(zt)], . . . , eψ

K
k [p(zt)]

)
9.2 Proof of Lemma 2

From the definitions of pjrt and H (Y ) for the nested logit given in the text, it follows from Equation

(23) that

pjrt = H−1
0t

[∑Kr

k=1
eδrvkrt

]1/δr−1

eδrvjrt

Summing over all choices within the rth cluster we obtain prt, the conditional probability of making

one of the choices in the rth cluster

prt ≡
∑Kr

k=1
pkrt = H−1

0t

[∑Kr

j=1
eδrvjrt

]1/δr

We use these equations to substitute out the summation
(
eδrv1rt + . . .+ eδrvKrrt

)
and make H0t the

subject of the resulting formula, proving that for any two choices j and k belonging to clusters r

and s

H0t = evjrtp
(1/δr)−1
rt p

−1/δr
jrt = evkstp

(1/δs)−1
st p

−1/δs
kst

Upon rearrangement, the difference in their conditional valuation functions emerges as

vjrt − vkst =
1
δr

log (pjr)−
1
δs

log (pkst) +
(

1− 1
δr

)
log (prt)−

(
1− 1

δs

)
log (pst)
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Applying the formula for wk (ψ [p (zt)]) in the statement of Lemma 1

E [εkst |dkst = 1] = γ + log
[
H
(
ev11t−vkst , ev12t−vkst , . . . , evKRt−vkst

)]
= γ + log

{∑R

r=1

[∑Kr

j=1
eδs(vjrt−vkst)

]1/δs
}

= γ − 1
δs

log (pkst)−
(

1− 1
δs

)
log (pst) + log

{∑R

r=1
p
1−1/δr
rt

[∑Kr

j=1
p
δs/δr
jrt

]1/δs
}

9.3 Proof of Proposition 1

We first show that for all r ∈ {t+ 1, . . . , ρ} with ρ <∞, and any stochastic choice process λ (j, zt)

inducing the associated probability distributions κr (zr|j, zt) as defined in Section 3, the conditional

valuation functions vj(st) can be expressed as:

vj (zt) = uj(zt) + βr−t
∑

zr

[
vλr(j) (zr)− uλr(j) (zr)

]
κr(zr|j, zt) (24)

+
∑r

τ=t+1

∑K

k=1

∑
zτ
βτ−tpk(zτ )

{
ψkλr(j) [p(zτ )] + uλr(j) (zτ ) + wk [p(zτ )]

}
κτ (zτ |j, zt)

As in the text, we denote by vλτ (j) (zτ ) the conditional valuation function evaluated at zτ for the

choice dictated by λτ (j, zt) and so forth for ψkλτ (j) [p(zτ )] and uλ(j) (zτ ) . Section 3.1 established this

equation holds for r = t + 1. Proceeding with an induction, we show that if the statement is true

for all τ ∈ {t+ 1, . . . , r} , then it holds true period r + 1 too. Following equation (1) we telescope

vλ(j) (zr) forward one period by applying the λ(j, zt) choice process to obtain

vλr(j) (zr)− uλr(j) (zr) = β
∑

zr+1

vλ(j) (zr+1) fλr+1(j)(zr+1|zr)

+
∑K

k=1

∑
zr+1

βpk(zr+1)
{
ψkλr+1(j) [p (zr+1)] + wk [p (zr+1)]

}
fλr+1(j)(zr+1|zr)

Substituting this expression into equation (24) for vj (zt) and rearranging we have

vj (zt)− uj(zt)−
∑r

τ=t+1

∑K

k=1

∑
zτ
βτ−tpk(zτ )

{
ψkλτ (j) [p(zτ )] + uλτ (j) (zτ ) + wk [p(zτ )]

}
κτ (zτ |j, zτ )

= βr+1−t
∑

zr

[∑
zr+1

vλr+1(j) (zr+1) fλr+1(j)(zr+1|zr)
]
κr(zr|j, zt)

