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Signal Recovery on Graphs:
Random versus Experimentally Designed Sampling

Siheng Chen, Rohan Varma, Aarti Singh, Jelena Kovačević

Abstract—We study signal recovery on graphs based on two
sampling strategies: random sampling and experimentally de-
signed sampling. We propose a new class of smooth graph
signals, called approximately bandlimited, which generalizes the
bandlimited class and is similar to the globally smooth class. We
then propose two recovery strategies based on random sampling
and experimentally designed sampling. The proposed recovery
strategy based on experimentally designed sampling is similar to
the leverage scores used in the matrix approximation. We show
that while both strategies are unbiased estimators for the low-
frequency components, the convergence rate of experimentally
designed sampling is much faster than that of random sampling
when a graph is irregular. We validate the proposed recovery
strategies on three specific graphs: a ring graph, an Erd̋os-Ŕenyi
graph, and a star graph. The simulation results support the
theoretical analysis.

I. I NTRODUCTION

We consider sampling and recovery within the framework
of signal processing on graphs, which studies signals with an
underlying complex structure [1], [2]. The framework models
that underlying structure by a graph and signals by graph
signals, generalizing concepts and tools from classical discrete
signal processing.

The task of sampling and recovery is one of the most
critical topics in the signal processing community. As the
bridge connecting sequences and functions, classical sampling
theory shows that a bandlimited function can be perfectly
recovered from its sampled sequence if the sampling rate is
high enough. The interest in sampling and recovery of graph
signals has increased in the last few years [3], [4], [5]. In [6],
authors proposed an algorithm to recover graph signals that
have small variation based on random sampling. In [4], [7],
authors proposed a sampling theory for graph signals and
show perfect recovery for bandlimited graph signals based on
experimentally designed sampling.

In this paper, we propose a new class of graph signals,
called approximately bandlimited, which generalizes the ban-
dlimited class and is similar to the globally smooth class.
We then propose two recovery strategies based on random
sampling and experimentally designed sampling, and bound
the recovery error for the class of approximately bandlimited
graph signals. We show that the proposed recovery strategies
are unbiased estimators for low-frequency components and
that experimentally designed sampling outperforms random
sampling in terms of the convergence rate when a graph is
irregular. We validate both recovery strategies on three specific
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graphs: a ring graph, an Erdős-Rényi graph, and a star graph.
The simulation results support the theoretical analysis.

II. D ISCRETESIGNAL PROCESSING ONGRAPHS

We now briefly review discrete signal processing on
graphs [2], which lays a foundation for the proposed work.
We consider a graphG = (V ,A), whereV = {v0, . . . , vN−1}
is the set of nodes andA ∈ R

N×N is the graph shift, or a
weighted adjacency matrix. As the most basic filter defined
on this graph, the graph shift represents the connections of
the graphG, which can be either directed or undirected. The
edge weightAn,m between nodesvn and vm is a quanti-
tative expression of the underlying relation between thenth
and themth node, such as a similarity, a dependency, or a
communication pattern. To guarantee that the filtered signal is
properly scaled for comparison with the original one [2], we
normalize the graph shift, such that|λmax(A)| = 1. Once the
node order is fixed, the graph signal can be written as a vector,
x =

[
x0, x1, . . . , xN−1

]T
∈ R

N . The Jordan decomposition
of A is [2]

A = VΛU, (1)

where the generalized eigenvectors ofA form the columns of
matrixV , U = V−1 (the norm of each row ofU is normalized
to one), andΛ ∈ R

N×N is the block diagonal matrix of
corresponding eigenvaluesλ0, . . . λN−1 of A (1 = λ0 ≥ λ1 ≥
. . . , ≥ λN−1 ≥ −1). Thegraph Fourier transform of x ∈ R

N

is

x̂ = Ux. (2)

The inverse graph Fourier transform is x = V x̂ =∑N−1
k=0 x̂kvk, where vk is the kth column of V and x̂k is

the kth component in̂x. The vectorx̂ in (2) represents the
signal’s expansion in the eigenvector basis and describes the
frequency components of the graph signalx. The inverse graph
Fourier transform reconstructs the graph signal by combining
graph frequency components. WhenA represents an undirected
graph, we haveU = VT , and bothU andV are orthonormal.
In general,V may not be orthonormal; to restrict its behavior,
we assume that

α1 ‖x‖
2
2 ≤ ‖V x‖2 ≤ α2 ‖x‖

2
2 , for all x ∈ R

N , (3)

whereα1, α2 > 0, that is,V is a Riesz basis with stability
constantsα1, α2 [8]. The eigenvaluesλ0, . . . λN−1 of A,
represent frequencies on the graph [2].

http://arxiv.org/abs/1504.05427v1
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III. PROBLEM FORMULATION

We now review two standard classes of graph signals, and
propose a new one, which connects the first two. We next
describe the sampling and recovery strategies of interest.In
this way, we show the connection between our work and the
previous work: graph signal inpainting and sampling theoryon
graphs.

