Is The Fiscal Theory of the Price Level Learnable?

Bennett T. McCallum
Carnegie Mellon University, bmccallum@cmu.edu

Follow this and additional works at: http://repository.cmu.edu/tepper
Part of the Economic Policy Commons, and the Industrial Organization Commons

Published In
Is The Fiscal Theory of the Price Level Learnable?

Bennett T. McCallum

Carnegie Mellon University

and

National Bureau of Economic Research

September 2002

Revised

July 10, 2003

This paper was prepared for the monetary and fiscal policy conference of September 19-20, 2002 at the University of Cambridge. An earlier version was presented at the Bank of Japan on March 19, 2002. I am indebted to George Evans, Seppo Honkapohja, Andrew Levin, Edward Nelson, Charles Nolan, Simon Wren-Lewis, and two referees for comments and suggestions.
1. Introduction

During the past several years, a striking body of literature has appeared in which it is argued that general price level determination is essentially a fiscal, rather than monetary, phenomenon. The most prominent papers have been those of Woodford (1994, 1995, 2001), Sims (1994, 1997), Leeper (1991), and Cochrane (1998, 2000), but there are several others of significance.¹ If the theory expounded in these papers was valid in actuality, there would be major implications for the manner in which fiscal and monetary policies should be conducted, not only in individual economies but also within monetary unions.² The purpose of the present paper is to describe this theory and provide one major reason why I believe that it is not relevant to actual economies, but instead is basically misleading. That position has been put forth in McCallum (2001a), but the present argument includes a new, different, and more satisfactory justification. In addition, the basic exposition is simplified here and several extensions are developed.

At the outset it should be emphasized just how drastically unorthodox or counter-traditional the fiscal theory of price level determination is.³ Specifically, it does not merely suggest that fiscal as well as monetary policy stances are significant for price level behavior; instead it features a case in which only fiscal policy is relevant. In the prototype analysis presented below, the price level moves over time in a manner that mimics the path of government bonds outstanding and is entirely unlike the path of the stock of high-powered money. Accordingly, it is clearly not the case that the argument

² On this matter, see Bergin (2000), Dupor (2000), and Sims (1997).
³ In what follows, I shall for brevity often refer to the latter as the “fiscal” or “fiscalist” theory.
involves fiscal behavior that drives an accommodative monetary authority, as when rapid base money growth is adopted to finance a fiscal deficit.\footnote{Thus the theory is fundamentally different from that of Sargent and Wallace (1981).} Indeed, it is this drastic aspect of the fiscal theory that has made it a subject of great interest.\footnote{Woodford (1995, pp. 25-26), too, has emphasized the importance of cases in which monetary and fiscal impulses diverge so that “it is possible to see which is truly determinative.” Also see Butler (1999) and Cochrane (1998). Important points about the nature of traditional or monetarist views are made by Nelson (2003) while notable attempts to distinguish empirically are made by Canzoneri, Cumby, and Diba (2001) and Janssen, Nolan, and Thomas (2002).} In this regard, an important point is that the type of model typically utilized in the literature’s analysis is not of the overlapping generations type, in which the Ricardian equivalence proposition is known to fail—implying that tax changes will affect price level behavior. Instead, the model is basically of the Sidrauski-Brock type, in which Ricardian equivalence results are normally obtained, i.e., results implying that bond-financed tax changes have no effect on the price level or other macroeconomic variables of primary interest.\footnote{For an analysis based on this Ricardian model, see McCallum (1984).} In such a setting, fiscalist positions are truly startling.

2. Basic Formulation

As a background for illustrating these drastic results, let us begin with an orthodox analysis of price level determination in an extremely simple and transparent setting.\footnote{For an analysis based on this Ricardian model, see McCallum (1984).} Suppose that the (per capita) money demand function for a closed economy is of the textbook form

\[
m_t - p_t = c_0 + c_1 y_t + c_2 R_t + v_t
\]

\[c_1 > 0, \ c_2 < 0,
\]

where \(m_t, p_t,\) and \(y_t\) are logs of the (base) money stock, price level, and output (income) for period \(t,\) while \(R_t\) denotes a one-period nominal interest rate. The disturbance \(v_t\) is taken for simplicity to be white noise. It is well known that there are rigorous dynamic general equilibrium models with optimizing agents that will justify (1) as a linear
approximation to a combination of implied Euler equations (first-order optimality conditions). The present exposition is intended to convey the essential features of a full optimizing analysis while ignoring some of the details.

Furthermore, let us assume that the economy is one in which output and the real rate of interest are constant over time. Then (1) collapses to

\[m_t - p_t = \gamma + \alpha (E_t p_{t+1} - p_t) + v_t \]
\[\alpha = c_2, \]

which is the familiar Cagan specification for money demand. And let us for now consider cases in which the growth rate of the (base) money stock is kept constant by the central bank, so that

\[m_t = m_{t-1} + \mu, \]

where \(\mu \) is the growth rate of the money stock. These relations plus rational expectations determine the behavior of \(p_t \) and \(m_t \) for time periods \(t = 1, 2, \ldots \). It is possible that the structure was different prior to period 1.

