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Book Reviews

The Art of Causal Conjecture.

Glenn SHAFER. Cambridge, MA: MIT Press, 1996. ISBN 0-262-
1936-8X. xx + 511 pp. $50 (H).

Two centuries ago, except as an exercise in the application of combina-
torics and in Jacob Bernoulli’s inquiries into the foundations of inquiry,
probability had almost no role in science. A century ago, probability had a
very modest scientific role in statistical mechanics, in social statistics, and
in Fechner’s psychology. Today, scarcely a science is untouched by proba-
bility, either in the formulation of hypotheses or in their assessment in the
light of data. It is proper that the sense of ideas so pervasive should now
and then be reconsidered, and over this century there have been many re-
examinations, from Borel, Ramsey, De Finnetti, von Mises, Kolmogorov,
and others. Glenn Shafer’s new book is a radical reconsideration of foun-
dations.

Shafer’s stalking horse is the sample space, random variable represen-
tation of probability that we owe chiefly to Kolmogorov. Kolmogorov’s
axiomatization has been influential not only because of its generality and
mathematical precision, but also because of its neutrality. His axioms make
no claim about the stuff of probability or how the theory is to be de-
ployed, and so (almost) everyone can use them. Shafer does not reject
Kolmogorov’s formulation; he claims only that the axioms are not nearly
sufficient. Many writers add something to Kolmogorov—frequentists, the
idea of infinitely repeatable experiments; subjectivists, a further interpre-
tation of conditional probability and a (somewhat equivocal) psychological
reading of measures. Shafer adds the idea of a probability tree describing
the possible processes through which the “events” represented in a sample
space may come about. Whatever generality Kolmogorov’s axioms gain
by their spare and formal neutrality, Shafer establishes that a wealth of
conceptual possibilities and interesting distinctions are lost by separating
probability from the ideas about causal processes that sponsored its appli-
cation in the sciences. Shafer’s aim is nothing less than to unify probability
and causation.

To contemporary readers, schooled more in measure theory than in the
history and philosophy of science, Shafer’s ambition may seem quixotic.
It is not. The very idea of Bernoulli trials connects two ideas: absence of
causal connection and probabilistic independence. After Bernoulli, who is
Shafer’s model, the first great scientific development of probability was
the theory of the normal distribution, used as a justification of Legen-
dre’s method of reconciling discordant measurements by least squares, a
method whose appeal lay both in its intuitive results and in its computa-
tional tractability. The derivation of the normal distribution had a gloss—
the distribution is the approximate result of many independent small causes
of either positive or negative deviation from a true value—that made the

normal distribution a plausible treatment of errors of measurement in as- .

tronomy and geodesy. Later in the 19th century, the spread of probability
to Galton’s pseudobiology, to medicine, and to social statistics was typi-
cally, if not exclusively, in aid of resolving causal questions. The creation
of psychometrics at the beginning of the 20th century used probability in
causal theories of how the mind produces behavior, and later Fisher helped
make probability a legitimate and essential part of biology. Fisher’s influ-
ential development of the idea of randomized experiments extended the
tie between probability and causality, although the discussion was oddly
one-sided. His analyses brought mathematical methods to the assessment
from experiments of hypotheses about probability, but left the essential
connections with causation entirely informal.

Throughout the 19th and most of the 20th centuries, the mathematics
and conceptual apparatus of probability and statistics became ever richer,
while the causal ideas that drove much of that development remained tacit,
informal, and obscure. Kolmogorov’s axioms may be seen in retrospect as
the completion of that tendency; all connection between probability and.
causal ideas is lost. No wonder, perhaps, that many statisticians since have
treated ideas of causation as an embarrassing metaphysical entanglement,
even while routinely practicing causal analysis without naming it. In the
last 20 years, formal models of the relation between probability and causa-
tion have been developed, (the Rubin framework in statistics, and graphical
causal models in statistics and in computer science), but they have met stiff
resistance, sometimes more fervid than informed. The time seems right for
Shafer’s effort.
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Shafer’s book divides roughly into four parts. Chapters 14 introduce
probability tree representations and develop an account of the meaning
of probability. Chapters 5-13 use probability trees to define and relate
a wealth of new ideas; for example, novel independence and conditional
independence relations, and an equal abundance of novel association rela-
tions. Chapters 14 and 15 apply the apparatus to elucidate and distinguish
the meanings of causation and to guide inquiry into causal relations, and
chapter 16 considers a variety of graphical representations of causal pro-
cesses. The final part of the book is a set of didactic appendices, useful in
working through parts of the main text and often perceptive, but for the
most part not intended to be original.

