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Abstract 
Energy-intensive industries can take advantage of process flexibility to reduce operating costs by 
optimal scheduling of production tasks. In this study we develop a MILP formulation to extend a 
continuous-time model with energy-awareness to optimize the daily production schedules and the 
electricity purchase including the load commitment problem. The sources of electricity that are 
considered are purchase on volatile day-ahead markets, time-of-use (TOU) contracts and base load 
contracts, as well as onsite generation. The possibility to sell electricity back to the grid is also 
included. The model is applied to the melt shop section of a stainless steel plant. Due to the large-scale 
nature of the combinatorial problem which prevents the solution of a monolithic model to near-
optimality, we propose a bi-level heuristic algorithm to tackle instances of industrial size. Case study 
scenarios show that the potential impact of high prices in the day-ahead markets of electricity can be 
mitigated by jointly optimizing the production schedule and the associated net electricity consumption 
cost. 

Keywords: scheduling, steel plant, energy optimization, demand-side management, continuous-time 
models. 

  



1. Introduction  
In many countries, renewable energy sources contribute a significant share of the overall electric 
power consumption and due to the volatility of their availability and their privileged role on the 
market, this may cause high fluctuations of the energy cost for the final user. On the grid level, the 
demand should always match the supply, otherwise the grid infrastructure is stressed, possibly causing 
expensive failures. Therefore it is of interest to the supply side of the grid to achieve flexibility of the 
demand, which traditionally was assumed to be inelastic in the short-term. This is largely because the 
consumers of electricity were not getting  incentive signals which could trigger changes of the 
consumption pattern when shortages or oversupply occur. In recent times however, smart grid 
technologies and the liberalization of the energy markets provided new ways of communicating such 
signals, both for dispatchable loads (the user is given direct signals to change the consumption) and for 
non-dispatchable loads (the user decides whether to change the consumption) (NERC 2007). The latter 
signals are considered in this work in the form of financial incentives and different pricing contracts. 
These fall within the Demand-Side Management technology, which aims at supporting an active 
shaping of the patterns of energy use. In particular, industrial Demand-Side Response (iDSR) involves 
activities defined as a temporary change in electricity consumption in response to market or supply 
conditions. In non-dispatchable iDSR a consumer, e.g. a steel plant is allowed to decide whether it 
wants to react to a changing situation within the grid, potentially gaining financial benefits, or to stick 
to the production plan. This implies the need of proper day-to-day scheduling and planning of plant 
operations, and for making use of incentive and price based schemes, such as for example intra-day or 
day-ahead spot market pricing since changes in the prices of energy might significantly affect the 
profitability as shown for a stainless-steel production plant in Hadera et al. (2014). If it is assumed that 
the goal of the plant managers is to deliver the same amount of final products over a certain time 
horizon, the production schedule can be modified in favor of a lower cost of energy procurement only 
when the process-specific constraints are always satisfied, and when at the same time the plant faces a 
certain under-utilization of its production capacity. As shown in Figure 1, the capacity utilization of 
the US-based energy-intensive primary metal sector went down by nearly 20% in recent years 
compared to 1990’s (BGFRS 2013).  

 

 

Figure 1 Capacity utilization of US Energy-Intensive Industries (ABB study based on BGFRS 2013) 

This creates a potential to optimally shift the production to times when the consumption of electricity 
is cheaper. This is especially valid for energy-intensive process industries where the raw material and 



energy cost can account for up to 90% of the total production cost. Demand-response technology on 
the production scheduling and planning level has the advantage of a potentially low investment cost 
for the final user, since very often it does not require the purchase of new equipment. Other selected 
positive outcomes of a more flexible Demand-side Response that are reported in the literature are 
(NECR 2007, CRA 2005, Todd et al. 2009): 

- Plant level: direct cost savings on the electricity bill; 
- Grid level: increase of reliability, e.g. reduction of outages; 
- Grid level: reduction of expensive peak load hours in the short-term; 
- Environment: potential emission savings by reducing the grid’s peak generation (only for 

regions with fossil fired peak generation plants); 
- Environment: potential reduction of emissions by enabling the installation of larger renewable 

generation capacities; 
- Market: market-wide wholesale electricity price reduction in the long-term; 
- Market: market performance benefits, e.g. mitigating the suppliers’ ability to raise prices 

significantly above production costs. 

Except for the direct energy bill cost savings at the plant site, quantification of the above benefits is 
difficult and strongly depends on assumptions. However, industrial and academic studies conclude that 
the potential exists (DOE 2006, NERC 2007, DENA 2011). When investigating DSR of industrial 
production, it is important to consider the technical potential of Demand-side Response shaping 
capabilities and not only the total consumption of the process, as pointed out by Paulus and Borggrefe 
(2011). An ideal industrial plants should have large consumers of electric power that operate in a 
preplanned fashion and a degree of process flexibility. Both hold true for the steel plant considered in 
this paper. 

While the iDSR technology is recognized as beneficial for both the power supplier side and for the 
energy-intensive industry, it should be noted that it cannot compensate long-term deficits or surplus of 
electricity generation in regional grids. 

1.1 Scope and methodology 
The goal of this work is to find an optimal production schedule of a part of a steel making process that 
is operated in batch mode which minimizes a weighted combination of the electricity bill and the lead 
times of product delivery, while satisfying complex production constraints. In the case considered 
here, a continuous-time based general precedence scheduling approach has already been developed for 
the plant which is extended here to include awareness of the cost of electric energy. The goal is to 
enable an energy-intensive process plant to realize its demand-side response potential at the production 
scheduling level, finding a compromise between production delays and the cost of electricity. The 
main contributions of this work concerns the development of the following items: 

- A generic strategy for energy-aware scheduling, accounting for time-depending cost of energy 
in general precedence continuous-time scheduling models; 

- Extension of generic multiple purchase contracts optimization to energy-aware scheduling; 
- A bi-level heuristic for obtaining good solutions in reasonable times for industrial scale 

combined production scheduling and energy cost minimization problems.  

The benefit of using a continuous-time formulation is the exact timing of the production tasks within 
the scheduling horizon. This is in contrast to discrete-time approaches, which discretize the time 
horizon into discrete time intervals. From industrial practice we consider 5-minute discretization steps 
as the desired level of time granularity. Such small time window creates very large discrete-time 



models leading to computational limitations. Other studies showed that a 15-minute discretization 
(Castro et al. 2013) can still be efficient for solving 24h scheduling horizon with a Resource-Task 
Network (RTN) based monolithic model approach. However, compared to the discrete-time 
formulation, continuous-time models also have some drawbacks. Due to the structure of the pricing 
contracts, it is much easier to account for the cost of the consumption of electricity in discrete-time 
scheduling models. Extending it to continuous-time formulations is not straightforward since the use 
of electricity has to be accounted for in fixed time intervals in which related to the resource prices are 
constant. 

In this paper we consider purchase optimization of multiple sources of electricity, including the 
possibility to sell the electricity back to the grid. Also, the challenge of responding to a committed 
load curve with penalties incurred for both under- and over-consumption is addressed. The 
combination of these two features has not received much attention in the process scheduling literature 
yet. For the given multi-stage steel plant with parallel machines at each stage, the resulting monolithic 
formulation of the problem is computationally intractable when the scheduling decisions (assignment 
and sequence binaries) are degrees of freedom for the optimization. To overcome the computational 
limitations we introduce a simple bi-level heuristic approach. The problem is modeled using 
mathematical programing with Mixed-Integer Linear Programing (MILP) and implemented in the 
GAMS modeling environment using the CPLEX solver. 

In the remaining sections, the background and previous work in the area and the industrial problem are 
described first. Then the section of the process that is considered and the corresponding energy 
purchase situation are explained (Section 3). Based on the continuous-time approach for batch 
processes, the scheduling problem is formulated so that all production constraints of the use case are 
satisfied (Section 4.2). In Section 4.3, we introduce a strategy of embedding energy-awareness into the 
continuous-time general precedence formulation. We test the resulting monolithic models (Section 5) 
and show that they are not able to cope with the size of the real-world problem. Therefore, in Section 
6, we describe a bi-level heuristic for the solution of the application problem. Numerical experiments 
and results are discussed in Section 6.5, followed by conclusions and recommendations for further 
work (Section 7). 

2. Literature review 
The field of scheduling and planning has grown rapidly in the last decades. A large number of studies 
have emerged using both time representation approaches: discrete and continuous. For a general 
overview concerning the scheduling problems we refer the reader to review papers, such as for 
example Floudas and Lin (2004), Méndez et al. (2006), Maravelias (2012) and Harjunkoski et al. 
(2014). The latter focuses especially on the industrial aspects of the scheduling methods. 

Scheduling of steel plants has been studied quite extensively as well, as it is recognized one of the 
most difficult industrial scheduling problems. For handling complex process constraints and 
optimizing traditional objective functions such as makespan or earliest task completion time an 
efficient multi-step decomposition approach for the industrial-size scheduling of the melt shop area of 
a stainless steel plant has been reported by Harjunkoski and Grossmann (2001) based on MILP and LP 
models. Tang et al. (2001) gives an overview of planning and scheduling systems for integrated steel 
plants, including Artificial Intelligence, Expert Systems, intelligent search and Constraint Programing 
methods. In Li et al. (2012) the focus was on the last continuous-casting stage where particular 
operational features have to be addressed and a rolling horizon was used.  



In recent years scheduling under energy constraints has gained increasing attention. It has been also 
recognized as one of the challenges for industrial implementation of advanced scheduling solutions 
(Harjunkoski et al. 2014). Optimizing operations with regard to the response to a deterministic single 
time-varying price of electricity can be found in the literature, including also the stochastic nature of 
the prices, such as in Li et al. (2003) or in Ierapetritou et al (2002).  

The Demand-side Response has to deal with different time scales. A fast response is required in some 
iDSR schemes, for example in network ancillary services. Here control techniques rather than 
scheduling might be better suited. As investigated by Vujanic et al. (2012), robust optimization might 
help creating flexible schedules to support the ancillary services of cement plants. Since energy 
availability and prices can be treated like any other resource in the scheduling models, many of the 
formulations in the literature use a discrete-time approach. Zhang and Tang (2010) introduce a 
discrete-time scheduling formulation using a Lagrangian relaxation algorithm based on the 
subgradient method. The model includes constraints concerning power availability and minimization 
of the energy cost. Similarly, in a study by Ashok (2006) a discrete-time formulation is used to 
schedule a mini steel plant where the operating cost is optimized. The operating cost includes the price 
of power consumption under different tariffs, charges for registered maximum demand and additional 
operating cost due to the shifting of loads.  

In recent years, models based on the RTN representation have gained attention as an efficient way to 
deal with resource consumption. Castro et al. (2009) proposed a new strategy for handling variable 
electricity cost in continuous plants using a continuous-time formulation. Comparison of both 
continuous- and discrete-time RTN representations showed that the latter’s computational 
performance is better for handling industrial-size instances. The work has been extended by an 
efficient rolling horizon algorithm in Castro et al. (2011) using an aggregate model, where time 
intervals of the same resource cost are aggregated into one interval. A steel plant scheduling problem 
similar to the one studied in this paper, but with response to a single price curve, has been successfully 
reported by Castro et al. (2013) for a time granularity of 15 minutes intervals. 

Nolde and Morari (2010) proposed a strategy for the modeling of electricity consumption with time-
dependent prices in continuous-time models based on precedence variables. It was applied to a 
stainless-steel process with parallel Electric-Arc Furnaces. The formulation uses six different binary 
variables to capture the relation of a production task to its placement within a grid of uniform time 
intervals. For these intervals electricity consumption is individually accounted for, which makes it 
possible to track the process load and to optimize the deviation from a pre-agreed consumption curve. 
Haït and Artigues (2011a) proposed an improvement to Nolde and Morari’s approach replacing the set 
of six binary variables by binaries indicating whether or not an event takes place before or during a 
time interval. For the same steel case problem, the resulting continuous-time MILP model introduced 
fewer number of constraints and binary variables. As a follow up study on scheduling of a foundry, 
Haït and Artigues (2011b) proposed a hybrid heuristic combining Constraint Programing (CP) for 
solving the assignment and sequencing problem with an MILP model for solving the remaining 
energy-cost scheduling problem. In addition, the detailed scheduling of the Electric Arc Furnace stage 
and human operator availability were taken into consideration. Castro et al. (2014) applied the concept 
of the six cases of task-time interval relations as in Nolde and Morari (2010) to optimize the 
maintenance of a gas-fired power plant. Using Generalized Disjunctive Programming, Castro and co-
workers found a tighter formulation for the accounting of electricity consumption. The continuous-
time strategy was applied to find a schedule under constraints of operator availability and cost, 
maximizing profits from electricity sales under time-sensitive demand and pricing. A steel plant was 
also considered in a study by Boukas et al. (1990), using a hierarchical approach with separation of 



operation and secondary resource scheduling in two steps. Constraints were subject to a global 
limitation of the power delivered to the furnaces. 

Apart from the steel industry, demand-side response strategies have been investigated for other 
energy-intensive processes. Mitra et al. (2012) proposed a discrete-time formulation for process plants 
with an emphasis on switching the operating modes of the plant units. Responding to a single time-
sensitive price curve of electricity the model was successfully applied to air separation and cement 
production processes. The same solution strategy was also applied in the context of optimal scheduling 
of an industrial Combined Heat and Power (CHP) plant (Mitra et al. (2013). Underutilization of the 
CHP plant and its response to time-sensitive electricity prices were investigated. 

3. Problem description 
The industrial problem that is addressed in this work concerns the optimal scheduling of a part of the 
stainless-steel production process. The production starts with the scrap melting phase in an Electric 
Arc Furnace (EAF) to form a so-called heat which is the object of scheduling. The process of smelting 
is carried out by passing large amounts of electricity through electrodes in order to form high-
temperature electric arc (up to 3500°C) that is capable of melting scrap metal. After a full heat is 
formed in the EAF, the heat is transported to the next stage, the Argon Oxygen Decarburization 
(AOD), where the carbon content of the molten steel is reduced by injecting an argon-oxygen gas 
mixture. In order to ensure specific parameters of the molten steel for the final stage of casting, a heat 
goes through the Ladle Furnace (LF) stage to adjust the chemistry and temperature to their specified 
values. Finally, the heat is casted in the Continuous-casting (CC) stage, where specific rules about the 
sequences of heats apply. The process is shown in Figure 2.  

There are several production constraints that have to be satisfied by the scheduling model formulation. 
We consider two parallel, non-identical machines at each stage. For all stages, except of the CC, 
processing of a subsequent heat can be carried out only after an equipment specific setup has been 
performed. Between subsequent stages, a heat is transported with some minimum time requirement 
which differs depending on the two units considered. The time spent by a heat waiting between two 
subsequent stages is restricted by a maximum allowed hold-up time in order to avoid a too-large drop 
of the temperature of the molten steel. Heats of the same heat group are casted subsequently on the CC 
without waiting times. 

 

 

Figure 2 Stainless-steel production process (melt shop section) 



3.1 Electricity demand considerations 
The above mentioned production process consumes large amounts of electricity, in the considered case 
up to 192 MW. The energy demand for this process must always be met, i.e. the plant is assumed to 
purchase at least the amount of electricity needed to satisfy the load curve that results from the 
production schedule. We consider demand-side response strategies which preserve the total production 
output over some given time horizon, in the computational studies over one day. The challenge 
addressed in this work is to determine simultaneously an optimal purchase and sales policy for the 
electricity, with complex time- and load-sensitive purchasing options as shown in Figure 3 and a 
production schedule that defines the demand of electricity. 