+βr+1−t
∑

zr

[∑K

k=1

∑
zr+1

βpk(zr+1)
{
ψkλr+1(j) [p (zr+1)] + wk [p (zr+1)]

}
fλr+1(j)(zr+1|zr)

]
κτ (zr|j, zt)

For all vj′ (zr+1) , it follows from the definitions of κr(s|j, zt, ρ) and fλr+1(j)(zr+1|zr) that

∑
zr

∑
zr+1

vj′ (zr+1) fλr+1(j)(zr+1|zτ )κr(zr|j, zt) =
∑

zr+1

vj′ (zr+1)κr+1(zr+1|j, zt)
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Substituting for κr+1(z|j, zt) and rearranging yields

vj (zt) = uj(zt) +
∑r

τ=t+1

∑K

k=1

∑
zτ
βτ−tpk(zτ )

{
ψkλτ (j) [p(zτ )] + uλτ (j) (zτ ) + wk [p(zτ )]

}
κτ (zτ |j, zt)

+βr+1−t
∑

zr+1

(
vλr+1(j) (zr+1) +

∑K

k=1
pk(zr+1)

{
ψkλr+1(j) [p (zr+1)] + wk [p (zr+1)]

})
κr+1(zr+1|j, zt)

= uj(zt) + βr+1−t
∑

zr+1

[
vλr+1(j) (zr+1)− uλr+1(j) (zr+1)

]
κr+1(zr+1|j, zt)

+
∑r+1

τ=t+1

∑K

k=1

∑
zτ
βτ−tpk(zτ )

{
ψkλτ (j) [p(zτ )] + uλτ (j) (zτ ) + wk [p(zτ )]

}
κτ (zτ |j, zt)

where the second equality is obtained by adding in and subtracting uλr+1(j) (zr+1) to complete the

induction. Upon forming the difference vj (zt)− vj′ (zt) we thus obtain the expression stated in the

proposition from Equation (24) if and only if there is a finite integer ρ and choice process λ (j, zt)

such that for two paths satisfying the equality∑
zt+ρ

[
vλt+ρ(j) (zt+ρ)− uλt+ρ(j) (zt+ρ)

]
κt+ρ(z|j, zt) =

∑
zt+ρ

[
vλt+ρ(j′) (zt+ρ)− uλt+ρ(j′) (zt+ρ)

]
κt+ρ(zt+ρ|j′, zt)

9.4 Proof of Lemma 3

Weighting by pk (zt) the expression for wk (ψ [p (zt)]) derived in Section 2, summing over all choices

k ∈ {1, . . . ,K} and rearranging yields an expression for the social surplus function for any model

with generalized extreme values, namely∑K

k=1
pk (zt) [vk (zt) + wk (ψ [p (zt)])] = lnH

(
ev1(zt+1), ..., evK(zt+1)

)
+ γ

which is a restatement of the corollary to Theorem 1 in McFadden (1978). It now follows from

Bellman’s (1957) equation that the conditional valuation function for the jth choice can be written

as

vj(zt) = uj(zt) + β
∑

zt+1

∑K

k=1
pk (zt+1) {vk (zt+1) + wk (ψ [p (zt+1)])} fj(zt+1|zt) (25)

= uj(zt) + β
∑

zt+1

[
lnH

(
ev1(zt+1), ..., evK(zt+1)

)]
fj(zt+1|zt) + βγ

Since H1 (Y1, ..., YK) = 1 under our assumptions for this renewal example, Equation (23) implies

lnH
(
ev1(zt), ..., evK(zt)

)
= v1(zt)− ln p1 (zt) (26)

= u1(zt) + βV ∗ − ln p1 (zt)

where the second equality follows from the fact that the first choice is a renewal action. Substituting

the expression for lnH
(
ev1(zt), ..., evK(zt)

)
obtained from Equation (26) into Equation (25) then yields

(2) in the text.
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9.5 Proof of Lemma 4

