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Abstract 

It is “well known” that in linear models: 
(1) testable constraints on the marginal distribution of observed variables distinguish 
certain cases in which an unobserved cause jointly influences several observed variables; 
(2)  the technique of “instrumental variables” sometimes permits an estimation of the 
influence of one variable on another even when the association between the variables 
may be confounded by unobserved common causes;  
(3) the association (or conditional probability distribution of one variable given another) 
of two variables connected by a path or pair of paths with a single common vertex (a 
trek) can be computed directly from the parameter values associated with each edge in 
the trek;  
(4) the association of two variables produced by multiple treks can be computed from the 
parameters associated with each trek;  and  
(5)  the independence of two variables conditional on a third implies the corresponding 
independence of the sums of the variables over all units conditional on the sums over all 
units of each of the original conditioning variables. 
 
These properties are exploited in search procedures. We show that (1) and (2) hold for all 
Bayes nets with binary variables. We further show that for Bayes nets parameterized as 
noisy or and noisy and gates, all of these properties save (4) hold.  

 
1. Introduction. 
Linear models have special advantages for model search and for the estimation of causal effects. 
Among them are those listed in the Abstract. Property (1) permits the detection of common 
causes via the “Tetrad Representation Theorem” and in combination with properties (3) and (4) 
is sufficient for the determination of latent structural relations from rather weak background 
assumptions (Spirtes, et al, 1993/2001; Shafer, et al., 1995). Property (2) provides a standard 
technique for estimating causal influence in econometrics, epidemiology and elsewhere. Property 
(5) is an essential assumption of many search methods that attempt to identify the causal 
structure of units from aggregated data, for example, several proposed methods of discovering 
genetic regulatory networks from measurements of mRNA concentrations.  
 
In many models that are objects of automated search, for example networks for genetic 
regulation, it is assumed that the variables under study are binary. An important body of 
questions therefore concerns which of the properties of linear systems relevant to search hold for 
Bayes nets of binary variables, either in general or in an interesting class of special cases. Some 
results are known. For example the rules (3) and (4) for computing correlations in linear models 
are known to hold as well for singly trek-connected Bayes nets with binary variables, and 
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counterexamples are known for networks that have multiple treks between pairs of variables 
(Pearl, 1988). Techniques are known for using instrumental variables to bound causal effects in 
binary Bayes nets (Pearl, 2000). We supply a further result for Bayes nets of binary variables 
generally, and we discuss these properties for Bayes nets of binary variables parameterized as 
noisy or and noisy and gates, a parameterization of particular interest because of its use as a 
model of naïve human causal judgment (Cheng, 1997). 
 
2. General Results 
One technical notion and one Lemma will be used throughout this paper. A trek in a directed 
acyclic graph (DAG) is a directed path from one vertex to another, or a pair of directed paths 
terminating in two distinct vertices and intersecting in a single vertex. The unique vertex on any 
trek that has no edges in the trek directed into it is the source of the trek. 
Lemma For any DAG with only binary variables, if A _||_ C | B, then ρ(A, C) = ρ(A, B) * ρ(B, 
C). 
Proof of Lemma: 
We have the following general formula for the correlation of two binary variables: 
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Since σB
2 = P(B) * [1 – P(B)], these two equations are equal iff: 

[P(C | A) – P(C)] * [1 – P(B)] = [P(B | A) – P(B)] * [P(C | B) – P(C)] (2.1) 
 
Furthermore, we know that  
[P(C | B) – P(C)] = [1 – P(B)] * [P(C | B) – P(C | ~B)] (2.2) 
Plugging (2.2) into (2.1) and simplifying, the correlations are equal iff: 
[P(C | A) – P(C)] = [P(B | A) – P(B)] * [P(C | B) – P(C | ~B)] (2.3) 
Expanding the right-hand side, we have: 
P(C | B)*P(B | A) – P(C | B)*P(B) – P(C | ~B)*P(B | A) + P(C | ~B)*P(B) 

= P(C | B)*P(B | A) – P(C | ~B) + P(C | ~B)*P(~B | A) – P(C & B) + P(C | ~B) – P(C & ~B) 
Since we have only binary variables, and since A _||_ C | B, the first and third terms combine to 
form P(C | A). The second and fifth terms cancel. And the fourth and sixth combine to form –
P(C). Therefore, since the equality in (2.3) holds, ρ(A, C) = ρ(A, B) * ρ(B, C). 
 