 

 

Figure 3 Electricity bill structure 

For the industrial case study the purchasing contracts include: 

- long-term contract (base contract or base load) – constant price, constant amount of electricity 
delivered over time; 

- short-term contract (Time-of-Use or TOU) – two price levels (on- and off-peak); 
- spot market (day-ahead) – hourly-varying prices, known 24 hours ahead; 
- onsite generation– constant price with additional start-up costs.  

The long-term contract is agreed with a provider usually for a period of 3-12 months. Over this time a 
certain fixed amount of electricity is available for the production plant at all times. The agreed amount 
must be purchased by the plant. Therefore, in a situation where there is no load consumption planned 
at some time interval, the surplus of electricity must be sold back to the grid. Establishing a long-term 
contract is usually considered profitable for the plant since the provider is able to offer a lower price 
for such a constant delivery over a long period. 

The short-term contract (TOU) usually covers up to 3 months. Therefore, the price offered by the 
supplier is normally higher compared to the long-term contract. Here, we assume that the contract has 
two different price levels corresponding to on- and off-peak times. The off-peak price is lower than the 



on-peak price which applies during the daylight period. Another contract considered in the case study 
is the day-ahead spot market. Here, the price follows regional fluctuations of electricity availability; 
therefore, it varies on an hourly basis. 

Apart from purchase contracts, the plant may have the possibility to produce electricity internally, 
which is subject to additional constraints. A start-up cost needs to be accounted for in the total cost of 
onsite generation for each time the onsite power generation is started up. Also, minimum runtime and 
downtime restrictions apply to avoid frequent start-ups and shut-downs of the power plant which lead 
to an accelerated deterioration of the plant.  

The total electricity bill can be reduced by selling electricity back to the grid. The price of selling 
electricity also differs on an hourly basis, depending on the regional situation in the grid. In the case of 
low availability of electric power, the plant can use the possibility to decrease its internal demand, to 
use the negotiated contracts and to use onsite generation in order to sell the electricity with a profit. 
This might happen especially in regions with heavy industry and at low temperatures during winter 
time. 

The electricity bill, apart from the electricity purchase costs, includes also deviation penalties. The 
plant is assumed to predict its load consumption for a period of 24 h minimum one day before the 
actual load occurs. This forecast is sent to the energy supplier, committing the plant to a certain load 
profile. If the actual consumption differs from this profile, the plant is obliged to pay penalties. Here, 
we assume that both under- and over-consumption are penalized, but with a penalty-free tolerance 
margin of a few percent.  

4. Monolithic model 
The proposed MILP formulation describes a power intense steel making process that produces a set of 
products (heats) 𝑝𝑝 ∈ 𝑃𝑃 on a set of units 𝑚𝑚 ∈ 𝑀𝑀, while satisfying various operational constraints. The 
plant is assumed to deliver a fixed number of products that are known in advance. The power 
consumption is both unit and product specific. The goal is to compute a one day production schedule 
that minimizes the total (net) cost of electricity and the weighted starting times of the tasks (i.e. a 
throughput related criterion). Electricity purchase includes different options and is subject to hourly 
price-variations. The optimization should determine the optimal amounts to be transferred from or to 
the electricity sources or sinks 𝑖𝑖 ∈ 𝐼𝐼 at any given time interval 𝑠𝑠 ∈ 𝑆𝑆. The end of the last time slot is 
equal to the scheduling horizon. Penalties due to the deviation from a pre-agreed load curve are 
incurred when a certain penalty-free buffer is exceeded and may differ for under- and over-
consumption. The electricity bill can be reduced by selling the surplus of electricity. The monolithic 
models are described using the notation shown in Table 1. Additional notation introduced for the bi-
level solution heuristic is given in Section 6.  

Table 1 Model notation 

Sets:  
𝑃𝑃  heats (products) to be produced 
𝐻𝐻𝐻𝐻  heat groups with defined sequence of casting 
𝐻𝐻𝐻𝐻𝑃𝑃(𝐻𝐻𝐻𝐻,𝑃𝑃)  subset of heats p mapped to corresponding heat group hg 
𝐿𝐿(𝐻𝐻𝐻𝐻,𝑃𝑃),𝐹𝐹(𝐻𝐻𝐻𝐻,𝑃𝑃)  subset of heats p cast respectively last or first in a heat group casting 

sequence hg 
𝑀𝑀  equipment (machines) 
𝐸𝐸𝐸𝐸𝐹𝐹,𝐸𝐸𝐴𝐴𝐴𝐴, 𝐿𝐿𝐹𝐹,𝐶𝐶𝐶𝐶  subsets of equipment 
𝑆𝑆  time intervals 
𝑆𝑆𝑆𝑆  production stage 



𝑆𝑆𝑀𝑀(𝑆𝑆𝑆𝑆,𝑀𝑀)  production stage st mapped to corresponding equipment m 
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, 𝐼𝐼, 𝐽𝐽  nodes in flow network denoting sources and sinks of electricity 
𝑃𝑃𝑃𝑃𝑃𝑃(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)   purchase contracts node 
𝐴𝐴𝑁𝑁𝑚𝑚(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)  production process electricity demand node 
𝐻𝐻𝑁𝑁𝐺𝐺(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)  onsite generation node 
𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)  balancing node 
𝑆𝑆𝐵𝐵𝐵𝐵𝑁𝑁(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁)  electricity sale sink node 
𝐸𝐸𝐴𝐴𝐶𝐶𝑖𝑖,𝑗𝑗,𝑠𝑠  defined arc between nodes i and j in time slot s 
  
Parameters:  
𝜃𝜃𝑝𝑝,𝑚𝑚  processing duration of heat p on equipment m 
𝑡𝑡𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝  setup time for machine m 
𝑡𝑡𝑚𝑚,𝑚𝑚′
𝑚𝑚𝑖𝑖𝑚𝑚   minimum transport time from equipment m to m’ 
𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚  maximum hold-up (waiting) time after stage st 
𝐵𝐵𝑠𝑠  pre-agreed (committed) load curve 
𝜏𝜏𝑠𝑠  electricity consumption time slot boundary  
ℎ𝑝𝑝,𝑚𝑚  specific power consumption of processing heat p on equipment m 
𝑐𝑐𝑠𝑠,𝑖𝑖,𝑗𝑗  electricity cost of flow from i to j in time slot s 
𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗
𝑚𝑚𝑖𝑖𝑚𝑚 , 𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚  minimum and maximum flow between nodes i and j 
𝑃𝑃𝑚𝑚𝑖𝑖𝐺𝐺 , 𝑁𝑁𝑚𝑚𝑖𝑖𝐺𝐺  minimum run- and down-time of onsite generation 
𝑐𝑐𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠  startup cost of onsite generation 
𝑘𝑘  coefficient of delivered power reduction due to startup of onsite 

generation 
𝑐𝑐  coefficient of task start time weight in the objective function 
  
Variables:  
𝑡𝑡𝑚𝑚,𝑝𝑝
𝑠𝑠 ,𝑡𝑡𝑚𝑚,𝑝𝑝

𝑓𝑓  positive continuous variables of starting and finishing time of heat p 
on equipment m 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 ,𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑓𝑓   positive continuous variables of starting and finishing time of heat p 
at stage st 

𝑤𝑤𝑝𝑝,𝑠𝑠𝑠𝑠  positive continuous variables of waiting time of heat p after stage st 
𝑞𝑞𝑠𝑠 positive continuous variables of electricity consumed in time slot s 
𝑋𝑋𝑚𝑚,𝑝𝑝  binary variable, true when heat p is assigned for processing on 

equipment m 
𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′  binary variable, true when heat p’ is processed after heat p on stage 

st 
𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠 ,𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑓𝑓   binary variable, true when heat p starts or finishes on stage st in the 
slot s 

𝐻𝐻𝑠𝑠,𝑖𝑖,𝑗𝑗  binary variable, true when generation is running in time slot s 
𝑔𝑔𝑠𝑠,𝑖𝑖,𝑗𝑗
𝑠𝑠   pseudo-continuous positive variable denoting if onsite generation 

start-up occurred in time slot s 
𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 ,𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚   auxiliary continuous positive variable true when heat p is assigned 
for processing and started or finished processing on stage st in time 
slot s  

𝐵𝐵𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠, 𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠, 𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠,𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 positive continuous variables accounting for processing time of heat 
p on equipment m on stage st spent within a slot s 

𝑏𝑏𝑠𝑠  positive continuous variables of buffer level for allowed deviation 
from committed load in time slot s 

𝑏𝑏𝑠𝑠𝑜𝑜, 𝑏𝑏𝑠𝑠𝑠𝑠  positive continuous variables of upper and lower bounds for buffer in 
time slot s 

𝑐𝑐𝑠𝑠𝑜𝑜, 𝑐𝑐𝑠𝑠𝑠𝑠  positive continuous variables of actual over- and under-consumption 
in time slot s 

𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗  positive continuous variables of flow from node i to j in time slot s 
𝑐𝑐𝑠𝑠
𝑔𝑔𝑠𝑠𝑚𝑚  positive continuous variables of cost of onsite generation in slot s 
µ  continuous variable of net electricity consumption cost 
𝛿𝛿  positive continuous variables of deviation penalties cost 
 

4.1 Structure of the monolithic model 



For the problem described in Section 3 we describe a monolithic model in this section. It consists of 
several components that are shown in Figure 4. First, to ensure that all process specific constraints are 
satisfied, a scheduling model was created using the continuous-time general precedence approach 
(Section 4.2). The use of this approach is motivated by the required level of precision stemming from 
the specification by the industrial end-user. In order to optimize the purchase of electricity and to 
augment the schedule in order to express potential changes of load pattern, a strategy for expanding 
the scheduling model with energy-awareness was formulated (Section 4.3). This part of the monolithic 
model uses the continuous variable (used in the scheduling part) of task start time 𝑡𝑡𝑚𝑚,𝑝𝑝

𝑠𝑠  in order to find 
the contribution of a task to the electricity consumption within a given time interval 𝑠𝑠. 

 

 

Figure 4 Monolithic model structure 

When applying this strategy for all tasks, the total electricity consumption 𝑞𝑞𝑠𝑠 of the process in a given 
time interval can be computed, which is needed for the optimization of the cost of electricity (Section 
4.4). This part computes optimal values in a flow network representing possible flows of electricity 
𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗 from sources to sinks. The optimization results in an optimal cost structure of the available 
purchase contracts with the exact amount of the electricity to be bought or sold under each contract. 
The knowledge of the process consumption during the time slots also enables to account for potential 
penalties 𝛿𝛿 paid due to deviations from pre-agreed load curve, and to determine when it is profitable to 
under- or over-consume electricity. 

The objective function of the monolithic model takes into account the weighted task start times, the 
net electricity consumption cost µ and penalties 𝛿𝛿 paid for deviations. By choosing the weights in the 
summation, potential losses in the process (e.g. heat losses due to waiting time between the stages) or 
delays of the production can be traded off against the cost of electricity purchase and sales.  

4.2 Production scheduling model 
The general precedence scheduling model for the stainless-steel plant used in this study is largely 
based on the model introduced by Harjunkoski and Grossmann (2001). This model was further 



extended to a more flexible formulation introducing stages and multiple machines in Harjunkoski and 
Sand (2008). The scheduling part of the model uses assignment and precedence binaries following 
equations (1-17) from Hadera and Harjunkoski (2013). 

The scheduling model is based on the precedence variables and assignment variables that determine 
which of the parallel machines on each stage shall process a given heat. The general precedence 
𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′ is true if a product  𝑝𝑝 is processed before a product 𝑝𝑝′ on a stage 𝑠𝑠𝑡𝑡. The assignment 𝑋𝑋𝑚𝑚,𝑝𝑝 is 
true only when a given product 𝑝𝑝 is processed on machine 𝑚𝑚. The sum (Eq. 1) states that exactly one 
machine should process a heat per stage.  

∑ 𝑋𝑋𝑚𝑚,𝑝𝑝𝑚𝑚∈𝑆𝑆𝑆𝑆𝑠𝑠𝑡𝑡,𝑚𝑚 = 1  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆 (1) 

Equation (2) defines the finishing time 𝑡𝑡𝑚𝑚,𝑝𝑝
𝑓𝑓  as the starting time 𝑡𝑡𝑚𝑚,𝑝𝑝

𝑠𝑠  plus the selected processing 
length 𝜃𝜃𝑝𝑝,𝑚𝑚.  

𝑡𝑡𝑚𝑚,𝑝𝑝
𝑓𝑓 = 𝑡𝑡𝑚𝑚,𝑝𝑝

𝑠𝑠 + 𝑋𝑋𝑚𝑚,𝑝𝑝 ∙ 𝜃𝜃𝑝𝑝,𝑚𝑚  ∀𝑚𝑚 ∈ 𝑀𝑀,𝑝𝑝 ∈ 𝑃𝑃  (2) 

Since a product can be processed only once on a given machine, the unassigned machines get a zero 
starting time (Eq. 3).  

𝑡𝑡𝑚𝑚,𝑝𝑝
𝑠𝑠 ≤ 𝑀𝑀 ∙ 𝑋𝑋𝑚𝑚,𝑝𝑝  ∀𝑚𝑚 ∈ 𝑀𝑀,𝑝𝑝 ∈ 𝑃𝑃  (3) 

The stage starting and finishing times 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 ,𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑓𝑓  are synchronized with the corresponding machine 
times in Eqs. (4-5).  

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 = ∑ 𝑡𝑡𝑚𝑚,𝑝𝑝

𝑠𝑠
𝑚𝑚∈𝑆𝑆𝑆𝑆𝑠𝑠𝑡𝑡,𝑚𝑚   𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (4) 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 = ∑ 𝑡𝑡𝑚𝑚,𝑝𝑝

𝑓𝑓
𝑚𝑚∈𝑆𝑆𝑆𝑆𝑠𝑠𝑡𝑡,𝑚𝑚   𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (5) 

The scheduling model handles maximum hold-up times after processing has been completed on a 
given stage, equipment specific setup 𝑡𝑡𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 times and minimum transportation times. The processing 
on the next stage can be done only after the processing of the previous stage has finished plus some 
waiting time 𝑤𝑤𝑝𝑝,𝑠𝑠𝑠𝑠, which serves here as a slack variable which is determined by the optimization. The 
production flow between subsequent stages is established in Eq. (6).  

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠+1
𝑠𝑠 = 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑓𝑓 + 𝑤𝑤𝑝𝑝,𝑠𝑠𝑠𝑠  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠𝑡𝑡 < |𝑆𝑆𝑆𝑆| (6) 

Due to process restrictions, it is necessary to enforce lower and upper bounds for the waiting times. 
The minimum corresponds to the physical possibility of transferring the product to the next stage, and 
it is equal to the minimum transportation time between machines 𝑡𝑡𝑚𝑚,𝑚𝑚′

𝑚𝑚𝑖𝑖𝑚𝑚  as stated in (7). The upper 
bound 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 of the waiting time reflects the process constraint that a heat should not cool off below a 
certain level. 

