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An Algorithm for Fast Recovery of
Sparse Causal Graphs
Peter Spirtes and Clark Glymour

Previous asymptotically correct algorithms for recovering causal structure from sam-
ple probabilities have been limited even in sparse causal graphs to a few variables. We
describe an asymptotically correct algorithm whose complexity for fixed graph con-
nectivity increases polynomially in the number of vertices, and may in practice re-
cover sparse graphs with several hundred variables. From sample data with n = 20,000,
an implementation of the algorithm on a DECStation 3100 recovers the edges in a linear
version of the ALaRM network with 37 vertices and 46 edges. Fewer than 8% of the un-
directed edges are incorrectly identified in the output. Without prior ordering informa-
tion, the program also determines the direction of edges for the ALarRm graph with an
error rate of 14%. Processing time is less than 1o seconds. Keywords: pacs, Causal
Modelling.

Finding the causal relations between vartables is necessary for both
scientific explanation and policy making, For these purposes, it is in-
sufficient to merely fit an empirical covariance matrix or find the
best least squares linear estimator of a variable. The policy implica-
tions of empirical data can be completely reversed by alternative hy-
potheses about the causal relations of variables; furthermore, the es-
timates of a particular causal influence can be radically altered by
changes in the assumptions made about other dependencies.* For
these reasons, it is often the case that the aim of empirical research
in the social sciences is to determine the causal relations among a
set of variables, and to estimate the relative importance of various
causal factors. Even when this aim is not explicitly acknowledged, it
is often the tacit aim. Therefore, the question of how causal relations
among variables can be discovered is of primary importance for so-
cial science research.
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The Difficulty of the Discovery Problem

Part of the difficulty in finding good causal models is due to the sheer
number of possible causal models for a given set of variables. We will
represent the direct causal dependence of one variable on another by
a directed edge from a vertex representing the causal variable to a ver-
tex representing the effect variable. Then the number of possible
causal structures on_ni variables is the number of directed graphs
with n vertices, or 4(5). If causal cycles are forbidden, then the num-
ber of possible causal structures on n variables is the number of acy-
clic directed graphs on n variables. For 12 variables the number of di-
rected graphs is approximately 5.4 % 107 X and the number of
acyclic graphs is 521,939,651,343,829,405,020,504,003 (Harary &
Palmer, 1973). When the time order of the variables is also known, so
that causal hypotheses in which later variables cause earlier varia-
bles can be eliminated, the number of alternatives remaining is still
huge: for 12 variables, it is 7.4 X 10%.

The social scientist who addresses a problem area where causal
questions are of concern must therefore restrict the space of alterna-
tives. There are three obvious avenues for restricting the space of al-
ternatives: (1) use experimental controls, (2) use prior knowledge, and
(3) use features of the sample data.

Experimental procedures for addressing social questions are often
desirable but impractical. ‘They are very expensive, and where quasi-
experiments that control some variables but not others are used, the
number of alternative causal structures possible a priori may remain
very large. Methodology texts routinely recommend generating the
set of admissible cansal structures from “substantive theory” (see
Joreskog & Sorbom, 1984; Duncan, 1975). The actual practice of pub-
lications in the social science literature is usually to restrict the
number of alternatives considered to a very few; the restrictions are
often justified by citing prior literature or by appealing to very broad
theoretical frameworks. There is no evidence, however, that such ap-
peals constitute a reliable discovery procedure. It seems at least as
likely that appeals to theory introduce bias and often exclude the
true causal relations among the variables of interest. What about the
third avenue?

Causal Inference from Statistical Samples

Statisticians routinely use sample data in systematic ways for param-
eter estimation in a parameterized family of probability distribu-
tions. However, they more rarely use sample data to explicitly or sys-
tematically infer causal structure. Indeed, methodologists often warn
against using sample data to make causal inferences, and they rou-
tinely recommend that “substantive knowledge” rather than sample
data should determine the causal structure of a model. Procedures
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that use sample data are dencunced as “data mining” or “data ran-
sacking.” Finding a textbook on statistical methodology for the social
sciences that does not include these warnings would be difficult (see
Loehlin, 1987; James, Mulaik, & Brett, 1982}.

