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On Robustness Properties in Empirical Centroid Fictitious Play

BRIAN SWENSON*, SOUMMYA KART AND JOAO XAVIER*

Abstract

Empirical Centroid Fictitious Play (ECFP) is a general@atof the well-known Fictitious Play (FP) algorithm desgghfor
implementation in large-scale games. In ECFP, the set gkemais subdivided into equivalence classes with playetfénsame
class possessing similar properties. Players choose astagé action by tracking and responding to aggregatestitatirelated
to each equivalence class. This setup alleviates the diffiask of tracking and responding to the statistical betraeif every
individual player, as is the case in traditional FP. AsidenfrECFP, many useful modifications have been proposed tsici$P,
e.g., rules allowing for network-based implementatiorréased computational efficiency, and stronger forms ahieg. Such
modifications tend to be of great practical value; howevsgirteffectiveness relies heavily on two fundamental prige of FP:
robustness to alterations in the empirical distributicepssize process, and robustness to best-response pedusbdthe main
contribution of the paper is to show that similar robustngszperties also hold for the ECFP algorithm. This resulvegras a
first step in enabling practical modifications to ECFP, samib those already developed for FP.

I. INTRODUCTION

The field of learning in games is concerned with the study sfesys of interacting agents, and in particular, the questio
of how simple behavior rules applied at the level of indiatlagents can lead to desirable global behavior. Fictitielay
(FP) [1] is one of the best studied game-theoretic learniggrithms. While attractive for its intuitive simplicityral proven
convergence results, certain practical issues make FRbiredly difficult to implement in games with a large numbef
players [2]-[5].

Empirical Centroid FP (ECFP)[4]][5] is a recently propoggzheralization of FP designed for implementation in large
games. In ECFP, the set of players is subdivided into seteaiialence classes” of players sharing similar propertiethis
formulation, players only track and respond to an aggregttistic (the empirical centroid) for each class of playeather
than tracking and responding to statistical propertiesvefyeindividual player, as in classical FP. ECFP has beemwsho
learn elements of the set of symmetric Nash equilibria ferdlass of multi-player games known as potential games.

The main focus of this paper will be to study ECFP and show ¢esatain desirable properties possessed by classical FP
also hold for the more general ECFP. In particular, the wiksfudied classical FP and proved that the fundamentatitegr
properties of FP can be retained in the following scenarios:

(i) The step size sequence of the empirical distributiorcess takes on a form other th@h/t},>;.
(ii) Players are permitted to make suboptimal choices wherosing a next-stage action so long as the degree of sulaiyim
decays asymptotically to zero with time.

We say a FP-type algorithm ®ep-size robusf it retains its fundamental learning properties in thetfgsenario, and we

say an algorithm ibest-response robutit retains its fundamental learning properties in thea®t scenario.
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FCT and by FCT Grant CMU-PT/SIA/0026/2009, and was paytialipported by NSF grant ECCS-1306128.
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The notion of step-size robustness generalizes the conteipé empirical distribution of classical FP. A player’s ginical
distribution in classical FP is taken to be the time-avedabistogram of the player’s action history; implicitly, shhas an
incremental step size df/t. Scenario (i) allows players to choose alternate stepsgreiences. Of particular interest is that
it allows for construction of an empirical distribution thplaces more emphasis on recent observations while disogun
observations from the distant past.

The notion of best-response robustness generalizes FRaxyngthe traditional assumption that players are alwagréeut
optimizers. In particular, in classical FP, it is assumeat fllayers are capable of choosing their next-stage ac@n(precise)
best response to the empirical action history of opposimyesk. In practice, this is a stringent assumption, reqgithat
players have perfect knowledge of the empirical distrilnutdf all opposing players at all times, and are capable afipes/
solving a (non-trivial) optimization problem each iteaatiof the algorithm. By relaxing this implicit assumptiongsitly (as
in scenario (ii)), one is able to consider many useful extarssof FP of both practical and theoretical value.

