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Signal Recovery on Graphs:
Random versus Experimentally Designed Sampling

Siheng Chen, Rohan Varma, Aarti Singh, Jelena Kovacevi¢

Abstract—We study signal recovery on graphs based on two graphs: a ring graph, an Erdés-Rényi graph, and a stahgrap
sampling strategies: random sampling and experimentally d- The simulation results support the theoretical analysis.
signed sampling. We propose a new class of smooth graph
signals, called approximately bandlimited, which generakes the
bandlimited class and is similar to the globally smooth clas. We

then propose two recovery strategies based on random samptj Il. DISCRETESIGNAL PROCESSING ONGRAPHS
and experimentally designed sampling. The proposed recome
strategy based on experimentally designed sampling is sitari to We now briefly review discrete signal processing on

the leverage scores used in the matrix approximation. We sho  graphs [[2], which lays a foundation for the proposed work.
that while both strategies are unbiased estimators for the dw- We consider a grapti’ = (V, A), whereV = {v, ..., on_1}

frequency components, the convergence rate of experimerig . NxN .
designed sampling is much faster than that of random samplig 1S the set of nodes and € R™*™ is the graph shift, or a
when a graph is irregular. We validate the proposed recovery weighted adjacency matrix. As the most basic filter defined

strategies on three specific graphs: a ring graph, an Erfis-Rényi  on this graph, the graph shift represents the connections of
graph, and a star graph. The simulation results support the the graph(@, which can be either directed or undirected. The
theoretical analysis. edge weightA,, ,, between nodes,, and v,, is a quanti-
tative expression of the underlying relation between ditie
I. INTRODUCTION and themth node, such as a similarity, a dependency, or a

We consider sampling and recovery within the framewof®@Mmunication pattern. To _guaran_tee that t_h(_e filtered $igna
of signal processing on graphs, which studies signals with groperl_y scaled for comparison with the original ohé [2], we
underlying complex structuré[1]][2]. The framework magleinormalize the graph shift, such thgt,..(A)| = 1. Once the
that underlying structure by a graph and signals by graﬁ‘l‘?de order is fixed, the g}raph signal can be written as a vector

signals, generalizing concepts and tools from classicardte * = [@0,21,...,2n-1]" € RY. The Jordan decomposition
signal processing. of A is [2]
The task of sampling and recovery is one of the most A=VATU, (1)

critical topics in the signal processing community. As the

bridge connecting sequences and functions, classicalls@mpyhere the generalized eigenvectorsfoform the columns of
theory shows that a bandlimited function can be perfectlyairix v | U = v~ (the norm of each row off is normalized
recovered from its sampled sequence if the sampling rateds gne), andA € RV*N is the block diagonal matrix of
high enough. The interest in sampling and recovery of grapBresponding eigenvalues, ... Ax_1 of A (1 = \g > \; >

signals has increased in the last few yeais [3], [4], [5]4Gh [ ..., > An_1> —1). Thegraph Fourier transform of x € R¥
authors proposed an algorithm to recover graph signals that

have small variation based on random sampling.[In [4], [7],

authors proposed a sampling theory for graph signals and x=Ux. (2)
show perfect recovery for bandlimited graph signals based o ) _ R
experimentally designed sampling. The inverse graph Fourier transform is x = VX =

In this paper, we propose a new class of graph signaE]kVQO1 Zrv, where vy is the kth column of V and z;. is
called approximately bandlimited, which generalizes the ban-the kth component ink. The vectorx in (2) represents the
dlimited class and is similar to the globally smooth clas§ignal’s expansion in the eigenvector basis and descriees t
We then propose two recovery strategies based on randBgfluency components of the graph sigrallhe inverse graph
sampling and experimentally designed sampling, and boufi@urier transform reconstructs the graph signal by combini
the recovery error for the class of approximately bandéahit 9raph frequency components. Wharmepresents an undirected
graph signals. We show that the proposed recovery strated#aph, we havéJ = V', and bothU and V are orthonormal.
are unbiased estimators for low-frequency components afggeneral,V may not be orthonormal; to restrict its behavior,
that experimentally designed sampling outperforms randofg¢ assume that
sampling in terms of the convergence rate when a graph is ) ) ) N
irregular. We validate both recovery strategies on threeisip o [[x[l; < [[Vx|” < az (x|, forallx e R™, (3)