Shafer views Nature as the unfolding of a probability tree. The vertices
of the tree are “situations.” A situation, roughly, is a description of a
possible state of the world at a time. (He does not say much about the root
of the tree—presumably Creation, or the Big Bang, depending on one’s
theology.) At each vertex an “experiment” occurs, which may result, with
various probabilities, in new situations that are the daughters in the tree of
that vertex. Shafer calls the step from any vertex to one of its daughters
[or sometimes a sequence of such steps (p. 45)] a “Humean event” (after
the 18th century philosopher, David Hume). I confess to some confusion
about the probabilities in Nature’s tree. On one reading they are objective
propensities—the probabilities will be 0 or 1 for deterministic transitions,
or if there are genuinely indeterministic processes, as in quantum theory,
something in between. On another reading, the probabilities in Nature’s
tree are epistemic; they measure the best possible predictions of an ideal
observer, who is not omniscient. The steps in Nature’s tree, the Humean
events, are causes “of where we end up” (p. 9).

If we take a finite subtree of Nature’s tree, then the terminal vertices (the
leaves) of the finite tree that results may include many situations that have
similar features; the roll of two die totals 7, for example. A set of events
equivalent in some feature is a “Moivrean event.” A suitable collection
of sets of such vertices (a suitable collection of Moivrean events) is an
ordinary sample space. What the tree represents, and the sample space does
not represent, is the many different sequences of stages—(situations)—
through which the Moivrean event (or its complement) might come about,
and the changing probabilities of the Moivrean event in each possible
stage. Each possible genesis of the Moivrean event is represented by a
particular path from the root of the tree (or from any situation in which
the Moivrean event has positive probability) to some vertex in the sample
space event, and each path has a well-defined probability. (One die may
collide with a side of the table and come up 6 while another does not
collide with a side and comes up 1, or both may collide with sides and
one come up 3 and the other 4, and so on. The reader can easily construct
more interesting examples.)

Defining relations between tree features and sample space features al-
lows one to define new relations among sample space events and random
variables on the sample space. For example, a situation S is said to resolve

‘a Moivrean (i.e., sample space) event E if the latter has either probabil-

ity 1 or probability O at S, but does not have an extremal value in any
ancestor of S (p. 37). E is determinate in any situation in which one of
the ancestors resolves E. Of two Moivrean events, E, F', and E precedes
F (or F is after E) if F is determinate in every situation in which F is
determinate. Shafer has a lot more to say about Nature, but what about us?

Shafer says the probability tree “allows us to unify the subjective and
objective aspects of probability in a single story about an observer” (p.
91). A limited, rational “observer,” such as ourselves in our better mo-
ments, does not know Nature’s probability tree, but in predicting and in
explaining observations one may have an incomplete (or just inaccurate)
version of Nature’s tree with possibilities and probabilities all its own. The
probabilities “describe the extent to which the observer is able to predict
what will happen as events unfold, and they thereby tell us both about the
beliefs of the observer and about her objective situation” (p. 91), and “at
each step, the probabilities given by the tree are the best the observer can
do in predicting what will happen next.” The claim that the probabilities
in an observer’s tree “describe the extent to which the observer is able to
predict” is immediately transformed into “probabilities define fair odds for
bets” (p. 92). Shafer proves a connection between the long run expected
values and probabilities as judged from any situation; it is almost certain
that “subsequent events will happen in proportion to their average proba-
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bilities” (p. 101), but he notes that this is a claim about the beliefs of an
observer, not about what happens with what frequency.

What sense should we give to the claim that some real number be-
tween 0 and 1 expresses “the best the observer can do in predicting what
will happen next”? What do “can” and “able” and “best” mean in Shafer’s
phrases? There is a straightforward sense in which an observer can before-
hand assign 1 to the as-yet unknown actual outcome of a flip of a coin,
and there is an elusive sense in which such an observer cannot. Shafer
addresses these questions obliquely. He says the branching probabilities in
a tree may be “confirmed” if the probabilities given by the tree match, on
average, the frequencies the observer experiences (p. 106). This gloss has
several problems. It does not ellucidate what proposition is being *“‘con-
firmed” (confirmation so defined would seem to be a property of an entire
tree, not of individual steps), and the observer only experiences (at most)
one path through the tree. Shafer notes the latter point, which he calls
Dawid’s principle, but says it does not create a difficulty for the idea,
which he calls “empirical relevance,” that at each step the probabilities
given by the tree are “the best the observer can do in predicting what will
happen next” (p. 107). What follows is this:

In order to test the empirical relevance of a particular probability tree,
we must try out alternative methods of forecasting and see whether the
probability trees they generate do any better. .