In [6], the best-response robustness of FP was used to shovergence to the set of Nash equilibria of stochastic FP
with vanishing smoothing, and to prove convergence of aringpired actor-critic learning algorithm. 10][3], besspnse
robustness of FP was used to show convergence of sampled R@riaat of FP in which computational complexity is
mitigated by approximating the expected utility using a Mv@arlo method—and used again|in [7] to ensure convergeice
an even more computationally efficient version of sampled k8], the best-response robustness of FP is used to cehstr
variant of FP achieving a strong form of learning in which piayer’s period-by-period strategies are guaranteed twearge
to equilibrium (rather than only convergence in terms of émepirical frequencies, as is typical in FP). The best-raspo
robustness of FP is also useful in that it allows for prattietwork-based implementations of FP; e.gl, [5].

The main contribution of this paper is to demonstrate thafIE@ both step-size robust and best-response robusECER
retains its fundamental learning properties under scesdi) and (ii) above. This result is a necessary first steprdeioto
develop practical modifications for ECFP similar in spint those already developed for FP; e.g., improved compuialtio
efficiency, network-based implementation rules, and sfiomonvergent variants of the algorithm, as mentioned ad)d)or/e
prove the result following a similar line of reasoning ta,[@]; we first study a continuous-time version of ECFP, anehth
use results from the theory of stochastic approximationmowe our main result regarding convergence of discrete-&£CFP
based on properties of the continuous-time counterpart.

The remainder of the paper is organized as follows. SeEfisats up the notation to be used in the subsequent develapmen
and reviews the classical FP algorithm. Seclioh Il preseigcrete-time ECFP and states the main result. Seciibeviéws
relevant results in differential inclusions and stoclasipproximations to be used in the proof of the main resulttiGe
[Vl presents continuous-time ECFP. Secfioh VI proves correrg of discrete-time ECFP using properties of continuone-

ECFP. Sectiof V]I provides concluding remarks.

1. PRELIMINARIES
A. Game Theoretic Preliminaries
A review of game-theoretic learning algorithms—includicigssical FP—can be found in J10[, [11].

1The results of this paper are directly applied [in [8] to pravetrong learning result for a variant of ECFP. We also no# tme possible network-
based implementation of ECFP has been presentdd in [5].ifipementation—which considers a fixed communication lyrigpologies and synchronous
communication rules—relies on a weak form of best-respoabastness (seEl[5R.3). In order to consider ECFP in more general distributed aces (e.g.,
random communication graph topology and asynchronous corwation rules) it is necessary to have the full robustr@eperty derived in this paper.



A normal form game is given by the trip[B = (N, (Y;)ien, (ui(+))ien), where N = {1,...,n} represents the set of
players,Y;—a finite set of cardinalityn,—denotes the action space of playeandu;(-) : [, ¥; — R represents the utility
function of player:.

Throughout this paper we assume:
A. 1. All players use identical utility functions.

Under this assumption we drop the subsctipnd denote by.(-) the utility function used by all players. The set of mixed
strategies for player is given byA; = {p € R™ : Y/ p(k) =1, p(k) > 0 Vk =1,...,m;}, them;-simplex. A mixed
strategyp; € A; may be thought of as a probability distribution from whiclayeri samples to choose an action. The set of
joint mixed strategies is given b™ = ], A;. A joint mixed strategy is represented by theuple (p1,...,p,), where
pi € A; represents the marginal strategy of playeand it is implicity assumed that players’ strategies adcependent.

The mixed utility function is given byJ/(-) : A™ — R, where,

Upr,---pn) = Y wi@)pi(v) - pa(yn)-
yey

Note thatU(-) may be interpreted as the expected valueu@f) given that the players’ mixed strategies are statistically
independent. For convenience, the notafiofp) will often be written aslU (p;, p—.), wherep; € A, is the mixed strategy for
playeri, andp_; indicates the joint mixed strategy for all players othemtha

Fore > 0,7 € N andp_; € A_;, define thee-best response set for playeas
BR;(p—i) == {pi € A; : U(pi,p—i) > max Ulai,p—i) — €}

and forp € A define
BRE(p) = (BRi(p,1)7 R BR;(p*n))

The set of Nash equilibria is given by
NE :={pe A" : U(pi,p—i) > U(p},p—:),Vp; € A;, Vi}.