The authors gratefully acknowledge support from the NSFoubh where oy, as > 0, that is, V is a Riesz basis with stability
awards 1130616, 1017278,1421919, the University Tratetpan Center grant ’

(DTRT12-GUTC11) from the US Department of Transportatiang the CMU constantsay, ap [8J The eigenvalues)y, ... Axy_; of A,
Carnegie Institute of Technology Infrastructure Award. represent frequencies on the graph [2].
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I1l. PROBLEM FORMULATION The following theorem shows the relationship between
We now review two standard classes of graph signals, afLla (K, 3, 1) andGSa ().

propose a new one, which connects the first two. We negfieorem 1. ABL (K, 3, 1) is a subset of3S (1), when
describe the sampling and recovery strategies of intehest.

this way, we show the connection between our work and the Aot 2
previous work: graph signal inpainting and sampling themmy nz|1=-Ax-1+ m ;
graphs.

GSa(n) is a subset oABL4 (K, 8, ), when
A. Graph Sgnal Model L4 (N —1)2
We focus on smooth graph signals, that is, the signal Bz mn
coefficient at each node is close to the signal coefficients of
its neighbors. In literature [6].[7], two classes of grajpgmsls From Theorenill, we see that when choosing proper param-
have been introduced to measure the smoothness on grapt®ers,GSa(n) is a subset oABL (K, 3, u).

Definition 1. A graph signatkx € R is globally smooth on a

graphA € RY*N with parameter; > 0, when B. Sampling & Recovery
x — AXH% < HXH; () W(.a consider the procgdure (_)f sampling _and reco]\éery as fol-
_ _ lows: we sampleV/ coefficients in a graph signal € R* with
Denote this class of graph signals B (n). noise to produce a noisy sampled siggat RM (M < N),

Since we normalized the graph shift such that.(A)| = thatis,

1; when n > 4, all graph signals satisfy[{4). While the
recovery of globally smooth graph signals has been studied
in [6] (leading to graph signal inpainting), global smoagsa wheree ~ N (0,0% Iyrxnr), M = (Mo, -+, Myr—1) denotes
is a general requirement, making it hard to provide furthéihe sequence of sampled indices, calnpling set, with
theoretical insight([9]. M; € {0,1,--- N — 1}, xp Is the noiseless sampled
coefficients, and the sampling operatbris a linear mapping
from RN to RM,

y = Ux+e = xp +e, (6)

Definition 2. A graph signalx € R is bandlimited on a

graph A with parameterK € {0,1,---,N — 1}, when the

graph frequency componerkssatisfies " { 1, j=M; )
ij —

EC\k = 0 for all k Z K. 0, OtherWISe

) We then interpolate to getx’ € RY, which recovers either
' exactly or approximately.

While the recovery of bandlimited graph signals has beenwe consider two sampling strategiemndom sampling
studied in [7] (leading to sampling theory on graphs), th@eans that sample indices is chosen from frigmt, - - - | N —
bandlimited requirement is a restricted requirement, nrgikil} independently and randomly; anekperimentally design
it hard to use in the real world applications. We thus proposgmpling means that sample indices can be chosen beforehand.
a third class that relaxes it, but still promotes smoothness |t is clear that random sampling is a subset of experimgntall
design sampling.

Denote this class of graph signals By.x (K

Definition 3. A graph signalx € R is approximately
bandlimited on a graphA with parameters > 1 andu > 0,
when there exists & € {0,1,--- , N — 1} such that its graph IV. RECOVERY STRATEGY

Fourier transforn satisfies We now propose two recovery strategies based on ran-

N1 26\ A2 5 dom sampling and experimentally designed sampling. In Sec-

Z(l +E)T < pllxll; ®)  tion [M=A] we showed that a graph signal is smooth when

k=K its energy is mainly concentrated in the low-frequency com-
Denote this class of graph signals BBLA (K, 3, u). ponents. For example, for the claBd., (K), all the energy

is concentrated in the firsk® frequency components and the
graph signal can be perfectly recovered by using those first
frequency components. The recovery strategies we propose
ere follow this intuition, by providing unbiased estimatdor
{he low-frequency components.