Despite the fervor of the denunciation of causal inference based
on sample data, it is difficult to find any sober analysis that justifies
the conviction that reliable inference of this kind is impossible, It is
true that in the worst case, if the sample size is small compared to
the number of variables, data-based inference will be unreliable.
This can be avoided, however, by appropriate sampling. In addition,
social scientists have experience with a number of exploratory factor
analysis programs which are commonly judged to be quite unrelia-
ble. But part of the reason for the unreliability of these factor analysis
programs in the contexts in which they are used is that they make
very specific assumptions that are false in many domains. Among
the assumptions made by many factor analytic programs is that the
data functional dependencies between variables are linear, and that
no measured variable directly causes either measured or latent varia-
bles {Loehlin, 1987). Each of these assumptions may be false in a
given domain, but they are not essential to inferring causal structure
from sample data.

The best way to show that the complaint against sample-based
causal inference is simply an unfounded prejudice is to provide reli-
able procedures for using sample data to usefully narrow the class of
causal structures that are, a priori, possible for the data, and to prove
that the procedures are reliable. That is our aim. '

Recovering Causal Relations

Consider pairs (g, P) for which g is a directed acyclic graph and Pis a
probability distribution on the vertices of g such that (1) for every
vertex v and every set S, of vertices that are not descendants or par-
ents of v, v and S, are independent conditional on the parents of v;
and (2] every independence relation in P is a consequence of the inde-
pendence relations in (1), Pairs satisfying these conditions can be
viewed as causal structures in which the causal dependencies gener-
ate statistical dependencies. When the sct of measured variables for
which probabilities are provided in the data is such that every com-
mon cause of a measured variable is itself measured, we say the
structure is causally sufficient.

Recovery problems occur when determining g, or features of g,
from the distribution P or from samples obtained from P. Spirtes,
Glymour, and Scheines {1990] proposed the following scs algorithm
for the recovery problem with causally sufficient structures, using as
input independence and conditional independence facts about P:2

1. Start with the complete undirected graph.
2. For each vertex pair (a,b), remove the undirected edge between a
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and b if and only if I{a,S,b} for some subset § not containing a or
b. Call this undirected graph G.

3. For each triple [a,b,c) of vertices such that 2 and b are adjacent in
G, b and c are adjacent in G, and a and ¢ are not adjacent in G, di-
rect the edges a-b and b-c into b if and only if for every set S of ver-
tices containing b but not 4 or ¢, ~ I[a,8,c}.

4. Output all orientations of the graph consistent with (2).

Verma and Pearl {19g0) subsequently proved the correctness of the
algorithm and offered a variant that outputs a pattern rather than a
collection of graphs. The pattern has an undirected edge between

... two vertices if the sGs output contains graphs that orient the edge in
- different: directions; the pattern contains a directed edge if every
~:+ . graph- output by the scs algorithm has the edge so oriented; and the
. pattern may have a bidirected edge: for example, a <> b provided (2}
. determines that the a-b edge collides with another edge at a and also

- collides with another edge at b. When all common causes are mea-
.. sured and the data consist of the actual independence and conditional

independence relations, the pattern is simply a representation of the
class output by the sgs algorithm; but when there are unmeasured
common causes or independence facts due to sampling variation
rather than to P, the pattern is more general.

Two graphs (g,g’) are statistically indistinguishable provided that
for every probability distribution P, (g, P} satisfies the conditions (1]
and (2) of the first paragraph if and only if {g’,P) does. From the inde-
pendence facts of a distribution P such that (g, P) satisfies {1}, and (2],
the sas algorithm returns all and only the graphs statistically indis-
tinguishable from g.