As a matter of convention, all equalities and inequalit®lving random objects are to be interpreted almost syieh)

with respect to the underlying probability measure, unteserwise stated.

B. Repeated Play

The learning algorithms considered in this paper assuméotimving format of repeated play.

Let a normal form gamé& be fixed. Let players repeatedly face off in the galmend fort € {1,2,...}, let a,;(t) € A;
denote the action played by playem roundtg/Let then-tuple a(t) = (a1(t), ..., a,(t)) denote the joint action at time
Denote byg;(t) € A;, the empirical distributioH of playeri. The precise manner in which the empirical distribution is

formed will depend on the algorithm at hand. In genegalt) is formed as a function of the action histofy,(s)}._, and

2An action is usually assumed to be pure strategy, or a veftéxeosimplexA;. In this work, an action is permitted to be an arbitrary misttegy (cf.
[6], for the case of FP). Since the results hold for any astiohthis form, they also hold for the typical case where astiare restricted to be pure strategies.
3The termempirical distributionis often used to refer explicitly to the time-averaged hgston of the action choices of some playigri.e., ¢;(t) =
% Zg;l a;(s). However, using a broader definition as considered hemwslfor interesting algorithmic generalizations; e.garteng processes that place
greater emphasis on observations of more recent actioes[6péor further discussion.



serves as a compact representation of the action historyagepi up to and including the round. The joint empirical

distribution is given byg(t) := (q1(¢), ..., gn(1)).

C. Classical Fictitious Play

FP may be intuitively described as follows. Players repigtiace off in a stage gamkg. In any given stage of the game,
players choose a next-stage action by assuming (perhapeénty) that opponents are using stationary and independ

strategies. In particular, let the empirical distributioa given by the time-averaged histogram

Z ai(s); 1)

s=1

S

qi(t) ==

in FP, players use the empirical distribution of each opptagast play as a prediction of the opponent’s behaviohm t
upcoming round and choose a next-round strategy that isnapfi.e., a best response) given this prediction.

A sequence of actionga(t)},>1 such th

ai(t—i- 1) S BRi(q_i(t)), Vi,

for all ¢ > 1, is referred to as &ictitious play processlt has been shown that FP achieves Nash equilibrium legiinirthe
sense thati(q(t), NE) — 0 ast — oo for select classes of games including two-player zero-sames [12], two-player

two-move gamed [13], and multi-player potential games,[J2H].

D. Empirical Centroid FP Setup

A presentation of ECFP in it's most elementary form (i.el pdhyers are grouped into a single equivalence class) isngiv
in [5]; the elementary formulation is less notationally ahved, and can serve as a useful means of conveying the lif#sis i
of the approach in a straightforward manner. In this papefogas on the general formulation of the ECFP algorithm.

In ECFP, players are grouped into sets of equivalence dasse‘permutation invariant” classes. Such grouping alow
players to analyze collective behavior by tracking only $teistics of each equivalence class, rather than tradkimgtatistics
of every individual player.

Let m < n, denote the number of classes, let {1,...,m} be an index set, and l&t = {C4,...,C,,} be a collection
of subsets ofV; i.e. Cy C N, Vk € I. A collection(C is said to be germutation-invariant partitiorof N if,

(1) Ch,NCr=0,fork, Lel, k+#{,
(ii) U Cr =N,
kel
(tii) for ke I,4,5 € Cy, Y; =Y,
(iv) for k € I, i, j € Cy, there holds for any strategy profile= (v, yj,y—(,j)) €Y,

w(Yi, Yjs Y—(ig)) = wlyilis Wiljs y—ig))s

where the notatiofi[y;];, [y;]:, y—(,;)) indicates a permutation of (only) the strategies of playersdj in the strategy profile

Y= (yivyjayf(i.,j))'
For a collectionC, define¢(-) : N — I to be the unique mapping such thgt) = & if and only if i € Cy.