A. Graph Signal Model

We focus on smooth graph signals, that is, the signal
coefficient at each node is close to the signal coefficients of
its neighbors. In literature [6], [7], two classes of graph signals
have been introduced to measure the smoothness on graphs.

Definition 1. A graph signalx ∈ R
N is globally smooth on a

graphA ∈ R
N×N with parameterη ≥ 0, when

‖x−Ax‖22 ≤ η ‖x‖22 . (4)

Denote this class of graph signals byGSA(η).

Since we normalized the graph shift such that|λmax(A)| =
1; when η ≥ 4, all graph signals satisfy (4). While the
recovery of globally smooth graph signals has been studied
in [6] (leading to graph signal inpainting), global smoothness
is a general requirement, making it hard to provide further
theoretical insight [9].

Definition 2. A graph signalx ∈ R
N is bandlimited on a

graphA with parameterK ∈ {0, 1, · · · , N − 1}, when the
graph frequency componentŝx satisfies

x̂k = 0 for all k ≥ K.

Denote this class of graph signals byBLA(K).

While the recovery of bandlimited graph signals has been
studied in [7] (leading to sampling theory on graphs), the
bandlimited requirement is a restricted requirement, making
it hard to use in the real world applications. We thus propose
a third class that relaxes it, but still promotes smoothness.

Definition 3. A graph signalx ∈ R
N is approximately

bandlimited on a graphA with parametersβ ≥ 1 andµ ≥ 0,
when there exists aK ∈ {0, 1, · · · , N − 1} such that its graph
Fourier transform̂x satisfies

N−1∑

k=K

(1 + k2β)x̂2
k ≤ µ ‖x‖22 . (5)

Denote this class of graph signals byABLA(K,β, µ).

We see thatBLA(K) is a subset ofABLA(K,β, µ) with
µ = 0, β = 0. The approximately bandlimited class allows for
a tail after the firstK frequency components. The parameter
µ controls the shape of the tail; the smaller theµ, the smaller
the energy contribution from the high-frequency components.
The parameterβ controls the speed of energy decaying; the
larger theβ, the larger the penalty on the high-frequency
components. The class ofBLA(K) is similar to the ellipsoid
constraints in [10], where all the graph frequency components
are considered in the constraints; thus,ABLA(K) provides
more flexibility for the low-frequency components.

The following theorem shows the relationship between
ABLA(K,β, µ) andGSA(η).

Theorem 1. ABLA(K,β, µ) is a subset ofGSA(η), when

η ≥

(
1− λK−1 +

√
4α2µ

(1 +K2β)

)2

;

GSA(η) is a subset ofABLA(K,β, µ), when

µ ≥
1 + (N − 1)2β

(1− λK)α1
η.

From Theorem 1, we see that when choosing proper param-
eters,GSA(η) is a subset ofABLA(K,β, µ).

B. Sampling & Recovery

We consider the procedure of sampling and recovery as fol-
lows: we sampleM coefficients in a graph signalx ∈ R

N with
noise to produce a noisy sampled signaly ∈ R

M (M < N),
that is,

y = Ψx+ ǫ ≡ xM + ǫ, (6)

whereǫ ∼ N (0, σ2 IM×M ), M = (M0, · · · ,MM−1) denotes
the sequence of sampled indices, calledsampling set, with
Mi ∈ {0, 1, · · · , N − 1}, xM is the noiseless sampled
coefficients, and the sampling operatorΨ is a linear mapping
from R

N to R
M ,

Ψi,j =

{
1, j = Mi;
0, otherwise.

(7)

We then interpolatey to getx′ ∈ R
N , which recoversx either

exactly or approximately.
We consider two sampling strategies:random sampling

means that sample indices is chosen from from{0, 1, · · · , N−
1} independently and randomly; andexperimentally design
sampling means that sample indices can be chosen beforehand.
It is clear that random sampling is a subset of experimentally
design sampling.

IV. RECOVERY STRATEGY

We now propose two recovery strategies based on ran-
dom sampling and experimentally designed sampling. In Sec-
tion III-A, we showed that a graph signal is smooth when
its energy is mainly concentrated in the low-frequency com-
ponents. For example, for the classBLA(K), all the energy
is concentrated in the firstK frequency components and the
graph signal can be perfectly recovered by using those first
K frequency components. The recovery strategies we propose
here follow this intuition, by providing unbiased estimators for
the low-frequency components.