Since the disturbances are distributed Type 1 Extreme value, the formulas in Lemma 2 imply∑K

k=1
pk(zt)

{
ψkλ(j) [p(zt)] + uλ(j) (zt) + wk (ψ [p(zt)])

}
= uλ(j) (zt) + γ − log pλ(j)(zt)

Applying Proposition 1 to the differences v1 (zt)− v0 (zt) and cancelling the γ terms yields

v1 (zt)− v0 (zt) = u1(zt)− u0 (zt)

+
∑T

τ=t+1

∑
zτ
βτ−t

[
uλ(1) (zτ )− log pλ(1)(zτ )

]
κτ (zτ |1, zt)

−
∑T

τ=t+1

∑
zτ
βτ−t

[
uλ(0) (zτ )− log pλ(0)(zτ )

]
κr(zr|0, zt)

The state variables in this example are zt = (ht, dt−1). We establish ρ = 2 in this case, by noting that

if the woman participates in period t, and then does not participate in periods t+ 1 and t+ 2, her

state variables in period t+ 3 have the same probability distribution as if she does not participate

in period t, participates in period t+ 1 instead but does not participate at t+ 2. Let λ(j, zt) denote

any predetermined choice process defined by: λ(1, ht, dt−1) sets (d1t, d1,t+1, d1,t+2) = (1, 0, 0) , and

λ(0, ht, dt−1) sets (d1t, d1,t+1, d1,t+2) = (0, 1, 0) . Also let f (z) denote the probability that human

capital increases by z units from participating in any period. Then in period t + 3 her state will

be (ht + z, 0) regardless of whether she takes the choice path λ(1, ht, dt−1) or λ(0, ht, dt−1). It now

follows that∑t+2

τ=t+1

∑
hτ
βτ−t

[
uλ(1) (hτ , dτ−1)− log pλ(1)(hτ , dτ−1)

]
κτ (hτ , dτ−1|1, ht, dt−1)

=
∑

z

{
β [u0 (ht + z, 1)− log p0(ht + z, 1)] + β2 [u0 (ht + z, 0)− log p0(ht + z, 0)]

}
f (z)

and ∑t+2

τ=t+1

∑
hτ
βtau−t

[
uλ(0) (hτ , dτ−1)− log pλ(0)(hτ , dr−1)

]
κτ (hτ , dr−1|0, ht, dt−1)

= β [u1 (ht, 0)− log p1(ht, 0)] +
∑

z

{
β2 [u0 (ht + z, 1)− log p0(ht + z, 1)]

}
f (z)

Collecting terms in the expression for v1(ht, dt−1)−v0(ht, dt−1) we obtain the difference in conditional

valuation functions between working and not working, which is Equation (5) in the text.

9.6 Proof of Proposition 2

The definition of this estimator ensures (π1, p1) define a set of probability distributions that generate

(d, x) , the choices and the observed state variables. Thus the data generation process defined by
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(ϕ0, p0) is also fully characterized by (ϕ1, p1) . It only remains to show that the restrictions implied

by the structural model with true paramter vector (ϕ0, p0) are also satisfied by (ϕ1, p1) . In other

words, optimizing behavior by the agents living in a world with structural parameters ϕ1 leads to

the vector of conditional choice probabilities p1.

Following the notation in the text, let z ≡ (x, s) where s denotes the unobserved variables, let

uk (z) ≡ uk (z; θ) denote the component of current utility that depends on the state variables when

the kth choice is made and given parameterization θ, and let fk (z′ |z ) denote the (finite) state space

probability transition function for z given choice j. The structural parameters for this problem are

denoted by ϕ ≡ (θ, π) . We form the expected lifetime value function, V (zt) ≡ V (zt;ϕ, p1) , using

the finite dependence representation discussed in Section 2, constructed from uk (z; θ) parameterized

by (ϕ, p) and evaluated at p1. It follows that, conditional on (znt, εnt) , the value of choosing k is