“In all learning algorithms discussed in this paper, théahiction a;(1) may be chosen arbitrarily for ail



For k € I, andp € A", and permutation-invariant partitia®y, define
=10 Y (2)
1€Cl,

to be thek-th centroidwith respect taC, where|C}| denotes the cardinality of the s€%. Likewise forp € A™ define

ﬁ:: (ﬁlaﬁ?a"'apn)v (3)

wherep; := 5*(, to be thecentroid distributionwith respect toC.

Given a permutation-invariant partitiafy let the set of symmetric Nash equilibria (relative@pbe given by,
SNE :={pe NE:p;=p; Vi,jeCy Vkel},
and let the set of mean-centric equilibria (relativeCfobe given by,
MCE :={pe A" : U(pi,p—i) > U(p;,0-i),Yp; € Ay, Vi}.

The set of MCE is neither a strict superset nor subset of the-Nfher, it is a set of natural equilibrium points tailorexd t
the ECFP dynamic$ [16]. The set of SNE however, is containgtieé set of MCE.
The sets of SNE and MCE relative to a partiti@rcan be shown to be non-empty undef]A.1 using fixed point argtsne

similar to [16], [17].

I1l. EMPIRICAL CENTROID FICTITIOUS PLAY
Let the gamel’ be played repeatedly as in Sectlon1I-B. Let the empiricatritiution for playeri be formed recursively
with ¢;(1) = a;(1) and fort > 1,
gi(t+1)=qt) + v (a(t+1) — (), (4)

where we assume:
A. 2. The sequencéy; };>1 in (@) satisfiesy, > 0, Vt, thl v = 0o, andlimy_,, v = 0.

Let the joint empirical distribution be given by(t) := (q1(¢), ..., g (t)).

Typical FP-type learning aIgorithH&onsider the empirical distribution to be a time-averagistogram that places equal

1
t+1°

fundamental learning properties under the more generahgsson A2, then we say the algorithm s¢ep-size robust

weight on all rounds; this corresponds to a step size of form= vt (e.g., [1)). If a FP-type algorithm retains its
In ECFP [5], players do not track the empirical distributioiheach individual player. Instead, they track only the o®idt

7" (t) for eachk € I (see [(2)). Intuitively speaking, in ECFP each playerssumes (perhaps incorrectly) that for each class

C), € C the centroidz” () accurately represents the mixed strategy for all playersC;.. Each playei chooses her next-stage

action as a myopic best response given this assumption.

Formally, the joint action at timét + 1) is chosen according to the rHIe

a(t +1) € BR(q(t)), (5)

5We use the term FP-type learning algorithm to refer to anrithgo in which players choose their next-stage action as apisybest response to some
forecast rule based on the current time-averaged empitisaibution of play; cf. the learning framework consideéria [18].
6The actiona(1) may be chosen arbitrarily.



where(t) is the centroid distribution associated wijft) (see [B)), and where it is assumed that,
A. 3. The sequencée; };>1 in (@) satisfieslim;_, ¢, = 0.

Typical FP-type learning algorithms assume that playezsabways perfect optimizers; i.e,, = 0, Vt. If a FP-type learning
algorithm retains its fundamental learning propertiesarnii[3, we say the algorithm ikest-response robusthe work [6]
first considered generalizations to FP of the forms inditateA[2-A[3 and showed that classical FP is both step-sibasto
and best-response robust. In this work we show that ECFRs@srabust in both these senses.

Combining [4) with [(5), gives the following difference imsion governing the behavior ¢f(¢)}:>1,
q(t+1) € (1 =) q(t) + nBR(q(1)). (6)

Likewise, Lemma&b (see appendix) shows that the sequencntrfoed distributiong g(¢)}:>1 follows the difference inclusion,
q(t+1) € (1 —v)q(t) +vBR(q(t)). (7)

We refer to the sequendg(t), q(t)}:>1 as a discrete-time ECFP (DT-ECFP) process with respe(f t6).

