






Ani&otropic Motion of a Phase Interface

since $2n — $1 s s

Therefore we may apply the maximum principle of addendum 12.2
again, and conclude that v vanishes.

Q. E. D.

15. The four node theorem.
In this section we consider the unique steady state which exists if F < 0,
and We study the linearised flow near this steady state. In particular we
prove that any initial value f2o which lies on the stable manifold of ft* has
at least four nodes.

From here on we shall assume that the free energy is strictly
stable, i.e. that f"(6) + f(6) > 0 for all angles 6 € R/2TTZ.

As in section 11, we can represent any C2 convex region up to a trans-
lation by its curvature k as a function of the angle 0, or by the equivalent
quantity t; = V(0, Jb) = (g(6)k - F)/fi{6). We recall from (11.2) that the
evolution of convex domains is then described by the following initial value
problem

+ Ff \d2v

( 15-1 }

Since the curvature of the boundary of a convex domain is negative (in
our conventions), we shall only consider solutions of (15.1) which satisfy
v(0,i) < —F//?(0) (this condition is equivalent to k < 0). Moreover, we
shall only consider those v's which correspond to closed curves; recall that
a function k(6) determines a closed curve if and only if the first Fourier
coeflBcient /0

2* ti$k{6)-ld6 of l/k(6) vanishes. This prompts us to define
the following spaces:

v(B) < j^r ior 6 € R/2TTZ \ ,Oa = I v € ha(R/2nZ)

I \Jo 0(O)v(6) +

for a € (0,1), and

02»° = O ° n Ji2'a(R/27rZ), X2>° s X

The reader can easily verify that X° is an analytic submanifold of OQ of
codimension two.
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Theorem 15.1. The initial value problem (15.1) generates an analytic
local semiflow on 0 ° , which leaves XQ invariant.

Proof. The initial value problem (15.1) is quasilineax, of the form u'(t) =
A(u(t))u(t)y where the operator A(u) : / I2^(R/2TTZ) -> /I*(R/2TTZ) (with
0 < P < a) is given by

(A(u) •

For any u € 0 ° this operator with domain dom(>t) = h2>fi(R/2nZ) gen-
erates an analytic semigroup on hfi(K/2nZ). This allows us to apply the-
orems 2.11 and 2.12 of [A3], and conclude that (15.1) generates a local
analytic semiflow on OQ.

To show that the submanifold X° is invariant under >̂*, one observes
that along any solution of (15.1) one has kt = k2(v$$ +t>), and hence

Q. E. D.

One can determine all the fixed points of the local semiflow 4>f\ they
are exactly the solutions v(6) of v"(6) + v(6) = 0, i.e. they are given by
v(6) = V cos(0-a) for some a € R/2TTZ and V > 0. Clearly these functions
can only belong to the space OQ if F < 0; conversely, if F < 0, then there
exist V±(a) > 0 for every a such that v{6) = V cos(0 — a) belongs to C?* if
and only if -VL(a) < V < V+(a).

Therefore we shall assume throughout this section that F < 0.

Lemma 15.2. If F < 0} then v = 0 is the only fixed point of the semiflow
which lies in XQ.

Proof, (cf. [AG, section 6.3]) First we note that t; = 0 satisfies the closing
condition, since

Thus v = 0 does indeed belong to XQ. To show that v = 0 is the only
candidate solution which corresponds to a closed curve, we consider

If t; = A cos(d — a) satisfies the closing condition, then D(\) must vanish.
By differentiating under the integral one easily verifies that D'(\) < 0,
which shows that D(X) can only vanish for one value of A; we have just
seen that this value is A = 0.

Q. E. D.
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This lemma tells us that there is exactly one domain Q. (up to trans-
lation) which does not change under the evolution prescribed by (1.1). We
can remove the ambiguity in the definition of Q, by requiring the origin to
be the center of mass of this domain; we shall denote the resulting domain
by ft..