In the worst case, the sGs algorithm requires a number of condi-
tional independence facts that increase exponentially with the num-
ber of vertices, as must any algorithm based on conditional indepen-
dence relations. But because for any undirected edge that is in the
graph g, the number of conditional independence facts that must be
generated and checked in stage {1) of the algorithm is unaffected by
the connectivity of the true graph, even for sparse graphs, the algo-
rithm rapidly becomes computationally infeasible as the number of
vertices increases. Besides problems of computational feasibility, the
algorithm has problems of reliability when applied to sample data.
The determination of higher-order conditional independence rela-
tions from sample distributions is generally less reliable than is the
determination of lower-order independence relations. With, say; 37 bi-
nary variables, the determination of the conditional independence of

" two variables on the set of all remaining variables requires consider-

ing the relations among the frequencies of 2> distinct states, only a
tiny fraction of which will be instantiated even in very large sam-
ples.

To illustrate the difficulty of recovering the graph g {or a set of
equivalent graphs} from the probability distribution P, consider an
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example given by Herskovits and Cooper (1990). Their Kutats Algo-
rithm is a heuristic entropy minimization procedure for recovering a

- directed graph given sample data and a total ordering of the vertices

such that v, > v, implies that there is no directed edge from v, to v,.
The asymptotic reliability of the procedure is unknown. Nonethe-
less, from large sample data the algorithm recovers most of the con-
nections on a sparse graph—the Ararm network (Beinlich,
Suermondt, Chavez, & Cooper, 1989}—with 37 variables and 46
edges. In their example, the direction of the edges is not recovered
from the data, but is determined by the prior ordering given to the
computer {see Figure 1).2

Using 10,000 cases, an implementation on a Macintosh II required
about 2244 hours about a quarter of which was required to read the
database. The output omitted two correct edges and included two
false edges. By comparison, the sGs algorithm has been implemented
in the Tetrad II program using partial correlation tests for condi-
tional independence. Tetrad II is an experimental program for recov-
ering causal structure from statistical data developed by the authors
at Carnegie-Mellon University. The module of Tetrad II that imple-
ments the scs algorithm takes a covariance matrix and any back-
ground causal information that the user has as input, and outputs a
set of causal graphs compatible with the background knowledge that
explain the conditional independencies true of the covariance ma-
trix. The background knowledge can include information about ca-
sual relations among variables that are known to exist, causal rcla-
tions that are known not to exist, and temporal information. We will
implement tests for conditional independence relations that do not
depend upon the assumption of linearity. We plan to make commer-
cial versions of the program available by the end of the year that run
on UNIX workstations or Ms-Dos personal computers.

Run on a bEc workstation with 20mB rRaM, the procedure stops at
about 17 variables because of space requirements for storing the con-
ditional independence facts. Space could be traded for time, but the
ALARM case is “out of sight.”

O

Figure 1 aArLarm network
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Verma and Pearl (1990) have suggested an improvement on the sas
algorithm. For each pair of variables {a,b), introduce an undirected
edge between them if they are dependent conditional on the set of all
other variables. Call the resulting network N. (In the true graph, G,
the parents of any variable form a maximal complete subgraph—a
clique—in the network N.} Again, for each pair of variables (a,b) ad-
jacent in N, determine if (a,b) are dependent conditional on all sub-
sets of variables in the cliques in N containing a or b. If so, a is adja-
cent to b in G. The complexity is thus bounded by the size of the

largest clique in N.
The practical value of the improvement is limited by the fact that

- 7it is still necessary to judge conditional independence relations of

" the order of the number of vertices of the graph (minus two). In the

"linear case, this may be possible. Discrete data judgements about

: such condltlonal independence relations are quite unreliable, how-

ever, since the great majority of the corresponding states will not be
“instantiated in the data.