In this setting, the orthodox bubble-free or “fundamentals” rational expectations (RE) solution for \(p_t \) can be found by conjecturing that it is of the form

\[p_t = \phi_0 + \phi_1 m_{t-1} + \phi_2 v_t, \]

since \(m_{t-1} \) and \(v_t \) are evidently the system’s only state variables. In that case we have

\[E_t p_{t+1} = \phi_0 + \phi_1 (m_{t-1} + \mu) \]

so substitution of the latter, (3), and (4) into (2) yields

\[m_{t-1} + \mu = \gamma + \alpha [\phi_0 + \phi_1 (m_{t-1} + \mu)] + (1-\alpha) [\phi_0 + \phi_1 m_{t-1} + \phi_2 v_t] + v_t. \]

The latter implies that for (4) to be a solution, i.e., to hold for all realizations of \(v_t \) and \(m_{t-1} \), we must have satisfaction of the undetermined-coefficient (UC) conditions

7 This section is adapted from McCallum (1999c).
\[1 = \alpha \phi_1 + (1 - \alpha) \phi_1 \]

\[0 = (1 - \alpha) \phi_2 + 1. \]

\[\mu = \gamma + \alpha \phi_1 \mu + (1 - \alpha) \phi_0 + \alpha \phi_0. \]

Thus we have that \(\phi_1 = 1, \phi_2 = -1/(1 - \alpha) \) and \(\phi_0 = \mu - \gamma - \alpha \mu \), i.e., that the solution is

\[p_t = \mu(1 - \alpha) - \gamma + m_{t-1} - [1/(1 - \alpha)]v_t = m_t - (\gamma + \alpha \mu) - [1/(1 - \alpha)]v_t. \]

Here we see that \(p_t \) grows one-for-one with \(m_t \), i.e., the price level \(P_t \) moves on average in proportion to the money stock \(M_t \), but fluctuates relative to this average position in response to realizations of \(v_t \). Specifically, \(p_t \) is temporarily reduced by positive money demand shocks \((v_t > 0)\) or boosted by negative shocks \((v_t < 0)\). This is clearly an entirely traditional—one might even say “monetarist”—analysis of price level behavior in the economy in question.

For an even simpler special case, let us next suppose that the money growth rate is zero, i.e., that \(\mu = 0 \) so that \(m_t = m \). Then the solution for \(p_t \) is

\[p_t = m - \gamma - v_t/(1 - \alpha). \]

Thus, if money demand shocks were absent we would have \(p_t = m - \gamma \).

It must be noted, however, that while (7) and its special case (8) give the well-behaved, orthodox, bubble-free RE solutions for this model, there are other expressions as well that satisfy the model (2)(3) with RE. For simplicity, let us consider the special case with constant \(m_t = m \), but now conjecture a solution of the form

\[p_t = \psi_0 + \psi_1 p_{t-1} + \psi_2 v_t + \psi_3 v_{t-1}, \]

instead of \(p_t = \phi_0 + \phi_2 v_t \). Then working through the same type of analysis as before, one finds that the UC conditions analogous to (6) are

\[\text{Very recently, Evans and Honkapohja (2002b) have conducted a similar analysis in a fully optimizing} \]
\begin{align*}
(10) & \quad 0 = \alpha \psi_1^2 + (1-\alpha) \psi_1 \\
& \quad 0 = \alpha \psi_1 \psi_2 + \alpha \psi_3 + (1-\alpha) \psi_2 + 1 \\
& \quad 0 = \alpha \psi_1 \psi_3 + (1-\alpha) \psi_3 \\
& \quad m = \gamma + \alpha \psi_0 + \alpha \psi_1 \psi_0 + (1-\alpha) \psi_0. \\
\end{align*}

By inspection, therefore, we see that the first of these has two roots $\psi_{1(1)} = 0$ and $\psi_{1(2)} = (\alpha-1)/\alpha$. If the former is the relevant root, then we find that $\psi_3 = 0$, $\psi_2 = -1/(1-\alpha)$, and $\psi_0 = m - \gamma$ so that the same solution as in (8) is obtained. But if $\psi_{1(2)}$ is relevant, then $\psi_3 = -1/\alpha$ and $\psi_0 = (m - \gamma)/\alpha$ while any value of ψ_2 is possible. So an infinity of solution paths is in this case consistent with the model. Note, moreover, that $\psi_{1(2)} = (\alpha-1)/\alpha > 1.0$, so most of these solution paths are explosive. One such path is illustrated in Figure 1, where the random component is suppressed.

