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On Robustness Properties in Empirical Centroid Fictitious Play

BRIAN SWENSON†∗, SOUMMYA KAR† AND JOÃO XAVIER⋆

Abstract

Empirical Centroid Fictitious Play (ECFP) is a generalization of the well-known Fictitious Play (FP) algorithm designed for

implementation in large-scale games. In ECFP, the set of players is subdivided into equivalence classes with players inthe same

class possessing similar properties. Players choose a next-stage action by tracking and responding to aggregate statistics related

to each equivalence class. This setup alleviates the difficult task of tracking and responding to the statistical behavior of every

individual player, as is the case in traditional FP. Aside from ECFP, many useful modifications have been proposed to classical FP,

e.g., rules allowing for network-based implementation, increased computational efficiency, and stronger forms of learning. Such

modifications tend to be of great practical value; however, their effectiveness relies heavily on two fundamental properties of FP:

robustness to alterations in the empirical distribution step size process, and robustness to best-response perturbations. The main

contribution of the paper is to show that similar robustnessproperties also hold for the ECFP algorithm. This result serves as a

first step in enabling practical modifications to ECFP, similar to those already developed for FP.

I. I NTRODUCTION

The field of learning in games is concerned with the study of systems of interacting agents, and in particular, the question

of how simple behavior rules applied at the level of individual agents can lead to desirable global behavior. FictitiousPlay

(FP) [1] is one of the best studied game-theoretic learning algorithms. While attractive for its intuitive simplicity and proven

convergence results, certain practical issues make FP prohibitively difficult to implement in games with a large numberof

players [2]–[5].

Empirical Centroid FP (ECFP) [4], [5] is a recently proposedgeneralization of FP designed for implementation in large

games. In ECFP, the set of players is subdivided into sets of “equivalence classes” of players sharing similar properties. In this

formulation, players only track and respond to an aggregatestatistic (the empirical centroid) for each class of players, rather

than tracking and responding to statistical properties of every individual player, as in classical FP. ECFP has been shown to

learn elements of the set of symmetric Nash equilibria for the class of multi-player games known as potential games.

The main focus of this paper will be to study ECFP and show thatcertain desirable properties possessed by classical FP

also hold for the more general ECFP. In particular, the work [6] studied classical FP and proved that the fundamental learning

properties of FP can be retained in the following scenarios:

(i) The step size sequence of the empirical distribution process takes on a form other than{1/t}t≥1.

(ii) Players are permitted to make suboptimal choices when choosing a next-stage action so long as the degree of suboptimality

decays asymptotically to zero with time.

We say a FP-type algorithm isstep-size robustif it retains its fundamental learning properties in the first scenario, and we

say an algorithm isbest-response robustif it retains its fundamental learning properties in the second scenario.

The work was partially supported by the FCT project FCT [UID/EEA/50009/2013] through the Carnegie Mellon/Portugal Program managed by ICTI from
FCT and by FCT Grant CMU-PT/SIA/0026/2009, and was partially supported by NSF grant ECCS-1306128.
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⋆Institute for Systems and Robotics (ISR), Instituto Superior Tecnico (IST), Technical University of Lisbon, Portugal(jxavier@isr.ist.utl.pt).

http://arxiv.org/abs/1504.00391v1


2

The notion of step-size robustness generalizes the conceptof the empirical distribution of classical FP. A player’s empirical

distribution in classical FP is taken to be the time-averaged histogram of the player’s action history; implicitly, this has an

incremental step size of1/t. Scenario (i) allows players to choose alternate step-sizesequences. Of particular interest is that

it allows for construction of an empirical distribution that places more emphasis on recent observations while discounting

observations from the distant past.

The notion of best-response robustness generalizes FP by relaxing the traditional assumption that players are always perfect

optimizers. In particular, in classical FP, it is assumed that players are capable of choosing their next-stage action as a (precise)

best response to the empirical action history of opposing players. In practice, this is a stringent assumption, requiring that

players have perfect knowledge of the empirical distribution of all opposing players at all times, and are capable of precisely

solving a (non-trivial) optimization problem each iteration of the algorithm. By relaxing this implicit assumption slightly (as

in scenario (ii)), one is able to consider many useful extensions of FP of both practical and theoretical value.

In [6], the best-response robustness of FP was used to show convergence to the set of Nash equilibria of stochastic FP

with vanishing smoothing, and to prove convergence of an FP-inspired actor-critic learning algorithm. In [3], best-response

robustness of FP was used to show convergence of sampled FP—avariant of FP in which computational complexity is

mitigated by approximating the expected utility using a Monte-Carlo method—and used again in [7] to ensure convergenceof

an even more computationally efficient version of sampled FP. In [8], the best-response robustness of FP is used to construct a

variant of FP achieving a strong form of learning in which theplayer’s period-by-period strategies are guaranteed to converge

to equilibrium (rather than only convergence in terms of theempirical frequencies, as is typical in FP). The best-response

robustness of FP is also useful in that it allows for practical network-based implementations of FP; e.g., [5].