2.1 A Tetrad Representation Theorem for Bayes Nets with Binary Variables 
For systems of binary variables we formulate the Tetrad Representation Theorem (TRT) as 
follows: 

Tetrad Representation Theorem for Binary Variables: In a DAG G, there is a choke 
point between {I1, I2} and {J1, J2} if and only if ρ11ρ22 – ρ12ρ21 = 0 over a set of 
parameters of measure 1 (where ρij is the correlation between Ii and Jj). 
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A variable C is a choke point between two sets I and J if and only if every trek between I ∈ I 
and J ∈ J includes C. The two proofs of the TRT for linear systems have both used the 
generalized trek rule, which holds for all linear systems. The generalized trek rule states that: 
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where T is the set of all and only the treks connecting X0 and Xn, and tn is the number of nodes on 
trek t. In fact, if the generalized trek rule holds for a system, then the TRT naturally follows, 
since the generalized trek rule is the only part of the TRT proof that depends on non-graphical 
properties. Unfortunately, the generalized trek rule does not hold in general for Bayes nets with 
binary variables, and we therefore adopt a modified strategy. 
 
Let T be the set of treks from I to J, where Xi ranges over the variables on T ∈ T (i.e., Xi ranges 
over every variable, including I and J, on all of the treks between I and J). We then define the 
following two sets: 

U(T) = {<Xi, Xj> : ∀T ∈ T(Xi  Xj ∈ T)} 
S(T) = {<Xk, Xl> : [<Xk, Xl> ∉ U(T)] & [∀T ∈ T(Xk, Xl ∈ T)] & ¬∃Xi[[∀T ∈ T(Xi ∈ T)] & 

[Xi is between Xk and Xl]2]} 
These sets are actually quite easily described in English. U(T) consists of all of the pairs (i.e., 
directed edges) that appear in every trek from I to J. S(T) consists of the first and last vertex of 
each portion of the treks that do not overlap. Note that at least one of the two sets will be non-
empty (if T is non-empty). Figure 2.1.1 provides U(T) and S(T) for a sample graph. 
 
 

I X1 

X2 

X4 

X3 

J 

 
U(T) = {<X1, I>, <X4, J>} 
S(T) = {<X4, X1>} 
 
Figure 2.1.1: U(T) and S(T) for a sample graph 

 
Note that we will omit the “(T)” when there is only one set of treks to consider. Given this 
notation, the following two theorems prove that a variant of the generalized trek rule holds for 
systems of binary variables. 
 
Theorem 2.1.1: 
Given the above notation, if T consists entirely of directed paths from I to J, 

                                                 
2 Note that “between” is well-defined here, since Xk, Xi, and Xl are on every trek, and each trek must go through them 
in the same order. 
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Theorem 2.1.2: 
If T is the set of all treks between I and J (not necessarily all of which are directed paths), then  
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Theorems 2.1.1 and 2.1.2 thus show that something like the generalized trek rule holds for 
systems of binary variables. It turns out that this variant is actually all we need for the TRT, as 
the following two theorems show. 
 
Theorem 2.1.3: 
If there is at least one choke point between {I1, I2} and {J1, J2}, then: 
ρ(I1, J1) * ρ(I2, J2) – ρ(I1, J2) * ρ(I2, J1) = 0 
 
Theorem 2.1.4: 
If there is no choke point between {I1, I2} and {J1, J2}, then for a measure 1 set of parameters, 
ρ(I1, J1) * ρ(I2, J2) – ρ(I1, J2) * ρ(I2, J1) ≠ 0 
 
Corollary 2.1.1: (Tetrad Representation Theorem for binary variables) 
There is at least one choke point between {I1, I2} and {J1, J2} iff: 
ρ(I1, J1) * ρ(I2, J2) – ρ(I1, J2) * ρ(I2, J1) = 0 
 
Proof of Theorem 2.1.1: 
We prove by induction on |U| + |S| = n. 
Base case (n = 1): Since a set cannot have negative cardinality, the base case occurs when 
exactly one of the sets has exactly one element. If U has only one element, then it must be the 
element <I, J>, in which case the equation is trivially true. Similarly, if S has only one element, 
then it must be <I, J>, and so the equation is trivially true. 
Induction step: For the induction step, we will assume that the sum of the cardinalities is n – 1. 
Then, we will show that the equation still holds when we add an element either to U or to S, 
where the element comes immediately before J. We can assume this without loss of generality, 
since we can “build” the set of directed paths iteratively.  

Case 1: Assume that we add another element to U. That is, find the element <Xj, J> in either 
U or S, replace that element by <Xj, Xn> (in the same set), and add <Xn, J> to U.3 Then, since 
every path from I to J passes through Xn, I _||_ J | Xn. Therefore, by the Lemma, ρ(I, J) = ρ(I, 
Xn) * ρ(Xn, J). Now consider the subgraph that excludes J. For this graph, |U| + |S| = n – 1, 
since the only element we remove is <Xn, J> from U. Therefore, we know that the 
decomposition equation holds for ρ(I, Xn), and so the decomposition equation holds for the 
full graph.  