The following theorem is the main result of the paper—it esathat, if[" is an identical interests game, then under the
relatively weak assumptions [A.2fA.3, players engaged ifFEE@symptotically learn elements of sets of SNE and MCE.
Learning of MCE occurs in the sense th#y(t), MCFE) — 0—this form of learning corresponds to the typical notion of
setwiseconvergence in empirical distributioiypical in classical FP (see Sectibn 1I-C and|[18].1[11])ateing of SNE occurs
in the sense thad(g(t), SNE) — 0. This notion of learning, while similar in spirit to the tygal notion of convergence in
empirical distribution, differs in that it is the empiricaéntroid distribution[{[3) that is converging to the set ofESMather

than the empirical distribution itself.

Theorem 1. Assume A]1-A.3 hold. Létbe a permutation-invariant partition of the player st Let {¢(t), q(¢)}:>1 be an
ECFP process with respect {@',C). Then,

(i) players learn a subset of the MCE in the sense that_, . d(q(t), MCE) = 0,

(i) players learn a subset of the SNE in the sense that . d(g(t), SNE) = 0.

We note that ife, = 0 andy; =
work [5].

In order to prove Theorefd 1 in its full generality we follovetpproach of [6][[9]—we first study the set of continuounseti

t%, then convergence of ECFP in the sense of Thedrem 1 was isk&abln our prior

differential inclusions associated with ECFP, and therivdeFheoren{1l from the continuous-time results via toolsrfrine
theory of stochastic approximations.

In particular, Sectiof 1V discusses the notion of a pertdrbelution of a differential inclusion, introduces the atiof a
chain transitive set, and presents key results that allogvtorrelate the limit sets of perturbed solutions to intdynahain
transitive sets of the associated differential inclusi®action[¥ then presents continuous-time ECFP (CT-ECFP)shiot/s
convergence of CT-ECFP to the sets of SNE and MCE using Lyaparguments.

Section V] presents Lemmaéas 1 and 2 that relate the limit SeBTeECFP to the limit sets of CT-ECFP. Lemrhh 1 shows
that the limit sets of DT-ECFP are contained in the integnahain transitive sets of the corresponding CT-ECFP pmoces
This is accomplished by first showing that DT-ECFP processag be considered to be perturbed solutions of the assdciate

CT-ECFP differential inclusion, and then invoking Theor@ho clinch the result. Lemmla 2 then shows that the internally



chain transitive sets of CT-ECFP are contained in the seM@E and SNE. This is accomplished by invoking Proposifibn 1
together with the Lyapunov arguments derived for CT-ECFét@sses in Sectidn] V.
The proof of Theorerfi]1 then follows by combining Lemrhhs 1 [@hds2noted in Section VIJA.

IV. CHAIN TRANSIENT SETS
We study the limiting behavior of DT-ECFP by first studying thehavior of a continuous-time version of ECFP, and then
relating the limit sets of DT-ECFP to the limit sets of its onous-time counterpart. In particular, we will relate timit sets
of DT-ECFP to the chain transitive sets of CT-ECFP. Follagythe approach of [9]/]6], lef” denote a set-valued function

mapping each poing € R™ to a setF'(§) € R™. We assume:

A. 4. (i) F is a closed set-valued mp.
(i) F (&) is a nonempty compact convex subseRdf for all £ € R™.

(i) For some norm|| - || on R™, there exists: > 0 such that for all§ € R™, sup,,c () 0]l < c(1 + [[€]]).

Definition 1. A solution for the differential inclusioé% € F(x) with initial point¢ € R™ is an absolutely continuous mapping

x: R — R™ such thatz(0) = ¢ and d:”dgt) € F(x(t)) for almost everyt € R.

Definition 2. Let || - || be a norm onR™, and let F : R™ — R™ be a set valued function satisfyingCIA.4. Consider the
differential inclusion

dx

— € F(z). 8

L EF(@) ®)

(a) Given a setX ¢ R™ and points¢ and n, we write{ — n if for everye > 0 and T > 0 there exist an integen > 1,
solutionszy, ..., z, to the differential inclusior(8), and real number¢,, ..., t, greater thanT such that
() zi(s) e X, forall 0 <s<t;andforall:=1,...,n,
(i) |zi(t;) — 21 (0)|| <eforalli=1,...,n—1,
(i) [|lz1(0) =&l < e and [z (tn) — 7l < €.