We see thaBL, (K) is a subset ofABL (K, 3, 1) with
u= 0,8 =0. The approximately bandlimited class allows fo
a tail after the firstK" frequency components. The paramet
1 controls the shape of the tail; the smaller flhethe smaller
the energy contribution from the high-frequency composen
The parameteps controls the speed of energy decaying; the
larger the 3, the larger the penalty on the high-frequency. Recovery Strategy based on Random Sampling
components. The class &L (K) is similar to the ellipsoid
constraints in[[10], where all the graph frequency comptsen
are considered in the constraints; thUsBLA (K) provides Algorithm 1. We sample a graph signg\| times. Each time,
more flexibility for the low-frequency components. we choose a nodeé independently and randomly, and take a

We consider the following recovery strategy.
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measuremeny;. We then recover the original graph signal byollowing two steps:
using the following two steps:

~ 1 1
T o= — Ups i,
N k |M| Z w; ki Yi
T, = — Z Ui yi M
M - . .
iEM x; = Z Vik Ty,
¥ o= Y Vi, k<
k<w wherez} is theith component of the recovered graph sigkal

wherez? is theith component of the recovered graph sigaal ~ Similarly to Algorithm[d, Algorithm2 aims to estimate the
. , , i first k frequency components, and reconstructs the original
Algorithm[1l aims to estimate the first frequency compo- 4anh signal based on these graph frequency components. The
nents, and reconstruct the original graph signal based @ethigterence comes from the normalization factor. In Alglonid,
graph frequency components. The only tuning parameter §f, contribution from each measurement is normalized by

Algorithm[1 is the bandwidth:. To show the performance of 5 constant, the size of the graph; and in Algoritiin 2, the

Algorithm[J for recovering the low-frequency components, Weqntribytion from each measurement is normalized based on

have the following results. . the norm of the corresponding columni,,,. It is similar to
Denote V. be the firstx columns of the inverse graphjeverage scores used in the matrix approximation [11], eher
Fourier transform matri¥/, and U, be the firsts rows of the goal is to evaluate the contribution from each column to
the graph Fourier transform matrix. approximating matrix. Note that leverage scores use thennor
2
Lemma 1. Algorithm[d with bandwidths provides an unbiased SAuare,|uil3, and we use the nornffu; ||,. When we use the

estimator of the firsk: frequency components, that is, norm square as probability, the performance is the same with
the random sampling.

Ex* = V(U x, forall x, We can show that Algorithiin] 2 is also an unbiased estimator
for recovering the low-frequency components, and potiytia
wherex* is the result of Algorithni]1. has a tighter upper bound.

The advantage of Algorithni] 1 is its efficiency, that isl.emma 2. Algorithm[2 with bandwidth: provides an unbiased
we only need the first= eigenvectors involved with the estimator of the firsk frequency components, that is,
computation, which is appealing for large-scale graphse Th
disadvantage is that when the main energy of an originalrgrap
signal is not concentrated in the firstfrequency components, wherex* is the result of Algorithni .

the recovered graph signal has a large bias. Theorem 3. For x € ABLA (K, 5, 1), let x* be the result of
Theorem 2. For x € ABL(K, 8, ), let x* be the result of Algorithm[2 with bandwidthx > K, we have,
Algorithm [T with bandwidth< > K, we have,

Ex* = VU x, forall x,

2 2 2
« 2 agp x|y | az(max; 5 +07) 2
2 2 2 Elx* —x[” < 25 2 ./\/l] HU(“)HQJ'
e oz ceplxlly | as(max;ai+ o) 2 K M| :
Bl —xl" = =55 N Uz . o
K |M]| The main idea also follows from the bias-variance trade-

off. We see that Algorithm§]1l andl 2 have the same bias
by recovering the firskc frequency components on expecta-
tion. When each column df,.y has roughly similar energy,

Due to the limited space, we do not show the proof heral HU(N)H? and ||U(H)||; , are similar. However, when the
The main idea follows from the bias-variance tradeoff. Ths fi energy is concentrated on a few cqumNsHU(N)HQF is much

term is the bias term, and the second terms is the vanaqggger thanHU(n)HZ ., in other words, Algorithm(2 has a

term. Since Algorithmi11 can recover the first frequency . 2. . .
9 . . q Y S|eqn|f|cant advantage over Algorithid 1 when the associated
components on expectation, the bias comes from the oth o
raph structure is irregular.