The main contribution of this paper is to demonstrate that ECFP is both step-size robust and best-response robust; i.e.,ECFP

retains its fundamental learning properties under scenarios (i) and (ii) above. This result is a necessary first step in order to

develop practical modifications for ECFP similar in spirit to those already developed for FP; e.g., improved computational

efficiency, network-based implementation rules, and strongly convergent variants of the algorithm, as mentioned above.1 We

prove the result following a similar line of reasoning to [6], [9]; we first study a continuous-time version of ECFP, and then

use results from the theory of stochastic approximations toprove our main result regarding convergence of discrete-time ECFP

based on properties of the continuous-time counterpart.

The remainder of the paper is organized as follows. Section II sets up the notation to be used in the subsequent development

and reviews the classical FP algorithm. Section III presents discrete-time ECFP and states the main result. Section IV reviews

relevant results in differential inclusions and stochastic approximations to be used in the proof of the main result. Section

V presents continuous-time ECFP. Section VI proves convergence of discrete-time ECFP using properties of continuous-time

ECFP. Section VII provides concluding remarks.

II. PRELIMINARIES

A. Game Theoretic Preliminaries

A review of game-theoretic learning algorithms—includingclassical FP—can be found in [10], [11].

1The results of this paper are directly applied in [8] to provea strong learning result for a variant of ECFP. We also note that one possible network-
based implementation of ECFP has been presented in [5]. Thisimplementation—which considers a fixed communication graph topologies and synchronous
communication rules—relies on a weak form of best-responserobustness (see [5],A.3). In order to consider ECFP in more general distributed scenarios (e.g.,
random communication graph topology and asynchronous communication rules) it is necessary to have the full robustnessproperty derived in this paper.
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A normal form game is given by the tripleΓ = (N, (Yi)i∈N , (ui(·))i∈N ), whereN = {1, . . . , n} represents the set of

players,Yi—a finite set of cardinalitymi—denotes the action space of playeri andui(·) :
∏n

i=1 Yi → R represents the utility

function of playeri.

Throughout this paper we assume:

A. 1. All players use identical utility functions.

Under this assumption we drop the subscripti and denote byu(·) the utility function used by all players. The set of mixed

strategies for playeri is given by∆i = {p ∈ R
mi :

∑mi

k=1 p(k) = 1, p(k) ≥ 0 ∀k = 1, . . . ,mi}, themi-simplex. A mixed

strategypi ∈ ∆i may be thought of as a probability distribution from which player i samples to choose an action. The set of

joint mixed strategies is given by∆n =
∏n

i=1 ∆i. A joint mixed strategy is represented by then-tuple (p1, . . . , pn), where

pi ∈ ∆i represents the marginal strategy of playeri, and it is implicity assumed that players’ strategies are independent.

The mixed utility function is given byU(·) : ∆n → R, where,

U(p1, . . . , pn) :=
∑

y∈Y

ui(y)p1(y1) . . . pn(yn).

Note thatU(·) may be interpreted as the expected value ofu(y) given that the players’ mixed strategies are statistically

independent. For convenience, the notationU(p) will often be written asU(pi, p−i), wherepi ∈ ∆i is the mixed strategy for

player i, andp−i indicates the joint mixed strategy for all players other than i.

For ǫ ≥ 0, i ∈ N andp−i ∈ ∆−i, define theǫ-best response set for playeri as

BRǫ
i(p−i) := {pi ∈ ∆i : U(pi, p−i) ≥ max

αi∈∆i

U(αi, p−i)− ǫ}

and forp ∈ ∆ define

BRǫ(p) := (BRǫ
1(p−1), . . . , BRǫ

n(p−n)).

The set of Nash equilibria is given by

NE := {p ∈ ∆n : U(pi, p−i) ≥ U(p′i, p−i), ∀p
′
i ∈ ∆i, ∀i}.

As a matter of convention, all equalities and inequalities involving random objects are to be interpreted almost surely(a.s.)

with respect to the underlying probability measure, unlessotherwise stated.

B. Repeated Play

The learning algorithms considered in this paper assume thefollowing format of repeated play.

Let a normal form gameΓ be fixed. Let players repeatedly face off in the gameΓ, and fort ∈ {1, 2, . . .}, let ai(t) ∈ ∆i

denote the action played by playeri in roundt.2 Let then-tuple a(t) = (a1(t), . . . , an(t)) denote the joint action at timet.