A. Recovery Strategy based on Random Sampling

We consider the following recovery strategy.

Algorithm 1. We sample a graph signal|M| times. Each time,
we choose a nodei independently and randomly, and take a
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measurementyi. We then recover the original graph signal by
using the following two steps:

x̂∗
k =

N

|M|

∑

i∈M

Uki yi,

x∗
i =

∑

k<κ

Vik x̂
∗
k,

wherex∗
i is theith component of the recovered graph signalx∗.

Algorithm 1 aims to estimate the firstκ frequency compo-
nents, and reconstruct the original graph signal based on these
graph frequency components. The only tuning parameter in
Algorithm 1 is the bandwidthκ. To show the performance of
Algorithm 1 for recovering the low-frequency components, we
have the following results.

DenoteV(κ) be the firstκ columns of the inverse graph
Fourier transform matrixV, andU(κ) be the firstκ rows of
the graph Fourier transform matrixU.

Lemma 1. Algorithm 1 with bandwidthκ provides an unbiased
estimator of the firstκ frequency components, that is,

Ex∗ = V(κ) U(κ) x, for all x,

wherex∗ is the result of Algorithm 1.

The advantage of Algorithm 1 is its efficiency, that is,
we only need the firstκ eigenvectors involved with the
computation, which is appealing for large-scale graphs. The
disadvantage is that when the main energy of an original graph
signal is not concentrated in the firstκ frequency components,
the recovered graph signal has a large bias.

Theorem 2. For x ∈ ABL(K,β, µ), let x∗ be the result of
Algorithm 1 with bandwidthκ ≥ K, we have,

E ‖x∗ − x‖2 ≤
α2µ ‖x‖22

κ2β
+

α2(maxj x
2
j + σ2)

|M|
N
∥∥U(κ)

∥∥2
F
,

whereα2 is the stability constant ofV in (3), σ2 is the noise
level in (6), and‖·‖F is the Frobenius norm.

Due to the limited space, we do not show the proof here.
The main idea follows from the bias-variance tradeoff. The first
term is the bias term, and the second terms is the variance
term. Since Algorithm 1 can recover the firstκ frequency
components on expectation, the bias comes from the other
(N−κ) frequency components, which can be bounded from the
definition of ABL(K,µ, β) whenκ ≥ K. The variance term
depends on

∥∥U(κ)

∥∥2
F

, which represents the graph structure.

B. Recovery Strategy based on Experimentally Designed Sam-
pling

We consider the following recovery strategy.

Algorithm 2. We sample a graph signal|M| times. Each time,
we choose a node with probabilitywi = ‖ui‖2 /

∑N−1
j=0 ‖uj‖2,

whereui is the ith column ofU(κ), and take a measurement
yi. We then recover the original graph signal by using the

following two steps:

x̂∗
k =

1

|M|

∑

i∈M

1

wi
Uki yi,

x∗
i =

∑

k<κ

Vik x̂
∗
k.

wherex∗
i is theith component of the recovered graph signalx∗.

Similarly to Algorithm 1, Algorithm 2 aims to estimate the
first κ frequency components, and reconstructs the original
graph signal based on these graph frequency components. The
difference comes from the normalization factor. In Algorithm 1,
the contribution from each measurement is normalized by
a constant, the size of the graph; and in Algorithm 2, the
contribution from each measurement is normalized based on
the norm of the corresponding column inU(κ). It is similar to
leverage scores used in the matrix approximation [11], where
the goal is to evaluate the contribution from each column to
approximating matrix. Note that leverage scores use the norm
square,‖ui‖

2
2, and we use the norm,‖ui‖2. When we use the

norm square as probability, the performance is the same with
the random sampling.

We can show that Algorithm 2 is also an unbiased estimator
for recovering the low-frequency components, and potentially
has a tighter upper bound.

Lemma 2. Algorithm 2 with bandwidthκ provides an unbiased
estimator of the firstκ frequency components, that is,

Ex∗ = V(κ) U(κ) x, for all x,

wherex∗ is the result of Algorithm 2.

Theorem 3. For x ∈ ABLA(K,β, µ), let x∗ be the result of
Algorithm 2 with bandwidthκ ≥ K, we have,

E ‖x∗ − x‖2 ≤
α2µ ‖x‖22

κ2β
+

α2(maxj x
2
j + σ2)

|M|

∥∥U(κ)

∥∥2
2,1

.