(N —k) frequency components, which can be bounded from !

definition of ABL(K, i, 5) whenx > K. The variance term
2 .

depends on|U,, ||, which represents the graph structure.

wherea, is the stability constant of in @), o2 is the noise
level in (8), and||-|| . is the Frobenius norm.

C. Convergence Rates

To discriminate the proposed recovery strategies, we [@@®po
two types of graphs, and compare the convergence rates of
B. Recovery Strategy based on Experimentally Designed Sam-  Algorithms[1 and P for each type of these two.

pling Definition 4. A graphA € RV*¥ is type-1, when

We consider the following recovery strategy. Ui | = O(N-2), foralli,j=0,1 N1
i, - ; s — Uyttt ]

Algorithm 2. We sample a graph signgW1| times. Each time,
we choose a node with probability; = ||u;||, / Z;V;(Jl [lajll,,
whereu; is theith column ofU,,, and take a measurement For a type-1 graph, each elementlinhas roughly similar

y;. We then recover the original graph signal by using thmagnitudes, that is, the energy evenly spreads to each eleme

whereU are the graph Fourier transform matrix Af
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in U. Some examples are discrete-time graphs, discrete-sphoands areC’ N|M|~. We see that Algorithril2 has a larger
graphs, and unweighted circulant graphs. Based on The@emesonvergence rate than Algorithmh 1, that is, experimentddly
and[3, we conclude as follows. signed sampling exhibits much better performance thanarand
Corollary 1. Let A € RV*Y pe a type-1 graph, for the classS2MPling for the type-2 grapzh. Th.e advantages f(;"OW from
ABLA (K, 3. 1). that, for tzype-Z graph#,’U(N)\]27l is in the order ofx?, and

. Let x* be the results given by Algorith] 1 with the®N |[Us||f is in the order ofN&.

bandwidthx > K, we have

D. Relation to Graph Sgnal Inpainting

1 * 2 . 7%
NE (Hx B x”2) < Cmin{|M], N}, Graph signal inpainting aims at recovering globally smooth
whereC > 0, and the rate is achieved whenis in the 9raph signals based on random sampling. It solves the fellow

order of | M|/(26+1) and upper bounded bi’; ing optimization problem,
. It_); ;Widt;ﬁﬁtie I;esvu;ti a%(\a/en by Algorithra] 2 with the < — ar gmin Ix — Ax]2, (8a)

1 , s subject to [|[Ux —y[3 < o2, (8b)
SE(Ix —xI3) < cim—7, - | | |

N whereo? is noise levely is a vector representation of the noisy
whereC > 0, and the rate is achieved whenis in the measurement§](6), antl is the sampling operatof](7). Graph
order of | M|/ (28+1) and upper bounded by signal inpainting focuses on recovery in the vertex domain,
B . ._and the proposed recovery strategies focus on recovery in
When|M| > N, we setx = N, and then the bias term Isgraph spectral domain. The optimum pf (8) guarantees tleat th

zero, and both upper bounds are actually|M|~'. We see he(iovered graph signal is close to the measurements at given
that Algorithms[1 anl2 have the same convergence rate, t (a)ldes, but Algorithmgl1l arild 2 guarantee the recovery of the

is, experimentally designed sampling does not perforrrebetp f i
than random sampling for the type-1 graphs. ow-lrequency components.