It is also important to acknowledge ... that validation is directed
most fundamentally not to the probability tree but to the method by
which it is constructed ... empirical validation of the method gives
empirical meaning to paths not taken (p. 108).

The core of the matter, then, is that the sense in which the probabilities
given by a tree are “the best the observer can do in predicting what will
happen next” is that the tree and the probabilities are those that would be
constructed from what the observer already believes by a method that is
as good as any possible method similarly restricted. So what is a method;
a function (from what?) to probability trees, or features of probability
trees? Must the function be computable and, if so, how easily computable?
How are methods to be compared for goodness? What are the trade-offs
between goodness and computational tractability? How do we know that
“best” makes sense, that there exists no better method? And why should
the output of a method of inquiry and prediction have a probabilistic form
at all, rather than, say, simply a prediction of the next situation, or the
future sequence of situations, or a feature of that future sequence? These
questions seem to me central to a genuinely foundational project, but aside
from useful remarks on the variety of ways in which probability trees are
implicitly or explicitly used, there is nothing more about them in the book.
(There is a rich, relevant literature in computer science and elsewhere;
some of the a-probabilistic literature has been reviewed and generalized
in Kelly 1996, which I recommend to those who have given no thought to
what inquiry would be like without probability.)

Shafer distinguishes several senses of independence. In an obvious no-
tation, Moivrean events F' and G are formally independent if for all situa-
tions S, Ps(F' N G) = Ps(F)Ps(G); independent if for each nonterminal
situation S, either for all daughters T' of SPr(F) = Ps(F) or for all
daughters T' of SPr(B) = Ps(B); and weakly independent if for each
nonterminal situation S either P(F) is the same in S as in the mother of
S or P(G) is the same in S as in the mother of S. Independence implies
weak independence, which implies formal independence. None of the im-
plications is reversible. The definitions generalize to any finite number of
Moivrean events.

Notions of conditional independence, so important in usual causal anal-
yses, also multiply. Moivrean events F' and G are formally independent
posterior to S if Pr(FNG) = Pp(F)Pr(G) whenever T is “equal to or
after S” (p. 128). F and G are independent posterior to S if they are inde-
pendent in all situations equal to or after S (in an obvious specialization
of the definition in the foregoing paragraph). F' and G are formally inde-
pendent posterior to Moivrean event E if Pr(F N G) = Pp(F)Pr(G)
in every situation T in which E has extremal probability. (Shafer says
that E is determinate.) F and G are independent modulo E if there is
no situation that influences both F' and G without influencing E (where
“influencing” means the probabilities change when moving from the sit-
uvation to one of its daughters). F' and G are formally independent given
E if Pr(FNG|E) = Pp(F|E)Pr(G|E) and, similarly for the comple-
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ment of E, in every situation 7' that gives the complement of E positive
probability.

One would expect a similar multiplication of kinds of association, and
Shafer provides them. Moivrean event E tracks Moivrean event G in any
two situations S and T such that Ps(E) = Ppr(E) = 1 or Ps(E) =
Pr(E) = 0, but not in the mother of S or of T (where S and T are
situations where E happens, or fails), Ps(G) = Pr(G). E is a tracking
positive sign of G if E tracks G and Pg(G) > P.g(G), where Pg(G)
is the probability of G in situations where E happens and P. g(G) is the
probability of G in situations where E fails. E is a positive sign of G
if Ps(G) > Pr(G) whenever Ps(E) > Pr(E), and Ps(G) < Pr(G)
whenever Pg(E) < Pr(E), where T is the mother of S. E is a formal
positive sign of G if Ps(G|E) > Pg(G| ~ E) in every situation S in
which Pg(E) and Pg(~ E) are both positive.

These various notions are of course related, and the book’s middle chap-
ters prove both general and special case connections. The definitions gen-
eralize naturally to relations among random variables defined on a sample
space, including independence and uncorrelatedness, and an asymmetric
notion that Shafer calls “unpredictability in mean”—a change in the prob-
ability distribution of one variable does not change the expected value of
the second. In particular, a variable can track another variable and can be
a sign of another variable.