𝑡𝑡𝑚𝑚,𝑚𝑚′
𝑚𝑚𝑖𝑖𝑚𝑚 �𝑋𝑋𝑚𝑚,𝑝𝑝 + 𝑋𝑋𝑚𝑚′,𝑝𝑝 − 1� ≤ 𝑤𝑤𝑝𝑝,𝑠𝑠𝑠𝑠 ≤ 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚 
 
∀𝑝𝑝 ∈ 𝑃𝑃, 𝑚𝑚,𝑚𝑚′ ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀, {𝑠𝑠𝑡𝑡 + 1,𝑚𝑚′} ∈ 𝑆𝑆𝑀𝑀,    𝑠𝑠𝑡𝑡 < |𝑆𝑆𝑆𝑆| (7) 

The precedence of the products is characterized by the fact that either 𝑝𝑝 is processed after 𝑝𝑝′ or 𝑝𝑝′ is 
processed after 𝑝𝑝. Therefore, only one of the two binaries can be true. Equation (8) enforces a correct 
sequencing.  



𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′ + 𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝′,𝑝𝑝 = 1     ∀𝑝𝑝,𝑝𝑝′ ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆,𝑝𝑝 < 𝑝𝑝′  (8) 

In order to impose the common practice that the sequence of the products that are casted on a CC must 
propagate back to the other production stages, Eq. (9) is introduced.  

𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′ = 𝑉𝑉𝑠𝑠𝑠𝑠+1,𝑝𝑝,𝑝𝑝′  ∀𝑝𝑝,𝑝𝑝′ ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑝𝑝 < 𝑝𝑝′, 𝑠𝑠𝑡𝑡 < |𝑆𝑆𝑆𝑆|  (9) 

The precedence constraint in (10) for other stages than CC restricts that a next heat should be 
processed only after the previous one has finished plus a setup time.  

𝑡𝑡𝑚𝑚,𝑝𝑝′
𝑠𝑠 ≥ 𝑡𝑡𝑚𝑚,𝑝𝑝

𝑓𝑓 + 𝑡𝑡𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 − (𝑀𝑀 + 𝑡𝑡𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝)�3− 𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′ − 𝑋𝑋𝑚𝑚,𝑝𝑝 − 𝑋𝑋𝑚𝑚,𝑝𝑝′� 
 
∀𝑝𝑝,𝑝𝑝′ ∈ 𝑃𝑃, 𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀, 𝑝𝑝 ≠ 𝑝𝑝′, 𝑠𝑠𝑡𝑡 < |𝑆𝑆𝑆𝑆|  (10) 

At the CC-stage no setup time 𝑡𝑡𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 should occur to ensure continuous casting (Eq. 11). However, a 

setup must be carried out between the last 𝐿𝐿(𝐻𝐻𝐻𝐻,𝑃𝑃) and first 𝐹𝐹(𝐻𝐻𝐻𝐻,𝑃𝑃),   heats of different heat groups 
(Eq. 12).  

𝑡𝑡𝑚𝑚,𝑝𝑝′
𝑠𝑠 ≥ 𝑡𝑡𝑚𝑚,𝑝𝑝

𝑓𝑓 − 𝑀𝑀�3 − 𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′ − 𝑋𝑋𝑚𝑚,𝑝𝑝 − 𝑋𝑋𝑚𝑚,𝑝𝑝′� 
 
∀𝑝𝑝,𝑝𝑝′ ∈ 𝑃𝑃, 𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀, 𝑝𝑝 ≠ 𝑝𝑝′, 𝑠𝑠𝑡𝑡 = |𝑆𝑆𝑆𝑆|  (11) 

𝑡𝑡𝑚𝑚,𝑝𝑝′
𝑠𝑠 ≥ 𝑡𝑡𝑚𝑚,𝑝𝑝

𝑓𝑓 + 𝑡𝑡𝑚𝑚
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝 − (𝑀𝑀 + 𝑡𝑡𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝)�3− 𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′ − 𝑋𝑋𝑚𝑚,𝑝𝑝 − 𝑋𝑋𝑚𝑚,𝑝𝑝′� 
 
∀𝑝𝑝 ∈ 𝐿𝐿(𝐻𝐻𝐻𝐻,𝑃𝑃), 𝑝𝑝′ ∈ 𝐹𝐹(𝐻𝐻𝐻𝐻,𝑃𝑃), 𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀, 𝑝𝑝 ≠ 𝑝𝑝′, 𝑠𝑠𝑡𝑡 = |𝑆𝑆𝑆𝑆|  (12) 

Constraint (13) ensures that heats of the same heat group are assigned to the same caster. 

𝑋𝑋𝑚𝑚,𝑝𝑝 = 𝑋𝑋𝑚𝑚,𝑝𝑝+1  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑚𝑚 ∈ 𝑀𝑀, ℎ𝑔𝑔 ∈ 𝐻𝐻𝐻𝐻, {ℎ𝑔𝑔,𝑝𝑝} ∈ 𝐻𝐻𝐻𝐻𝑃𝑃(𝑃𝑃), {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀, 𝑠𝑠𝑡𝑡 = |𝑆𝑆𝑆𝑆|  (13) 

As the heats are pre-ordered within a casting sequence, Eq. (14) ensures that next heat in a sequence 
starts immediately after the previous one has finished.  

𝑡𝑡𝑝𝑝+1,𝑠𝑠𝑠𝑠
𝑠𝑠 = 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑓𝑓   ∀𝑝𝑝 ∈ 𝑃𝑃\𝐿𝐿(𝐻𝐻𝐻𝐻,𝑃𝑃), 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠𝑡𝑡 = |𝑆𝑆𝑆𝑆|  (14) 

From technical process requirements, the heat sequence within one heat group is known. The 
precedence of heats within one heat group is enforced and redundant values are eliminated in Eq. (15). 
Redundant sequencing variables are eliminated when comparing two identical products in Eq. (16). 

𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′ = 1     ∀𝑝𝑝,𝑝𝑝′ ∈ 𝑃𝑃,𝑝𝑝 < 𝑝𝑝′, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆,ℎ𝑔𝑔 ∈ 𝐻𝐻𝐻𝐻,   {ℎ𝑔𝑔,𝑝𝑝}, {ℎ𝑔𝑔,𝑝𝑝′} ∈ 𝐻𝐻𝐻𝐻𝑃𝑃(𝑃𝑃) (15) 

𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′ = 0  ∀𝑝𝑝,𝑝𝑝′ ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑝𝑝 = 𝑝𝑝′  (16) 

Since the goal of the production plant is to meet the production targets as soon as possible, minimizing 
the makespan (or tasks completion time) can be specified as an objective function in the MILP model. 

 

4.3 Energy-awareness in precedence based scheduling 
In continuous-time models, it is challenging to account for resource consumption. In this work we 
extend the scheduling model described above to account for the electricity consumption by each task 
within given time intervals of interest. The time grid with intervals in our use case corresponds to 



volatile electricity prices and committed load values. Therefore the length of the intervals is one hour. 
The scheduling model uses continuous task start time variables which are linked to the energy-aware 
part of the model, leading to the computation of the overall electricity consumption within a given 
time interval. Once the model is complemented by energy-awareness, both the electricity purchase and 
the load commitment can be optimized.  

4.3.1 Model with event binaries 
They key idea in the approach developed here is the use of the two event binaries representing whether 
a given task started (𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠 ) or finished (𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑓𝑓 ) in or before or after particular time slot 𝑠𝑠 (Figure 5).  

 

 

 

Figure 5 Event binaries model to describe the consumption of electric energy in time slots of the price 

Since the boundaries of the time slot 𝑠𝑠 are known, Big-M constraints in Eqs. (17-20) force the event 
binaries to be true in case the start or finish variable takes a value between the time slot’s upper bound 
𝜏𝜏𝑠𝑠 and lower bound 𝜏𝜏𝑠𝑠−1.  

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 ≥ 𝜏𝜏𝑠𝑠−1 ∙ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠   ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆  (17) 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 ≤ 𝜏𝜏𝑠𝑠 + (𝑀𝑀− 𝜏𝜏𝑠𝑠)(1 − 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠 )  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆  (18) 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 ≥ 𝜏𝜏𝑠𝑠−1 ∙ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑓𝑓   ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆  (19) 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 ≤ 𝜏𝜏𝑠𝑠 + (𝑀𝑀− 𝜏𝜏𝑠𝑠)(1 − 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑓𝑓 )  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆  (20) 

However, the use of the stage set 𝑠𝑠𝑡𝑡 in the definition of the event binaries does not indicate which of 
the available equipment of this stage is actually processing. Therefore, together with the assignment 
variable 𝑋𝑋𝑝𝑝,𝑚𝑚 we can introduce two additional auxiliary pseudo-binary variables 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚  and 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚  

that will be true only in case the respective event binary is true and the assignment is true as well (Eqs. 
21-26). 



𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 ≥ 𝑋𝑋𝑚𝑚,𝑝𝑝 + 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠 − 1  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (21) 

𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 ≤ 𝑋𝑋𝑚𝑚,𝑝𝑝  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (22) 

𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 ≤ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠   ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (23) 

𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚 ≥ 𝑋𝑋𝑚𝑚,𝑝𝑝 + 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑓𝑓 − 1  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (24) 

𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚 ≤ 𝑋𝑋𝑚𝑚,𝑝𝑝  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (25) 

𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚 ≤ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑓𝑓   ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (26) 

The two auxiliary binaries will have indices representing product 𝑝𝑝, machine 𝑚𝑚, stage 𝑠𝑠𝑡𝑡 and time slot 
𝑠𝑠. That enables us to introduce continuous variables that are used to capture different cases of how a 
particular task (here a heat processed on a unit) relates to a time slot. As shown in Figure 5 there are 
four different scenarios: 

1. A task is processed entirely within the time slot 

Processing within a time slot means that the start and finish time of the task must be placed within the 
time slot upper and lower boundary, both event binaries need to hold true. To capture this case we 
introduce an auxiliary variable 𝐵𝐵𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 described in Equation (27-29). 

𝐵𝐵𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≥ 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 + 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚 − 1  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (27) 

𝐵𝐵𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚   ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (28) 

𝐵𝐵𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚   ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (29) 

2. A task starts before and finishes within the time slot 

For this case the start binary shall be zero for the considered slot. However the finish binary must hold 
true. That combination of the two binaries is enough to capture the time contribution 𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 of the 
task, as shown in Equation (30-33). 

𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≥ 𝑡𝑡𝑝𝑝,𝑚𝑚
𝑓𝑓 − 𝜏𝜏𝑠𝑠−1 − (𝑀𝑀− 𝜏𝜏𝑠𝑠−1)(1− 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚 + 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 ) 

 
∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (30) 

𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ 𝑡𝑡𝑝𝑝,𝑚𝑚
𝑓𝑓 − 𝜏𝜏𝑠𝑠−1 + 𝜏𝜏𝑠𝑠−1(1− 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚 ) 
 
∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (31) 

𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1)𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚  

 
∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (32) 

𝑏𝑏𝑝𝑝,𝑚𝑚,,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1)(1− 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 ) 

 
∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (33) 



3. A task starts within and finishes after the time slot 

In this case, the task should start between the lower and the upper bounds of the time slot and finish 
sometime after the upper bound. That means the start event binary is true for the slot and the finish 
event binary is false. The variable 𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 is defined by Equation (34-37). 

𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≥ 𝜏𝜏𝑠𝑠 − 𝑡𝑡𝑝𝑝,𝑚𝑚
𝑠𝑠 − 𝜏𝜏𝑠𝑠(1 − 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 + 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚 ) 

 
∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (34) 

𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ 𝜏𝜏𝑠𝑠 − 𝑡𝑡𝑝𝑝,𝑚𝑚
𝑠𝑠 + (𝑀𝑀 − 𝜏𝜏𝑠𝑠)(1 − 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 ) 
 
∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (35) 

𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1)𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚  

 
∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (36) 

𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1)(1− 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚 ) 

 
∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (37) 

4. A task over-spans the full time slot 

This occurs only when the start time of the task is placed before the lower bound of the time slot and 
at the same time the finish time of the task occurs after the upper bound of the time slot. This 
translates into zero values for both of the event binaries. In addition the start event binary is true in one 
of the earlier slots before the considered one, and similarly, the finish event binary is true in one of the 
later time slots. The variable 𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 is defined by the constraints in Equations (38-42). If the task 
either started or finished entirely before the considered slot or after the slot it does not contribute to the 
electricity consumption within the slot. 

𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≥ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1) ∙ �∑ 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠′
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠′<𝑠𝑠

1 + ∑ 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠′
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚|𝑆𝑆|

𝑠𝑠′>𝑠𝑠 − 1� 
 
∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (38) 

𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤  (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1) ∙ ∑ 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠′
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠′<𝑠𝑠

1   ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (39) 

𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤   (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1) ∙ ∑ 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠′
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚|𝑆𝑆|

𝑠𝑠′>𝑠𝑠   ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (40) 

𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1)(1− 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚 )  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (41) 

𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1)(1− 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠′
𝑓𝑓𝑚𝑚𝑠𝑠𝑚𝑚 )  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (42) 

The constraints based on the above cases yield the continuous variables  𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠, 𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠, 𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 
accounting for how much time a given processing task spends within the considered time slot. Since 
the specific electricity consumption of the processing task is known, a proper summation of a product 
of the continuous variables and machine-specific electricity consumption parameter accounts for the 
total consumption in a given time slot (Eq. 43). The above described approach yields fewer binaries 



than the one used by Nolde and Morari (2010), where six binary variables are used to describe the 
relation between the task and the time slot. Here only two event binaries are needed. 

𝑞𝑞𝑠𝑠 = (∑ ℎ𝑝𝑝,𝑚𝑚𝑝𝑝∈𝑃𝑃,𝑚𝑚∈𝑆𝑆 �𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠,𝑚𝑚𝜏𝜏𝑝𝑝,𝑚𝑚 + 𝑏𝑏𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠,𝑚𝑚 + 𝑐𝑐𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠,𝑚𝑚 + 𝑁𝑁𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠,𝑚𝑚�)/60  ∀𝑠𝑠 ∈ 𝑆𝑆  (43) 

A set of tightening constraints can help to speed up the computational performance of the model. In 
equations (44) and (45) we restrict that for only one slot within the entire time horizon the event binary 
is active. Additionally, it is true only when a task exist, i.e. when a product is assigned to be processed 
on a machine. Equation (46) accounts for total consumption of the schedule to be equal to sum of total 
consumption of those tasks that has been assigned. 

∑ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠

𝑠𝑠∈𝑆𝑆 = ∑ 𝑋𝑋𝑚𝑚,𝑝𝑝𝑚𝑚∈𝑆𝑆,{𝑠𝑠𝑠𝑠,𝑚𝑚}∈𝑆𝑆𝑆𝑆   ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (44) 

∑ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑓𝑓

𝑠𝑠∈𝑆𝑆 = ∑ 𝑋𝑋𝑚𝑚,𝑝𝑝𝑚𝑚∈𝑆𝑆,{𝑠𝑠𝑠𝑠,𝑚𝑚}∈𝑆𝑆𝑆𝑆   ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (45) 

(∑ 𝑋𝑋𝑚𝑚,𝑝𝑝 ∙ ℎ𝑝𝑝,𝑚𝑚 ∙𝑝𝑝∈𝑃𝑃,𝑚𝑚∈𝑆𝑆 𝜋𝜋𝑝𝑝,𝑚𝑚)/60 = ∑ 𝑞𝑞𝑠𝑠𝑠𝑠∈𝑆𝑆   (46) 

4.3.2 Literature model 
Other formulations of resource consumption accounting in continuous-time based scheduling models 
have already been reported in the literature. Nolde and Morari (2010) presented a formulation that 
introduces six binaries to capture six different cases of the position a task might have relative to a time 
interval on the time axis. This approach was later reformulated by Hadera and Harjunkoski (2013) to 
account for parallel machines at each production stage with the goal of optimizing the cost of 
electricity for a single price curve and load deviation penalties. To reduce the model size, starting and 
finishing times of tasks were replaced by the corresponding stage starting and finishing times. The 
resulting model formulation is presented in Appendix 1 and is later used in the computations (Section 
5.3) to compare its performance to the event binaries formulation described in Section 4.3.1. 