Of course there are other variables and conditions besides those discussed thus far in a fully articulated model of the economy under consideration. In particular, let B_{t+1} denote the quantity of one-period government bonds purchased in t, with each bond purchased at the price $1/(1+R_t)$ and redeemed in $t+1$ for one unit of money. Then it is typically true that a fully-specified optimizing analysis would require that

\begin{align}
(11) \quad \lim_{j \to \infty} E_t \beta^j (M_{t+j} + B_{t+j}) / P_{t+j} = 0, \\
\end{align}

i.e., that a transversality condition pertaining to real financial wealth must be satisfied. Here β is a typical agent’s discount factor, $\beta = 1/(1+\rho)$, with $\rho > 0$ so that $0 < \beta < 1$.

We are now at last prepared to turn to the fiscalist theory. With government setup. Their basic result agrees with the one reported here; additional results of theirs are mentioned below.
bonds recognized, we can write the consolidated government budget constraint (GBC) in per capita terms as

\[P_t (g_t - tx_t) = M_{t+1} - M_t + (1 + R_t)^{-1} B_{t+1} - B_t, \]

where \(g_t \) and \(tx_t \) are real government purchases and (lump sum) tax collections, respectively. In real terms, this constraint could then be expressed as

\[g_t - tx_t = (M_{t+1} - M_t)/P_t + (1 + R_t)^{-1} (P_{t+1}/P_t) b_{t+1} - b_t, \]

where \(b_t = B_t/P_t \). The reader should note the mixed notation being utilized: \(b_t = B_t/P_t \) whereas \(m_t = \log M_t \) and \(p_t = \log P_t \). Condition (13) obtains for \(t = 1, 2, \ldots \).

Now consider the special case of the economy discussed above in which \(M_t \) and thus \(m_t \) are constant. Also let the random shock \(v_t \) be absent so that \(P_{t+1} \) is correctly anticipated in \(t \) and suppose that fiscal policy aims for a constant surplus \(tx_t - g_t = s > 0 \) with \(g_t = g \). Then with the real rate of interest on bonds \(r_t \) defined by \(1 + r_t = (1 + R_t)/(1 + \pi_t) \), where \(\pi_t = (P_{t+1} - P_t)/P_t \), and with \(r_t = \rho \), as would be implied by optimizing behavior in the absence of shocks, the government budget constraint becomes

\[b_{t+1} = (1 + \rho) b_t + (1 + \rho) (g_t - tx_t) \quad t = 1, 2, \ldots. \]

But since \(1 + \rho > 1.0 \), if \(g_t - tx_t \) is constant the last equation reveals a strong tendency for \(b_t \) to explode as time passes. As \(t \) grows without limit, \(b_t \) approaches growth at the rate \(\rho \), i.e., behaves like \((1+\rho)^t\). Thus the transversality condition (11) tends to be violated since growth of \(b_t \) just offsets the shrinkage of \(\beta^t = 1/(1 + \rho)^t \), yielding a limit that is a positive constant.

In fact, in this case there are just two paths for \(b_t \) that, with \(g_t - tx \) constant, will satisfy (14) and also (9)(10)(11) for \(t = 1, 2, \ldots \). One of these obtains if the value \(b_1 \) equals

10 The government consists of a fiscal authority and a central bank.
\[-(1 + \rho) \left(g - tx \right) / \rho, \text{ for then (14) implies that} \]

\[
(15) \quad b_2 = (1 + \rho) \left[-(1 + \rho) \left(g - tx \right) / \rho \right] + (1 + \rho) \left(g - tx \right)
\]
\[
= (1 + \rho) \left(g - tx \right) \left[-(1+\rho)/\rho + 1 \right] = -(1 + \rho) \left(g - tx \right) / \rho
\]

and that same value prevails in all succeeding periods. But \(b_1 = B_1/P_1 \), and \(B_1 \) is the number of nominal government bonds outstanding at the beginning of the initial period, \(t = 1 \). Thus if the price level in this first period, \(P_1 \), adjusts to equal the value

\[
P_1 = B_1 \rho / (1 + \rho) \left(tx - g \right), \text{ then condition (11) as well as (14) will be satisfied. Indeed, this is precisely what the fiscalist theory predicts: that } P_1 \text{ adjusts relative to } B_1 \text{ and } tx - g > 0 \text{ so as to satisfy the individual agents’ optimality condition (11).}^{12}
\]

But what about the necessary condition for money holdings, equation (2)? Here the fiscalist answer is that although the path just described will not conform to the \(p_t = m - \gamma \) fundamentals solution implied by (8), it can and will satisfy the alternative solution

\[
p_t = [(\alpha - 1)/\alpha] p_{t-1} + (m - \gamma)/\alpha \text{ for all } t = 2,3,\ldots.^{13}\]