Denote byqi(t) ∈ ∆i, the empirical distribution3 of player i. The precise manner in which the empirical distribution is

formed will depend on the algorithm at hand. In general,qi(t) is formed as a function of the action history{ai(s)}ts=1 and

2An action is usually assumed to be pure strategy, or a vertex of the simplex∆i. In this work, an action is permitted to be an arbitrary mixedstrategy (cf.
[6], for the case of FP). Since the results hold for any actions of this form, they also hold for the typical case where actions are restricted to be pure strategies.

3The termempirical distribution is often used to refer explicitly to the time-averaged histogram of the action choices of some playeri; i.e., qi(t) =
1
t

∑
t

s=1 ai(s). However, using a broader definition as considered here, allows for interesting algorithmic generalizations; e.g., learning processes that place
greater emphasis on observations of more recent actions. See [6] for further discussion.
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serves as a compact representation of the action history of player i up to and including the roundt. The joint empirical

distribution is given byq(t) := (q1(t), . . . , qn(t)).

C. Classical Fictitious Play

FP may be intuitively described as follows. Players repeatedly face off in a stage gameΓ. In any given stage of the game,

players choose a next-stage action by assuming (perhaps incorrectly) that opponents are using stationary and independent

strategies. In particular, let the empirical distributionbe given by the time-averaged histogram

qi(t) :=
1

t

t
∑

s=1

ai(s); (1)

in FP, players use the empirical distribution of each opponent’s past play as a prediction of the opponent’s behavior in the

upcoming round and choose a next-round strategy that is optimal (i.e., a best response) given this prediction.

A sequence of actions{a(t)}t≥1 such that4

ai(t+ 1) ∈ BRi(q−i(t)), ∀i,

for all t ≥ 1, is referred to as afictitious play process. It has been shown that FP achieves Nash equilibrium learning in the

sense thatd(q(t), NE) → 0 as t → ∞ for select classes of games including two-player zero-sum games [12], two-player

two-move games [13], and multi-player potential games [14], [15].

D. Empirical Centroid FP Setup

A presentation of ECFP in it’s most elementary form (i.e., all players are grouped into a single equivalence class) is given

in [5]; the elementary formulation is less notationally involved, and can serve as a useful means of conveying the basic ideas

of the approach in a straightforward manner. In this paper wefocus on the general formulation of the ECFP algorithm.

In ECFP, players are grouped into sets of equivalence classes, or “permutation invariant” classes. Such grouping allows

players to analyze collective behavior by tracking only thestatistics of each equivalence class, rather than trackingthe statistics

of every individual player.

Let m ≤ n, denote the number of classes, letI = {1, . . . ,m} be an index set, and letC = {C1, . . . , Cm} be a collection

of subsets ofN ; i.e. Ck ⊆ N, ∀k ∈ I. A collectionC is said to be apermutation-invariant partitionof N if,

(i) Ck ∩ Cℓ = ∅, for k, ℓ ∈ I, k 6= ℓ,

(ii)
⋃

k∈I

Ck = N ,

(iii) for k ∈ I, i, j ∈ Ck, Yi = Yj ,

(iv) for k ∈ I, i, j ∈ Ck, there holds for any strategy profiley = (yi, yj , y−(i,j)) ∈ Y ,

u(yi, yj , y−(i,j)) = u([yj ]i, [yi]j , y−(i,j)),

where the notation([yi]j , [yj ]i, y−(i,j)) indicates a permutation of (only) the strategies of playersi andj in the strategy profile

y = (yi, yj , y−(i,j)).

For a collectionC, defineφ(·) : N → I to be the unique mapping such thatφ(i) = k if and only if i ∈ Ck.

4In all learning algorithms discussed in this paper, the initial actionai(1) may be chosen arbitrarily for alli.
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For k ∈ I, andp ∈ ∆n, and permutation-invariant partitionC, define

p̄k := |Ck|
−1
∑

i∈Ck

pi (2)

to be thek-th centroidwith respect toC, where|Ck| denotes the cardinality of the setCk. Likewise forp ∈ ∆n define

p̄ := (p̄1, p̄2, . . . , p̄n), (3)

wherep̄i := p̄φ(i), to be thecentroid distributionwith respect toC.

Given a permutation-invariant partitionC, let the set of symmetric Nash equilibria (relative toC) be given by,

SNE := {p ∈ NE : pi = pj ∀i, j ∈ Ck, ∀ k ∈ I},

and let the set of mean-centric equilibria (relative toC) be given by,

MCE := {p ∈ ∆n : U(pi, p̄−i) ≥ U(p′i, p̄−i), ∀p
′
i ∈ ∆i, ∀i}.

The set of MCE is neither a strict superset nor subset of the NE—rather, it is a set of natural equilibrium points tailored to

the ECFP dynamics [16]. The set of SNE however, is contained in the set of MCE.

The sets of SNE and MCE relative to a partitionC can be shown to be non-empty under A.1 using fixed point arguments

similar to [16], [17].