                                                 
3 And adjust the graph accordingly, by redirecting every edge into J into Xn, and adding Xn  J to the graph. 
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Case 2: Now consider adding an element to S. That is, we find the element <Xj, J> in either 
U or S, replace that element by <Xj, Xn> (in the same set), and add <Xn, J> to U.4 As in case 
1, we can use the Lemma to show that adding an element to S leads to ρ(I, J) = ρ(I, Xn) * 
ρ(Xn, J), since I _||_ J | Xn. Therefore, since we assume the decomposition equation holds for 
the subgraph correlation (given by ρ(I, Xn)), the equation holds in this case. 

Since the equation holds in both cases of the induction step, we have proven the theorem. 
 
Proof of Theorem 2.1.2: 
There are two different cases to consider, based on the number of distinct sources.  

Case 1: Assume that there is exactly one source for all of the treks, call it W. Then we can 
use the Lemma to derive ρ(I, W) * ρ(W, J) = ρ(I, J). The I sides of all of the treks form the 
set of directed paths from W to I, and the J sides form the set of directed paths from W to J. 
Using theorem 2.1.1, we can derive the above equation (since the total correlation is just the 
product of the sides, which are the products of the pieces). 
 
Case 2: Assume that there are m distinct sources of the treks.  

Claim: All of the sources must be between Xi and Xj, where <Xi, Xj> ∈ S.  
Proof: Assume there are distinct <Xi, Xj>, <Xk, Xl> ∈ S such that some of the sources 
were between Xi and Xj, and some between Xk and Xl. Without loss of generality, assume 
that Xi is closest to I, and Xl is closest to J. Since there are sources between Xi and Xj, 
there must be edge(s) from Xj towards J. Similarly, there must be edge(s) from Xk towards 
I since there are sources between Xk and Xl. However, the edges out from Xj and the edges 
out from Xk must converge at some node Xr, or else we would have had <Xi, Xl> ∈ S. But 
this implies that Xr is a collider and so the paths do not form treks. 

Since all of the sources fall between Xi and Xj, we need only show that ρ(I, J) = ρ(I, Xi) * 
ρ(Xi, Xj) * ρ(Xj, J), since the trek pieces from Xi to I form the set of directed paths, and the 
pieces from Xj to J form the set of directed paths. However, this is straightforwardly shown 
by two applications of the Lemma (first to ρ(I, J) in terms of Xj as the screener, and then to 
ρ(I, Xj) with Xi as the screener). 
 

Proof of Theorem 2.1.3: 
Lemma 2.1 in Shafer, et al. (1995) tells us that, if there is more than one choke point, then all of 
the treks go through the choke points in the same order. Therefore, we can designate the choke 
point closest to {I1, I2} as W, and without loss of generality, we can assume that W is between the 
source(s) and {I1, I2} (and is possibly identical to one of these elements). W must occur in either 
U or S (or possibly both), since otherwise there would be a trek such that W did not occur in that 
trek, which would contradict W’s status as a choke point. Therefore, if Ti.j is the set of treks 
between Ii and Jj, then we can divide U(Ti.j) into two disjoint sets: UI(Ti.j) and UJ(Ti.j) 
corresponding to the elements of U(Ti.j) on the Ii side, and the Jj side respectively. We can 
similarly split S(Ti.j) into two disjoint sets. Now, consider the two terms in the theorem’s 
equation (using theorem 2.1.2 to expand them): 

                                                 
4 And adjust the graph accordingly, by redirecting every edge into J into Xn, and adding arbitrarily many children for 
Xn, with arbitrary connections among the children and into J. 
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However, since W is a choke point, every trek between {I1, I2} and {J1, J2}must pass through W. 
Therefore, UI(Ti.j) and SI(Ti.j) are dependent only on the value of i. Similarly, UJ(Ti.j) and SJ(Ti.j) 
are dependent only on j. Therefore, we have the following equalities: 
UI(T1.1) = UI(T1.2) 
UJ(T1.1) = UJ(T2.1) 
SI(T1.1) = SI(T1.2) 
SJ(T1.1) = SJ(T2.1) 
 
UI(T2.1) = UI(T2.2) 
UJ(T1.2) = UJ(T2.2) 
SI(T2.1) = SI(T2.2) 
SJ(T1.2) = SJ(T2.2) 
 
Therefore, every term in the first product has an equal term in the second product, and therefore 
the difference between the products must be zero. 
 