The price level \(P_1 \), and thus \(p_1 \), is determined by \(B_1 \) and the value of \(b_1 \) necessary to satisfy (11), with subsequent \(P_t \) and \(p_t \) values being given by (9) with \(\Psi_1 = (\alpha - 1)/\alpha \). The price level explodes as time passes, despite the constant value of \(M_t \), but all of the model’s equilibrium conditions including RE are satisfied nevertheless. Since \(P_1 \) and \(B_1 \) are growing at the same (explosive) rate, while \(M_t \) is constant, the outcome is rightfully regarded as highly “fiscalist.”^{14}

\[^{11}\text{See, e.g., McCallum (1999a, 2001a), Kocherlakota and Phelan (1999), or Woodford (1995).} \]
\[^{12}\text{Note that with } b_t \text{ constant but positive, the government’s real revenues from bond sales are negative } (-b_t/(1+\rho)). \]
\[^{13}\text{It might be asked why this relation does not determine } p_1 \text{ in relation to } p_0. \text{ Apparently the answer is that, in the full stochastic model, it determines the value of } \Psi_1 \text{ in (9).} \]
\[^{14}\text{There is a serious problem, however, with this solution if } B_1 \text{ is such that the implied value of } P_1 \text{ is smaller than } P^* = M e^{-\gamma}. \text{ In this case the fiscalist equilibrium does not exist because } P_t \text{ approaches } 0 \text{ leading to violation of the transversality condition (11). Also, if } tx - g < 0, \text{ then a negative price level would be required for satisfaction of (14) by the assumed value of } b_1. \text{ This problem is stressed by Buiter (1998, p. 20).} \]
Now let us consider the one other path of b_t that will, with $g - tx$ constant, satisfy the TC (11) as well as (9), (10), and (14). It is that $b_{t+1} = 0$ for all $t = 1, 2, \ldots$. Clearly, (11) will be satisfied with $B_{t+1} = 0$ and in that case places no constraint on P_t values. Thus these are free to obey $p_t = m - \gamma$, as in the special case of (9)-(10) given by (8). Therefore this solution is the orthodox or monetarist solution.

It might be asked how the GBC (14) can be satisfied with this solution, i.e., with $B_{t+1} = 0$ for $t = 1, 2, \ldots$ and $tx_t - g > 0$. The explanation is as follows. In a market economy, it is not legitimate to specify fiscal policy as controlling both g_t and tx_t (with an M_t path given) because such a policy could imply that bonds sold to the private sector are greater than the demand for them. Thus we need to distinguish between bond supply B_{t+1}^S and bond demand B_{t+1}^D, and policy is appropriately specified in terms of M_t, g_t, and B_{t+1}^S with the relevant equilibrium condition being $B_{t+1}^D \leq B_{t+1}^S$. In the case at hand, the planned value of $tx_t - g > 0$ reflects B_{t+1}^S plans, whereas the realized values involve $B_{t+1} = B_{t+1}^D = 0$ and $tx_t - g = 0$. The $tx - g$ values realized are smaller than planned because real revenues from bond sales are larger—zero, rather than the planned negative value (which is $-pb_1/(1 + \rho)$). It is not surprising that some such adjustment is needed since the experiment at hand has monetary (M_t) and fiscal (g_t and B_{t+1}^S) policies being set independently and exogenously. The monetarist and fiscalist solutions reflect two different ways by which these potentially conflicting policies can be reconciled.\(^{15}\)

In sum, we end up with two RE solutions that represent two competing hypotheses regarding price level behavior in the hypothetical economy under study. It is

\(^{15}\) For more discussion of this topic, see McCallum (2001a). For an alternative formalization, see Kocherlakota and Phelan (1999). A somewhat different and perhaps more extreme position is that of
an economy in which the money stock is constant over time, all behavioral relations are constant, and there are no stochastic disturbances impinging upon its agents or productive processes. According to the monetarist hypothesis, the price level is constant through time at a value that is proportional to the magnitude of the money stock, and no government bonds are purchased by private agents.16 By contrast, the fiscalist hypothesis implies that, despite a constant money stock, the bond stock and the price level both explode as time passes—but without violating any optimality condition for private agents. This happens because the initial price level adjusts relative to the initial bond stock so as to make the real bond stock equal the single non-zero value that will permit the stock of real bonds to remain constant and the transversality condition (11) to be satisfied. Under this latter hypothesis, the initial price level is proportional to the initial bond stock and the price level grows in tandem with the bond stock.

The crucial issue is, which of the two solutions provides the better guide to reality, i.e., to price level behavior in actual economies? In previous writings (McCallum 1999a, 2001a) I have emphasized that the traditional equilibrium is the “fundamentals” or “bubble-free” solution provided by the minimum-state-variable (MSV) solution concept for RE models, whereas the fiscalist solution represents a bubble solution.17 I have suggested that this is a plausible reason—in addition to the empirical evidence—for preferring the former, but it must be recognized that for many analysts that argument may not be persuasive.18 Accordingly, the next section of the present paper will develop a

16 This does not imply that none are offered for sale by the government.

17 The MSV solution concept is extensively discussed by McCallum (1999b). It is crucial to recognize that in linear models the MSV solution is, by definition and by construction, unique.