III. E MPIRICAL CENTROID FICTITIOUS PLAY

Let the gameΓ be played repeatedly as in Section II-B. Let the empirical distribution for playeri be formed recursively

with qi(1) = ai(1) and for t ≥ 1,

qi(t+ 1) = qi(t) + γt (ai(t+ 1)− qi(t)) , (4)

where we assume:

A. 2. The sequence{γt}t≥1 in (4) satisfiesγt ≥ 0, ∀t,
∑

t≥1 γt = ∞, and limt→∞ γt = 0.

Let the joint empirical distribution be given byq(t) := (q1(t), . . . , qn(t)).

Typical FP-type learning algorithms5 consider the empirical distribution to be a time-averaged histogram that places equal

weight on all rounds; this corresponds to a step size of formγt = 1
t+1 , ∀t (e.g., (1)). If a FP-type algorithm retains its

fundamental learning properties under the more general assumption A.2, then we say the algorithm isstep-size robust.

In ECFP [5], players do not track the empirical distributionof each individual player. Instead, they track only the centroid

q̄k(t) for eachk ∈ I (see (2)). Intuitively speaking, in ECFP each playeri assumes (perhaps incorrectly) that for each class

Ck ∈ C the centroid̄qk(t) accurately represents the mixed strategy for all playersj ∈ Ck. Each playeri chooses her next-stage

action as a myopic best response given this assumption.

Formally, the joint action at time(t+ 1) is chosen according to the rule6

a(t+ 1) ∈ BRǫt(q̄(t)), (5)

5We use the term FP-type learning algorithm to refer to an algorithm in which players choose their next-stage action as a myopic best response to some
forecast rule based on the current time-averaged empiricaldistribution of play; cf. the learning framework considered in [18].

6The actiona(1) may be chosen arbitrarily.
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whereq̄(t) is the centroid distribution associated withq(t) (see (3)), and where it is assumed that,

A. 3. The sequence{ǫt}t≥1 in (5) satisfieslimt→∞ ǫt = 0.

Typical FP-type learning algorithms assume that players are always perfect optimizers; i.e.,ǫt = 0, ∀t. If a FP-type learning

algorithm retains its fundamental learning properties under A.3, we say the algorithm isbest-response robust. The work [6]

first considered generalizations to FP of the forms indicated in A.2–A.3 and showed that classical FP is both step-size robust

and best-response robust. In this work we show that ECFP is also robust in both these senses.

Combining (4) with (5), gives the following difference inclusion governing the behavior of{q(t)}t≥1,

q(t+ 1) ∈ (1− γt) q(t) + γtBRǫt(q̄(t)). (6)

Likewise, Lemma 5 (see appendix) shows that the sequence of centroid distributions{q̄(t)}t≥1 follows the difference inclusion,

q̄(t+ 1) ∈ (1− γt) q̄(t) + γtBRǫt(q̄(t)). (7)

We refer to the sequence{q(t), q̄(t)}t≥1 as a discrete-time ECFP (DT-ECFP) process with respect to(Γ, C).

The following theorem is the main result of the paper—it states that, ifΓ is an identical interests game, then under the

relatively weak assumptions A.2–A.3, players engaged in ECFP asymptotically learn elements of sets of SNE and MCE.

Learning of MCE occurs in the sense thatd(q(t),MCE) → 0—this form of learning corresponds to the typical notion of

setwiseconvergence in empirical distributiontypical in classical FP (see Section II-C and [19], [11]). Learning of SNE occurs

in the sense thatd(q̄(t), SNE) → 0. This notion of learning, while similar in spirit to the typical notion of convergence in

empirical distribution, differs in that it is the empiricalcentroid distribution (3) that is converging to the set of SNE, rather

than the empirical distribution itself.

Theorem 1. Assume A.1–A.3 hold. LetC be a permutation-invariant partition of the player setN . Let {q(t), q̄(t)}t≥1 be an

ECFP process with respect to(Γ, C). Then,

(i) players learn a subset of the MCE in the sense thatlimt→∞ d(q(t),MCE) = 0,

(ii) players learn a subset of the SNE in the sense thatlimt→∞ d(q̄(t), SNE) = 0.

We note that ifǫt = 0 andγt =
1

t+1 , then convergence of ECFP in the sense of Theorem 1 was established in our prior

work [5].

In order to prove Theorem 1 in its full generality we follow the approach of [6], [9]—we first study the set of continuous-time

differential inclusions associated with ECFP, and then derive Theorem 1 from the continuous-time results via tools from the

theory of stochastic approximations.

In particular, Section IV discusses the notion of a perturbed solution of a differential inclusion, introduces the notion of a

chain transitive set, and presents key results that allow one to relate the limit sets of perturbed solutions to internally chain

transitive sets of the associated differential inclusion.Section V then presents continuous-time ECFP (CT-ECFP) andshows

convergence of CT-ECFP to the sets of SNE and MCE using Lyapunov arguments.