(b) X is said to be internally chain transient X is compact and — ¢ for all £ € X.

The following theorem from [9] allows one to relate the setiwifit points of certain discrete-time processes to therimaéy

chain transient sets of their continuous-time countespart

Theorem 2. AssumeF’ : R — R™ is a set valued function satisfyingCA.4. Let(¢)}:>1 be a process satisfying
a(t+1) —z(t) — 1M (n + 1) € a1 F(2(1)), 9)
where{a, },>1 is a sequence of non-negative numbers such that

Zat:oo and lim oy =0,

t—o0
t>1

l.e., GraptiF) := {(&,n) : m € F(£)} is a closed subset G&™ x R™.



and {M(t)},>1 is a sequence of deterministic or random perturbations. If

(a) forall T > 0,

k—1
hm sup <|| ZaerlM i+1)] ZOLHA < T) 0,

1=t

(b) sup [lz(t)]| < o0,
t>1
then the set of limit points ofz(¢)},>1 is a connected internally chain transitive set of the défefal inclusion

d
“a(t) € Fla(t).

In an abuse of terminolo&awe sometimes refer to a discrete-time procés$t)}.>1 verifying the recursion[{9) as a
perturbed solution of {8).
The differential inclusion[{8) induces a set-valued dyraahsystem{®,};r defined by

D, (z0) := {z(t) : x is a solution to[(B) withz(0) = zo}.

Let A be any subset oR™. A continuous functiorl/ : R™ — R is called a Lyapunov function foh if V(y) < V(zo) for
all zop € R™\A, y € O4(x0), t >0, andV(y) < V(xo) for all zp € A, y € ®,(x¢) andt > 0. The following proposition (

[9], Proposition 3.27) allows one to relate the chain travesisets of a differential inclusion to Lyapunov attragtisets.

Proposition 1. Suppose thaV is a Lyapunov function foA. Assume that’(A), the image of\ underV, has empty interior.

Then every internally chain transitive sétis contained inA and V'|L, the restriction ofl to the setL, is constant.

V. CONTINUOUSTIME ECFP

In this section we consider a continuous-time version of EQFet I' satisfy Al and letC be a permutation-invariant

partition of N. In analogy tH @®), fort > 0 let
°(t) € BR(°(t)) — a°(2), (10)

where we use the superscripi(t) to indicate a continuous-time analog of the empirical dstion, and where, fop € A",
we let BR(p) := BR(p) with ¢ = 0, and¢“(t) is the centroid distribution associated wiih(¢) (see [B)). We refer to the
process{q“(t), ¢°(t)}+>0 as a continuous-time ECFP (CT-ECFP) process relativé'16).

As our end goal involves studying the limiting behavior{@f'(¢)},>1, note that fork € I, andg>*(¢) defined similar to

8A perturbed solution of{8) typically refers to a continudinse process that is associated with (8) by means of an mitégyperturbation. Under appropriate
conditions, processes of the forfd (9) may be transformedaniinterpolation procedure into a continuous-time prosatisfying the typical definition of a
perturbed solution. Se€&][9], Section | for more detalls

°Note that [6) may be written agt + 1) — q(t) € t+1 (BRt(q(t)) — q(t)).



(@), there holds

~c d — c
gk (t) = E|Ck| ' Z q;(t)

JECK

_ d
=Gl Y a0

JECK

=[Gkl Y 65(),

J€CK
Let p(t) = ¢°(t) + q(t), so thatp(t) = (p1(t),...,Pn(t)) with p;(t) = p®(t) for i € N (see [B)). By the above, and the
linearity of differentiation,p(t) = (fc(t) + @°(t). Thus, by Lemma&l4[{10) implies thatt) € BR(q“(t)), or equivalently,

¢°(t) € BR(°(t)) — °(t). (12)

A. Convergence in Continuous Time

This section studies the convergence of continuous-timeFE® the sets of SNE and MCE.