Lemma 15.3. The fixed point v = 0 is a hyperbolic fixed point for the
restricted semiflow, $* |x« . Its unstable manifold is one dimensional

Proof. To begin with, v = 0 is a fixed point of the semiflow 4>f on 0 ° ,
so that the linearization of the semiflow at 0 is a one parameter semigroup
d<f>f(O) = eiA on the Banach space ha(K/2irZ)\ this semigroup is analytic,
and its generator is obtained by linearizing (15.1) at 0. The operator one
gets is of Sturm-Liouville type:

F2 ( — + 1

with dom(A) = /i2»a(R/27rZ). The spectrum of A consists of eigenvalues
which may be ordered as Ao > Ai > A2 > A3 > A4 > A5 •••, and the
eigenfunctions corresponding to the pair of eigenvalues {A2J-1, \2j} have
exactly 2j simple zeroes in R/27rZ; the eigenfunction corresponding to the
first eigenvalue, Ao is positive.

By inspection one finds that 0 is a double eigenvalue of A, with eigen-
functions sin0 and cosd. Since these eigenfunctions have two zeroes, their
eigenvalues must be Ai and A2. In other words, we have found that Ai =
A2 = 0, so that Ao > 0 > A3 > A4 > • • •.

To see whether 0 is a hyperbolic fixed point of <f>x |x« > we must consider
the linearization of the semifiow on Xa, i.e. the restriction of eiA = d<f>f(O)
to the tangent space TQ(X°) of X° at 0. Since XQ is invariant under ^f,
the tangent space To(XQ) is invariant under eM , so that the restriction of
etA does indeed define a one parameter semigroup on TQ(XQ).

By linearizing the defining equations of XQ one finds that the tangent
space ToOX"0) is given by

To{X°) ={ve h°{R/2«Z) / e ' < - ^ v ( 0 ) d6 = 0

This space does not contain any of the eigenfunctions of A which have
eigenvalue 0, i.e. it does not contain sin(0—or) for any a € R. Since To(Xa)
has codimension two in ha(K/2nZ)> we can write ha(K/2irZ) as the direct
sum h°(R/27rZ) « T0(X°) © Z, where Z is the subspace of fca(R/27rZ)
spanned by sinl and cos 6. This splitting is invariant under cM , and Z is
exactly kern(-A), so that the spectrum of A restricted to To(Xa) consists
of all eigenvalues of A, except 0. Hence v s 0 is indeed a hyperbolic fixed
point of 4>f, with a one-dimensional unstable manifold.

Q. E. D.
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Recall that we had defined a node on the boundary dCl of a domain
ft € S)2|Of to be a point P at which the normal velocity V vanishes, i.e. a
point where g(6)K - F = 0. In [Al, part 2] it was shown that the number
of nodes of a family of domains ft(f) which evolves according to (1.1) does
not increase with time.

Theorem 15.4. Consider a domain fto € S)2|° whose corresponding solu-
tion ft(i) to (1.1) exists for all positive times, and for which ft(f) converges
to ft* <w t - • oo. Then ft0 has at least four nodes.

Proof. We assume that ft(f) converges in C2 to ft*. The convexity of
ft* then implies that ft(i) is convex for sufficiently large t. We shall show
that if t is large enough, then ft(i) has four nodes, and since the number
of nodes is npndecreasing this will establish that fto also has at least four
nodes.

For large t the domain ft(<) is convex, and we may represent it by its
normal velocity function t>(0,i), which is a solution of the linear parabolic
PDE

vt =

where a(6,t) = (/?(*MM) + F
Since ft(t) —* ft*, the velocity t; decays to zero, and since v = 0

is a hyperbolic fixed point of our semiflow ^*, the velocity will decay at
an exponential rate. It follows from the results in [He2] that v(6,t) =
CtXiiw(6){\ + o(l)) as f —• oo, where tz;(0) is some eigenfunction of A, with
eigenvalue A;-, and C is some non-zero constant. Since v tends to zero, the
eigenvalue Xj must be negative, so that j > 3 and so that w(6) has at least
four simple zeroes. Thus, for large enough t, the velocity v(0,i) will have
at least four zeroes.