Section VI presents Lemmas 1 and 2 that relate the limit sets of DT-ECFP to the limit sets of CT-ECFP. Lemma 1 shows

that the limit sets of DT-ECFP are contained in the internally chain transitive sets of the corresponding CT-ECFP process.

This is accomplished by first showing that DT-ECFP processesmay be considered to be perturbed solutions of the associated

CT-ECFP differential inclusion, and then invoking Theorem2 to clinch the result. Lemma 2 then shows that the internally
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chain transitive sets of CT-ECFP are contained in the sets ofMCE and SNE. This is accomplished by invoking Proposition 1

together with the Lyapunov arguments derived for CT-ECFP processes in Section V.

The proof of Theorem 1 then follows by combining Lemmas 1 and 2, as noted in Section VI-A.

IV. CHAIN TRANSIENT SETS

We study the limiting behavior of DT-ECFP by first studying the behavior of a continuous-time version of ECFP, and then

relating the limit sets of DT-ECFP to the limit sets of its continuous-time counterpart. In particular, we will relate the limit sets

of DT-ECFP to the chain transitive sets of CT-ECFP. Following the approach of [9], [6], letF denote a set-valued function

mapping each pointξ ∈ R
m to a setF (ξ) ∈ R

m. We assume:

A. 4. (i) F is a closed set-valued map.7

(ii) F (ξ) is a nonempty compact convex subset ofR
m for all ξ ∈ R

m.

(iii) For some norm‖ · ‖ on R
m, there existsc > 0 such that for allξ ∈ R

m, supη∈F (ξ) ‖η‖ ≤ c(1 + ‖ξ‖).

Definition 1. A solution for the differential inclusiondx
dt

∈ F (x) with initial point ξ ∈ R
m is an absolutely continuous mapping

x : R → R
m such thatx(0) = ξ and dx(t)

dt
∈ F (x(t)) for almost everyt ∈ R.

Definition 2. Let ‖ · ‖ be a norm onRm, and letF : Rm → R
m be a set valued function satisfying A.4. Consider the

differential inclusion
dx

dt
∈ F (x). (8)

(a) Given a setX ⊂ R
m and pointsξ and η, we writeξ →֒ η if for every ǫ > 0 and T > 0 there exist an integern ≥ 1,

solutionsx1, . . . , xn to the differential inclusion(8), and real numberst1, . . . , tn greater thanT such that

(i) xi(s) ∈ X , for all 0 ≤ s ≤ ti and for all i = 1, . . . , n,

(ii) ‖xi(ti)− xi+1(0)‖ ≤ ǫ for all i = 1, . . . , n− 1,

(iii) ‖x1(0)− ξ‖ ≤ ǫ and ‖xn(tn)− η‖ ≤ ǫ.

(b) X is said to be internally chain transient ifX is compact andξ →֒ ξ for all ξ ∈ X .

The following theorem from [9] allows one to relate the set oflimit points of certain discrete-time processes to the internally

chain transient sets of their continuous-time counterparts.

Theorem 2. AssumeF : Rm → R
m is a set valued function satisfying A.4. Let{x(t)}t≥1 be a process satisfying

x(t+ 1)− x(t)− αt+1M(n+ 1) ∈ αt+1F (x(t)), (9)

where{αt}t≥1 is a sequence of non-negative numbers such that

∑

t≥1

αt = ∞ and lim
t→∞

αt = 0,

7I.e., Graph(F ) := {(ξ, η) : η ∈ F (ξ)} is a closed subset ofRm × R
m.
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and {M(t)}t≥1 is a sequence of deterministic or random perturbations. If

(a) for all T > 0,

lim
t→∞

sup
k

(

‖
k−1
∑

i=t

αi+1M(i+ 1)‖ :

k−1
∑

i=t

αi+1 ≤ T

)

= 0,

(b) sup
t≥1

‖x(t)‖ < ∞,

then the set of limit points of{x(t)}t≥1 is a connected internally chain transitive set of the differential inclusion

d

dt
x(t) ∈ F (x(t)).

In an abuse of terminology,8 we sometimes refer to a discrete-time process{x(t)}t≥1 verifying the recursion (9) as a

perturbed solution of (8).

The differential inclusion (8) induces a set-valued dynamical system{Φt}t∈R defined by

Φt(x0) := {x(t) : x is a solution to (8) withx(0) = x0}.

Let Λ be any subset ofRm. A continuous functionV : Rm → R is called a Lyapunov function forΛ if V (y) < V (x0) for

all x0 ∈ R
m\Λ, y ∈ Φt(x0), t > 0, andV (y) ≤ V (x0) for all x0 ∈ Λ, y ∈ Φt(x0) and t ≥ 0. The following proposition (

[9], Proposition 3.27) allows one to relate the chain transitive sets of a differential inclusion to Lyapunov attracting sets.