We would like an algorithm that has the same input/output rela-
tions as the sgs procedure but for sparse graphs does not require the
determination of higher-order independence relations, and in any
case requires as few conditional independence relations as possible.
The following procedure starts by forming the complete, undirected
graph, then “thins” that graph by removing edges with zero-order
conditional independence relations, thins again with first-order con-
ditional independence relations, and so on. The set of variables con-
ditioned on need only be a subset of the set of variables adjacent to
one or the other of the variables conditioned, and can even be con-
fined to adjacent variables on certain undirected paths.

pC Algorithm

Let Acab denote the set of vertices adjacent to a or to & in graph C,
except for a and b themselves. Let Ugab denote the set of vertices in
graph C on (acyclic) undirected paths between a and b, except for a
and b themselves. {Since the algorithm is continually updating C,
Acab and Ugab are constantly changing as the algorithm progresses.)

A. Form the complete undirected graph C on the vertex set V.
B. n=o
repeat
For each pair of variables [a,b) adjacent in G, if Agab N Ucab
has cardinality greater than or equal to n and a, b are indepen-
dent conditional on any subsets of Acab N Ucab of car-
dinality n, delete a-b from C.
n=n+i.
until for each pair of adjacent vertices a, b, Agab N Ucab is of
cardinality less than n.
Call the resulting undirected graph F.
C. For each triple of vertices (a,b,c) such that the pair {a,b) and the




pair (b,c] are each adjacent in F but the pair (a,¢} are not adjacent
in F, orient a-b-c as a —+ b+ Cif and only if 2 and ¢ are dependent on
every subset of Apac N Upac containing b. Output all graphs
censistent with these orientations.

Note that Aqcab N Ugab is not in general the set of parents of a
or b (in the oriented graph) on undirected paths between [a,b), since
descendents of [a,b} may also occur.

An obvious modification of the algorithm will generate patterns
rather than collections of graphs.

The complexity of the algorithm for a graph G is bounded by max
{tAgabl) over all pairs of vertices {a,b}, which is never more than the
sum of the two largest degrees in G. Generally stage B of the algo-
rithm continues testing for some steps after the correct undirected
graph has been identified. The number of steps required before the
true graph is found {but not necessarily until the algorithm halts) de-
pends on the maximal number of treks* between a pair of variables,
say (a,b), that share no vertices adjacent to ¢ or b. If these maximal
numbers are held constant as the number of vertices increases, so
that &, the maximal order of the conditional independence relations
that need to be tested, does not change, then the worst case compu-
tational demands of the algorithm are bounded by n?. It should be
possible to recover sparse graphs with as many as several hundred
variables. Of course the computational requirements increase expo-
nentially with k.

In many cases it may be more efficient to perform conditional in-
dependence tests on all subsets of Aqab rather than to compute
Ugab. We have not yet theoretically determined the trade-off.

The structure of the algorithm and the fact that it continues to
test even after having found the correct graph suggest a natural heu-
ristic for very large variable sets whose causal connections are ex-
pected to be sparse, namely to set a fixed bound on the order of condi-
tional independence relations that will be considered.

Proposition: The Pc and $cs algorithms give
the same output.

Proof: Let Prab denote the set of vertices in directed graph G that
are parents of a or of b, except for a and b themselves. We note a
lemma.

Lemma: In any pair |G, P| meeting conditions (1) and [2), if vertices
{a,b} are not adjacent then they are independent conditional on
Pgﬂb M U(;ab.

The proof is a trivial modification of the argument Verma and
Pearl {1990, pp. 221—222] give for their Lemma 1.

Now we show that steps (A} and (B] of the pc algorithm produce
the correct undirected graph. Let G be a directed graph produced by
the sgs algorithm. (Every graph produced by the sas algorithm
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shares the same underlying undirected graph.) First, we will show
that every edge in the undirected graph of G is also in the undirected
graph C at every stage of construction. The pc algorithm starts with
a complete graph, and only removes an edge between g and b if g and
b are independent on some subset of Acab N Ugzab. However, if the
edge between a and b is in the undirected graph of G, then g and b
are not independent on any subset of variables not containing a or b.
Hence, every edge in the undirected graph of G is also in F, the final
graph produced by the pc algorithm.