Shafer connects these many distinctions (and more), and the metaphys-
ical picture that they presuppose, with a variety of more familiar repre-
sentations and discussions of causal relations. He includes an account of-
Martingales, hidden Markov models, still other graphical models, formal
descriptions of probability trees, and a sensible (mostly—there are some
falsisms among the truisms) analysis of maxims of inquiry. (One error
should be noted: Shafer discusses Reichenbach’s notion of a third event
[or property] screening off the causal relation between two others, but mis-
represents Reichenbach’s idea; compare Reichenbach 1956, pp. 188-190
and Shafer pp. 162-165.) One of these topics is linear causal models of
the kind common in social science, psychometrics, epidemiology, and else-
where. Such models are sometimes represented graphically, although not
generally as trees. The vertices of the graph are random variables, either
with some substantive meaning or with “noises” or “errors.” In Shafer’s
view, the underlying processes that such causal models purport to describe
are features of a probability tree. Granting this, how much of the structure
of such models, and of their sensible scientific and engineering use, can
be accounted for in terms of probability trees? Shafer gives some inter-
esting answers. The random variables in causal models are defined on a
sample space of Moivrean events. In Shafer’s view, there are in reality
no causal relations among such variables, nor are there causal relations
among the concrete events in which the variables take on values for units.
The appearance of causal relations between, say smoking and cilia damage
is epiphenomenal, the result of the unfolding of a probability tree whose
steps are the actual causes of variables having whatever values they ac-
tually take on in a particular unit at a particular time. All genuine causal
explanations are in terms of antecedent changes from one situation to an-
other. When a linear causal model is appropriate, the specification in the
model that Z = bX + &, with the error term independent of X, may say
that X is a linear sign of Z. All Humean events that result in an increase
or decrease in the expected value of X are accompanied by an increase
or decrease in the expected value of Z, always with the same constant
of proportionality (p. 342); causally interpreted, the regression coefficient
measures the difference in the expected value of Z between a situation
in which no value of X happens, and a daughter situation in which some
value of X happens (p. 313).

I do not know whether this is all that can be extracted from the proba-
bility tree framework in aid of explicating causal explanation, but I hope
not. There are three related aspects of causal inquiry and causal explana-
tion that Shafer’s development of his framework does not yet engage, and
in my view they are essential.

First, Shafer’s reconstruction makes no use of the notion of interventions
that alter the causal relations that would otherwise obtain. This is a signal
virtue. But, even granting the correctness of Shafer’s metaphysical picture,
it is one thing to make no fundamental use of the notion of an intervention
and quite another to make no connection with the notion, as Shafer does
not. The decisions that we make in life, small or large, are themselves part
of Nature’s probability tree, but from the point of view of anyone making



Book Reviews

or recommending an action, interventions are special; they are under the
decision-maker’s control.

Second, Shafer himself notes one of the limitations of his account of
what causal models are about, accounting for what models are saying when
they postulate mechanisms, or, slightly more formally, explaining the in-
dividual causal claims in causal models whose directed graph is multiply
connected. Shafer points out that his treatment of linear signs, for ex-
ample, is wholistic; causal relations among variables cannot generally be
decomposed into parts in which some variables influence others both di-
rectly and indirectly through other variables: “the coefficients in a causal
path diagram have a direct, but, in general, collective causal interpretation
...” (p. 344). The mechanisms postulated in the ordinary, shallow causal
explanations of many sciences may very well be epiphenomenal or aggre-
gates, but if correct, or even approximately correct, they nonetheless can
provide either understanding or control or both.

Third, when for two variables there is (in ordinary parlance, not Shafer’s)
a third variable that influences both, the system is multiply connected. If
the third variable is unobserved, then it is a latent variable, and also a
confounder. Shafer’s treatment of latent common causes of two observed
variables is as measures of the dimensions of their actual common causes
in the probability tree (p. 354). This is a nice idea, but it makes no connec-
tion with the importance of confounders in predicting the effects of inter-
ventions, new policies, or new experiments. Shafer notes that the analysis
of causal relations as implying predictions about ideal interventions (Pearl
1995; Spirtes et al. 1993) does give an interpretation to complex mecha-
nisms and to prediction of outcomes that, despite some vagaries, more or
less accords with practice.

I do not believe that any of the aforementioned limitations are necessary
consequences of the probability tree picture, and I certainly would not
conclude that the fundamental notion of best prediction that can be made
cannot be further clarified. Shafer’s picture is sensible and suggestive; his
development of it is original, brilliant, and fascinating. The worst one can
say is true of even the greatest works: The Art of Causal Conjecture is
incomplete, and what is missing matters.

Clark GLYMOUR
Carnegie Mellon University
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Exponential Families of Stochastic Processes.