4.4 Optimization of the cost of electricity 

4.4.1 Multiple purchase sources optimization 
The tracking of the consumption of electricity over the time intervals can be used for optimizing the 
purchase and sales strategy. Once the scheduling model has been extended by the corresponding 
values of electricity consumption in the time slots, the purchase optimization can influence the 
schedule in such way that a mixed criterion (with e.g. task start times as used later) that includes also 
the cost of electricity is minimized. The idea for purchase optimization is based on a minimum cost 
flow network formulation (Figure 6) with a balancing node for which all inflows are equal to all 
outflows (Eq. 47). The inflow nodes represent the possible sources of electricity. The outflow nodes 
are the process demand and the selling of electricity. 

∑ 𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗′ =𝑖𝑖∈𝑁𝑁𝑜𝑜𝑁𝑁𝑠𝑠 ∑ 𝑓𝑓𝑠𝑠,𝑗𝑗′,𝑗𝑗𝑗𝑗∈𝑁𝑁𝑜𝑜𝑁𝑁𝑠𝑠   ∀ (𝑖𝑖, 𝑗𝑗′), (𝑗𝑗′, 𝑗𝑗) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐, 𝑗𝑗′ ∈ 𝐵𝐵𝐵𝐵𝐵𝐵, 𝑠𝑠 ∈ 𝑆𝑆  (47) 

 



 

Figure 6 Formulation of the electricity purchase and sale optimization problem 

The balancing node is connected with the sink and the source nodes by arcs that are characterized by 
parameters and variables. An arc exists only if there is a cost defined for it. The parameters are the 
minimum and maximum levels of the flows between two given nodes (Eq. 48) and the cost function. 

𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗
𝑚𝑚𝑖𝑖𝑚𝑚 ≤ 𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗 ≤ 𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚 ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐, 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, 𝑠𝑠 ∈ 𝑆𝑆  (48) 

The network is used to identify the most economical flows while satisfying the load from the process 
demand node (Eq. 49).  

qs=∑ fs,i,ji∈Node,j∈Dem   ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐, 𝑠𝑠 ∈ 𝑆𝑆  (49) 

The onsite generation is modelled using a binary variable 𝐻𝐻𝑠𝑠,𝑖𝑖,𝑗𝑗 that denotes whether the plant is in 
production mode (Eq. 50) and an auxiliary pseudo-continuous variable 𝑔𝑔𝑠𝑠,𝑖𝑖,𝑗𝑗

𝑠𝑠  indicating generation 
start-up (Eqs. 51-52). Here, the Big-M value 𝑀𝑀2 should not be less than the maximum flow on the arc 
between the onsite generation and the balancing node. 

𝐻𝐻𝑠𝑠,𝑖𝑖,𝑗𝑗 ≤ 𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗 ≤ 𝑀𝑀2 ∙ 𝐻𝐻𝑠𝑠,𝑖𝑖,𝑗𝑗  ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐, 𝑖𝑖 ∈ 𝐻𝐻𝑁𝑁𝐺𝐺, 𝑗𝑗 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵, 𝑠𝑠 ∈ 𝑆𝑆  (50) 

𝐻𝐻𝑠𝑠,𝑖𝑖,𝑗𝑗 − 𝐻𝐻𝑠𝑠−1,𝑖𝑖,𝑗𝑗 ≤ 𝑔𝑔𝑠𝑠,𝑖𝑖,𝑗𝑗
𝑠𝑠 ≤ 𝐻𝐻𝑠𝑠,𝑖𝑖,𝑗𝑗  ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐, 𝑖𝑖 ∈ 𝐻𝐻𝑁𝑁𝐺𝐺, 𝑗𝑗 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵, 𝑠𝑠 ∈ 𝑆𝑆  (51) 

0 ≤ 𝑔𝑔𝑠𝑠,𝑖𝑖,𝑗𝑗
𝑠𝑠 ≤ 1 − 𝐻𝐻𝑠𝑠−1,𝑖𝑖,𝑗𝑗  ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐, 𝑖𝑖 ∈ 𝐻𝐻𝑁𝑁𝐺𝐺, 𝑗𝑗 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵, 𝑠𝑠 ∈ 𝑆𝑆  (52) 

The onsite generation constraints are kept simple by considering a constant generation cost with 
additional start-up cost (Eq. 53) and a reduced production rate by a factor 𝑘𝑘 for those time intervals 
where a start-up occurs (Eq. 54).  

cs
gen=∑ fs,i,j∙i∈Node,j∈Gen cs,i,j+cstart ∙gs,i,j

s   ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐, 𝑠𝑠 ∈ 𝑆𝑆  (53) 

𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗 = 𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐻𝐻𝑠𝑠,𝑖𝑖,𝑗𝑗 − 𝑘𝑘 ∙ 𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗

𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑔𝑔𝑠𝑠,𝑖𝑖,𝑗𝑗
𝑠𝑠   ∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐, 𝑖𝑖 ∈ 𝐻𝐻𝑁𝑁𝐺𝐺, 𝑗𝑗 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵, 𝑠𝑠 ∈ 𝑆𝑆  (54) 



Moreover, a minimum runtime 𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚 and a minimum downtime 𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚 are enforced (Eqs. 55-56). The 
implementation of more detailed constraints that are available in literature would also be possible here, 
including accounting for steam flows and more detailed electricity production rates as for example in 
Mitra et al. (2013). 

∑ 𝐻𝐻𝑠𝑠′,𝑖𝑖,𝑗𝑗𝑠𝑠+𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚−1
𝑠𝑠′=𝑠𝑠 ≥ 𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚(𝐻𝐻𝑠𝑠,𝑖𝑖,𝑗𝑗 − 𝐻𝐻𝑠𝑠−1,𝑖𝑖,𝑗𝑗)

 
∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐, 𝑖𝑖 ∈ 𝐻𝐻𝑁𝑁𝐺𝐺, 𝑗𝑗 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠 < |𝑆𝑆| − 𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚  (55) 

∑ 𝐻𝐻𝑠𝑠′,𝑖𝑖,𝑗𝑗𝑠𝑠+𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚−1
𝑠𝑠′=𝑠𝑠 ≤ 𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚(1 + 𝐻𝐻𝑠𝑠,𝑖𝑖,𝑗𝑗 − 𝐻𝐻𝑠𝑠−1,𝑖𝑖,𝑗𝑗)

 
∀ (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐, 𝑖𝑖 ∈ 𝐻𝐻𝑁𝑁𝐺𝐺, 𝑗𝑗 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠 < |𝑆𝑆| − 𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚  (56)  

The final net electricity purchase cost (Eq. 57) is composed of the cost associated with purchase from 
contracts, the cost of the generation and the revenues from the electricity sold.  

µ = ∑ (∑ 𝑓𝑓𝑠𝑠,𝑖𝑖′,𝑗𝑗′ ∙ 𝑐𝑐𝑠𝑠,𝑖𝑖,𝑗𝑗 + 𝑐𝑐𝑠𝑠
𝑔𝑔𝑠𝑠𝑚𝑚 − ∑ 𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗 ∙ 𝑐𝑐𝑠𝑠,𝑖𝑖,𝑗𝑗𝑖𝑖∈𝑁𝑁𝑜𝑜𝑁𝑁𝑠𝑠,𝑗𝑗∈𝑆𝑆𝑚𝑚𝑆𝑆𝑠𝑠 )𝑖𝑖′∈𝑁𝑁𝑜𝑜𝑁𝑁𝑠𝑠,𝑗𝑗′∈𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠∈𝑆𝑆  

 
∀ (𝑖𝑖, 𝑗𝑗), (𝑖𝑖′, 𝑗𝑗′) ∈ 𝐸𝐸𝑃𝑃𝑐𝑐  (57) 

4.4.2 Load deviation problem 
As a steel plant is a large consumer, the suppliers of electricity impose that it commits to certain 
hourly varying levels of load. We only consider here the situation where there is only one supplier and 
the committed load is the total load of the steel plant. Instead it could also be the load that is covered 
by one of the contracts, or there could be several such curves. In case the actual consumption deviates 
from the pre-agreed values, financial penalties are incurred. The part of the model that accounts for the 
penalties is similar to the formulation in Hadera and Harjunkoski (2013). For the load tracking error 
penalties, it is assumed that there is a penalty-free deviation (buffer) 𝑏𝑏𝑠𝑠 that is relative to the 
committed consumption 𝐵𝐵𝑠𝑠 and limited by relative upper and lower bounds 𝑏𝑏𝑠𝑠𝑜𝑜 and 𝑏𝑏𝑠𝑠𝑠𝑠 as stated in Eq. 
(58). 

−𝐵𝐵𝑠𝑠 ∙ 𝑏𝑏𝑠𝑠𝑠𝑠 ≤ 𝑏𝑏𝑠𝑠 ≤ 𝐵𝐵𝑠𝑠 ∙ 𝑏𝑏𝑠𝑠𝑜𝑜  ∀𝑠𝑠 ∈ 𝑆𝑆  (58) 

The actual levels of over- and under consumption (𝑐𝑐𝑠𝑠𝑜𝑜 and 𝑐𝑐𝑠𝑠𝑠𝑠) are determined by Eq. (59).  

𝑞𝑞𝑠𝑠 = 𝐵𝐵𝑠𝑠 + 𝑐𝑐𝑠𝑠𝑜𝑜 − 𝑐𝑐𝑠𝑠𝑠𝑠 + 𝑏𝑏𝑠𝑠  ∀𝑠𝑠 ∈ 𝑆𝑆  (59) 

The penalty term δ calculating the fines 𝑝𝑝𝑜𝑜,𝑝𝑝𝑠𝑠 for over- and under consumption is given by Eq. (60). 

δ = 𝑝𝑝𝑜𝑜  ∙ ∑ 𝑐𝑐𝑠𝑠𝑜𝑜𝑠𝑠∈𝑆𝑆 + 𝑝𝑝𝑠𝑠 ∙ ∑ 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠∈𝑆𝑆   (60) 

The final objective function of the monolithic model in Eq. (61) minimizes the net electricity cost µ, 
the deviation penalties and the weighted sum of the task starting times 𝑡𝑡𝑝𝑝,𝑚𝑚

𝑠𝑠   with 𝑐𝑐 being a weighting 
factor. 

min (µ + δ + 𝑐𝑐 ∙ ∑ 𝑡𝑡𝑝𝑝,𝑚𝑚
𝑠𝑠

𝑝𝑝∈𝑃𝑃,𝑚𝑚∈𝑆𝑆 )  (61) 

The part of the model that concerns the deviation problem can easily be used in load commitment of 
one particular contract. For example, when changing the variable representing the total consumption in 
a time slot 𝑞𝑞𝑠𝑠 to the amount drawn from Time-of-Use source 𝑓𝑓𝑠𝑠,𝑖𝑖,𝑗𝑗, where 𝑖𝑖 ∈ 𝑆𝑆𝐴𝐴𝑇𝑇  and 𝑗𝑗 ∈ 𝐵𝐵𝐵𝐵𝐵𝐵 we get 
the committed load problem of the TOU contract. 



5. Industrial case study 
The assumptions on the constraints of the steel making process include the knowledge of the 
sequences and assignments of products to the last stage, the Continuous-Casting (CC) stage. We 
assume that it is known which products must be processed on one of the casters. However, the 
assignment of the heats to other units in other stages must be determined by the optimization. We also 
assume that the sequence of the heats that must be processed on a particular caster is known. However, 
it is up to the optimization to determine the sequence of those products that can be processed on two 
different CC machines. This assumption reduces the size of the search space. It is a reasonable 
assumption because very often the sequence of the products to be processed is dictated by higher level 
planning solutions (e.g. mill-wide planning) that are directly linked with customer orders and 
knowledge concerning in-house inventory levels. For integrated steel plants, the further processing of 
the steel slabs is carried out in the Hot Rolling Mill (HRM) after the Melt Shops section. At the HRM 
section it is important to define a sequence of steel slabs to be rolled such that the cost of reheating 
using natural gas is minimized. This challenging optimization problem of coordination between Melt 
Shop and Hot Rolling Mill (Xu et al. 2012) can also determine the sequence of the products on the CC 
stage. Usually, the assignments and the sequences on the casters reflects the quality requirements for 
steel, i.e. one of the casters processes certain high quality types of steel, while the other one might not 
be able to deliver the same qualities. The timing of the tasks to avoid production delays and to 
minimize the cost of energy-related problem is subject of the optimization. 

5.1 Calculation of lower and upper bounds of task start times 
To tighten the MILP model, we calculate lower and upper bounds for the task start variables. For each 
heat group we solve two optimization problems, minimizing and maximizing the task start time of the 
first product in the heat group at the CC stage. In this way we check what is the minimum value of the 
variable when a given heat group finishes as soon as possible on the CC. Similarly, we check what is 
the maximum value of the variable when a given heat group finishes as late as possible on the CC. 
Based on this knowledge, it is possible, using process parameters, to calculate the earliest start times 
and the latest start times of each task at the other stages as shown in Appendix 2. The bounds obtained 
from the above optimization are then propagated to the monolithic model and to the heuristic 
optimization in order to impose upper and lower bounds for task start and finish time variables. 
Finding tighter bounds helps to speed up the solution of the MILP model since then many of the 
energy-related binaries can be set to zero. 

 

5.2 Case study data 
Following the Demand Response strategy the plant has the goal of delivering a fixed number of heats 
(products) within a scheduling horizon of 24 h. Due to the continuous casting requirement, products 
are divided within heat groups as defined in Table 2.  

Table 2 Heat group definition 

Group Heat 
(product) 

HG1 P1-P3 
HG2 P4-P7 
HG3 P8-P12 
HG4 P13-P16 
HG5 P17-P20 

 



For the test cases with fewer products the last heats were excluded. Processing times and specific 
electricity consumption of the tasks are given in Table 3, while setup times are reported in Table 4. 
Minimum transportation times and maximum waiting (hold-up) times after processing on a given 
stage are shown in Table 5 and Table 6 respectively.  

Table 3 Processing times and electricity consumption 

  EAF1, EAF2 AOD1, AOD2 LF1, LF2 CC1, CC2 

P1-P20 
85 [min] 8  [min] 45 [min] 60 [min] 
85 [MW] 2 [MW] 2 [MW] 7 [MW] 

 

Table 4 Setup times [min] 

Machine Setup time 
EAF1, EAF2 9 

AOD1, AOD2 5 
LF1 15 
LF2 5 
CC1 50 
CC2 70 

 

Table 5 Transportation times [min] 

  AOD1 AOD2 LF1 LF2 CC1 CC2 
EAF1 10  25     
EAF2 25 10     
AOD1   4 20   
AOD2   20 4   
LF1     20 45 
LF2         45 20 

 

Table 6 Maximum waiting times after stages 

 ST1 ST2 ST3 
P1-P20 60 90 60 

 

The input data concerning the electricity purchase limits are shown in Figure 7.  