Proposition 1. Suppose thatV is a Lyapunov function forΛ. Assume thatV (Λ), the image ofΛ underV , has empty interior.

Then every internally chain transitive setL is contained inΛ andV |L, the restriction ofV to the setL, is constant.

V. CONTINUOUS-TIME ECFP

In this section we consider a continuous-time version of ECFP. Let Γ satisfy A.1 and letC be a permutation-invariant

partition ofN . In analogy to9 (6), for t > 0 let

q̇c(t) ∈ BR(q̄c(t)) − qc(t), (10)

where we use the superscriptqc(t) to indicate a continuous-time analog of the empirical distribution, and where, forp ∈ ∆n,

we let BR(p) := BRǫ(p) with ǫ = 0, and q̄c(t) is the centroid distribution associated withqc(t) (see (3)). We refer to the

process{qc(t), q̄c(t)}t≥0 as a continuous-time ECFP (CT-ECFP) process relative to(Γ, C).

As our end goal involves studying the limiting behavior of{q̄c(t)}t≥1, note that fork ∈ I, and q̄c,k(t) defined similar to

8A perturbed solution of (8) typically refers to a continuoustime process that is associated with (8) by means of an integrable perturbation. Under appropriate
conditions, processes of the form (9) may be transformed viaan interpolation procedure into a continuous-time processsatisfying the typical definition of a
perturbed solution. See [9], Section I for more details.

9Note that (6) may be written asq(t+ 1)− q(t) ∈ 1
t+1

(BRǫt (q̄(t)) − q(t)).
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(2), there holds

˙̄qc,k(t) =
d

dt
|Ck|

−1
∑

j∈Ck

qcj(t)

= |Ck|
−1
∑

j∈Ck

d

dt
qcj(t)

= |Ck|
−1
∑

j∈Ck

q̇cj(t),

Let p(t) = q̇c(t) + qc(t), so thatp̄(t) = (p̄1(t), . . . , p̄n(t)) with p̄i(t) = p̄φ(i)(t) for i ∈ N (see (3)). By the above, and the

linearity of differentiation,p̄(t) = ˙̄qc(t) + q̄c(t). Thus, by Lemma 4, (10) implies that̄p(t) ∈ BR(q̄c(t)), or equivalently,

˙̄qc(t) ∈ BR(q̄c(t)) − q̄c(t). (11)

A. Convergence in Continuous Time

This section studies the convergence of continuous-time ECFP to the sets of SNE and MCE.

For any solutionqc(t) of (10) and associated centroid processq̄c(t), letw(t) := U(q̄c(t)) and letv(t) := 1
n

∑n
i=1 U(qci (t), q̄

c
−i(t)).

There holds,

ẇ(t) =

n
∑

i=1

∂

∂q̄ci
U(q̄c(t)) ˙̄qci (t)

≥
n
∑

i=1

[

U( ˙̄qci (t) + q̄ci (t), q̄
c
−i(t))− U(q̄c(t))

]

=

n
∑

i=1

[

max
αi∈∆i

U(αi, q̄
c
−i(t))− U(q̄c(t))

]

≥ 0, (12)

where the second line follows from the concavity ofU in pi, and the third follows from (11).

By Lemma 3 there holds
1

n

n
∑

i=1

U(qci (t), q̄
c
−i(t)) = U(q̄c(t)). (13)

Hencev(t) = w(t), there holds·v(t) ≥ 0. Moreover, the following expansion is useful in order to study v as a Lyapunov

function for the set of MCE:

v̇(t) = ẇ(t) ≥
n
∑

i=1

[

max
αi∈∆i

U(αi, q̄
c

−i(t))− U(q̄c(t))

]

=
n
∑

i=1

max
αi∈∆i

U(αi, q̄
c

−i(t))− nU(q̄c(t))

=
n
∑

i=1

max
αi∈∆i

U(αi, q̄
c

−i(t))−
n
∑

i=1

U(qci (t), q̄
c

−i(t))

=
n
∑

i=1

[

max
αi∈∆i

U(αi, q̄
c

−i(t))− U(qci (t), q̄
c

−i(t))

]

≥ 0, (14)

where the inequality follows from (12), and the third line follows again from (13).

By (12),w(t) is weakly increasing, and is constant in a time intervalT if and only if maxαi∈∆i
U(αi, q̄

c
−i(t))−U(q̄c(t)) =

0, ∀i; i.e., if and only if q̄c(t) ∈ SNE for all t ∈ T .