Proof of Theorem 2.1.4: 
If there is no choke point, then U(T1.1) ∪ U(T2.2) ∪ S(T1.1) ∪ S(T2.2) ≠ U(T1.2) ∪ U(T2.1) ∪ 
S(T1.2) ∪ S(T2.1), since if the unions were equal, then we would have a choke point. Therefore, 
the tetrad difference (which is defined by these unions) is zero only on a set of measure zero in 
parameter space (where the measure is absolutely continuous with the uniform measure on 
[0,1]). 
 
2.2 Aggregation 
In the case of gene expression, we typically take data on several variables, but we actually 
receive data summed or averaged over many individuals at once. The aim of inquiry is a Bayes 
net representing the conditional independence and causal relations among the properties of 
individual units. So we pose the question:   

If X _||_ Z | Y for each individual (in a large, i.i.d. sample of size N), is 
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We abbreviate the conditional independence of the summed variables as ΣX _||_ ΣZ | ΣY. We 
argue informally that for large N almost certainly the conditional independence above holds for 
the summed variables if and only if it holds for the individual variables.  For large N, the 
distribution of ΣX, ΣZ ,ΣY is approximately normal by the Central Limit Theorem, and, to that 
approximation, a conditional independence holds if and only if the corresponding conditional 
covariance or partial correlation vanishes. We have the following formula for the conditional 
covariance of ΣX and ΣZ:  
Cov(ΣX, ΣZ | ΣY) = E(ΣX & ΣZ | ΣY) – E(ΣX | ΣY) * E(ΣZ | ΣY) 
The first term factors into: E(ΣX | ΣY) * E(ΣZ | ΣX & ΣY). Therefore, the covariation (and so also 
the correlation) is zero if and only if E(ΣZ | ΣX & ΣY) = E(ΣZ | ΣY).  
We can express the expected value of  ΣZ as functions of the probabilities of X and of Y as: 

E(ΣZ) = N * P(Z = 1) = N * [P(Z = 1 | X = 1, Y = 1) * P(Y = 1 | X = 1) * P(X = 1) (2.2.1) 

 + P(Z = 1 | X = 1, Y = 0) * P(Y = 0 | X = 1) * P(X = 1) 

 + P(Z = 1 | X = 0, Y = 1) * P(Y = 1 | X = 0) * P(X = 0) 

 + P(Z = 1 | X = 0, Y = 0) * P(Y = 0 | X = 0) * P(X = 0)] 

and 
E(ΣZ) = N * P(Z = 1) = N * [P(Z = 1 | Y = 1) * P(Y = 1) + P(Z = 1 | Y = 0) * P(Y = 0)]. (2.2.2) 
Conditioning (2.2.2) on ΣY = NY results in  
E(ΣZ | ΣY = NY) = N [P(Z = 1 | Y = 1) * NY/N + P(Z = 1 | Y = 0) * (1- (NY/N))] (2.2.3) 
Conditioning (2.2.1) on ΣY = NY, ΣX = NX in the analogous way, rearranging and using the fact 
that P(Z | X, Y) = P(Z | Y) also results in equation (2.2.3). Hence within the approximations noted, 

almost certainly X _||_ Z | Y if and only if   ∑∑∑
===
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3. Bayes Nets of Noisy-Or/ Noisy-And Gates 
Consider an arbitrary directed acyclic graph (DAG) whose vertices are binary variables taking 
values in {0,1}. We say a model is a Noisy-OR and -AND gate model, or more briefly a Cheng 
model if, for each variable X, the set of parents of X, P(X), can be partitioned into two sets, 
GEN(X) and PRE(X) such that: 

X = [Ux + ΣK ∈ GEN(X) qKX K ] [ΠL ∈ PRE(X) (1 – qLX L)] 

where all sums are Boolean, and Ux is distributed independently of all variables other than X and 
the descendants of X, and qKX and qLX are separate parameters for each variable K and L, 
respectively, and all such parameters are jointly independent of each other and of all variables in 
the network . Intuitively, the variables in GEN(X) and U are generative or positive causes of X, 
while the variables in PRE(X) prevent X (taking X = 1 as the occurrence of X or the marked 
case.) Again, intuitively, the probability that qKX = 1 is the probability that, given that K = 1, K 
causes X = 1, and the probability that  qLX = 1 is the probability that, given that L = 1, L prevents 
X = 1 (Cheng, 1997). Sources of variation not represented in the network are required to be 
generative, since otherwise none of the parameters of the model can be estimated from 
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observational data (Glymour, 1998). Such models have been applied in electrical engineering 
and developed as models of human judgment of non-interactive causal relations. Our concern is 
to find the linear analogies valid in such models. 
 