Definition 5. A graph A € RV*" is type-2 with parameter £ Raation to Sampling Theory on Graphs

K , wh . ) . -
0 >0, when Sampling theory on graphs aims at recovering bandlimited

Hh(TIf) < aHh(TK)’ , for all K > K, graph signals based on both the random sampling and the
! ! experimentally designed samplinig [7]. It solves the follogy
whereh!") = /S5 ' U2 . T indexes the largest elements OPtimization problem,

in h, T indexes the othefN — K) elements, andk > 0isa yx* — argmin, cp;,, (o) [[¥x — y||§ =V (T Vi) Ty, (9

constant. _ _ )
where ¥ is the sampling operatof](7)y is a vector rep-

A type-2 graph requireb to be approximately sparse. Whenesentation of the noisy measuremerits (6), 4d is the
we take the firsti’ rows to form a submatrix, the energy inpseudo-inverse. When the original graph signal is banttini
the submatrix concentrates in a few columns. The simulatio BLA(K), it is clear that the result of9) is an unbi-
show that scale-free graphs fall into this type approxifyate ased estimator ok. When the original graph signal is not
Based on Theorenis 2, ahfl 3, we conclude the following pandlimited, the result of19) is a biased estimator of thet fir
Corollary 2. Let A € RVN*N pe a type-2 graph with parameters” frequency components, because the signal belonging to the
Ko, for the classABL, (K, 8, p). other frequency band also projects onto the fifstomponents.
In a sense of recovering the low-frequency componefts, (9)

» Let x* be the results given by Algorithrfi] 1 with theneeds fewer samples, but Algorithids 1 &hd 2 are more reliable

bandwidthx > K, we have

1e (HX*—XHg) < CM| =, V. EXPERIMENTAL RESULTS

N
. . . In this section, we compare the empirical performance of
whereC' > 01’ a2nd 1the rate is achieved whenis in the Algorithms[1 and R on three specific graphs: a ring graph, an
order of | M|"/(26+1) and upper bounded bi; o
Let x* be th its ai by Algorith] 2 with th Erdds-Rényi graph, and a star graph.
* be ;‘ 'dtﬁ >e resuKs]?Nen 3:] gon Wi € For each graphA, we generate 50 graph signals by the
andwidths > max{K, Ko}, we have following two steps. We first generate the graph frequency

SE (I - xI2) < ClmTEH= < ¢, components as

. . o [ ~N(1,0.5?) if k<K,
whereC > 0, the rate is achieved whenis in the order Tey _ K2k if k> K.

of | M|/(28+2=7) and upper bounded bi, and o _ ~
log | M| (28 +2) 1Og]\)N§ then normalizé to have norm one, and obtain= V x.
————— 1} max{l, ltig]clear thatx € ABL (K, 3, 1), whereK = 10 andj3 = 1.
logmax{k, Ko} (log N + log |fv‘ILLring the sampling, we simulate the noise- A/(0,0.12). In
Similarly to the type 1 graphs, whep\| > N, we set the recovery, we set the bandwidtho 10 for both algorithms.
k = N, and then the bias term is zero, and both upp#&ve consider the following three graphs.

v € [max{1,28+2—
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(a) Ring graph with 4-nearest neighbor . (b) Erd6s-Réemgiph. (c) Star graph.

Fig. 1: Comparison of recovery error of Algoritioh 1 (blue wey and 2 (red curve). MSE indicates the mean square error.

Ring Graph with k-nearest Neighbors.We consider a estimators for the low-frequency components, and expérime
graph with each node connecting to ksnearest neighbors. tally designed sampling outperforms random sampling when a
The eigenvectors are similar to the discrete cosine tramsfograph is irregular. We validate the recovery strategieshoeet
and the energy evenly spreads to each eleme@t[it2], which specific graphs: a ring graph, an Erdés-Rényi graph, andra s
follows Definition[4. Based on Corollarfyl 1, we expect thagraph. The simulation results support the theoreticalysil
Algorithm [2 has a similar performance with Algorithgh 1. In
the simulation, the ring graph has 10,000 nodes, and eaah nod REFERENCES

Connests t? It§ 4 nearest nelghb_ors. [1] D.I. Shuman, S. K. Narang, P. Frossard, A. Ortega, anc&Rdergheynst,
Erd6s-Rényi Graph. We consider a random graph where  “The emerging field of signal processing on graphs: Extendifgh-

each pair of nodes is connected with some probability, also dimensional data analysis to networks and other irregularains,”|EEE

=~ s . . . Sgnal Process. Mag., vol. 30, pp. 83-98, May 2013.
known as an Erd6s-Rényi graph [13]. Since the maXImu'TE] A. Sandryhaila and J. M. F. Moura, “Big data processinghwsgignal

value of eigenvectors of an Erdés-Rényi graph is bounded b~ processing on graphsEEE Signal Process. Mag., vol. 31, no. 5, pp.
O(N~'/2) [14], the energy also spreads to each eleme#t,in 80 — 90, 2014.