 

Figure 7 Bounds of the flows in the purchase flow network 

Note that the base load contract has a fixed amount of delivery for each hour of the day, regardless 
whether the electricity is needed for the production process or not. The prices of electricity and the 
committed load curve are shown in Table 7Table 8. The electricity prices of both day-ahead contract 
cases, low price (EPEX 2013, Germany/Austria 23/09/2013) and high price (EPEX 2013, France 
10/02/2012) are taken from a real spot market. The pre-agreed load curve comes from a valid 
production schedule which was computed not considering the energy cost in the optimization, but in 
our case only the lead times optimization (𝑐𝑐 ∙ ∑ 𝑡𝑡𝑚𝑚,𝑝𝑝

𝑠𝑠
𝑚𝑚∈𝑆𝑆,𝑝𝑝∈𝑃𝑃 , here ). This follows the previous studies 

(Castro et al. 2013) where the schedule with optimized production-specific cost (makespan) served as 
a basis for the comparison with an energy-driven schedule to assess the iDSM benefits. 

Table 7 Electricity prices for case studies 

Time 
interval 

Base load 
prices 

[€/MWh] 

Day-ahead 
high prices 
[€/MWh] 

Day-ahead low 
prices 

[€/MWh] 

TOU 
[€/MWh] 

s1 52 95 12,0 65 
s2 52 113 13,1 65 
s3 52 90 9,8 65 
s4 52 75 9,8 65 
s5 52 61 11,5 65 
s6 52 85 18,8 65 
s7 52 140 39,1 65 
s8 52 186 57,9 65 
s9 52 176 62,7 65 
s10 52 605 61,0 65 
s11 52 431 56,1 65 
s12 52 177 50,7 65 
s13 52 146 42,6 90 
s14 52 100 38,8 90 
s15 52 100 33,0 90 
s16 52 83 35,1 90 
s17 52 73 40,5 90 
s18 52 110 49,5 90 
s19 52 162 59,9 90 
s20 52 143 67,5 90 
s21 52 117 61,4 90 



s22 52 84 48,5 90 
s23 52 94 39,9 90 
s24 52 87 31,5 90 

 

Table 8 Pre-agreed load curve 

Time 
interval 

Pre-agreed load 
curve [MWh] 

s1 170,00 
s2 146,17 
s3 170,87 
s4 153,57 
s5 156,03 
s6 182,20 
s7 162,77 
s8 155,77 
s9 183,37 
s10 157,70 
s11 157,90 
s12 182,33 
s13 156,47 
s14 174,33 
s15 169,12 
s16 99,90 
s17 18,15 
s18 15,73 
s19 10,32 
s20 7,00 
s21 1,98 
s22 0 
s23 0 
s24 0 

 

We assume that the income from selling back electricity to the grid is also time sensitive and is equal 
to 75% of the cost of day-ahead market in the same time slot. The cost of onsite generation and other 
related parameters are shown in Table 9. The allowed range for over- and under-consumption and the 
corresponding penalties can be found in Table 10, together with other load-deviation problem related 
parameters. 

Table 9 Onsite generation parameters 

Cost of onsite generation [€/MWh] 61 
Minimum run time [h] 3 
Minimum down time [h] 3 
Start-up cost [€] 1000 
Reduced production rate due to start-up 20% 

 

Table 10 Load deviation problem parameters 

Over-conumption penalty [€/MWh] 100 
Under-consumption penalty [€/MWh] 80 



Buffer for over-conumption 3% 
Buffer for under-conumption 4% 

 

5.3 Numerical results obtained with the monolithic models 
Numerical tests have been performed on a 4-core Intel Xeon 2,53GHz with 16GB of RAM using 
GAMS/CPLEX 23.7.3. The monolithic formulations shown in Section 4 and Appendix 1 were tested 
on the same instances with identical process assumptions and input data from Section 5.2. Table 11 
gives the overview of the test cases involving different numbers of products to be scheduled, different 
time horizons, and the electricity prices considered.  

Table 11 Test case description 

Scenario Horizon Products Electricity sources and sinks 

1 24h 20 all possible, day-ahead with high prices 
2 24h 20 all possible, day-ahead with low prices 
3 24h 16 all possible, day-ahead with high prices 
4 18h 12 all possible, day-ahead with high prices 

Name Model type 
NM monolithic six binaries model (Nolde and Morari 2010, Hadera and Harjunkoski 2013) 
HM monolithic event binary model 

 

The two monolithic model strategies are compared for different problem instances (scenarios) with 
computational limitations of 600s and 3600s. The resulting computational statistics are shown in Table 
12. The MIP solution quality is described by the value of the total weighted objective function value. 

Table 12 Numerical results of monolithic models 

  Model statistics 

Scenario Binary 
vars  Total vars Equations 

MIP 
solution 

600s 

Relative gap 
600s 

MIP 
solution 
3600s 

Relative gap 
3600s 

NM1 13017 29508 98095 313128 43,78% 290708 38,97% 
HM1 4065 29508 102335 247838 29,30% 241136 26,80% 
NM2 13017 29508 98095 223887 32,30% 222167 31,20% 
HM2 4065 29508 102335 200038 24,90% 180023 16,10% 
NM3 10181 23428 77136 234643 31,53% 221454 27,20% 
HM3 3229 23428 80528 204173 22,50% 180965 12,10% 
NM4 5723 13348 43541 197543 7,00% 196886 6,16% 
HM4 1771 13348 45509 194565 6,44% 194361 6,20% 

 

The results show that for most of the problem instances the new event binaries models (HM1-4) 
performs better than the literature model (NM1-4), especially for larger problems. This statement 
holds true for the short computational time limit (600s) where the differences of the relative gaps 
between the solutions is usually around 4 – 11 % (scenario 1-3). For longer solution times the 
improvement obtained with the binaries model is even more pronounced, around 12-15%. Only for the 
smallest instance which is much smaller than the industrially relevant problems, with a scheduling 
horizon of  18h and 12 products (scenario 4), the literature model had a performance comparable to the 
proposed one.  



In Table 13 the economic assessment of the resulting solutions is shown, for the computation time 
limit of 600s. The purchase strategy obtained from the solutions of the two monolithic models differs. 
However, in some cases for some contracts both models seem to be choosing the same levels of the 
flows in the network. For example, both models recognize that it is preferable to generate electricity 
from the power plant and to buy from TOU market when the day-ahead prices are high as in the case 
of scenarios 1, 3 and 4.  

Table 14 gives the economic results for the test runs under the computational limitation of 3600s. 
When discussing the economic results it is important to note that the final objective function consists 
of three components, net electricity cost, penalties for load deviation and lead times (summation of 
task start times with the weight factor 𝑐𝑐 = 1). Therefore, the solver can find two very similar solutions 
in terms of the objective function values. However, the distribution of the costs among the elements of 
the objective function might differ. In Scenario 4 for 600s computation time the objective value for 
both model types is similar, but the six binaries model solution chooses to decrease the lead times at 
the expense of higher deviation penalties cost, while the event binaries model follows better the pre-
agreed load curve causing the lead times to increase.  

Table 13 Economic assessment results of the monolithic models – 600s computation time limit 

Economic assessment – 600s 

Scenario 
Lead 
times 
[min] 

Net 
electricity 
cost [€] 

Electricity 
purchase 

[€] 

Deviation 
penalties [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 
NM1 60784 149832 161098 102512 172,55 1471,825 912 
HM1 51990 133972 151905 61876 173,49 1421,44 952 
NM2 61210 119440 98505 43236 1608,917 4 352 
HM2 53946 120989 98592 25103 1514,51 95,78 432 
NM3 43598 96266 134759 94780 77,207 1266,043 952 
HM3 36152 72846 140130 95175 142,48 1318,80 952 
NM4 22962 71410 107332 103171 0 1065,425 712 
HM4 24427 83226 103080 86912 0 1000 712 

 
 

Table 14 Economic assessment results of the monolithic models - 3600s computation time limit 

Economic assessment – 3600s 

Scenario 
Lead 
times 
[min] 

Net 
electricity 
cost [€] 

Electricity 
purchase 

[€] 

Deviation 
penalties [€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 
NM1 58763 146373 162528 85572 203,72 1466,61 952 
HM1 50796 142452 14396 47888 234,22 1349,66 952 
NM2 60282 116872 98942 45014 1649,35 16,83 312 
HM2 51598 115937 98229 12489 1635,81 56,11 352 
NM3 60282 100104 127986 79081 110,87 1164,93 952 
HM3 35396 94723 128534 50846 46,66 1256,92 952 
NM4 23083 73788 105639 99956 0,00 1039,37 712 
HM4 24657 84528 103080 85177 0,00 1000 712 

 
 

The new model requires fewer binaries, while the total number of variables remains the same. The 
number of equations increases in the event binaries model. Unfortunately, the model is still not able to 



cope with the size of the industrial problem. Therefore, in the next sections we propose a heuristic 
strategy for the solution of the integrated scheduling and energy cost optimization problem. 

6. Bi-level heuristic 
When trying to solve an instance of the problem with significant flexibility in the process, i.e. when 
the optimization is free to assign and to sequence all products, the computational performance of the 
monolithic models from Section 4 is not sufficient. This is mainly due to large number of difficult to 
solve binary variables in the scheduling formulation and to the loose Big-M constraints, which is 
specific for precedence-based continuous-time models. To overcome the computational limitations we 
developed a heuristic decomposition strategy.  

For large scale scheduling problems decomposition techniques have long been recognized as possible 
solution approaches. Starting from fundamental studies by Benders (1962) and Dantzig (1963) with 
row and column generation approaches, strategies have been developed for solving problems in an 
iterative fashion that could not be solved using a monolithic formulation. Decomposition approaches 
can be categorized into approaches that can be shown to converge to the true optimum (even if 
convergence may be slow) and approaches that discard a part of the solution space so that optimality 
cannot be guaranteed (decomposition heuristics). Wu and Ierapetritou (2003) presented a number of 
different heuristic decomposition approaches for scheduling problems. For example, one may use time 
decomposition where the long time horizon is divided into several smaller sub-periods with resulting 
sub-problems. Another important class of approaches make use of Lagrangean decomposition to relax 
the original problem into a problem that is easier to solve, systematically providing a lower bound for 
the solution. For problems with a clear separation of planning level decisions and scheduling level 
decisions these can be represented in a bi-level setup where first in upper level the planning variables 
are determined and then fixed to solve the more detailed lower level scheduling problem. This scheme 
was used for example by Bassett et al. (1996). Similarly in another example, Erdirik-Dogan and 
Grossmann (2008) use the bi-level concept for continuous multiproduct plants first solving an 
aggregate model to obtain an upper bound for the profit and then solving a scheduling problem to 
obtain a lower bound. Xu et al. (2012) developed a bi-level decomposition scheme for the 
coordination of a Melt Shop process with Hot Rolling section of a stainless steel plant. In this paper, 
we also employ a bi-level scheme, where the solution procedure consists of two problems that are 
solved in an iterative manner, as shown in Figure 8.  

 



 

Figure 8 General idea of bi-level heuristic approach 

First, an aggregate model (upper level 𝑇𝑇𝐿𝐿) that approximates the original monolithic model is solved 
in order to obtain feasible values of some binary decisions. These binary decisions are passed to the 
full model (lower level 𝐿𝐿𝐿𝐿) with a restriction to keep some of the variables fixed, optimizing some 
other continuous and binary variables, in our case the starting times and the event binaries. The full 
model should provide a feasible schedule and an objective function value which represents an upper 
bound of the optimal value. A new iteration of the algorithm starts by solving the upper problem 
again, with some new restrictions in the form of integer cuts that exclude previous solutions of the full 
model. The search space can be reduced based on the knowledge about the optimal solution provided 
from 𝐿𝐿𝐿𝐿. In our particular case, since for the full problem with some of the decision variables fixed a 
feasible solution was obtained, at least the combination of the binaries of that solution can be removed 
from 𝑇𝑇𝐿𝐿 so that new values of these binaries are generated by the upper level model and the new 
solution is again refined by the lower level model. The algorithm iterates until stopping criterion is 
met, e.g. until a time limit is exceeded. For the following sections, additional notation specific for the 
decomposition approach is given in Table 15. 

Table 15 Model notation for the heuristic 

Sets:  
𝐴𝐴𝑌𝑌0𝑠𝑠 ,𝐴𝐴𝑌𝑌1𝑠𝑠 ,𝐴𝐴𝑋𝑋0𝑠𝑠 ,𝐴𝐴𝑋𝑋1𝑠𝑠 ,𝐴𝐴𝑉𝑉0𝑠𝑠 ,𝐴𝐴𝑉𝑉1𝑠𝑠  dynamic sets used in bi-level heuristic for false and true decision of 

the respective binaries 
Variables:  
𝑋𝑋𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈1 , 𝑋𝑋𝑚𝑚,𝑝𝑝

𝑈𝑈𝑈𝑈  , 𝑋𝑋𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈2 binary variable in respective models UL1, LL and UL2, true when 

heat p is assigned for processing on equipment m 
𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′
𝑈𝑈𝑈𝑈1  , 𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′

𝑈𝑈𝑈𝑈 , 𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′
𝑈𝑈𝑈𝑈2  binary variable in respective models UL1, LL and UL2, true when 

heat p’ is processed after heat p on stage st 
𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑈𝑈𝑈𝑈1, 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠𝑈𝑈𝑈𝑈  , 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑈𝑈𝑈𝑈2 binary variable in respective models UL1, LL and UL2, true when 

heat p starts on stage st in the slot s 
Parameters:  
𝑡𝑡𝑚𝑚,𝑚𝑚′
𝑚𝑚𝑖𝑖𝑚𝑚𝑈𝑈𝑈𝑈1 , 𝑡𝑡𝑚𝑚,𝑚𝑚′

𝑚𝑚𝑖𝑖𝑚𝑚𝑈𝑈𝑈𝑈  minimum transport time from equipment m to m’ in respective 
models UL1 and LL 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈1 , 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈  maximum hold-up time after stage st in respective models UL1 and 
LL 

𝐴𝐴𝐻𝐻𝑆𝑆  sum of binary variables 
𝛼𝛼  number of neighboring slots to be evaluated 



𝛽𝛽  desired optimality gap  
𝑃𝑃  iteration number 
 

6.1 Upper level problem 
The upper level problem 𝑇𝑇𝐿𝐿 consist of solving two models 𝑇𝑇𝐿𝐿1 and 𝑇𝑇𝐿𝐿2 as shown in Figure 9. The 
𝑇𝑇𝐿𝐿1 is a simplified model of the original problem and it is computed to obtain a valuable guess of 
some binary decisions, while the 𝑇𝑇𝐿𝐿2 is a pre-computation step for the 𝑇𝑇𝐿𝐿1 starting from the second 
iteration as explained later. The algorithm starts with solving 𝑇𝑇𝐿𝐿1, which is constructed in such way 
that it represents the full monolithic problem as closely as possible, while at the same time reducing 
the size of the MILP. In the first iteration, 𝑇𝑇𝐿𝐿1 is a relaxation of the full problem. The main 
component of the objective function value is the electricity-related cost. It depends directly on the load 
pattern that results from the processing of the tasks. In the stainless-steel production process 
investigated in the case study, the EAF stage consumes about 88% of the total electricity needed to 
deliver one product. Therefore potential changes in the assignments, sequences or especially the 
timing of different products on that stage will have a significant impact on the final consumption 
pattern. Therefore, the energy-intense melting task is included in the upper level problem. A rough 
approximation of the lower level problem can be generated by simply scheduling the EAF stage alone, 
maintaining all energy-related constraints. However, the tasks on the first stage cannot be timed 
arbitrarily and must be sequenced according to the special continuous-casting constraints on the CC 
stage. For example, two subsequently casted products should be processed within a reasonable time 
interval in the EAF stage in order to ensure the proper delivery of the heats to continuous-casting, 
while at the same time satisfying all transfer and waiting time constraints between the stages. 