The main idea also follows from the bias-variance trade-
off. We see that Algorithms 1 and 2 have the same bias
by recovering the firstκ frequency components on expecta-
tion. When each column ofU(κ) has roughly similar energy,

N
∥∥U(κ)

∥∥2
F

and
∥∥U(κ)

∥∥2
2,1

are similar. However, when the

energy is concentrated on a few columns,N
∥∥U(κ)

∥∥2
F

is much

larger than
∥∥U(κ)

∥∥2
2,1

, in other words, Algorithm 2 has a
significant advantage over Algorithm 1 when the associated
graph structure is irregular.

C. Convergence Rates

To discriminate the proposed recovery strategies, we propose
two types of graphs, and compare the convergence rates of
Algorithms 1 and 2 for each type of these two.

Definition 4. A graphA ∈ R
N×N is type-1, when

|Ui,j | = O(N−1/2), for all i, j = 0, 1, · · · , N − 1,

whereU are the graph Fourier transform matrix ofA.

For a type-1 graph, each element inU has roughly similar
magnitudes, that is, the energy evenly spreads to each element
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in U. Some examples are discrete-time graphs, discrete-space
graphs, and unweighted circulant graphs. Based on Theorems2,
and 3, we conclude as follows.

Corollary 1. Let A ∈ R
N×N be a type-1 graph, for the class

ABLA(K,β, µ).

• Let x∗ be the results given by Algorithm 1 with the
bandwidthκ ≥ K, we have

1

N
E

(
‖x∗ − x‖22

)
≤ Cmin{|M|, N}−

2β
2β+1 ,

whereC > 0, and the rate is achieved whenκ is in the
order of |M|1/(2β+1) and upper bounded byN ;

• Let x∗ be the results given by Algorithm 2 with the
bandwidthκ ≥ K, we have

1

N
E

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 ,

whereC > 0, and the rate is achieved whenκ is in the
order of |M|1/(2β+1) and upper bounded byN .

When |M| ≫ N , we setκ = N , and then the bias term is
zero, and both upper bounds are actuallyCN |M|−1. We see
that Algorithms 1 and 2 have the same convergence rate, that
is, experimentally designed sampling does not perform better
than random sampling for the type-1 graphs.

Definition 5. A graphA ∈ R
N×N is type-2 with parameter

K0 > 0, when
∥∥∥h(K)

T c

∥∥∥
1
≤ α

∥∥∥h(K)
T

∥∥∥
1
, for all K ≥ K0,

whereh(K)
i =

√∑K−1
k=0 U2

k,i, T indexes the largestK elements
in h, T c indexes the other(N −K) elements, andα > 0 is a
constant.

A type-2 graph requiresU to be approximately sparse. When
we take the firstK rows to form a submatrix, the energy in
the submatrix concentrates in a few columns. The simulations
show that scale-free graphs fall into this type approximately.

Based on Theorems 2, and 3, we conclude the following.

Corollary 2. Let A ∈ R
N×N be a type-2 graph with parameter

K0, for the classABLA(K,β, µ).
• Let x∗ be the results given by Algorithm 1 with the

bandwidthκ ≥ K, we have

1

N
E

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+1 ,

whereC > 0, and the rate is achieved whenκ is in the
order of |M|1/(2β+1) and upper bounded byN ;

• Let x∗ be the results given by Algorithm 2 with the
bandwidthκ ≥ max{K,K0}, we have

1

N
E

(
‖x∗ − x‖22

)
≤ C|M|−

2β
2β+2−γ ≤ C′|M|−

2β
2β+1 ,

whereC > 0, the rate is achieved whenκ is in the order
of |M|1/(2β+2−γ) and upper bounded byN , and

γ ∈ [max{1, 2β+2−
log |M|

logmax{K,K0}
},max{1,

(2β + 2) logN

(logN + log |M|)
}].

Similarly to the type 1 graphs, when|M| ≫ N , we set
κ = N , and then the bias term is zero, and both upper

bounds areCN |M|−1. We see that Algorithm 2 has a larger
convergence rate than Algorithm 1, that is, experimentallyde-
signed sampling exhibits much better performance than random
sampling for the type-2 graph. The advantages follow from
that, for type-2 graphs,

∥∥U(κ)

∥∥2
2,1

is in the order ofκ2, and

N
∥∥U(κ)

∥∥2
F

is in the order ofNκ.

D. Relation to Graph Signal Inpainting

Graph signal inpainting aims at recovering globally smooth
graph signals based on random sampling. It solves the follow-
ing optimization problem,

x∗ = argmin
x

‖x−Ax‖22 , (8a)

subject to ‖Ψx− y‖22 ≤ σ2, (8b)

whereσ2 is noise level,y is a vector representation of the noisy
measurements (6), andΨ is the sampling operator (7). Graph
signal inpainting focuses on recovery in the vertex domain,
and the proposed recovery strategies focus on recovery in
graph spectral domain. The optimum of (8) guarantees that the
recovered graph signal is close to the measurements at given
nodes, but Algorithms 1 and 2 guarantee the recovery of the
low-frequency components.