3.1 Instrumental Variable Calculations. 
Instrumental variable models have the graphical structure shown in figure 3.1.1.  
 

A B

U

E 
 

Figure 3.1.1: Instrumental variable graph 
 
where U is unobserved. The object is to estimate the conditional probability distribution of E on 
values of B determined by an intervention that randomizes B. Suppose all causes are generative, 
so that 
E = qbeB ⊕ queU  and B = qabA ⊕ qubU (3.1.1) 
where ⊕ is Boolean addition. Following Spirtes, et al. (1993/2001), and Pearl (2000), what must 
be estimated is  
PB = 0(E = 1) = P (queU = 1) and  PB = 1( E  = 1) = P(qbe ⊕ queU = 1). (3.*) 
It is easily verified that  
P(qab =1) = [P(B = 1 | A = 1) – P(B = 1 | A = 0)] / [1 – P(B = 1 | A = 0). (3.1.2) 
 (The derivation is in Cheng, 1997). Substituting and factoring in (3.1.1): 
E = qbe qabA ⊕ (qbequb ⊕ que)U, (3.1.3) 
It follows by an analogous argument to that for (3.1.2) that  
P(qbe  =1) ∗ P(qab =1) = [P(E = 1 | A =1) – P(E = 1 | A = 0)] / [1 – P(E = 1 | A = 0)] (3.1.4) 
The ratio of (3.1.3) to (3.1.2) gives P(qbe = 1).  The r.h.s. of the first equation in 3.* is obtained 
by  
P(queU = 1) = P (queU = 1| B = 1) * P(B = 1) + P (queU = 1 | B = 0) * P(B = 0) (3.1.5)   
which after some algebra reduces to a formula in observed probabilities: 
P(queU = 1) = [P(E = 1 | B = 1) – P(qbe  =1)] * P(B = 1) / [1 – P(qbe  =1)]  (3.1.6) 

+ P(E = 1 | B =0) * P(B = 0) 
Hence the r.h.s. of each equation in 3.* can be estimated. Analogous results are obtained with 
similar algebra when the influence of B is preventive and A is generative. 
 
3.2 Trek Rules 
In this section we assume the following typical structure: 
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Xi-1 Xi 

εi 

ai 

 
Figure 3.2.1: Typical graphical unit structure 
where the response functions (and associated probabilities) are: 
Noisy-OR gate: 
Xi = aiXi-1 ⊕ εi 

P(Xi) = P(ai) * P(Xi-1) + P(εi) – P(ai) * P(Xi-1) * P(εi) 
 
Noisy-AND gate: 
Xi = εi • (1 – aiXi-1) 
P(Xi) = P(εi) * [1 – P(ai) * P(Xi-1)] 
 
Theorem 3.2.1: 
If a directed path of length n ≥ 1 composed of noisy-OR and noisy-AND gates (in any 
combination and order) is the only trek between X0 and Xn, then: 

( ) ( ) ( ) ( ) ( )[ ]
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iP
ig

i
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ε
ε

Theorem 3.2.2: 
If a directed path of length n ≥ 1 composed of noisy-OR and noisy-AND gates (in any 
combination and order) is the only trek between X0 and Xn, then: 

( ) (∏
=

−=
n

i
iin XXXX

1
10 ,, ρρ )

)

 

Theorem 3.2.3: 
If a trek of length n ≥ 1 composed of noisy-OR and noisy-AND gates (in any combination and 
order) with Xk as the source of the trek (n ≥ k ≥ 0) is the only trek between X0 and Xn, then: 

( ) (∏
=

−=
n

i
iin XXXX

1
10 ,, ρρ  

Corollary 3.2.1: (follows directly from theorems 3.2.3 and 3.2.1) 
If a trek of length n ≥ 1 composed of noisy-OR and noisy-AND gates (in any combination and 
order) with source Xk (n ≥ k ≥ 0) is the only trek between X0 and Xn, then: 
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Proof of Theorem 3.2.1: (by induction) 
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Base case (n = 1): 
Consider the case in which we have just one noisy-OR gate. Using the above formula for a 
noisy-OR gate, we can straightforwardly derive (after some algebraic manipulation) the 
following covariance and correlation: 
Cov(X0, X1) = P(a1) * [1 – ε1] * P(X0) * [1 – P(X0)]  

ρ(X0, X1) = ( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ]11

00
11 1

1
1

XPXP
XPXP

PaP
−∗

−∗
∗−∗ ε  

Now consider the case in which we have just one noisy-AND gate. Using the above formula for 
a noisy-AND gate, we can derive (after some algebra) the following covariance and correlation: 
Cov(X0, X1) = –P(a1) * P(ε1) *  P(X0) * [1 – P(X0)] 