We must now show that if # and b are not adjacent in the undi-
rected graph of G, then a and b are not adjacent in F, If g and b are not
adjacent in G, then g and b are independent on some subset of varia-
bles not containing a or b. By the lemma, then, a and b are indepen-
dent conditional on the set Pcab N Ugba. Since every edge in the
undirected graph of G is in C, Peab N Ugba is a subset of Acab N
Ucab, and hence g and b are independent conditional on some subset
of Acab N Ugab.

It remains only to show that step C of the algorithm orients the
graph correctly. Assume that in G, {g,c] are not adjacent but a is adja-
cent to b and b is adjacent to ¢. In G, the a-b and b-c edges collide at
b if and only if there is no set S containing b and not a or ¢ such that
(a,c) are independent conditional on S. Since {g,c) are not adjacent in
G, they are independent conditional on the set Peac 1 Ugac. If the
edges in G do not collide at b, then b is a parent of a or of ¢, s0 b is
in Pgac 1t Ugac, which is a subset of Apac N Upac containing b. If
the edges do collide at b in G, then (a,¢} are dependent on every set
containing b and not {a,c), and hence dependent on every subset of
Arac N Ugac that contains b.

An Application of the pC Algorithm

We have applied the pc algorithm to a linear version of the aLarm
network. Using the same directed graph, linear coefficients with val-
ues between 0.5 and 1.0 were randomly assigned to each directed
edge in the graph. Using a joint normal distribution on the variables
of zero indegree, three sets of simulated data were generated, each
with a sample size of 20,000. The covariance matrix and sample size
were given to a version of the Tetrad IT program with an implementa-

“tion of the pc algorithm. This implementation takes as input a co-

variance matrix, and it outputs a pattern. It does not check to deter-
mine whether variables adjacent to vertices (v, v.) lie on an
undirected path between v, and v,. No information about the orien-
tation of the variables was given to the program. Run on a DECstation
3100, for each data set the program required less than 1o seconds to
return a pattern. In each trial, the output pattern omitted three edges
in the aALarmM network. Of the remaining 43 edges, the orientation of
3 of them is indeterminable in principle from the probabilities, and
in the first two trials the program so reported, while in the third it or-
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Table 1
Ormnitted False Orientation
undirected edges undirected edges errors
Trial 1 3 o 5
Trial 2 3 o 6
Trial 3 3 2 7

iented one of the three. Of the remaining 40 edges, the trials
misoriented 5, 6, and 7 edges respectively, always by judging that an
edge was directed into both of its vertices (as the pattern output al-
lows) when in the aLarm graph it is directed into only one. The re-
sults are summarized in Table 1.

The implementation used did not determine the adjacency sets
lying on undirected paths between two variables because in this case
with correlation data it was computationally cheaper to determine
the partial correlations for all subsets of Acab than to keep track of
Acab N Ugab. With discrete count data for which the determina-
tion of conditional independence relations is more computationally
demanding, the alternative procedure described in our statement of
the algorithm might be faster. For example, for one pair of vertices in
the network, Aab consists of 8 vertices while Aab N Uab consists of
only 2 vertices,

The comparison of 10 seconds for the pc algorithm with 2214
hours for the Kutatd algorithm should not be taken as a direct com-
parison of the efficiencies of the algorithms, since the pecStation
3100 is much faster than a Macintosh, and without the assumption
of linearity considerably more time would be required in numerical
operations to determine conditional independence.’s Nonetheless,
the rc algorithm appears to be very fast and reliable for sparse
graphs. For similar data from a similarly connected graph with 100
variables, the present implementation should require less than 2
minutes.