Q. Er D.

16. Large time asymptotics.

In this section we consider a solution ft(f) which encloses the steady state
ft*, and which will fill up the whole plane R2 as t —* oo. We show that
the domain ft(i), rescaled so that its diameter becomes 0(1), converges to
a fixed shape, namely, the Wulff region of l//?(0).

In the previous section we have seen that t; s 0 is a hyperbolic fixed
point of the semiflow 4>f of jfa, and that its unstable manifold is one di-
mensional. This unstable manifold consists of two trajectories; we shall
denote the corresponding solutions to the PDE (15.1) by v±(6^t). These
solutions are only well defined up to a time translation, i.e. for any i9 the
functions v±(6^t +19) would have been acceptable solutions representing
the trajectories on the unstable manifold. We shall assume that we have
chosen a particular pair of solutions from these time translates.
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The solutions v±(6,t) are in principle only defined for t sufficiently
small, i.e. for -oo <t<t±. As t -> — oo the v± will decay exponentially:

as t i —oo for certain positive constants C+ and C-; Ai and u>i(0) are
the principal eigenvalue and function of the linear operator A which we
encountered in the previous paragraph. In particular, we may assume that
ttfi (0) > 0 for all 6. This implies that both t>+(0,<) and vf(6yt) are positive
for all 0,<. Likewise v~ and v^ are negative for all 6 and t. In what follows
we shall study the behaviour of the positive solution.

We leave the precise behaviour of the negative solution as a (par-
tially) open problem. The negative solution corresponds to a solution
of (1.1) which is convex, which shrinks, and which does not exist for all
time. . Indeed, if m(t) = max$v(0,t), then it follows from (15.1) that
m'(t) < Cm(t)*, where C = min* p{s)/g{6)] by integrating this differ-
ential inequality one sees that m(t) j —oo in finite time if m(t) < 0 for
some t € R. Thus the solution to (1.1) corresponding to v_ becomes sin-
gular in finite time. It is not clear whether it will shrink to a point, and
what its asymptotic shape will be. However, under an extra condition on
the coefficient /?(0) M. Gage has shown that the solution is approximately
self similar ([Ga]).

Concerning the positive solution v+ we shall prove the following.

Lemma 16.1. u+(0,t) is defined for all positive times, and as t tends to
infinity, v+(0,i) converges monotonically to v°°(6), where v°° is defined by

sup U . m(6) | VO6Ri • %a) < h(a) } , fc(«) = - ^ - .

Moreover v°°(6) is the support function of \F\2T(0-1), where T()9"1) is the
Wulff region for 0"1 defined by (3.1) with f^P'1.

P r o o f . W e first show that t>°°(0) is the support function of {^^p)
Let A(0) = { $ € R 2 |* • 9t(0) < h(6) } . T h e n T(h) is the closure of the
intersection over all 9 of the halfspaces A(0) , and

thus, since T(h) is convex, v°°(0) represents the support function of T(h).
Next, for as long as v+(6,t) is defined it represents a solution of (1.1)

which is convex, and whose curvature is bounded by F/g(6) < k(6,t) < 0.
By our main existence theorem 3.1 this solution cannot become singular in
finite time, so that v+(0,<) is defined for all t € R.
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The velocity v(0,f) is an increasing function of time, and it is bounded
from above by 0 < v(0,*) < -F/0(0); therefore it must converge to some
limit function t>(0), which is also bounded by 0 < v(6) < -F/0{6).

It also follows from vt > 0 and (15.1) that ve$ > —M, where M =
^PfSR —«F/0(0). Thorn this we may conclude that |t>*| < 2TTM. Indeed,
for any given < € R there must exist a 0O € [0,27r] at which i>*(0o,t) s 0;
for any other 0 € (0o> 0o + 2n) we then have

< 2rrM.

So the v(0,<)'s are uniformly Lipschitz continuous, and they must converge
uniformly to C; this limit must also be Lipschitz continuous, with constant
2TTM. Moreover, in the sense of distributions we have

v" + v > 0.