By (14), v(t) is weakly increasing, anḋv(t) = 0 in some intervalT impliesmaxαi∈∆i
U(αi, q̄

c
−i(t))− U(qci (t), q̄

c
−i(t)) =

0, ∀i ∈ N , t ∈ T ; i.e.,qc(t) ∈ MCE for all t ∈ T . Moreover, by Lemma 4,qc(t) ∈ MCE, ∀t ∈ T =⇒ q̄c(t) ∈ SNE∀t ∈ T ,
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which by the above comments implieṡw(t) = 0 in T , or equivalentlyv̇(t) = 0 in T . Thus,v(t) is constant in a time interval

T if and only if qc(t) ∈ MCE for all t ∈ T .

Proposition 2. Assume A.1 holds. Then,

(i) The limit set of every solution of(11) is a connected subset of SNE along whichU is constant;

(ii) For p ∈ ∆n, let V (p) := 1
n

∑n
i=1 U(pi, q̄

c
−i). The limit set of every solution of(10) is a connected subset of MCE along

which V is constant.

The proof of this proposition follows from the above comments.

VI. L IMIT SETS OFDISCRETE-TIME ECFP

In this section we study the limit sets of DT-ECFP by relatingthem to the internally chain transitive sets of CT-ECFP.

The following lemma relates the limit sets of DT-ECFP to the internally chain transient sets of the CT-ECFP differential

inclusions (10) and (11).

Lemma 1. Assume A.1–A.3 hold. Let{q(t), q̄(t)}t≥1 be a discrete-time ECFP process. Then,

(i) The set of limit points of{q̄(t)}t≥1 is a connected internally chain transient set of(11),

(ii) The set of limit points of{q(t)}t≥1 is a connected internally chain transient set of(10).

Proof: Proof of (ii): Observe that adding and subtracting the setBR(q̄(t)) and rearranging terms in (6) gives,

q(t+ 1)− q(t) + γt {BR(q̄(t)) −BRǫt(q̄(t))}

∈ γt {BR(q̄(t))− q(t)} . (15)

Thus, the process{q(t)}t≥1 fits the template of Theorem 2 withx(t) := q(t), F (x) := BR(x̄) − x, andM(t) := BR(x̄) −

BRǫt(x̄). It is straightforward to verify thatF satisfies A.4.

It suffices to show that the process (15) satisfies conditions(a) and (b) of Theorem 2. Condition (b) is trivially satisfied

sinceq(t) ∈ ∆n for all t.

If k is such that
∑k−1

i=n γi ≤ T , then

sup
k

‖
k−1
∑

i=n

γi{BRǫi(q̄(t))−BR(q̄(t))}‖

≤ T sup
k

‖BRǫi(q̄(t)) −BR(q̄(t))‖.

SinceBR is upper semicontinuous,BRǫ(p) → BR(p) uniformly asǫ → 0. Thus condition (a) holds, and (ii) is proved.

Proof of (i): Adding and subtractingBR(q̄(t)) and rearranging terms, the difference inclusion (7) may be written as

q̄(t+ 1)− q̄(t) + γt {BR(q̄(t)) −BRǫt(q̄(t))}

∈ γt {BR(q̄(t))− q̄(t)} . (16)

Thus, the process{q̄(t)} fits the template of Theorem 2 withx(t) := q̄(t), M(t) := BR(q̄(t)) − BRǫt(q̄(t)), andF (x) :=

BR(x)− x. It was shown in [9] thatF satisfies A.4. It is sufficient to show that the process (16) satisfies conditions (a) and
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(b) of Theorem 2. Condition (b) is trivially satisfied sinceq̄(t) ∈ ∆n for all t. SinceM(t) is defined the same manner as in

case (i), the proof that condition (a) is satisfied follows the same reasoning as in the proof of assertion (ii).

The following lemma relates internally chain transitive sets of (10) to the set of MCE, and the internally chain transitive

sets of (11) to the set of SNE; combined with Lemma 1 this will prove Theorem 1.

Lemma 2. Let Γ be an identical interests game. LetC be a permutation-invariant partition onΓ. Then,

(i) Every internally chain transitive set of(11) is contained in the set of SNE.

(ii) Every internally chain transitive set of(10) is contained in the set of MCE.

Proof: Proof of (i): Let W := −U . By Section V-A (in particular, see (12)),W is a Lyapunov function for the set of

SNE with x(t) := q̄(t). Note thatW is multilinear and hence continuously differentiable.

For a differentiable functionf : Rm → R, we sayx ∈ R
m is a critical point off if for i = 1, . . . ,m, the partial derivative

at x is zero, i.e, ∂
∂xj

f(x) = 0. By Sard’s Theorem ( [20], p. 69), ifCP is the critical points set ofW , thenW (CP ) contains

no intervals. By definition, the set ofNE is contained in the critical points set ofU , and hence also contained in the critical

points ofW . Furthermore, by definition,SNE ⊂ NE, and hence the setSNE is contained in the critical points set ofW .

Thus, by Proposition 1, every internally chain transitive set of (11) is contained in the setSNE.