ρ(X0, X1) = ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]11

00
11 1

1
XPXP
XPXP

PaP
−∗

−∗
∗∗ ε−  

Induction step: 
Assume the theorem holds for n – 1, and now we will show that it holds for n. Consider first the 
case in which we add a noisy-OR gate from Xn-1 to Xn. Since there is only one trek between X0 
and Xn, and it passes through Xn-1, we know that X0 _||_ Xn | Xn-1. Therefore,  
ρ(X0, Xn) = ρ(X0, Xn-1) =ρ(Xn-1, Xn).  (3.2.1) 
By the same reasoning as in the base step, we know that: 

ρ(Xn-1, Xn) = ( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ]nn

nn
nn XPXP

XPXP
PaP

−∗

−∗
∗−∗ −−

1
1

1 11ε . (3.2.2) 

Since, the theorem was assumed to hold for n – 1, we can substitute the equation for the theorem 
into (3.2.1) for ρ(X0, Xn-1), and use (3.2.2) for ρ(Xn-1, Xn). After we roll P(an) and [1 – P(εn)] into 
the Π term (from the theorem equation), we have: 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ]
( ) ( )[ ]nn
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nn

n

i
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



 ∗= −−

−−=
∏ 1

1
1
1

, 11

11

00

1
0ρ  

Hence, after canceling, the formula still holds if we add a noisy-OR gate to the end of the path. 
Now consider adding a noisy-AND gate from Xn-1 to Xn. In that case, we can use exactly the 
same reasoning as in the noisy-OR case, except that we are incorporating different terms into the 
theorem equation for n – 1. Therefore, the formula holds if we add a noisy-AND gate to the end 
of the path. Since the theorem holds for both base case possibilities and both induction 
possibilities, the theorem holds for all Cheng models. 
 
Proof of Theorem 3.2.2: 
By Theorem 3.2.1, we know that: 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]ii

ii
iii XPXP

XPXP
igaPXX

−∗

−∗
∗∗= −−

− 1
1

, 11
1ρ  

Therefore, if we multiply together the correlations for each of the gates, we have 
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−
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i ii

ii
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i
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1 1

1
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Since all of the terms in the second Π term cancel out except for the initial numerator and final 
denominator, the right-hand side reduces to ρ(X0, Xn), as given in Theorem 3.2.1. 
 
Proof of Theorem 3.2.3: 
By Theorem 3.2.2, if suffices to show that ρ(X0, Xn) = ρ(X0, Xk) * ρ(Xk, Xn), since the 
decomposition holds for each of the directed paths (X0  Xk and Xk  Xn). Since ρ(Y, Y) = 1, 
this condition trivially holds for k = 0 or n. Therefore, we will assume that 0 < k < n.  
Now, consider the covariance between X0 and Xn. After much algebra, we get the following 
formula (independently of the ordering of noisy-OR and noisy-AND gates on the trek): 
Cov(X0, Xn) = P(Xk) * [1 – P(Xk)] * [P(X0 | Xk) – P(X0 | ~Xk)] * [P(Xn | Xk) – P(Xn | Xk)] 
Therefore, we have the following formula for the correlation: 

( )

( ) ( )[ ] ( ) ( )[ ] ( ) ([
( ) ( )[ ]

)]
( ) ( )[ ]nn

knknkk
kk

n

XPXPXPXP
XXPXXPXXPXXP

XPXP

XX

−∗∗−∗
−∗−

∗−∗

=

11
|~||~|

1

,

00

00

0ρ
 (3.2.3) 

Now, we also have the following formulae for the correlations between X0 and Xk, and Xk and Xn: 

( ) ( ) ( ) ( )
( ) ( )[ ] ( ) ( )[ ]kk

k
kk XPXPXPXP

XPXXP
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11

|
,

00

00
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( ) ( ) ( ) ( )
( ) ( )[ ] ( ) ( )[ ]kknn

nkn
knk XPXPXPXP
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−

∗=
11

|
,ρ  

If we multiply these two correlations together, we have: 
( ) ( )

( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ]nnkk

nknk
k

nkk

XPXPXPXPXPXP
XPXXPXPXXP

XP

XXXX

−∗∗−∗∗−∗
−∗−

∗

=∗

111
||

,,

00

002

0 ρρ
 (3.2.4) 

Consider the terms in the numerator of the fraction. We can perform the following 
transformation on the first term (and similarly for the second): 
P(X0 | Xk) – P(X0) = P(X0 | Xk) – P(X0 & Xk) – P(X0 & ~Xk) =  

P(X0 | Xk) – P(X0 | Xk) * P(Xk) – P(X0 | ~Xk) * [1 – P(Xk)] =  
[1 – P(Xk)] * [P(X0 | Xk) – P(X0 | ~Xk)]. 