To complete the proof we must show that v — v°°.
Clearly we have £5(0) < -F/P(6) for all 6 € R. Assume that for some

0o this inequality is strict. Then, by continuity, there is an c > 0 such that
v(0) < -F/P(6) - c for \0 - 0OI < «, and hence also r(0,t) < -F/P(0) - c
for |0 --0O\ < € and all t € R. On the strip S = (0O - €,0o + c) x R we
then have a bounded increasing solution of the uniformly parabolic PDE
Vt = (/?u + F)2//3g(v$$ + t>), and it follows from the Schauder estimates
for such solutions that all derivatives d£v(0,t) are bounded, and uniformly
convergent on any subinterval (0o — c',0o + ^f) with ef < c, as 11 oo. The
limit of v(0,f) must be a smooth equilibrium of the PDE, i.e. it must satisfy
v" + v = 0.

So fax we have found that the limit v satisfies 0 < £5(0) < -F/j8(0), is
Lipschitz continuous, and on the set of 0's where v(0) < —F/0(6) holds, C;
is a smooth solution of v" + v = 0; i.e. it is of the form A sin(0 — a). Since
t; is positive, v(0) < —F/p(0) cannot hold on any interval of length TT or
more; on such an interval v would coincide with Asin(0 — a), which has a
zero in any interval of length > TT.

The following two lemmas imply that v°° and t; coincide, and hence
they complete the proof of Lemma (16.1).

poLemma 16.2. v<v

Proof. Choose A,a such that Asin(0o — a) = v°°(0o) and sin(0 ~ a) <
—F/fi(0) for all 0 € (a, a + TT). We claim that there exist 0i, 02 € (a, a + 7r)
such that

(i) 0i < 0o < 02, and
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(u) Asin(^- - a) = jjf^ for j = 1,2.

To find 0X, we choose P and Q such that Asin(0 - a) = u>(0 - 0O), where
w(6) = Psin0+Qcos0. Suppose that u>(0-0o) < -F/0(O) for all a < 0 <
0O; then, for any P > P sufficiently close to P, we have u>(0-0o) < -F/P(6)
for all 0 € (a, a + TT), while u>(0o) « u>(0o) (here u>(0) = Psin0 + Qcos0.)
Thus for sufficiently small e > 0 we also have (1 + e)w{6) < -F/0(0). But
(1 + e)w(6) is of the form A sin(6 — a), so that

v°°(60) > (1 + e)w(60) > w(e0) = V°°(6Q).

The contradiction shows that 0i must exist after all; a similar argument
shows that 62 exists as well.

Define w(6) = Asin(0 - a). Comparing w with our solution v+(0,i) of
(15.1), we find that t>+(0o,*) < w(eQ),v+(e\t) < w(6') for all t € R, and,
since v+(6,t) | 0 uniformly as 11 —00, we also find that t>+(0,<) < w(6) for
all 0o < 0 < 0', if < is small enough. By the maximum principle we then get
t>+ (0,<) < w(6) for all 0O < 0 < 0' and all t € R. Taking the limit t | 00
this shows that C(0O) < tx>(0o) = t>°°(0o). Since 0O was arbitrary, we have
proved that t; < v°°.

Q. E. D.

Lemma 16.3. v°° < v.

Proof. Let Xsin(0-a) < -F/^(0) for a < 0 < C*+TT. We shall show that
A sin(0 — a) < v on the same interval; since v°° is defined as the supremum
of all such Asin(0 — a)'s the Lemma follows from this.

Let A < A bejthe largest A for which A sin(0 - a) < C(0) on (a, a + 7r),
and assume that A < A.

For some 0o € (a,a + 7r) one will have Asin(0o — a) = v(0o). At
this value of 0 one will also have v(0o) = -Asin(0o — a) = Asin(0o — a) <
—F/fi(6o). Let (0i,02) be the maximal interval containing 0O on which
v(0) < —F/£(0); then v is a smooth solution of v" + v a= 0 throughout this
interval which satisfies both v(0o) = Asin(0o — a), and A sin(0 — a) < v(0)
on (0i, 02), so that it must coincide with A sin(0—a) on [0i ,02]. In particular
it follows from the positivity of v that [0i, 02] C (a, a + TT).