E. Relation to Sampling Theory on Graphs

Sampling theory on graphs aims at recovering bandlimited
graph signals based on both the random sampling and the
experimentally designed sampling [7]. It solves the following
optimization problem,

x∗ = argmin
x∈BLA(K) ‖Ψx− y‖22 = V(K)(ΨV(K))

+y, (9)

where Ψ is the sampling operator (7),y is a vector rep-
resentation of the noisy measurements (6), and(·)+ is the
pseudo-inverse. When the original graph signal is bandlimited,
x ∈ BLA(K), it is clear that the result of (9) is an unbi-
ased estimator ofx. When the original graph signal is not
bandlimited, the result of (9) is a biased estimator of the first
K frequency components, because the signal belonging to the
other frequency band also projects onto the firstK components.
In a sense of recovering the low-frequency components, (9)
needs fewer samples, but Algorithms 1 and 2 are more reliable.

V. EXPERIMENTAL RESULTS

In this section, we compare the empirical performance of
Algorithms 1 and 2 on three specific graphs: a ring graph, an
Erdős-Rényi graph, and a star graph.

For each graphA, we generate 50 graph signals by the
following two steps. We first generate the graph frequency
components as

x̂k

{
∼ N (1, 0.52) if k < K,
= K2β/k2β if k ≥ K.

We then normalizêx to have norm one, and obtainx = V x̂.
It is clear thatx ∈ ABLA(K,β, µ), whereK = 10 andβ = 1.
During the sampling, we simulate the noiseǫ ∼ N (0, 0.12). In
the recovery, we set the bandwidthκ to 10 for both algorithms.
We consider the following three graphs.
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(a) Ring graph with 4-nearest neighbor . (b) Erdős-Rényi graph. (c) Star graph.

Fig. 1: Comparison of recovery error of Algorithm 1 (blue curve) and 2 (red curve). MSE indicates the mean square error.

Ring Graph with k-nearest Neighbors.We consider a
graph with each node connecting to itsk-nearest neighbors.
The eigenvectors are similar to the discrete cosine transform
and the energy evenly spreads to each element inU [12], which
follows Definition 4. Based on Corollary 1, we expect that
Algorithm 2 has a similar performance with Algorithm 1. In
the simulation, the ring graph has 10,000 nodes, and each node
connects to its 4 nearest neighbors.

Erdős-Rényi Graph. We consider a random graph where
each pair of nodes is connected with some probability, also
known as an Erdős-Rényi graph [13]. Since the maximum
value of eigenvectors of an Erdős-Rényi graph is bounded by
O(N−1/2) [14], the energy also spreads to each element inV,
which follows Definition 4. Based on Corollary 1, we expect
that Algorithm 2 has a similar performance with Algorithm 1.
In the simulation, the Erdős-Rényi graph has 10,000 nodes, and
each pair of nodes is connected with probability of 0.01, that
is, each node has 100 neighbors on expectation.

Star Graph. We consider a graph with a central node
connecting to every other nodes, known as the star graph. In
this case, the energy concentrates in the central node, which
follows Definition 5. Based on Corollary 2, we expect that
Algorithm 2 outperforms Algorithm 1. In the simulation, the
star graph has 10,000 nodes.

Results.Figure 1 compares the performances between Algo-
rithms 1 and 2 averaged over 50 tests. The blue curve represents
Algorithm 1, the red curve represents Algorithm 2, and the
black dotted line represented the linear approximation by the
true firstK frequency components. We see that both algorithms
converges to the linear approximation by the firstK frequency
components, which supports the results in Lemmas 1 and 2.
For two type-1 graphs, including the ring graph with 4-nearest
neighbors and an Erdős-Rényi graph, Algorithms 1 and 2
provide similar results; however, for the star graph, Algorithm 2
performs much better than Algorithm 1, which supports the
results in Corollaries 1 and 2.

VI. CONCLUSIONS

We proposed a new class of smooth graph signals, called
approximated bandlimited, and we then proposed two recovery
strategies based on random sampling and experimentally de-
signed sampling. We showed that both strategies are unbiased

estimators for the low-frequency components, and experimen-
tally designed sampling outperforms random sampling when a
graph is irregular. We validate the recovery strategies on three
specific graphs: a ring graph, an Erdős-Rényi graph, and a star
graph. The simulation results support the theoretical analysis.
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