U. KUCHLER and M. SORENSEN. New York: Springer-Verlag, 1997.
ISBN 0-387-94981-X. x + 322 pp. $54.95 (H).

Exponential -families of distributions play a central role in statistical
inference. Two types of exponential families are encountered in the statis-
tical literature: noncurved and curved. Roughly speaking, the dimensions
of the minimal sufficient statistic and the parameter space in the former
are equal, whereas the dimension of the parameter space in the latter is
smaller than that of the minimal sufficient statistic. The noncurved fami-
lies possess various nice analytical and statistical properties and very often
lead to explicit solutions in a variety of statistical questions. Each curved
family can be embedded into a larger noncurved family; that is, it can
be viewed as a subfamily of a noncurved family, derived via restrictions
on the parameter space of the latter. The typical object in the statistical
literature on exponential families in the classical iid setting is either a
noncurved family or a curved family whose parameter space lies in the
interior of the natural parameter space of a larger noncurved family. As
a general rule, the noncurved families are nice and tractable, the curved
families with the aforementioned property are not nice but still somewhat
tractable, and the curved ones whose parameter space lies entirely on the
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boundary of the natural space of a larger noncurved family are much less
tractable.

It turns out that the typical object in the theory of exponential families
of stochastic processes is related to the latter case. A more specific expla-
nation of this relationship follows. Note first that an exponential family
of stochastic processes is a collection (indexed by the time parameter) of
exponential families with a common parameter space. It rarely happens
that the latter families can be embedded into noncurved families whose
common (for different time epochs) parameter space interior contains the
parameter space of the original exponential family of stochastic processes.
But if this does happen for a family of stochastic processes, then their
likelihood functions can be viewed as arising from models generated by
processes with independent increments. The classical theory of exponen-
tial families is directly applicable to such models; Wiener, Poisson, and
other important Lévy processes fall into this category. However, if such
processes are observed in random time intervals, then the corresponding
sequential likelihood functions, with the exception of those based on a few
nice stopping rules, do not have this property. In other words, the sequential
likelihood functions of these processes are typical objects, in the context
mentioned earlier, in the theory of exponential families of stochastic pro-
cesses. Therefore, it should come as no surprise that sequential methods
play an important role in this theory.

Another important area is semimartingale theory, which has an estab-
lished place in statistical inference for stochastic processes. Properties of
the processes can imply restrictions on the type of possible exponential
families associated with them, and, conversely, a specific type of exponen-
tial family may imply important probabilistic properties of the associated
processes. The latter is an important feature that in particular identifies the
theory of exponential families of stochastic processes as a possible tool
for solving problems in other areas.

Exponential Families of Stochastic Processes is the first book treatment
of this area, and it covers the progress made during the last decade. Both
authors are leading experts in the field. The presentation is mathemati-
cally rigorous, and the exposition is clear and concise. I found only a few
typographical errors.

The first three chapters are introductory. They contain formal defini-
tions, examples, and more detailed treatment of Lévy processes, whose
one-dimensional distributions belong to natural exponential families.
Chapter 4 is devoted primarily to the property that a special exponential
structure implies independence of the increments of the associated canoni-
cal statistic. Chapter 5 treats random processes whose likelihood functions
belong to (n,n — 1)-curved exponential families. Under very mild condi-
tions, these are random-time transformations of Lévy processes. Chapter
10 can be viewed as an extension of Chapter 5; it treats the same processes
and a larger class of stopping times that lead to exact or approximate Lévy
processes. This makes classical results from sequential analysis applicable
for such processes. Chapter 6 studies the exponential structure associated
with underlying Markov processes.

The curved-exponential families associated with finite-time observations
of a typical object from the exponential families of stochastic processes
can always be extended to larger exponential families by suitable expan-
sion of the parameter spaces. However, an extension of the associated
random process to match such extended families is usually impossible.
Chapter 7 discusses the problems that arise from such extensions and
stochastic process interpretations of the latter. Chapter 8 discusses the
general likelihood theory of exponential families of stochastic processes,
and Chapter 9 is devoted to a particular random process. Chapter 11 cov-
ers the more advanced mathematical treatment of exponential families of
stochastic processes, based on semimartingale theory. The final chapter,
12, reviews different definitions of exponential families of stochastic_pro-
cesses appearing in the statistical literature. One appendix contains the
necessary tools from stochastic calculus required for a smooth reading of
the later part of the text, and another appendix is devoted to the funda-
mental identity in sequential analysis.

This book is suitable for advanced graduate courses or for self-study
by doctoral students. In both cases the required background is a graduate
course in the theory of stochastic processes, including the basics of mar-
tingale theory, and knowledge of the basics from the classical theory of
exponential families.
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