All this leads us to the following contradiction: at the end points of
the interval (0i,02) we have

which is absurd. Thus A = A, i.e. Asin(0 — a) < C(0) on (a, a + 7r).
Q. E. D.
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Lemma 16.4. v°° is a C1 function.

Proof. In the sense of distributions we already know that vf$ > — v°° >
—Af, so that v|° is of bounded variation; in particular, v°° has left and
right hand limits, v°°(0 ± 0), at each $ € R/2TTZ.

Fix any 60 € (0,2TT). If v°°($0) < -F/0($Q)} then v°°(0) is of the
form Asin(0 — a) near 0o> and its derivative is clearly continuous at #o- So
assume that V°°(6Q) = —F/0(6Q).

Suppose that the left and right hand limits of vf° at 60 are different.
Since vf$ > —M, we must have vf>(60 - 0) < vf>(60 + 0). Choose p € R
and S > 0 such that

v?(60 -0)<p-6<p + 6< v|°(̂ 0 + 0).

Then there is an e > 0 for which v£°(0) < p - 6 holds when 6 € (0 - e, 0O),
while vf{6) >p + 6 when $ € (0o,0o + e). This implies that

v°°(e) > v°°(eo)+P{e - 0O) + s\e - eo\
on the interval (0O - e,0o + «). On the other hand v°°(6) < -F/0(O), with
equality at 6 = ô? which is impossible since —F/p(d) is a smooth function.

Q. E. D.

Lemma 16.5. vf(0,t) converges uniformly to vp>(6)) as t f oo.

Proof. Let S > 0 be given. We have just shown that v°° is C1 , so there
exists an e = €(£) > 0 for which

holds for any 6,6Q € R/27rZ with \0-0*\< e(6). We can choose e(6) in
such a way that it is a continuous function of 6, which vanishes when 6 = 0.

Now choose i* so that v+(0,<) > v°°(0) - c2 for all 6, and all * > t6.
Since v^ > —1>+ > —M, we have the following inequalities for t > t$:

On the other hand we also have .

v+($ ± e,t) < v°°(^ ±e)< v°°(e) ± v?($)e + St.

Subtracting these inequalities we find:

for all 0 and all large enough t.
Q. E. D.
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These lemmas allow us to prove the main result of this section. Recall
that we had denoted the domain corresponding to v+(0,t) by £2+(t), and
let p*(6it) be its support function. Then we have p* = v + , so that

By dividing the equation by t on both sides, and letting t tend to infinity

we find the following:

where the convergence
parametrized by

is in C1(R/27rZ). Since the boundary of ft+(t) is

we
also get convergence of the parametrization:

where X°°(d) = v°°(0)<tt(0) - vF[pyx[v)\ the convergence is uniform in 0.
Now consider any solution £2(t) of (1.1) which exists for all time, and

whose initial value £2(0) encloses the steady state £2*. Then if to is suffi-
ciently large, £2(0) must be contained in $"2+(to), while £2(0) must contain
£2+(—ti) for sufficiently large ti > 0. By the containment property we
get £2+(t - t i) C Q(t) C £2+(t +1 0 ) for all t > 0. The velocity of the
boundary of £2+(t) is given by t;+(0,t), so that it is uniformly bounded.
Therefore f2+(t+to) is contained in an R neighborhood of fl+(t —ti), where
R = ( t o+ti)supv+ (0 , t ) . Since £2+(t+t0) certainly contains £2+(t-ti), the
Hausdorff distance between £2(t) and £2+(t) is bounded by R. If we shrink
the domains by dilating them by a factor f"1, their Hausdorff distance
becomes at most R/t> and the convergence of £2+(t) implies the following
theorem.
Theorem 16.6. Let $2 : [0,oo) -^ £>2'° be a solution of (1.1) for which
ft* C £2(0). Then the domain Cl(t) obtained from £2(t) by shrinking it by a
factor t""1 converges to the domain J2°° whose support function is v°°{6).
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