. " [3] I. Z. Pesenson, “Sampling in Paley-Wiener spaces on duedrial
which follows Definition[4. Based on Corollafy 1, we expect graphs,” Trans. Amer. Math. Soc., vol. 360, no. 10, pp. 5603-5627, May

that Algorithm[2 has a similar performance with Algoritfiin 1. 2008.
In the simulation, the Erdés-Rényi graph has 10,000 noatess  [4] A Anis, A. Gadde, and A. Ortega, “Towards a sampling tieeo for

. . . e signals on arbitrary graphs,” iRroc. |IEEE Int. Conf. Acoust., Speech
each pair of nodes is connected with probability of 0.01t tha Signal Process,, May 2014, pp. 3864 — 3868.

is, each node has 100 neighbors on expectation. [5] X. Wang, P. Liu, and Y. Gu, “Local-set-based graph sigredlonstruc-
Star Graph. We consider a graph with a central node _ ftion” IEEE Trans. Sgnal Process, 2015, To appear.

. Eﬂ S. Chen, A. Sandryhaila, J. M. F. Moura, and J. KovageviSignal
connecting to every other nodes, known as the star graph. 10 ocovery on graphsJEEE Trans. Signal Process, 2014, To appear.

this case, the energy concentrates in the central nodehwhif7] s. Chen, R. Varma, A. Sandryhaila, and J. Kovatevicjstiete signal
follows Definition[§. Based on Corollarfyl 2, we expect that Processing on graphs: Sampling theoryEEE Trans. Signal Process,,

. . . . 2015, Submitted.
Algorithm [2 outperforms Algorithni]1. In the simulation, the (8] M. Vetterli, J. Kovatevic, and V. K. Goyal, Foundations

star graph has 10,000 nodes. of Signal Processing, Cambridge University Press, 2014,

; _ http://www.fourierandwavelets.org/.
. ReSUItS'Flgure{] compares the performances between Alg 9] J. Sharpnack and A. Singh, “ldentifying graph-struetliractivation
rithms[1 andR averaged over 50 tests. The blue curve refisese patterns in networks,” inProc. Neural Information Process. Syst.,

Algorithm [1, the red curve represents Algoritith 2, and the Vancouver, Dec. 2010, pp. 2137-2145.

; ; ; ; [10] I. M. Johnstone, Minimax Bayes, Asymptotic Minimax and Sparse
black dotted line represented the linear approximationkisy t Wavelet Priors, Statistical Decision Theory and Related Topics V.

true firstK' frequency components. We see that both algorithms  gpringer, 1994.
converges to the linear approximation by the fiStfrequency [11] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. Wasff| “Fast

; ; approximation of matrix coherence and statistical levefagournal of
components, which supports the results in Lemfdas 1[&nd 2. Machine Learning Research, vol. 13, pp. 34753506, 2012,

For two type-1 graphs, including the ring graph with 4-nefire[12] A sandryhaila, J. Kovatevic, and M. Piischel, “Agaic signal
neighbors and an Erd6s-Rényi graph, Algorithids 1 &hd 2 processing theory: 1-D nearest-neighbor modekEEE Trans. Signal

; imi . Uﬂm Process., vol. 60, no. 5, pp. 2247-2259, May 2012.
provide similar results; however, fO_I’ the star gr-aph, Al 2 13] M. Newman,Networks: An Introduction, Oxford University Press, 2010.
performs much better than Algorithid 1, which supports thgs) L. v Tran, V. H. Wu, and K. Wang, “Sparse random graphigeBvalues
results in Corollariegl1 ard 2. and eigenvectors,Random Struct. Algorithms, vol. 42, no. 1, pp. 110
134, 2013.

VI. CONCLUSIONS

We proposed a new class of smooth graph signals, called
approximated bandlimited, and we then proposed two regover
strategies based on random sampling and experimentally de-
signed sampling. We showed that both strategies are umbiase
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