18 For example, Woodford (2001, p. 701) argues that “what constitutes a ‘bubble equilibrium’ is often in the eye of the beholder….”
more substantive theoretical reason to view the traditional MSV solution as economically relevant, and the fiscalist solution as irrelevant. This reason is based on the intimately-related concepts of E-stability and least-squares learnability.

3. E-Stability and Learnability

Iterative E-stability was developed in the 1980s, principally by Evans (1985, 1986), and then modified in response to work by Marcet and Sargent (1989). Iterative E-stability involves a thought experiment in which one conceives of expectational behavior with anticipated variables such as p_{t+1}^e being described by an expression of a form that would be appropriate under RE, but with parameter values that are initially incorrect.19 This “expectation function” implies, when substituted into the model of the economy, a law of motion that entails systematic expectational errors. So one can then conceive of revised values of the parameters of the expectation function that are suggested by the law of motion. These too will imply incorrect forecasts, but one can imagine continuing with a series of iterations and consider whether they will converge to a specific RE solution, be it the MSV or a non-MSV solution.20 If such a process converges to a particular solution, then the latter is said to be iteratively E-stable.

To illustrate the concept of iterative E-stability, let us consider an example that is similar to the model of Section 2 with $m_t = m$. Thus suppose that some unspecified variable y_t is generated by the structural model

\begin{equation}
\begin{align*}
y_t &= a_0 + a_1 E_t y_{t+1} + u_t,
\end{align*}
\end{equation}

where $u_t = \xi u_{t-1} + \varepsilon_t$ with $|\xi| < 1$ and ε_t being white noise. With this specification, the usual “fundamentals” RE solution will be of the form

19 Here p_{t+1}^e denotes the subjective expectation of p_{t+1} formed at time t, not necessarily according to RE.

20 If there is convergence, it will be to some RE solution.
(17) \(y_t = \phi_0 + \phi_1 u_t \),

but suppose that agents do not “initially” know the true values of the \(\phi_j \) parameters. If at any date \(t \) the agents’ prevailing belief is that their values are \(\phi_0(n) \) and \(\phi_1(n) \), then the perceived law of motion (PLM) will be\(^{21}\)

(18) \(y_t = \phi_0(n) + \phi_1(n) u_t \),

and the implied expectation of \(y_{t+1} \) will be

(19) \(\phi_0(n) + \phi_1(n) \xi u_t \).

But using this expression in place of \(E_t y_{t+1} \) in (16)—which implies temporarily abandoning RE—gives

(20) \(y_t = a_0 + a_1 [\phi_0(n) + \phi_1(n) \xi u_t] + u_t \)

as the system’s actual law of motion (ALM). Now imagine a sequence of iterations from the PLM to the ALM. Writing the left-hand side of (20) in the form (18) for iteration \(n+1 \) gives \(\phi_0(n+1) + \phi_1(n+1) u_t = a_0 + a_1 [\phi_0(n) + \phi_1(n) \xi u_t] + u_t \) and therefore implies that

(21a) \(\phi_0(n+1) = a_0 + a_1 \phi_0(n) \)

(21b) \(\phi_1(n+1) = a_1 \phi_1(n) \xi + 1. \)

The issue, then, is whether iterations defined by (21) are such that the \(\phi_j(n) \) converge to the \(\phi_j \) values in (17) as \(n \to \infty \). For this simple example, it can be seen by inspection that necessary and sufficient conditions for such convergence are \(|a_1| < 1 \) and \(|\xi a_1| < 1 \). If these conditions hold, then the solution (17) is said to be iteratively E-stable. Evans (1986) found that in several prominent and controversial examples the MSV solution is iteratively E-stable.

\(^{21}\) Here \(n \) is being used to index iterations in an eductive process of learning in meta-time.
By considering ever smaller “time periods” for iterations of the foregoing type one can develop a related process that is continuous in notional time (meta-time).22 Evans and Honkapohja (1999, 2001) emphasize this unqualified notion of E-stability because it is, under fairly general conditions, equivalent to learnability in actual time by means of a least-squares-based adaptive process.23 Absence of E-stability therefore implies that a particular RE solution will not be obtained if agents are not endowed with knowledge of the model’s true parameters, but attempt to learn them by statistical estimation based on data generated to date, with updating and re-estimation taking place each period. Of course this conclusion presumes that the statistical processing at each date is of the least-squares type, but that is a distinctly reasonable way for the agents to proceed; the general idea is that if this process does not permit agents to acquire knowledge of the true parameter values then they are unlikely to do so by other processes. Technical results pertaining to the near-equivalence between E-stability and least-squares learnability are described in detail by Evans and Honkapohja (1999, 2001).