Proof of (ii): Note that, by Lemma 4,p ∈ BR(p̄) =⇒ p̄ ∈ BR(p̄). Thus,p ∈ MCE implies thatp̄ ∈ SNE. Let V : ∆n → R,

with V (p) := 1
n

∑n
i=1 U(pi, p̄−i), and note that by Lemma 3,V (p) = U(p̄). Invoking again Sard’s Theorem,U(NE) contains

no intervals, and henceU(SNE) ⊂ U(NE) contains no intervals. SinceU(SNE) contains no intervals,V (MCE) also

contains no intervals.

By Section V (in particular, see (14)) the functionV is a Lyapunov function for the set of MCE withx(t) := q(t). It follows

from Proposition 1 that every chain transitive set of (10) iscontained inMCE.

A. Proof of Theorem 1

Theorem 1 follows directly from Lemmas 1 and 2.

VII. C ONCLUSIONS

Classical Fictitious Play (FP) is robust to alterations in the empirical distribution step-size process and robust to best-

response perturbations. These robustness properties allow for interesting modifications to FP which can be of great practical

value. Empirical Centroid Fictitious Play (ECFP) is a generalization of FP designed for large games. The paper showed that

ECFP is also robust to step-size alterations and best-response perturbations. This result enables future research to consider

practical modifications to ECFP, similar to those already developed for FP.

APPENDIX

Lemma 3. Let C be a partition ofN , and forp ∈ ∆n let p̄ be as defined in(3). Then 1
n

∑n
i=1 U(pi, p̄−i) = U(p̄).

Proof: Let I be an index set forC and letm be the cardinality ofI. For k ∈ I, andj ∈ Ck note that

|Ck|U(p̄) = |Ck|U(p̄j , p̄−j) = |Ck|U(

[

|Ck|
−1
∑

i∈Ck

pi

]

j

, p̄−j)

=
∑

i∈Ck

U([pi]j , p̄−j) =
∑

i∈Ck

U(pi, p̄−i),
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where the second line follow from the definition ofp̄j (see (3)), the third by multilinearity ofU , and the fourth by permutation

invariance of elements inCk. Thus,

1

n

n
∑

i=1

U(pi, p̄−i) =
1

n

∑

k∈I

∑

i∈Ck

U(pi, p̄−i)

=
1

n

∑

k∈I

|Ck|U(p̄) =
1

n

n
∑

i=1

U(p̄) = U(p̄).

Lemma 4. Let q ∈ ∆n, let q̄ be as defined in(3), and letǫ ≥ 0. If p ∈ BRǫ(q̄), then p̄ ∈ BRǫ(q̄).

Proof: Let i ∈ N . Recall thatp̄ := (p1, . . . , pn) with pi = pφ(i). There holds

U(p̄i, q̄−i) = U(



|Cφ(i)|
−1

∑

j∈Cφ(i)

pj





i

, q̄−i)

= |Cφ(i)|
−1

∑

j∈Cφ(i)

U([pj ]i, q̄−i(t))

= |Cφ(i)|
−1

∑

j∈Cφ(i)

U([pj ]i, [q̄
φ(i)]j , q̄−(i,j))

= |Cφ(i)|
−1

∑

j∈Cφ(i)

U([pj ]j , [q̄
φ(i)]i, q̄−(i,j))

= |Cφ(i)|
−1

∑

j∈Cφ(i)

U([pj ]j , q̄−j(t))

≥ |Cφ(i)|
−1

∑

j∈Cφ(i)

max
p′

j
∈∆j

(U(αj , q̄−j)− ǫ)

= |Cφ(i)|
−1

∑

j∈Cφ(i)

max
p′

i
∈∆i

(U(αi, q̄−i)− ǫ)

= max
αi∈∆i

U(αi, q̄−i)− ǫ,

where the first line follows by the definition of̄pi (see (3)), the second from the multilinearity ofU , the fourth by permutation

invariance of elements ofCφ(i), the sixth by the fact that, by hypothesis,pj ∈ BRǫ
j(q̄−j), and the seventh by permutation

invariance of elements ofCφ(i). Since this holds for alli ∈ N , it follows that p̄ ∈ BRǫ(q̄).

Lemma 5. Assume A.1 holds and suppose the action sequence{a(t)}t≥1 is chosen according to(5). Then centroid process

{q̄(t)}t≥1 follows the differential inclusion(7).

Proof: Note thatq̄(t+ 1) may be written recursively as

q̄(t+ 1) = q̄(t) +
1

t+ 1
(ā(t+ 1)− q̄(t)) .

By Lemma 4,a(t+1) ∈ BRǫt(q̄(t)) implies ā(t+1) ∈ BRǫt(q̄(t)). Substituting this into the above recursion and rearranging

terms shows that{q̄(t)} follows the difference inclusion (7).
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