 

 



Figure 9 Bi-level heuristic algorithm 

Since the EAF and CC stages together account for around 95% of the total Melt Shop electricity 
consumption, scheduling of these two stages alone should produce a good guess of the values of the 
variables related to the EAF and the CC of the full problem. If the last production stage is considered 
together with the EAF, the casting constraints are not violated and the remaining stages of AOD and 
LF can be scheduled on the lower level. In order to ensure feasibility of the lower model concerning 
decisions for these two stages, the upper level problem needs to account for the range of possible 
delays between processing on the EAF and on the CC stage. The equations of the 𝑇𝑇𝐿𝐿1 problem are the 
same as in the corresponding monolithic model (and in lower level problem), apart from removing 
elements and cuts, as follows: 

min𝑈𝑈𝑈𝑈1(𝐸𝐸𝑞𝑞. 61) 

s.t.: 

𝐸𝐸𝑞𝑞. (1 − 16) Scheduling model equations with new sets 𝑀𝑀 and 𝑆𝑆𝑆𝑆 (Section 4.2) 

𝐸𝐸𝑞𝑞. (17 − 46)  Energy-awareness extension with new sets 𝑀𝑀 and 𝑆𝑆𝑆𝑆 (Section 4.3.1) 

𝐸𝐸𝑞𝑞. (47− 57)   Electricity sources optimization (Section 4.4.1 ) 

𝐸𝐸𝑞𝑞. (58− 60)   Load deviation problem (Section 4.4.2) 

𝐶𝐶𝑃𝑃𝑡𝑡𝑠𝑠  New constraints for other iterations than the initial one (Section 6.4) 

 

The equipment AOD and LF are eliminated from the equipment set 𝑀𝑀. The stages 𝑠𝑠𝑡𝑡2 and 𝑠𝑠𝑡𝑡3 are 
eliminated from the set of production stages 𝑆𝑆𝑆𝑆. Therefore, new values of the minimum transport 
times and maximum hold-up times between EAF and CC stage in the upper level problem need to be 
calculated based on the parameters of the full model as shown in Figure 10.  

  

  

Figure 10 Transportation and waiting time between EAF and CC stage in the upper level UL1 problem 

The new 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈1 and 𝑡𝑡𝑚𝑚,𝑚𝑚′,𝐶𝐶𝐶𝐶

𝑚𝑚𝑖𝑖𝑚𝑚𝑈𝑈𝑈𝑈1 replace the original 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑡𝑡𝑚𝑚,𝑚𝑚′

𝑚𝑚𝑖𝑖𝑚𝑚  from the monolithic model. The 
maximum hold-up time corresponds in the full model to the maximum time after which a heat can be 
processed on CC after finished on EAF as in Equation (62) below.  



𝑡𝑡𝑝𝑝′,𝑠𝑠𝑠𝑠1𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈𝑈𝑈1 =
 max p ∈P {𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠1

𝑚𝑚𝑚𝑚𝑚𝑚} + max p ∈P {𝜏𝜏𝑝𝑝,𝐴𝐴𝐴𝐴𝐴𝐴1, 𝜏𝜏𝑝𝑝,𝐴𝐴𝐴𝐴𝐴𝐴2} +max p ∈P {𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠2
𝑚𝑚𝑚𝑚𝑚𝑚} + max p ∈P {𝜃𝜃𝑝𝑝,𝑈𝑈𝐿𝐿1,𝜃𝜃𝑝𝑝,𝑈𝑈𝐿𝐿2} +

max p ∈P {𝑤𝑤𝑝𝑝,𝑠𝑠𝑠𝑠3
𝑚𝑚𝑚𝑚𝑚𝑚}  ∀𝑝𝑝′ ∈ 𝑃𝑃  (62) 

Similarly, the minimum transportation time between EAF and CC corresponds to the minimum 
possible time between these two in the full problem as in Equation (63).  

𝑡𝑡𝐸𝐸𝐴𝐴𝐿𝐿,𝐶𝐶𝐶𝐶
𝑚𝑚𝑖𝑖𝑚𝑚𝑈𝑈𝑈𝑈1 = min  m ∈SM(EAF,m)

𝑚𝑚′∈SM(AOD,𝑚𝑚′)
 {𝑡𝑡𝑚𝑚,𝑚𝑚′
𝑚𝑚𝑖𝑖𝑚𝑚 } + min p ∈P{𝜃𝜃𝑝𝑝,𝐴𝐴𝐴𝐴𝐴𝐴1,𝜃𝜃𝑝𝑝,𝐴𝐴𝐴𝐴𝐴𝐴2} + min m ∈SM(AOD,𝑚𝑚)

𝑚𝑚′∈SM(LF,𝑚𝑚′)
 {𝑡𝑡𝑚𝑚,𝑚𝑚′
𝑚𝑚𝑖𝑖𝑚𝑚 } +

min p ∈P {𝜃𝜃𝑝𝑝,𝑈𝑈𝐿𝐿1,𝜃𝜃𝑝𝑝,𝑈𝑈𝐿𝐿2} + min  m ∈SM(LF,𝑚𝑚)
𝑚𝑚′∈SM(CC,𝑚𝑚′)

 {𝑡𝑡𝑚𝑚,𝑚𝑚′
𝑚𝑚𝑖𝑖𝑚𝑚 }  (63) 

In the upper level model 𝑇𝑇𝐿𝐿1, the EAF stage is the first stage, followed by the CC which is the second 
and last production stage. Another modification of the input data of the upper level problem concerns 
the pre-agreed load curve. For the original full problem, the agreed curve is calculated based on a pre-
defined schedule. For the same schedule, it is possible to eliminate the AOD and LF stages to obtain a 
load curve for the other two stages. 

The second model 𝑇𝑇𝐿𝐿2 of the upper level is solved after the lower level 𝐿𝐿𝐿𝐿 problem as shown in 
Figure 9. From the latter, most binary decisions are fixed and transferred to 𝑇𝑇𝐿𝐿2, which essentially is 
the same problem as 𝐿𝐿𝐿𝐿 discussed in the next section. However, within 𝑇𝑇𝐿𝐿2 the only binary decision 
to be determined by optimization is to find better assignments of heats to EAFs in order to pre-
compute new assignment decisions on EAFs for the next iteration of 𝑇𝑇𝐿𝐿1. In this way the search space 
of the approximate model 𝑇𝑇𝐿𝐿1 is reduced and it no longer is a relaxation of original problem in the 
later iterations, which might prevent finding the optimal solution. However, it turned out to speed up 
the computational time significantly. 

6.2 Lower level problem 
The constraints and sets of the lower level 𝐿𝐿𝐿𝐿 problem are not changed compared to the monolithic 
problem. However, the lower problem is solved with some fixed decisions which improves its 
computational performance, as discussed in details in the next Section. The model 𝐿𝐿𝐿𝐿 serves as an 
evaluation model for the decisions that were determined by the upper level 𝑇𝑇𝐿𝐿1. After fixing some 
decisions, as described in the next section, 𝐿𝐿𝐿𝐿 is solved with a limitation on the solution time to avoid 
spending too much time in closing a small optimality gap. 

6.3 Information exchange between the levels 
Since the EAF stage is the most power intensive one, the decisions taken with regard to the assignment 
𝑋𝑋𝑝𝑝,𝑚𝑚 to machines of the melting stage are fixed for the 𝐿𝐿𝐿𝐿 problem as in Equation (64), which helps to 
speed up the solving time. Further, for the same reason another variable is fixed, the sequence 𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′ 
on the casting stage as in Equation (65). In contrast to the process assumptions where the sequence in 
the particular caster is known a priori only if only one caster can be used as described in Section 5, we 
fix the sequence relation of the products between the two casters here which is a degree of freedom of 
the monolithic problem. 

𝑋𝑋𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈 = 𝑋𝑋𝑚𝑚,𝑝𝑝

𝑈𝑈𝑈𝑈1      ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝐸𝐸𝐸𝐸𝐹𝐹  (64) 

𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′
𝑈𝑈𝑈𝑈 = 𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′

𝑈𝑈𝑈𝑈1       ∀𝑝𝑝,𝑝𝑝′ ∈ 𝑃𝑃,𝑝𝑝 ≠ 𝑝𝑝′, 𝑠𝑠𝑡𝑡 = |𝑆𝑆𝑆𝑆|  (65) 

Since the upper problem should provide a good approximation of the full problem, it would be 
beneficial to use also the energy-related information obtained from it for fixing some decisions in the 



lower level problem. A natural choice is the event binaries. However, since it is expected that these 
have a large impact on the value of the objective function, the kind of fixing needs to be carefully 
chosen. The fixing should still allow for giving flexibility to the model, and at the same time reduce 
the computational time of the full problem. After experimenting with different options, we developed 
a fixing decision that if the upper level problem is solved close to optimality (i.e. the gap is lower than 
𝛽𝛽 = 2%) the variables of event binary start of the lower level problem 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠𝑈𝑈𝑈𝑈  should be true within a 
neighborhood of the slots for which the binary holds true in the 𝑇𝑇𝐿𝐿1 solution as shown in Equation (4) 
where 𝑠𝑠∗ denotes the time slot when the event binary starts to hold true in the 𝑇𝑇𝐿𝐿1 solution.  

∑ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑈𝑈𝑈𝑈𝑠𝑠∗+𝛼𝛼

𝑠𝑠=𝑠𝑠∗−𝛼𝛼 = 1,  𝑤𝑤ℎ𝑁𝑁𝑃𝑃𝑁𝑁 𝑠𝑠∗:𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠∗
𝑠𝑠𝑈𝑈𝑈𝑈1 = 1  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (66) 

If the upper level problem determined that the start of a product should occur in the 𝐺𝐺 − 𝑡𝑡ℎ time slot, 
then the start of that product in the 𝐿𝐿𝐿𝐿 solution should occur in one of the time slots within (𝐺𝐺 −
𝛼𝛼;𝐺𝐺 + 𝛼𝛼). For the particular case, we choose 𝛼𝛼 to define a neighborhood of 3 slots, which is a wide 
range of 7 hours in total. Since the decision of the event start binary has a direct impact on the event 
finish binary, there is no need for further fixing of the latter. 

With the above exchange of information between models 𝑇𝑇𝑃𝑃1 and 𝐿𝐿𝐿𝐿, the most important degrees of 
freedom in the lower level problem are the timing of EAFs (but also all the other units) while keeping 
the sequence determined by the upper level.  

In order to update the 𝑇𝑇𝐿𝐿1 problem with new assignment decisions on EAFs (Equation 67), the 𝑇𝑇𝐿𝐿2 
problem is solved with fixed decisions of the other binaries, as shown in Equations (68-70). 

𝑋𝑋𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈1 = 𝑋𝑋𝑚𝑚,𝑝𝑝

𝑈𝑈𝑈𝑈2      ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝐸𝐸𝐸𝐸𝐹𝐹 (67) 

𝑋𝑋𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈2 = 𝑋𝑋𝑚𝑚,𝑝𝑝

𝑈𝑈𝑈𝑈   ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀\𝐸𝐸𝐸𝐸𝐹𝐹  (68) 

𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′
𝑈𝑈𝑈𝑈2 = 𝑉𝑉𝑠𝑠𝑠𝑠,𝑝𝑝,𝑝𝑝′

𝑈𝑈𝑈𝑈       ∀𝑝𝑝,𝑝𝑝′ ∈ 𝑃𝑃,𝑝𝑝 ≠ 𝑝𝑝′, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (69) 

𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠
𝑠𝑠𝑈𝑈𝑈𝑈2 = 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠𝑈𝑈𝑈𝑈   ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆  (70) 

The 𝑇𝑇𝑃𝑃2 model has very few degrees of freedom since it can only change the binaries related to the 
EAF assignment. In contrast, in 𝑇𝑇𝑃𝑃1 is the one where many important decisions are made since this 
model finds the timing and sequence of products on the most important units, especially on the EAF. 
The latter are then fixed at the lower level. 

6.4 Cuts and stopping criteria 
In the proposed approach, cuts imposed in each iteration are related to the scheduling decisions 
(𝑋𝑋𝑚𝑚,𝑝𝑝,𝑉𝑉𝑝𝑝,𝑝𝑝′,𝑠𝑠𝑠𝑠) and the energy-awareness (𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠 ). Of course the latter ones are strongly related to the 
former since it is the timing of a task start which links both. In the case when 𝐿𝐿𝐿𝐿 is not proven to have 
a desired level of optimality, we can suspect that the decisions obtained from it might not be good 
enough to later cut off the neighborhood of the obtained solution of event binary start variables from 
the solution space of 𝑇𝑇𝐿𝐿1. Therefore, if for a particular iteration the desired optimality level is not 
obtained in the 𝐿𝐿𝐿𝐿 problem, the cut for the 𝑇𝑇𝐿𝐿1 involves only removing a particular solution of 𝐿𝐿𝐿𝐿, 
which means a particular combination of the binaries 𝑋𝑋𝑚𝑚,𝑝𝑝,𝑉𝑉𝑝𝑝,𝑝𝑝′,𝑠𝑠𝑠𝑠,𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠,𝑠𝑠

𝑠𝑠  obtained in 𝐿𝐿𝐿𝐿 as there is no 
need of evaluating that solution again in new iteration in the upper level problem. The cut is achieved 
by the constraints shown in Equations (71-72), similar to those reported (Balas and Jeroslow 1972) 
and successfully used in the literature (Iyer and Grossmann 1998) for the elimination of existing 
binary solutions. In case where 𝐿𝐿𝐿𝐿 is solved to optimality we can enforce a stronger cut, removing also 



the neighborhood of the event binary start as shown in Equation (73), following the fixing in Equation 
(66) coming from the 𝑇𝑇𝐿𝐿1.  