vk (znt) + εknt ≡ uk (znt; θ) + εknt +
∑

z′
V (zt;ϕ, p1) fk

(
z′ |znt

)
From the definition of ϕ1and p1, formed from generic elements p1k (znt)

p1k (znt) = Pr

 εkt − εlt ≥ ul (znt;ϕ)− uk (znt;ϕ) +
∑

z′ V (zt;ϕ, p1) [fl (z′ |znt )− fk (z′ |znt )]

for all l ∈ {1, . . . ,K}


for all (k, z) where as before εt is parameterized by G (εt;ϕ) . Appealing to Proposition 1, V (zt;ϕ, p1)

is the expected valuation function for the dynamic programming problem, and therefore the condi-

tional choice probabilities arise from individuals optimizing in a world with structural parameters

ϕ1. We conclude that the choice probabilities conditional on the observed state variables for both

ϕ0 and ϕ1 are the same, thus proving ϕ0 and ϕ1 are observationally equivalent.

9.7 Proof of Lemma 5

From the definition Υ (s1t, s2t, ct) first order equation can be expressed

ε0t −Υ (s1t, s2t, ct) = 0

Holding constant the state variables (s1t, s2t) while totally differentiating this equation with respect

to ct and ε0t yields
dct
dε0t

=
[
∂Υ (s1t, s2t, ct)

∂ct

]−1

The second order conditions require ∂Υ (s1t, s2t, ct) /∂ct > 0, an inequality that holds globally in

our specification because 0 < α1 < 1. Therefore ct is monotone increasing in ε0t, and hence

Pr {ct ≤ c |s1t, s2t, } = Pr {ε0t ≤ Υ (s1t, s2t, c) |s1t, s2t, } ≡ Φ [Υ (s1t, s2tc) /σ]
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9.8 Asymptotic Covariance Matrix

There are several variations on the CCP estimator depending on whether the likelihood or the

weighted empirical likelihood is used to estimate the conditional choice probabilities, whether there

are auxiliary outcome equations or not, whether there are continuous choices or not, and if so which

of the two reduced form utility representations is used in estimation. Here we derive asymptotic co-

variance for two main cases. First we account for continuous choices when the second representation

of the reduced utility function is used and the likelihood is used to estimate the CCP’s. The formula

we obtain reduces to the base case when there are no supplementary outcomes. Then we modify

the base case by using the empirical likelihood instead of the likelihood to compute the CCP’s.

When there are continuous choices augmenting the discrete choices, in estimation we form ap-

proximate sample averages of expression from Uk (c, z, ε0;ϕ) ≡ Uk (c, z, ε0), rather than using its

exact expectation over ε0 when the optimal continuous choice is taken, namely uk (z;ϕ, p). For

brevity we consider only the second representation described in Section 4, but deriving the asymp-

totic covariance for the first representation is similar. Let ckn denote the continuous choice(s) for an

individual observation with characteristic z making discrete choice k, designated by the indicator

function dkn = 1. Form the KZ dimensional vector function Un (ϕ, p) for each n ∈ {1, . . . ,N} from

the sample points

Unkz (ϕ, p) ≡
[
N−1

∑N

n′=1
I {zn′ = z} dkn′

]−1

I {zn = z} dknUk [ckn, z, λk (ckn, z, ϕ, p) ;ϕ]

weighted for expositional convenience to reflect the occurrence of events (z, k) in the sample. Also

define the sample average as

u(N ) (ϕ, p) = N−1
∑N

n=1
Un (ϕ, p)

and form its KZ dimensional vector function population analogue u (ϕ, p) with generic components

uk (z;ϕ, p) . To make explicit the role of substituting u(N ) (ϕ, p) for u (ϕ, p) in the approximate score,

denote by L
(
dn
∣∣xn;u(N ) (ϕ, p) , ϕ, p

)
the approximate likelihood when we substitute u(N ) (ϕ, p) for

u (z;ϕ, p) into the likelihood for (ϕ, p). The CCP estimator is defined by the two equation vectors