4. Application to Fiscal Theory

Here our objective is to develop E-stability results for the model of Section 2 with \(m_t = m \). Specifically, we want to determine whether either, or both, of the solutions given by equations (9)-(10) features E-stability and thus least-squares learnability. We can make a start by writing the model in question in as

\[
p_t = \frac{\alpha}{(\alpha-1)} E_p_{t+1} + \frac{(m-\gamma)}{(1-\alpha)} + \frac{1}{(\alpha-1)} v_t,
\]

which is of the same form as that examined in Section 3 with the parameter \(a_1 \) in (16) equal to \(\alpha/(\alpha-1) \) and \(v_t = \xi v_{t-1} + \) white noise. Therefore, with \(\alpha < 0 \) we have \(0 < a_1 < 1 \), so

22 Evans (1989) and Evans and Honkapohja (1992) adopted the unqualified concept following results described in Marcet and Sargent (1989).
for any ξ such that $|\xi| < 1$, the MSV solution based on $\psi_1^{(1)} = 0$ in (10) is iteratively E-stable. That does not establish, however, that solutions based on $\psi_1^{(2)} = (\alpha - 1)/\alpha$, which include the fiscal solution, are not E-stable.

Fortunately, however, this model is a particular version of one case studied by Evans (1986), which shows that with $0 < a_1 < 1$, the MSV solution based on $\psi_1^{(1)}$ is recursively E-stable whereas the non-MSV solutions involving $\psi_1^{(2)} = (\alpha - 1)/\alpha$ are not recursively E-stable (1986, p. 153) under parameter values that include ours. These results were shown also to hold for unqualified E-stability by Evans (1989, pp. 311-312). Recently, moreover, a very thorough analysis of that model was provided by Evans and Honkapohja (2002a), who consider still more solutions—ones of the “resonant frequency sunspot” type. Their finding is that equilibria reflecting this latter type of phenomena will be E-stable only if the coefficient analogous to $\alpha/(\alpha - 1)$ in (22) satisfies $\alpha/(\alpha - 1) < -1$. But with $\alpha < 0$, that is not possible in the model at hand.

It remains to be settled whether this case is one for which E-stability goes hand in hand with least-squares learnability. The basic result, established by Evans and Honkapohja (2001, pp. 231-235), is that E-stable solutions that are dynamically stable (i.e., non-explosive) are learnable, whereas E-unstable solutions are not. Therefore, the traditional monetarist solution is, and the fiscalist solution is not, learnable by adaptive least-squares procedures in the model of Section 2. This is the basic result of the present paper.\(^{24}\)

\(^{23}\) The link is tighter when the solution in question is dynamically stable, i.e., non-explosive.

\(^{24}\) More recently, Evans and Honkapohja (2002b) have considered the fiscal-theory issue specifically in a fully optimizing, nonlinear formulation. Their conclusion for the basic case corresponding to the one of
5. Generalization of Basic Result

Ignoring stochastic terms, the linear model that we have used to this point can be represented graphically as in Figure 1. There the traditional MSV solution is that \(p_t = p^* \), as at the intersection point, in each period, \(t = 1, 2, \ldots \). The fiscalist solution, by contrast, implies \(p_t \) values given by paths such as that of the thin line in Figure 1. Most of the literature has, however, utilized explicitly optimizing models that imply an analogous diagram as shown in Figure 2, where there is a nonlinear \(P_t \) to \(P_{t+1} \) mapping that has an positive but increasing slope. Such diagrams are featured, for example, by Carlstrom and Fuerst (2001), Kocherlakota and Phelan (1999), McCallum (2001a), and Christiano and Fitzgerald (2000). Does the E-stability analysis of the foregoing section carry over to specifications such as these?

Although there are some qualifications, the answer is basically “yes.” The main point is that E-stability is a local concept, so that conclusions pertaining to the MSV solution in Figure 1 carry over to models of the type in Figure 2. Thus the MSV solution is E-stable. Also, considerable progress toward analysis of non-MSV solutions is reported by Evans and Honkapohja (2001, pp. 267-314). These results are predominately, though not entirely, favorable to the notion that non-MSV solutions are not learnable. In any case, the more recent analysis of Evans and Honkapohja (2002b) obtains the same result in a nonlinear model, as mentioned in the preceding footnote.