𝐴𝐴𝐻𝐻𝑆𝑆 = ∑ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠1,𝑠𝑠
𝑠𝑠𝑈𝑈𝑈𝑈1

𝑝𝑝∈𝑃𝑃,𝑠𝑠∈𝑆𝑆 + ∑ 𝑋𝑋𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈1

𝑚𝑚∈𝑆𝑆,𝑝𝑝∈𝑃𝑃 + ∑ 𝑉𝑉𝑠𝑠𝑠𝑠4,𝑝𝑝,𝑝𝑝′
𝑈𝑈𝑈𝑈1

𝑝𝑝,𝑝𝑝′∈𝑃𝑃,𝑝𝑝≠𝑝𝑝′   (71) 

∑ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠1,𝑠𝑠
𝑠𝑠𝑈𝑈𝑈𝑈1

(𝑝𝑝,𝑠𝑠)∈𝐴𝐴𝐷𝐷1𝑟𝑟 − ∑ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠1,𝑠𝑠
𝑠𝑠𝑈𝑈𝑈𝑈1

(𝑝𝑝,𝑠𝑠)∈𝐴𝐴𝐷𝐷0𝑟𝑟 + ∑ 𝑋𝑋𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈1

(𝑚𝑚,𝑝𝑝)∈𝐴𝐴𝐷𝐷1𝑟𝑟 − ∑ 𝑋𝑋𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈1

(𝑚𝑚,𝑝𝑝)∈𝐴𝐴𝐷𝐷0𝑟𝑟 + ∑ 𝑉𝑉𝑠𝑠𝑠𝑠4,𝑝𝑝,𝑝𝑝′
𝑈𝑈𝑈𝑈1

(𝑝𝑝,𝑝𝑝′)∈𝐴𝐴𝐷𝐷1𝑟𝑟 −
∑ 𝑉𝑉𝑠𝑠𝑠𝑠4,𝑝𝑝,𝑝𝑝′

𝑈𝑈𝑈𝑈1
(𝑝𝑝,𝑝𝑝′)∈𝐴𝐴𝐷𝐷0𝑟𝑟 ≤ 𝐴𝐴𝐻𝐻𝑆𝑆 − 1   

𝐴𝐴𝑌𝑌0𝑠𝑠 = {(𝑝𝑝, 𝑠𝑠)|𝑌𝑌𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠1,𝑠𝑠
𝑠𝑠𝑈𝑈𝑈𝑈1 = 0} 𝐴𝐴𝑌𝑌1𝑠𝑠 = {(𝑝𝑝, 𝑠𝑠)|𝑌𝑌𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠1,𝑠𝑠

𝑠𝑠𝑈𝑈𝑈𝑈1 = 1}, 
𝐴𝐴𝑋𝑋0𝑠𝑠 = {(𝑚𝑚,𝑝𝑝)|𝑋𝑋𝑠𝑠,𝑚𝑚,𝑝𝑝

𝑈𝑈𝑈𝑈1 = 0} 𝐴𝐴𝑋𝑋1𝑠𝑠 = {(𝑚𝑚,𝑝𝑝)|𝑋𝑋𝑠𝑠,𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈1 = 1} , 

𝐴𝐴𝑉𝑉0𝑠𝑠 = {(𝑝𝑝,𝑝𝑝′)|𝑉𝑉𝑠𝑠𝑠𝑠4,𝑝𝑝,𝑝𝑝′
𝑈𝑈𝑈𝑈1 = 0} 𝐴𝐴𝑉𝑉1𝑠𝑠 = {(𝑝𝑝,𝑝𝑝′)|𝑉𝑉𝑠𝑠𝑠𝑠4,𝑝𝑝,𝑝𝑝′

𝑈𝑈𝑈𝑈1 = 1}, 𝑝𝑝 ≠ 𝑝𝑝′  (72) 

∑ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠1,𝑠𝑠′+𝛾𝛾
𝑠𝑠𝑈𝑈𝑈𝑈1

(𝑝𝑝,𝑠𝑠′)∈𝐴𝐴𝐷𝐷1𝑟𝑟 − ∑ 𝑌𝑌𝑝𝑝,𝑠𝑠𝑠𝑠1,𝑠𝑠′+𝛾𝛾
𝑠𝑠𝑈𝑈𝑈𝑈1

(𝑝𝑝,𝑠𝑠′)∈𝐴𝐴𝐷𝐷0𝑟𝑟 + ∑ 𝑋𝑋𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈1

(𝑚𝑚,𝑝𝑝)∈𝐴𝐴𝐷𝐷1𝑟𝑟 − ∑ 𝑋𝑋𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈1

(𝑚𝑚,𝑝𝑝)∈𝐴𝐴𝐷𝐷0𝑟𝑟 +

∑ 𝑉𝑉𝑠𝑠𝑠𝑠4,𝑝𝑝,𝑝𝑝′
𝑈𝑈𝑈𝑈1

(𝑝𝑝,𝑝𝑝′)∈𝐴𝐴𝐷𝐷1𝑟𝑟 − ∑ 𝑉𝑉𝑠𝑠𝑠𝑠4,𝑝𝑝,𝑝𝑝′
𝑈𝑈𝑈𝑈1

(𝑝𝑝,𝑝𝑝′)∈𝐴𝐴𝐷𝐷0𝑟𝑟 ≤ 𝐴𝐴𝐻𝐻𝑆𝑆 − 1  ∀ 𝛾𝛾 ∈ (−𝛼𝛼; +𝛼𝛼),𝛼𝛼 = 3  
𝐴𝐴𝑌𝑌0𝑠𝑠 = {(𝑝𝑝, 𝑠𝑠′)|𝑌𝑌𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠1,𝑠𝑠′

𝑠𝑠𝑈𝑈𝑈𝑈1 = 0} 𝐴𝐴𝑌𝑌1𝑠𝑠 = {(𝑝𝑝, 𝑠𝑠′)|𝑌𝑌𝑠𝑠,𝑝𝑝,𝑠𝑠𝑠𝑠1,𝑠𝑠′
𝑠𝑠𝑈𝑈𝑈𝑈1 = 1}, 

𝐴𝐴𝑋𝑋0𝑠𝑠 = {(𝑚𝑚,𝑝𝑝)|𝑋𝑋𝑠𝑠,𝑚𝑚,𝑝𝑝
𝑈𝑈𝑈𝑈1 = 0} 𝐴𝐴𝑋𝑋1𝑠𝑠 = {(𝑚𝑚,𝑝𝑝)|𝑋𝑋𝑠𝑠,𝑚𝑚,𝑝𝑝

𝑈𝑈𝑈𝑈1 = 1} , 
𝐴𝐴𝑉𝑉0𝑠𝑠 = {(𝑝𝑝,𝑝𝑝′)|𝑉𝑉𝑠𝑠𝑠𝑠4,𝑝𝑝,𝑝𝑝′

𝑈𝑈𝑈𝑈1 = 0} 𝐴𝐴𝑉𝑉1𝑠𝑠 = {(𝑝𝑝,𝑝𝑝′)|𝑉𝑉𝑠𝑠𝑠𝑠4,𝑝𝑝,𝑝𝑝′
𝑈𝑈𝑈𝑈1 = 1}, 𝑝𝑝 ≠ 𝑝𝑝′ (73) 

The algorithm performs the iterative steps as shown in Figure 9. The upper problem 𝑇𝑇𝐿𝐿1 is not a strict 
mathematical relaxation except of the first iteration, therefore we cannot use the objective function to 
systematically close the gap between the lower and the upper bounds, as it was the case for example in 
Iyer and Grossmann (1998). In the later iterations, 𝑇𝑇𝐿𝐿1 is not a relaxed problem of the monolithic 
model because it considers the assignment of the EAFs as fixed and as long as this fixing is not 
optimal the solution from the upper level problem is not a valid lower bound. The assignments coming 
from 𝑇𝑇𝐿𝐿2 to 𝑇𝑇𝐿𝐿1 are used to speed up the computation time of solving 𝑇𝑇𝐿𝐿1, which most of the times 
is not solvable to near-optimal solutions in short times, thus giving weak solution without the fixing. It 
is reasonable to use the fixing also because of its much lower importance on the objective function 
compared to the degrees of freedom that the 𝑇𝑇𝐿𝐿1 is handling, namely timing and sequencing. 

Therefore, the solution of 𝑇𝑇𝐿𝐿1 does not provide an increasing lower bound. At the same time the 
lower level problem 𝐿𝐿𝐿𝐿 and 𝑇𝑇𝐿𝐿2 provide upper bounds as a feasible solution of the monolithic 
problem is obtained - the latter is always at least as good as the one from 𝐿𝐿𝐿𝐿. Since the proposed 
algorithm does not guarantee to converge to the optimal solution, the most reasonable stopping 
criterion for the iterative execution is the total time spent on computations or the desired number of 
iterations, which is acceptable for industrial practice as long as the algorithms yields good quality 
solutions in reasonable computation times. 

6.5 Application of the heuristic to the industrial case study 
We tested the bi-level heuristic on the same problem instances as the monolithic model. In the 
decomposition scheme, some modifications of the input data are needed, due to the elimination of the 
AOD and LF stages. The new maximum waiting times and minimum transportation times of the upper 
level 𝑇𝑇𝐿𝐿1 that were calculated using Equations (62-63) are shown in Table 16 and Table 17. 

Table 16 Upper level 𝑇𝑇𝐿𝐿1 problem maximum waiting times 

 ST1 ST2 
P1-P20 161 90 

 



Table 17 Upper level 𝑇𝑇𝐿𝐿1 problem minimum transportation times 

  CC1 CC2 
EAF1 155 161 
EAF2 161 155 

 

The committed load curve for the upper level problem 𝑇𝑇𝐿𝐿1 is modified by considering the lower 
consumption due to omitting the AOD and LF stages as shown in Table 18. 

Table 18 Pre-agreed load curve for the upper level 𝑇𝑇𝐿𝐿1 problem 

Time 
interval 

Pre-agreed load 
curve UL1 [MWh] 

s1 170,00 
s2 144,50 
s3 167,17 
s4 147,33 
s5 151,03 
s6 177,00 
s7 157,10 
s8 151,97 
s9 177,00 
s10 153,37 
s11 152,90 
s12 177,00 
s13 151,50 
s14 168,50 
s15 163,15 
s16 94,83 
s17 12,02 
s18 14,00 
s19 8,98 
s20 7,00 
s21 1,98 
s22 0 
s23 0 
s24 0 

 

6.5.1 Numerical results of the heuristic approach 
Since the heuristic approach does not guarantee to provide systematically a better upper bound with 
each iteration the best solution of 𝑇𝑇𝐿𝐿2 among all iterations is considered to be the bi-level algorithm’s 
solution (scenarios H1-4). Therefore, 𝑇𝑇𝐿𝐿2’s solution statistics are reported in Table 19 which shows 
that the approach is always able to find better quality solutions within the given time limit compared to 
the monolithic formulation. To assess the solution obtained from the heuristic (relative gap) we 
compared the solution with a best bound (LP relaxation reported by the solver) obtained from 
optimization runs of the monolithic model with a computation limit of 1h and the heuristic solution 
being provided as the initial solution for the solver. To fairly compare the monolithic result, we also 
calculated new gaps for the solutions of the monolithic models HM1-4 previously reported in Table 12 
for 600s computation time. 



The heuristic decomposition always obtains better solutions than the monolithic solution, usually 4 – 9 
% different from best relaxation found. Only for the smallest problem instance Scenario 4 did the 
heuristic algorithm provide comparably good solutions without a significant improvement. The quality 
of these solutions is expected to be better, however it is difficult to find a best bound that would asses 
it. Very good results of the heuristic decomposition are achieved already in the first iteration. Often 
after up to 3-4 iterations the best solution is found. In Figure 11 the evolution of objective function 
values for all models in Scenario 1 is shown. It can be observed that the 𝑇𝑇𝐿𝐿1 values in each iteration 
of the algorithm are constant, even though due to the cuts each iteration finds different solution from 
all the previous ones. This is due to the fact that a slight change in the timing and assignment or 
sequence of products (while satisfying the cuts) is very likely to give the same objective value since 
there are many similar solutions in 𝑇𝑇𝐿𝐿1. However, when solving the more detailed 𝐿𝐿𝐿𝐿 model the 
values are changing in each iteration in response to the different decisions taken in 𝑇𝑇𝐿𝐿1. For the same 
reason the objective function value of 𝐿𝐿𝐿𝐿 can improve in further iterations since there are AOD and LF 
stages added as well as the new load deviation curve. Here it can be noted that the solution quality is 
not expected to improve significantly in further iterations as the bi-level solution method is based on 
the idea that the upper level should provide a very good rough schedule already in the first iteration. 
The objective function value of 𝑇𝑇𝐿𝐿2 always improves the solution from 𝐿𝐿𝐿𝐿 slightly by finding a better 
assignment on EAF units. It should be also noted that for Scenario 2-4 the objective function value of 
𝑇𝑇𝐿𝐿1 is lower than 𝐿𝐿𝐿𝐿 and 𝑇𝑇𝐿𝐿2, however this is not true for Scenario 1. The reason that higher values 
might appear in approximated 𝑇𝑇𝐿𝐿1 is larger deviation penalties paid than in detailed 𝐿𝐿𝐿𝐿 and 𝑇𝑇𝐿𝐿2. A 
general behavior of the algorithm very similar to the one shown in Figure 11 was observed for all of 
the investigated scenarios. 

 

  

Figure 11 Objective function value change in each iteration for all models of Scenario 1 



 

Table 19 Numerical results for monolithic (HM) and bi-level heuristic (H) approaches – 600s computation limit 

Model statistics Economic assessment 

Scenario 
Binary 

vars 
(UL2) 

Total 
vars 

(UL2) 

Equations 
(UL2) 

MIP 
solution 
(UL2) 

MIP 
solution 

LL 

MIP 
solution 

UL1 

Relative 
gap 

Lead 
times 
[min] 

Net 
electricity 

cost  
[€] 

Electricity 
purchase 

[€] 

Deviation 
penalties 

[€] 

Day-ahead 
market 
[MWh] 

TOU 
[MWh] 

Onsite 
generation 

[MWh] 

No. of 
iterations 

(best) 

HM1 4065 29508 102335 247838   29,10% 51990 133972 151905 61876 173,49 1421,44 952 - 
H1 1458 29508 102335 193904 194118 233637 9,89% 45847 147252 156934 806 177,484 1455,972 952 5(4) 
HM2 4065 29508 102335 200038   23,39% 53946 120989 98592 25103 1514,51 95,78 432 - 
H2 1458 29508 102335 165198 165267 161329 9,09% 45459 119451 103985 288 1519,967 229,183 352 5(3) 
HM3 3229 23428 80528 204173   21,97% 36152 72846 140130 95175 142,48 1318,80 952 - 
H3 1276 23428 80528 174796 177664 165428 9,80% 31248 95189 127981 48358 77,371 1244,879 952 3(3) 
HM4 1771 13348 45509 194565   4,00% 24427 83226 103080 86912 0 1000 712 - 
H4 724 13348 45509 194607 195586 186603 3,79% 22450 79122 104481 93035 0 1029,895 712 5(4) 

 



7. Conclusions and remarks 
In this paper we have proposed a new strategy for embedding energy-awareness into a continuous-
time scheduling approach which optimizes the production schedules of energy-intensive plants 
(Section 3) under consideration of to time-sensitive prices of electricity and load commitment 
penalties (Section 4). The proposed approach was compared to a model available in the literature. The 
numerical experiments (Section 5.3) show that the use of the new event binaries is more efficient. 
However, both monolithic models cannot be solved within the available computation times for large-
scale industrial problem instances. Therefore, we developed a bi-level decomposition-based heuristic 
(Section 6) to obtain good quality results in reasonable computation times.  

The proposed solution scheme benefits from the exact timing of the tasks by the continuous-time 
scheduling representation. The model is able to capture complex price structures and to optimally 
determine the exact amount of electricity to be purchased and sold. The flexible part of the purchase 
optimization can be further extended by more complex dependencies between the contracts. The 
model might help assessing different price levels of negotiated contracts, as well as reducing the risk 
associated with volatile electricity markets. An important restriction is that the plant needs to make 
commitments on the amounts to be bought and sold on the day-ahead markets. Even more important 
factors are the disturbances and the technical capability to implement the optimized schedule. 

To address further the limitations of the model concerning computational performance for large 
instances, a scheduling horizon of several days could be investigated with a rolling horizon approach. 
Decisions for longer time windows should be done with higher level short- and long-term planning 
solutions taking into account different factors than those considered by the scheduling level. Further 
work could also deal with improvements of the developed algorithm towards a more rigorous scheme. 
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Appendix A 
 

The literature based extension of energy-awareness for continuous-time scheduling models uses six 
different cases of how a task can contribute to electricity consumption within a considered time slot: 

1. A task is processed entirely within the time slot. 

Processing within a time slot means that stage’s finishing time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓  occurs before the time slot’s 

finishing time 𝜏𝜏𝑠𝑠 and stage’s starting time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠  occurs later than the time slot’s starting time 𝜏𝜏𝑠𝑠−1. For 

this case the binary variable 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 will be true, thus equations using Big-M formulation are written as 
in Eq. A.1- A.2. The duration of processing within the slot will in this case be equal to the processing 
time of the task itself.  