Substituting this transformation (and the analogous one for [P(Xn | Xk) – P(Xn)]) back into 
equation (3.2.4) and canceling terms, we have: 

( ) ( )

( ) ( )[ ] ( ) ( )[ ] ( ) ([
( ) ( )[ ]

)]
( ) ( )[ ]nn

knknkk
kk

nkk

XPXPXPXP
XXPXXPXXPXXP
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−∗−

∗−∗
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11
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1

,,

00

00

0 ρρ
 (3.2.5) 

 
These equations show that ρ(X0, Xn) = ρ(X0, Xk) * ρ(Xk, Xn), which is what we needed to establish 
the theorem. 
 
4. Counterexamples 
The trek rules for singly connected Cheng models do not generalize. Further, Cheng models 
make it easy to show that the aggregation invariance that holds in all Bayes nets with binary 
variables when conditioning on a single variable does not hold when conditioning on multiple 
variables. 
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4.1 Failure of the Trek Rule 
The Trek Rule does not generalize to multiply trek connected variables in noisy-AND/OR 
networks.  That is: If T is the set of all and only the treks between X0 and Xn, and |T| > 1, then it is 
not necessarily the case that:  (where ρ( ) (∑

∈

=
Tt

ntn XXXX ,, 00 ρρ ) t(X0, Xn) is the correlation 

between X0 and Xn if trek t were the only trek). 
Consider the following graph composed solely of noisy-AND gates (the ai and εI terms are left 
out for simplicity): 
 

X0 

X1 

X2 

X3 

 
Figure 4.1.1: Counterexample to trek rule 
 
So, the equations for the dependent variables are: 
X1 = [1 – a1X0] • ε1 
X2 = [1 – a2X0] • ε2 
X3 = [1 – a31X1] • [1 – a32X2] • ε3 
We only need to determine ρ(X0, X3) directly, since we can use Theorem 3.2.1 to compute the 
correlations along each trek (since each is a directed path). When we substitute the equations for 
X1 and X2 into the equation for X3, we get: 
P(X3) = [1 – P(a31)*P(ε1)*[1 – P(a1)*P(X0)]] * [1 – P(a32)*P(ε2)*[1 – P(a2)*P(X0)]] * P(ε3) 
After lots of algebra, we can then derive the following covariance and correlation: 
Cov(X0, X3) = P(ε3) * P(X0) * [1 – P(X0)] * [P(ε1)*P(a1)*P(a31) + P(ε2)*P(a2)*P(a32) – 

P(ε1)*P(ε2)*P(a1)*P(a31)*P(a32) – P(ε1)*P(ε2)*P(a2)*P(a31)*P(a32) + 
P(ε1)*P(ε2)*P(a1)*P(a2)*P(a31)*P(a32)*P(X0)] 

( ) ( ) ( ) ( )[ ]
( ) ( )[ ]33

00
330 1

1
,

XPXP
XPXP

QPXX
−∗

−∗
∗∗= ερ , (4.1.1) 

where Q = [P(ε1)*P(a1)*P(a31) + P(ε2)*P(a2)*P(a32) – P(ε1)*P(ε2)*P(a1)*P(a31)*P(a32) – 
P(ε1)*P(ε2)*P(a2)*P(a31)*P(a32) + P(ε1)*P(ε2)*P(a1)*P(a2)*P(a31)*P(a32)*P(X0)]  

Using the Lemma to compute the correlations along each individual trek, we have 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]33

00
3302301 1

1
,,

XPXP
XPXP

WPXXXX
−∗

−∗
∗∗=+ ερρ , (4.1.2) 

where W = [P(ε1)*P(a1)*P(a31) + P(ε2)*P(a2)*P(a32)]. 
 