p∗ = L
(
u(N ) (ϕ∗, p∗) , ϕ∗, p∗

)
and

0 =
1
N
∑N

n=1
Sn

(
u(N ) (ϕ∗, p∗) , ϕ∗, p∗

)
where

∑N
n=1 Sn (u (ϕ, p) , ϕ, p) is the score for (ϕ, p), and more generally

Sn

(
u(N ) (ϕ, p) , ϕ, p

)
≡
∂ log

[
L
(
dn
∣∣xn;u(N ) (ϕ, p) , ϕ, p

)]
∂ϕ
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Under standard regularity conditions (ϕ∗, p∗) converges in probability to its true value (ϕ0, p0) at

rate N 1/2, and N−1/2
[
u(N) (ϕ, p)− u (ϕ, p)

]
satisfies a central limit theorem for all (ϕ, p).

The asymptotic covariance matrix for ϕ∗ is constructed from the derivatives of the vector of

discrete choice likelihoods conditional on observed and unobserved states, formed over all choices

and all states and denoted by

Lu ≡ ∂L (u0, ϕ0, p0)
∂u

Lϕ ≡ ∂L [u (ϕ0, p0) , ϕ0, p0]
∂ϕ

Lp ≡
∂L [u (ϕ0, p0) , ϕ0, p0]

∂p

where u0 ≡ u (ϕ0, p0) , as well as the limit matrices, defined as

Au ≡ lim
N→∞

[
1
N
∑N

n=1

∂Sn (u0, ϕ0, p0)
∂u

]
Aϕ ≡ lim

N→∞

[
1
N
∑N

n=1

∂Sn [u (ϕ0, p0) , ϕ0, p0]
∂ϕ

]
Ap ≡ lim

N→∞

[
1
N
∑N

n=1

∂Sn [u (ϕ0, p0) , ϕ0, p0]
∂p

]
From the identities

0 = L
(
u(N ) (ϕ∗, p∗) , ϕ∗, p∗

)
− p∗ = L (u0, ϕ0, p0)− p0

we expand the second equation to the first order and rearrange, obtaining

Lu
√
N
[
u(N ) (ϕ∗, p∗)− u0

]
= (I − Lp)

√
N (p∗ − p0)− Lϕ

√
N (ϕ∗ − ϕ0) + op (1) (27)

Similarly the second set of equations can be expanded around its defining sample moments to obtain

Au
√
N
(
u(N) (ϕ∗, p∗)− u0

)
= N−1/2

∑N

n=1
Sn (u0, ϕ0, p0) (28)

−Aϕ
√
N (ϕ∗ − ϕ0)−Ap

√
N (p∗ − p0) + op (1) (29)

Telescoping the difference
√
N
(
u(N ) (ϕ∗, p∗)− u0

)
about u (ϕ∗, p∗) and taking a first order Taylor

expansion gives

√
N
(
u(N ) (ϕ∗, p∗)− u0

)
=
√
N
[
u(N ) (ϕ∗, p∗)− u (ϕ∗, p∗)

]
(30)

−uϕ
√
N (ϕ∗ − ϕ0)− up

√
N (p∗ − p0) + op (1) (31)

Using (27), (28) and (30) we substitute out
√
N (p∗ − p0) and

√
N
(
u(N ) (ϕ∗, p∗)− u0

)
to solve for

√
N (ϕ∗ − ϕ0) in terms of

√
N
[
u(N ) (ϕ∗, p∗)− u (ϕ∗, p∗)

]
and N−1/2

∑N
n=1 Sn (u0, ϕ0, p0) , to obtain

√
N (ϕ∗ − ϕ0) =

(
B′1B1

)−1
B′1N

−1/2
∑N

n=1
{Sn (u0, ϕ0, p0) +B2 [Un (ϕ0, p0)− u (ϕ0, p0)]}
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where