But other kinds of additional generality are needed, as well. The model that we have used features full price level flexibility and many other simplifications that would not be found in reality. It is of course impossible to generate strict conclusions under

this section is that “the explosive fiscalist price path is unstable under learning” (2002b, p.7)—i.e., is not LS learnable.
assumptions of great generality, but it would appear that the basic line of argument provided above would carry over to almost any model that includes a money demand specification of the same general type as (1), where the essential features are that real money demand depends positively upon real transactions and negatively upon an opportunity-cost variable such as R_t, that is the difference between the real rates of return on money and other assets. For in any model that includes such a relationship, the behavior of the price level will not depart drastically from that of the money stock except along explosive paths. With non-explosive money supply behavior these will be bubble paths—i.e., non-MSV paths. But the literature on E-stability indicates that the type of result found above, that the MSV solution is E-stable and the other solutions are not, obtains in virtually all cases involving well-motivated, plausible models. Evans and Honkapohja (1999, 2001) report and emphasize some exceptions, but the main examples stem from their (1992) paper. In McCallum (2002, 2003), I argue that these examples reflect implausible economic specifications—models that are not “well formulated.” It is my impression that there is a very strong association in well formulated models between E-stability and MSV solutions—which implies that (non-explosive) MSV solutions are learnable. Non-MSV solutions, by contrast, are typically E-unstable and not learnable by adaptive least-squares procedures.

In a very recent paper, Evans and Honkapohja (2002b) have examined a broader class of policy regimes, following the specification introduced by Leeper (1991). In this case the monetary authority adjusts a one-period nominal interest rate instrument according to a rule of the form

\[R_t = \mu_0 + (1 + \mu_1)\Delta p_t + \theta_t \]
while simultaneously the fiscal authority is holding \(g_t = 0 \) and implementing a (lump-sum) tax rule of the form

\[
(24) \quad t\tau^t = \tau_0 + \tau_1 b_t + \zeta_t.
\]

Leeper (1991) classified monetary policy as “active” if \(|(1 + \mu_1)\beta| > 1\) and as “passive” otherwise, and classified fiscal policy as active if \(|\beta^{-1} - \tau_1| > 1\) and passive otherwise. Evans and Honkapohja use this terminology, but sensibly focus on cases in which \(1 + \mu_1 > 0\) and \(\tau_1 > 0\). It seems somewhat unsatisfactory to represent monetary policy in terms of an interest rate rule when the purpose of the analysis is to contrast fiscal and monetary theories of price-level determination.\(^{25}\) But let us continue the discussion nevertheless.

Using a linearized version of their model, Evans and Honkapohja (2002b) find that there are two types of solutions that correspond in several ways to the notion of monetarist and fiscalist solutions. For example, in their monetarist solution the inflation rate depends only upon a constant and \(\theta_t\), the current monetary policy shock, whereas the fiscalist solution has the inflation rate also depending on the previous period’s real bond stock. For the most part, the monetarist solution is E-stable and LS learnable when monetary policy is active and fiscal policy passive, whereas the fiscalist solution is E-stable and LS learnable when monetary policy is passive and fiscal policy is active. This finding supports the position of Sims (1994) and Leeper (1991) that it is possible for fiscal policy-rule settings to influence the behavior of inflation, and in this sense to support claims of the fiscal-theory proponents. But the finding does not overturn the arguments given two paragraphs above. Specifically, when the fiscalist solution is E-stable and dynamically stable, it involves stable behavior for real money balances and
therefore implies no major divergence in the time paths of the money stock and the price level. Such solutions evidently represent cases in which monetary policy is accommodating fiscal policy requirements and therefore represent outcomes that are fully consistent with traditional monetary analysis. There is a small region of the policy parameter space that leads to E-stability with explosive solutions, which would imply explosive behavior of real money balances and thus be inconsistent with monetarist doctrines. But these solutions also involve explosive behavior of the real bond stock, which would seem to imply the failure of transversality conditions that are necessary for individual optimality.

From a realistic perspective, emphasis should instead be given to the region in which \((1 + \mu_1)\beta > 1\) and \(\rho < \tau_1 < 1 + \rho\), for the following reasons. The former condition represents the “Taylor principle” in the model at hand, while the latter calls for taxes at a rate that would be nonexplosive in the absence of any government revenue from money creation and yet not so large as to imply that taxes in a single period would more than

\[\text{25}\text{This statement does not claim that monetary policy cannot be satisfactorily managed by means of an interest rate rule, and certainly does not deny that policy is so conducted by most actual central banks.}\]

\[\text{26}\text{In the analysis of Evans and Honkapohja (2002b), the solution equations pertain to } \Delta \rho, \text{ and } b, \text{ so both of these are explosive.}\]

\[\text{27}\text{Woodford (2003) suggests that the Evans and Honkapohja (2002b) designation of monetarist and fiscalist solutions does not always correspond to the solution promoted by advocates of the fiscal theory of the price level. In this context, Woodford states that “the central contention” of the fiscal theory is “that under certain policy regimes consistency of the inflation rate with intertemporal government solvency should be an important factor in determining inflation, in addition to the specification of monetary policy.” In the present paper, however, the essence of the fiscalist position is taken to be a prediction that the price level will, under some circumstances, behave like nominal bonds and very differently than the nominal money supply. It is that type of prediction that has made the fiscalist theory striking and prominent.}\]