Appendix

Fung and Crawford [1990) have independently proposed an algorithm similar
in spirit to the pc algorithm for constructing undirected graphs.

In addition, Pear] and Verma (1990} describe an algorithm that shows how
step (C) of the rc algorithm can be improved in the following way (which
also requires a slight modification to step (B):

B.
n=o.
repeat
For each pair of variables [a,b) adjacent in C, if Aqab ¥ Ugab has
cardinality greater than or equal to » and (a,b) are independent condi-

A

tional on some set S{a,b} that is a subset of Acab M Ugab of car-
dinality n, delete a-b from C, and record S{a,b).
n=n-+1.
until for each pair of vertices {a,b) adjacent in C, Acab N Ugab is of
cardinality less than n.

C. Let F be the graph resulting from step (B|. For each triple of vertices [a,b,c)
such that the pair {a,b) and the pair (b,c) are each adjacent in F but the pair
{,c) are not adjacent in F, orient a-b-c as a » b « ¢ if and only if b is not
in S{a,c).

Output all graphs consistent with these orientations.

Notes

Peter Spirtes and Clark Glymour, Department of Philosophy, Carnegie-Mellon Univer-
sity, Pittsburgh, A 15217. We thank Gregory Cooper for a conversation that stimu-
lated this work.

1. See our discussion of the causal relations between foreign capital on political re-
pression in Glymour (1987).

2. We denote by “fia,S,b)” the claim that variables a and b are independent condi-
tional on the set of variables in S, and by “-I{a,S.b] the denial of that claim.

3. Herskovits and Cooper say that a variant of the Kutatd algorithm can determine
the orientation of edges without a prior ordering of the variables, but they do not de-
scribe the properties of the application or give an example. They are also investigating
Bayesian alternatives that are much faster than the Kutat6 procedure.

4. A trek is a pair of directed paths from some vertex z to {e, b} respectively, inter-
secting only at z, or a directed path from 2 to b or a directed path from b to a.

5. It may in fact be the case that for large samples and variable sets the errors intro-
duced by assessing conditional independence through partial correlations or other ag-
gregate measuxes are adequately repaid in time savings.
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Understanding the Computing
System Domain of Advanced
Computing with Microcomputers
Kerry A. Hake

This paper provides a gencral background for social scientists in technology tradition-
ally relegated to computer science and engincering, A systems integration concept
provides a framework of understanding for elements of the knowledge domain of ad-
vanced microcomputing. The systems integration framework is viewed as a series of
interrelated building blocks composed of the domain elements. These elements are
the processor platform, operating system, display technology, mass storage, applica-
tion software, and human-computer interface. References come fram recent articles in
popular magazines and journals to help emphasize accessibility of this information,
its technical appropriateness for the social scientist, and its transient cutrency. Key-
words: systems integration, microcomputers, advanced computing, workstation
technology, microcomputing, workstations, advanced technology.

The Executive Office of the President, Office of Science and Technol-
ogy Policy {ostp) has challenged the social sciences to establish and
maintain technological literacy This extends to the rapidly expand-
ing technology of microcomputing. In the 1987 report, “A research
and development strategy for high performance computing” {alsa
known as the Hpc Strategy), the Federal Coordinating Council on
Science, Engineering, and Technology (Fccser) Committee on Com-
puter Research and Applications found that “Research progress and
technology transfer in software and applications must keep pace with
advances in computing architectures and microelectronics” |(Gra-
ham, 1987). As developers of software and applications, social scien-
tists must therefore become cogent in a discipline traditionally be-
longing to computer science and engineering fields. Additionally,
researchers in the social sciences must strive to maintain CUriency
in advanced microcomputing technology. With this challenge in
mind, this paper surveys the domain of advanced computing with
microcomputers. It provides a general framework for understanding
microcomputing technology via a systems integration concept.
The current domain of the microcomputer for advanced comput-
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