B1 ≡ (Aϕ −Auuϕ) + (Ap −Auup)
[
(Luup + I − Lp)′ (Luup + I − Lp)

]−1 (Luup + I − Lp)′ (Lϕ − Luuϕ)

B2 ≡
{

(Auup −Ap)
[
(Luup + I − Lp)′ (Luup + I − Lp)

]−1 (Luup + I − Lp)′ Lu −Au
}

Appealing to the central limit theorem, the asymptotic covariance matrix for
√
N (ϕ∗ − ϕ0) is thus(

B′1B1

)−1
B′1ΩB1

(
B1B

′
1

)−1

where

Ω ≡ E
[
{Sn (u0, ϕ0, p0) +B2Un (ϕ0, p0)} {Sn (u0, ϕ0, p0) +B2Un (ϕ0, p0)}′

]
−B2u (ϕ0, p0)u (ϕ0, p0)′

is the covariance matrix of

Sn (u0, ϕ0, p0) +B2 [Un (ϕ0, p0)− u (ϕ0, p0)]

The base case is derived from this formula by setting Un (ϕ0, p0) ≡ u (ϕ0, p0) using the fact that

identification implies (I − Lp) is invertible, and that the expected value of the outer product of Sn

is just Aϕ. In this case the covariance matrix reduces to(
B′3B3

)−1
B′3AϕB3

(
B3B

′
3

)−1

where

B3≡Aϕ +Ap (I − Lp)−1 Lϕ

To cover the case where weighted empirical likelihood are used to estimate conditional choice

probabilities, let Sn (ϕ, p) ≡ Sn (u (ϕ) , ϕ, p) and define

h (dn, xn, ϕ, p) ≡

 Sn (ϕ, p)[
q (dn, xn, ϕ, p)Cp− q(n,t) (dn, xn, ϕ, p)

]


Defining the expected outer product and derivative matrices as

Ω = E
[
h (dn, xn, ϕ0, p0)h (dn, xn, ϕ0, p0)′

]
Γ = E

[
∂h (dn, xn, ϕ0, p0)

∂ϕ

∂h (dn, xn, ϕ0, p0)
∂p

]
it follows from Hansen (1982, Theorem 3.1) or Newey and McFadden (1994, Theorem 6.1), that
√
N (ϕ∗ − ϕ0) is asymptotically normally distributed with mean zero and covariance matrix

Σ = [Iρ : 0JSX ] Γ−1ΩΓ−1′ [Iρ : 0JSX ]′

where Iρ is the ρ dimensional identity matrix, ρ is the dimension of ϕ, and 0KSX is a ρ × KSX

matrix of zeros.
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Table 3: Mixed Discrete/Continuous Choice Simulations†

xt ∈ {1, 4} xt ∈ {1, 2, 3, 4}

True Coefficient Std. Error Coefficient Std. Error

Demand α31 6.000 5.992 0.160 6.014 0.242

Parameters α32 6.700 6.704 0.203 6.727 0.293

Variable xt = 1 α41 1.100 1.094 0.038 1.103 0.050

Cost xt = 2 α42 1.200 1.203 0.054

Parameters§ xt = 3 α43 1.300 1.303 0.058

xt = 4 α44 1.500 1.489 0.052 1.501 0.065

Fixed Cost α2 − α1 5.000 4.946 0.096 4.985 0.100

Unobserved π‡LL 0.800 0.841 0.083 0.813 0.069

Heterogeneity πHH 0.700 0.676 0.136 0.707 0.069

π††L 0.500 0.544 0.115 0.504 0.074

† 100 simulations of 3000 firms for 5 periods. β is set at 0.9. CCP’s are updated from the model. We do not report

estimates of the γ’s because estimation of these is unaffected by the unobserved variables and are estimated in a first

stage.

‡ The probability of a demand being in the low state in period t conditional on being in the low state at t− 1.

†† Initial probability of demand being in the low state.

§ Rather than have α4 times xt, we set a different value of α4 for each value of xt.
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