\[\text{28}\text{Considerable discussion of the Taylor Principle is provided by Woodford (2002), who emphasizes that a smaller value of } \mu_1 \text{ will suffice when } \mu_2 > 0. \text{ In the analysis of Evans and Honkapohja (2002b), incidentally, a slightly different condition is found— but it appears that this is merely the result of a log-linear approximation (used commonly but not by them) that serves to eliminate a } \beta \text{ term that should appear in the discrete-time version of the Fisher equation.}\]
fully retire all outstanding government debt.29 The main result is that, over this entire region, the monetarist solution is E-stable (and the fiscalist solution is not). This result is especially interesting in that it indicates that desirable outcomes are provided by monetary and fiscal policy rules that are each sensible on their own terms, with no overt “coordination” or dependence on the behavior of the other policy authority.

6. Additional Issue

The possibility of price level behavior being dominated by fiscal, rather than monetary, policy stances is the hallmark of the fiscal theory. But there is an additional theme in the literature that deserves brief discussion. This is the occasional appearance of an analysis conducted in the context of a model that does not include any asset with medium of exchange (MOE) properties, i.e., any money. Such discussions have been provided, for example, by Cochrane (1998, 2001), Weil (2002), and Woodford (2002, Ch. 2).

The problem with such analyses is that they undermine the very raison d’être of the fiscal theory. Suppose the model economy has two or more paper assets, one of which is called “money” but has no MOE properties—i.e., does not serve to facilitate transactions in a resource-conserving manner. Then the model pertains to a non-monetary economy, in which case there is nothing surprising or interesting about equilibria in which the price level fails to mimic the behavior of this useless and misnamed asset.

Alternatively, suppose that the model recognizes only one paper asset issued by the government that can be thought of either as “bonds” or “money” as, for example, in Weil (2002). In such settings the behavior of the price level, if it is defined as the asset

29 It seems peculiar that Leeper’s (1991) terminology would classify this type of fiscal behavior—retiring each period a positive fraction of outstanding debt—as “passive,” but it does.
price of goods, will be determined by fiscal policy since the latter governs the creation of that paper asset. But in such a setting there is no distinction between fiscal and monetary policy, so again fiscalist results lose their interest; one could just as well describe management of that asset’s supply as representing monetary policy. In short, a necessary condition for fiscalist results to be of interest is that they occur in models that include both government bonds and MOE money as distinct assets, so that monetary and fiscal policies can conceivably push in different directions.

7. Conclusions

Let us conclude with a brief recapitulation of the paper’s argument. Basically, it presents a prototype model, in the simplest possible setting, for development and discussion of the fiscal theory of the price level. In this setting, it becomes clear that the fiscal theory’s distinctiveness relies upon the analyst’s adoption of a bubble solution, rather than the orthodox fundamentals solution, in the context of a multiplicity of rational expectations solutions for the model. It is this step that permits the time path of the price level to depart dramatically from the time path of the money stock, despite the model’s inclusion of an orthodox money demand function (as is standard in the literature). To determine which equilibrium is plausible, the paper adopts the criterion of adaptive, least-squares learnability (since individual agents could not plausibly be endowed with perfect knowledge of the economy’s true parameter values). By drawing on results developed in the extensive writings of Evans and Honkapohja (1999, 2001, 2002a) it is demonstrated

30 Does this argument deny any importance to analyses designed to analyze price level determination in non-monetary economies? No, but in that context, the meaning of the term “price level” becomes an issue. Normally it is the inverse of the exchange value of money, so what is the appropriate definition for an economy without any MOE? It does in fact seem likely that some asset would serve as a common medium of account (MOA) in such an economy, although we have little or no recent experience with such matters, and a government-issued paper asset would be a natural candidate to fill that role. But, in any event, matters of this type need to be explicitly addressed in such analyses.
that with the basic policy specification the traditional fundamentals solution is E-stable and therefore learnable, whereas the fiscal-theory bubble solution is not. It is argued that similar results are likely to prevail in more complex models that include the same central ingredients, including policy rules.

With regard to the type of policy specification proposed by Leeper (1991), the paper discusses some results obtained recently by Evans and Honkapohja (2002b). It is argued that these results are basically consistent with the message of the paper. One debatable point is that some writers, including Woodford (2003), identify the central characteristic of the fiscal theory differently—see footnote 27 above. Our characterization of the fiscal theory, as emphasized above, is that it leads in some cases to the prediction of price level paths that are dominated by bond stock behavior and very different from the path of the nominal money stock. It is this notion, I suggest, that has been most responsible for attracting attention to the fiscal theory.

Finally, the paper argues that analyses of the fiscal theory of the price level must be conducted in models with a medium-of-exchange money to avoid undermining the raison d’etre of the theory.
References