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 ≤ 𝜏𝜏𝑠𝑠 + (𝑀𝑀− 𝜏𝜏𝑠𝑠)�1 − 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠�  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.1) 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 ≥ 𝜏𝜏𝑠𝑠−1 − 𝜏𝜏𝑠𝑠−1(1 − 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠)  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.2) 

2. A task starts before and finishes within the time slot. 

Second case occurs if stage’s start time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠  occurs before the lower boundary of the considered slot 

(Eq. A.5), however the stage’s finish time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓  is placed within the slot (Eq. A.3- A.4). For this case 

the binary variable 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 will be true. Processing time contribution of the task within the slot is equal 

to the tasks’ finishing time 𝑡𝑡𝑝𝑝,𝑚𝑚
𝑓𝑓  minus the lower boundary 𝜏𝜏𝑠𝑠−1 of the considered time slot.  

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 ≥ 𝜏𝜏𝑠𝑠−1 − 𝜏𝜏𝑠𝑠−1�1 − 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠�  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.3) 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 ≤ 𝜏𝜏𝑠𝑠 + (𝑀𝑀− 𝜏𝜏𝑠𝑠)�1 − 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠�  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.4) 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 ≤ 𝜏𝜏𝑠𝑠−1 + (𝑀𝑀− 𝜏𝜏𝑠𝑠−1)(1− 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠)  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.5) 

3. A task starts within and finishes after the time slot. 

Similarly to the second case, the task’s start time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠  occurs within the considered time interval (Eq. 

A.7- A.8) and at the same time finishing time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓  is placed after the upper boundary of the slot (Eq. 

A.6). For this case the binary variable 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 will be true. The time a task spent within the slot will 
equal to the upper boundary 𝜏𝜏𝑠𝑠 of the slot minus the start time 𝑡𝑡𝑝𝑝,𝑚𝑚

𝑠𝑠  of the task.  

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 ≥ 𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠�1 − 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠�  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.6) 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 ≥ 𝜏𝜏𝑠𝑠−1 − 𝜏𝜏𝑠𝑠−1(1 − 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠)  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.7) 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 ≤ 𝜏𝜏𝑠𝑠 + (𝑀𝑀− 𝜏𝜏𝑠𝑠)(1 − 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠)  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.8) 

4. A task over-spans the time slot. 

When duration of the task is longer than the time interval itself there might be a case when it over-
spans the interval. This occurs only when the start time of the task 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑠𝑠  is placed before the lower 

boundary of the time slot (Eq. A.10) and at the same time the finish time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓  of task occurs after the 



upper bound of the slot (Eq. A.9). For this case the binary variable 𝐴𝐴𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 will be true. Then, the 
amount of time the task contributed to the time slot will be equal to the length of the time slot itself 
(𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1).  

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 ≥ 𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠�1 −𝐴𝐴𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 − 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠�  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.9) 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 ≤ 𝜏𝜏𝑠𝑠−1 + (𝑀𝑀− 𝜏𝜏𝑠𝑠−1)(1− 𝐴𝐴𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 − 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠)  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.10) 

5. A task starts and finishes before the considered time slot. 

Here both the starting time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠   and finishing time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑓𝑓  takes place before the starting of the 
considered time interval 𝜏𝜏𝑠𝑠−1. For this case the binary variable 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 will be true when finishing time 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓  occurs before the considered time slot, as in Eq. (A.11). 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 ≤ 𝜏𝜏𝑠𝑠−1 + (𝑀𝑀− 𝜏𝜏𝑠𝑠−1)(1− 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠)  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.11) 

6. A task starts and finishes after the considered time slot. 

Here both the starting time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠   and finishing time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑓𝑓  takes place after the finishing of the 
considered time interval 𝜏𝜏𝑠𝑠. For this case the binary variable 𝐹𝐹𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 will be true when starting time 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑠𝑠  
occurs later than upper bound of the considered time slot, as in Eq. (A.12). 

𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 ≥ 𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠(1 − 𝐹𝐹𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠)  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.12) 

The big-M value is set to be the end of the scheduling horizon. The formulation is improved compared 
to Nolde and Morari (2010) by introducing second binary in the Big-M equations of similar boundary 
conditions as in Eq. A.4, A.7, A.9, A.10. To complete the formulation, an important constraint 
ensuring that there is only one of the six binaries true for a task has to be enforced, as in Eq. (A.13). 

𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 + 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 + 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 + 𝐴𝐴𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 + 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 + 𝐹𝐹𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 = 1  ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆  (A.13) 

With the help of the binaries being true for respective cases of task-time slot relation, it is possible to 
capture the amount of time a given task was processed in a particular time slot. The task’s 
consumption within the slot can be accounted for by multiplying time spent with a parameter of 
specific electricity consumption of the task. Therefore, with summation of all tasks the total electricity 
consumption in the time slot is captured with the Equation A.14. The equation is divided by 60 to 
convert the unit from 𝑀𝑀𝑀𝑀𝑚𝑚𝑖𝑖𝐺𝐺 into 𝑀𝑀𝑀𝑀ℎ. In the equation two problems arise. First, there are two 
nonlinearities from the product of binary and continuous variable. Second, the equation do not account 
for the fact that one of the machines in the stage does not process a task.  

𝑞𝑞𝑠𝑠 = ∑ ℎ𝑝𝑝,𝑚𝑚(𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 ∙ 𝜏𝜏𝑝𝑝,𝑚𝑚𝑝𝑝,𝑠𝑠𝑠𝑠,𝑚𝑚∈𝑆𝑆𝑆𝑆𝑠𝑠𝑡𝑡,𝑚𝑚 + 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠�𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 − 𝜏𝜏𝑠𝑠−1� +  𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠�𝜏𝜏𝑠𝑠 − 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑠𝑠 �+ 𝐴𝐴𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠(𝜏𝜏𝑠𝑠 −

𝜏𝜏𝑠𝑠−1)) 1
60

  ∀𝑠𝑠 ∈ 𝑆𝑆  (A.14) 

In order to deal with the latter problem, a set of auxiliary variables can be designed for which those 
tasks not processing a product will have the time contribution to the slot put to zero. That means, 
whenever a product is not assigned to a machine the binaries of respective six cases shall be put to 
zero. For the first case with 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 binary, it can only be true when assignment binary 𝑋𝑋𝑚𝑚,𝑝𝑝 is true, as 
in Eq. A.15- A.16. Similarly for the 𝐴𝐴𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 binary as in Equation A.17- A.18. 

𝐵𝐵𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≥ 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 − (1 − 𝑋𝑋𝑚𝑚,𝑝𝑝)  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (A.15) 



𝐵𝐵𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 + 1 − 𝑋𝑋𝑚𝑚,𝑝𝑝)  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (A.16) 

𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≥ 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 − (1 − 𝑋𝑋𝑚𝑚,𝑝𝑝)  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (A.17) 

𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ 𝐸𝐸𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 + 1 − 𝑋𝑋𝑚𝑚,𝑝𝑝  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (A.18) 

For the other cases of 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 and 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 by designing the auxiliary variable we also can deal with the 
nonlinearities, by applying an exact linearization method. The auxiliary variables will have the value 
of the time contribution of the respective binary case only both the case binary is true and the 
assignment is true as well. The constraints for the two cases are shown in Equations A.19- A.26. 

𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≥ 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 − 𝜏𝜏𝑠𝑠−1 − (𝑀𝑀− 𝜏𝜏𝑠𝑠−1)(2− 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 − 𝑋𝑋𝑚𝑚,𝑝𝑝)  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈

𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (A.19) 

𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑓𝑓 − 𝜏𝜏𝑠𝑠−1 + 𝜏𝜏𝑠𝑠−1(2− 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 − 𝑋𝑋𝑚𝑚,𝑝𝑝)  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀 

 (A.20) 

𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1)(1 − 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 + 𝑋𝑋𝑝𝑝,𝑚𝑚)  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀 
 (A.21) 

𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1) ∙ 𝐵𝐵𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (A.22) 

𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≥ 𝜏𝜏𝑠𝑠 −  𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 − 𝜏𝜏𝑠𝑠(2 − 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 − 𝑋𝑋𝑚𝑚,𝑝𝑝)  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀 

 (A.23) 

𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ 𝜏𝜏𝑠𝑠 −  𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 + (𝑀𝑀 − 𝜏𝜏𝑠𝑠)(2 − 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 − 𝑋𝑋𝑚𝑚,𝑝𝑝)  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀 

 (A.24) 

𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1)(1− 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠 + 𝑋𝑋𝑚𝑚,𝑝𝑝)  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀 
 (A.25) 

𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 ≤ (𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1) ∙ 𝐶𝐶𝑝𝑝,𝑠𝑠,𝑠𝑠𝑠𝑠  ∀𝑝𝑝 ∈ 𝑃𝑃,𝑚𝑚 ∈ 𝑀𝑀, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆, 𝑠𝑠 ∈ 𝑆𝑆, {𝑠𝑠𝑡𝑡,𝑚𝑚} ∈ 𝑆𝑆𝑀𝑀  (A.26) 

With the help of the auxiliary variables the final constraint for electricity consumption accounting can 
be changed from Equation A.14 to the one shown in Equation A.27.   

𝑞𝑞𝑠𝑠 = ∑ ℎ𝑝𝑝,𝑚𝑚(𝐵𝐵𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠𝜏𝜏𝑝𝑝,𝑚𝑚𝑝𝑝∈𝑃𝑃,𝑠𝑠𝑠𝑠∈𝑆𝑆𝑆𝑆,𝑚𝑚∈𝑆𝑆𝑆𝑆𝑠𝑠𝑡𝑡,𝑚𝑚 + 𝑏𝑏𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 +  𝑐𝑐𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠 + 𝑁𝑁𝑝𝑝,𝑚𝑚,𝑠𝑠𝑠𝑠,𝑠𝑠(𝜏𝜏𝑠𝑠 − 𝜏𝜏𝑠𝑠−1)) 1
60

  ∀𝑠𝑠 ∈
𝑆𝑆  (A.27) 

  



Appendix B 
 

Table B.1. Calculation of bounds for task start time 

The lower and upper bound of 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠  

initialize 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠,𝑚𝑚𝑖𝑖𝑚𝑚 = 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 = 0 
for 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡4, ℎ𝑔𝑔 ∈ 𝐻𝐻𝐻𝐻, 𝑝𝑝 ∈ 𝐹𝐹(𝐻𝐻𝐻𝐻,𝑃𝑃) do 

   set 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠,𝑚𝑚𝑖𝑖𝑚𝑚 = �

min (𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 )

𝑠𝑠. 𝑡𝑡.
𝑆𝑆𝑐𝑐ℎ𝑁𝑁𝑁𝑁𝑃𝑃𝐵𝐵𝑁𝑁𝑃𝑃 𝑐𝑐𝑁𝑁𝐺𝐺𝑠𝑠𝑡𝑡𝑃𝑃𝐵𝐵𝑖𝑖𝐺𝐺𝑡𝑡𝑠𝑠

 

   set 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 = �

max (𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠 )

𝑠𝑠. 𝑡𝑡.
𝑆𝑆𝑐𝑐ℎ𝑁𝑁𝑁𝑁𝑃𝑃𝐵𝐵𝑁𝑁𝑃𝑃 𝑐𝑐𝑁𝑁𝐺𝐺𝑠𝑠𝑡𝑡𝑃𝑃𝐵𝐵𝑖𝑖𝐺𝐺𝑡𝑡𝑠𝑠

 

end for 
 
Find the bounds of the other products at the last stage 
for 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡4, ℎ𝑔𝑔 ∈ 𝐻𝐻𝐻𝐻, 𝑝𝑝 ∈ 𝑃𝑃/𝐹𝐹(𝐻𝐻𝐻𝐻,𝑃𝑃) do  
   for 𝑝𝑝 ∈ 𝐹𝐹(𝐻𝐻𝐻𝐻,𝑃𝑃) + 1, … , 𝑝𝑝 ∈ 𝐿𝐿(𝐻𝐻𝐻𝐻,𝑃𝑃) do 
   𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑠𝑠,𝑚𝑚𝑖𝑖𝑚𝑚=𝑡𝑡𝑝𝑝−1,𝑠𝑠𝑠𝑠
𝑠𝑠,𝑚𝑚𝑖𝑖𝑚𝑚 + min𝑚𝑚∈𝑆𝑆𝑆𝑆(𝑠𝑠𝑠𝑠,𝑚𝑚) 𝜃𝜃𝑝𝑝−1,𝑚𝑚 

   𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚=𝑡𝑡𝑝𝑝−1,𝑠𝑠𝑠𝑠

𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 + max𝑚𝑚∈𝑆𝑆𝑆𝑆(𝑠𝑠𝑠𝑠,𝑚𝑚) 𝜃𝜃𝑝𝑝−1,𝑚𝑚 
   end for 
end for 
 
Set the upper bound in the other stages as equal to the upper bound at the last stage  
𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠4

𝑠𝑠,𝑚𝑚𝑖𝑖𝑚𝑚 ∀𝑝𝑝 ∈ 𝑃𝑃, 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆 
 
Find the upper bound in stages other than last stage 
for 𝑠𝑠𝑡𝑡 ∈ 𝑠𝑠𝑡𝑡4, … , 𝑠𝑠𝑡𝑡2,𝑃𝑃 ∈ 𝑃𝑃 do 
   for 𝑠𝑠𝑡𝑡′ = 𝑠𝑠𝑡𝑡 − 1 do 
   𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠′

𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚=𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠
𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 − min𝑚𝑚∈𝑆𝑆𝑆𝑆�𝑠𝑠𝑠𝑠′,𝑚𝑚� 𝜏𝜏𝑝𝑝,𝑚𝑚 −min𝑚𝑚∈𝑆𝑆𝑆𝑆(𝑠𝑠𝑠𝑠,𝑚𝑚),𝑚𝑚′∈𝑆𝑆𝑆𝑆(𝑠𝑠𝑠𝑠′,𝑚𝑚′)  𝑡𝑡𝑚𝑚,𝑚𝑚′

𝑚𝑚𝑖𝑖𝑚𝑚 , 
   end for 
end for 
 
Find the lower bound in stages 1-3 
for 𝑠𝑠𝑡𝑡 ∈ 𝑠𝑠𝑡𝑡1, … , 𝑠𝑠𝑡𝑡3,𝑃𝑃 ∈ 𝑃𝑃 do 
   for 𝑠𝑠𝑡𝑡′ = 𝑠𝑠𝑡𝑡 + 1 do 
𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠′
𝑠𝑠,𝑚𝑚𝑖𝑖𝑚𝑚=𝑡𝑡𝑝𝑝,𝑠𝑠𝑠𝑠

𝑠𝑠,𝑚𝑚𝑖𝑖𝑚𝑚 + min𝑚𝑚∈𝑆𝑆𝑆𝑆�𝑠𝑠𝑠𝑠′,𝑚𝑚� 𝜏𝜏𝑝𝑝,𝑚𝑚 + min𝑚𝑚∈𝑆𝑆𝑆𝑆(𝑠𝑠𝑠𝑠,𝑚𝑚),𝑚𝑚′∈𝑆𝑆𝑆𝑆(𝑠𝑠𝑠𝑠′,𝑚𝑚′)  𝑡𝑡𝑚𝑚,𝑚𝑚′
𝑚𝑚𝑖𝑖𝑚𝑚 , 

   end for 
end for 
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