Therefore, when we compare equations (4.1.1) and (4.1.2), we can see that the generalized trek 
rule will hold for this case if and only if Q = W, which is true if and only if: 
P(ε1)*P(ε2)*P(a31)*P(a32) * [P(a1) + P(a2) – P(a1)*P(a2)*P(X0)] = 0 
Since we assume that all of the probabilities are non-extremal, this equality cannot possibly be 
satisfied (since P(a1)*P(a2)*P(X0) < P(a1) and P(a1)*P(a2)*P(X0) < P(a2)). Therefore, the 
generalized trek rule does not hold for all graphs composed of noisy-OR and noisy-AND gates. 
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4.2 Failure of aggregation  
Aggregation does not generalize. That is: If X is an ancestor of Z, and Y1, …, Yn (n > 1) are the 
parents of Z, then it is not necessarily the case that ρ(ΣX, ΣZ | ΣY1, …, ΣYn) = 0.  
Proof by counterexample. Consider the following graph: 
 

X 

Y2 

Y1 

Z 

 
Figure 4.2.1: Counterexample to aggregation 
 
We have the following formula: 
Cov(ΣX, ΣZ | ΣY1, ΣY2) = E(ΣX & ΣZ | ΣY1, ΣY2) – E(ΣX | ΣY1, ΣY2) * E(ΣZ | ΣY1, ΣY2) 
The first term in the formula factors into: E(ΣX | ΣY1, ΣY2) * E(ΣZ | ΣX, ΣY1, ΣY2). Therefore, the 
covariance (and hence the correlation) equals zero just in case:  
E(ΣZ | ΣX, ΣY1, ΣY2) = E(ΣZ | ΣY1, ΣY2). 
Now consider the left-hand side of the equation. If we assume that there are N individuals in the 
summation, that the summations are given by NX, NY1, and NY2, and that all of the connections are 
noisy-AND gates, then we have: 
E(ΣZ | ΣX, ΣY1, ΣY2) = N * [(1 – P(aY1)*P(Y1)) * (1 – P(aY2)*P(Y2)) * P(εZ)] = 
P(εZ) * [N – P(aY1)*NY1 – P(aY2)*NY2 – P(aY1)*P(aY1)*N*P(Y1 & Y2)]. 
Now, P(Y1 & Y2) is a function of X, and so we can reduce E(ΣZ | ΣX, ΣY1, ΣY2) to a formula 
having only known values (including NX, NY1, and NY2). 
Consider a similar operation on E(ΣZ | ΣY1, ΣY2). In this case, our simplification must stop with a 
P(Y1 & Y2) term still in the formula. That is, we cannot determine whether, in fact, these two 
equations are equal. It depends on the probability of the joint occurrence of Y1 and Y2, which we 
do not know. 
 
5. Comments 
The counterexample to aggregation invariance argues that, except in special cases, attempts to 
infer an underlying structure among binary variables from aggregated data ought to be suspect. 
On the positive side, the explicit characterization of trek rules and the applicability of 
instrumental variables to noisy-or/noisy-and gate models may be of use both in the design of 
psychological experiments and in data analysis where such parameterizations are plausible. 
 
The most important positive result in this paper is surely the extension of the Tetrad 
Representation Theorem to systems of binary variables. Combined with the absence of 
conditional independence relations among the measured variables (as in Spirtes, et al, 
1993/2001) it provides a necessary and sufficient condition (assuming “faithfulness” – see 
Spirtes, et al., 1993/2001) for four measured variables in a structure of binary variables to have a 
single unmeasured common cause. The applicability of the result bears comparison with recent 
statistical work (Junker and Ellis, 1997) that provides a sufficient condition (implicitly with the 
same faithfulness assumption) for a single common cause given an infinite sequence of measured 
variables. An interesting open question concerns whether results similar to the TRT can be 
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obtained for models now popular in psychometrics in which the probability distribution on 
measured binary variables is a function of a continuous latent variable. 
 
References 
 
Cheng, Patricia W. 1997. “From Covariation to Causation: A Causal Power Theory.” 

Psychological Review, 104: 367-405. 
Glymour, Clark. 1998. “Learning Causes: Psychological Explanations of Causal Explanation.” 

Minds and Machines, 8: 39-60. 
Junker, B.W. and J.L. Ellis. 1997. “A Characterization of Monotone Unidimensional Latent 

Variable Models.” Annals of Statistics, 25, 1327-1343. 
Pearl, Judea. 1988. Probabilistic Reasoning in Intelligent Systems. San Francisco: Morgan 

Kaufmann Publishers, Inc. 
Pearl, Judea.. 2000. Causality: Models, Reasoning, and Inference. Cambridge: Cambridge 

Univeristy Press. 
Shafer, Glenn, Alexander Kogan, and Peter Spirtes. 1995. “A Generalization of the Tetrad 

Representation Theorem.” Preliminary Papers of the Fifth International Workshop on 
Artificial Intelligence and Statistics. Fort Lauderdale, Fl. pp. 476-487. 

Spirtes, Peter, Clark Glymour, and Richard Scheines. 1993/2001. Causation, Prediction, and 
Search, Springer. 2nd edition, 2001, Cambridge, Mass.: AAAI Press & The MIT Press. 

 
 

 14