For any solutiony“(t) of (I0) and associated centroid procg&s), letw(t) := U(g°(t)) and letv(t) := L 37" | U(qf(t), ¢°;(¢)).
There holds,
0

w(t) = UG°(1)gs (1)

@
Il

A

S

0

UG () + 5 (2), 3°.4(0) - U(a(t)]

v

1

-
Il

I

[mmtxm@:@»—vw%m]zm (12)

;€A

=1

where the second line follows from the concavitylfin p;, and the third follows from[{11).

By Lemma[3 there holds
1 S —C —~C
=~ U0).054(10)) = U@ (1) (13)
i=1
Hencew(t) = w(t), there holdsv(t) > 0. Moreover, the following expansion is useful in order todstw as a Lyapunov
function for the set of MCE:

== Z | max Ve 24(0) - V(T (0)]
- Z i U0, 35.(0)) = nU (7" (1)
= zj; mmax Ulos, aci(t) — zj; CHORO))
=" [ ma ot (0) ~ UG 0)] 20 ”

i=1

where the inequality follows froni{12), and the third lindléwvs again from [(IB).

By (12), w(t) is weakly increasing, and is constant in a time inteVaf and only if max,,ea,; U(a;, ¢, (t)) —U(q°(t)) =
0, Vi; i.e., ifand only ifg°(t) e SNE forall t € T.

By (@4), v(t) is weakly increasing, and(¢) = 0 in some intervall’ implies max,,ca, U(i, q%;(t)) — U(qS(t), 3¢, (t)) =
0,Vie N,teT;ie.,q(t) e MCE forallt € T. Moreover, by LemmBl4°(t) € MCE, Vt € T — ¢°(t) € SNEVt €T,
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which by the above comments implieégt) = 0 in T', or equivalentlyo(t) = 0 in T. Thus,v(t) is constant in a time interval

T if and only if ¢°(t) € MCE forall t € T.

Proposition 2. Assume Al1 holds. Then,
(i) The limit set of every solution fLT) is a connected subset of SNE along whiéhs constant;

(il For p € A", let V(p) := L 5°" | U(pi, q¢;). The limit set of every solution ¢I0) is a connected subset of MCE along

T n

which V' is constant.

The proof of this proposition follows from the above comnsent

VI. LIMIT SETS OFDISCRETETIME ECFP

In this section we study the limit sets of DT-ECFP by relatthgm to the internally chain transitive sets of CT-ECFP.
The following lemma relates the limit sets of DT-ECFP to the&sinally chain transient sets of the CT-ECFP differential

inclusions [(1D) and(11).

Lemma 1. Assume Al1-A.3 hold. Léy(t),q(t)}.>1 be a discrete-time ECFP process. Then,
(i) The set of limit points ofg(¢)}:>1 is a connected internally chain transient set(@ff),

(i) The set of limit points of ¢(¢)};>1 is a connected internally chain transient set(@f).

Proof: Proof of (ii): Observe that adding and subtracting the B&(¢(¢)) and rearranging terms ifl(6) gives,

q(t+1) — q(t) + v {BR(q(t)) — BR"(q(t))}
€1 {BR(q(t)) —q(t)} . (15)
Thus, the proces$q(t)}:>1 fits the template of Theorefd 2 with(t) := ¢(¢), F(x) := BR(Z) — z, and M (t) := BR(Z) —
BR<(z). It is straightforward to verify thaf” satisfies AL4.
It suffices to show that the proce$s](15) satisfies condit{apsand (b) of Theorer] 2. Condition (b) is trivially satisfied

sinceq(t) € A" for all ¢.
If k is such thats_*~!~, < T, then

=n

k—1
sup [ Z%{BR“ (q(t)) — BR(q(1))}
= Tsup 1BR(q(t)) — BR(q(t))]-

Since BR is upper semicontinuou®?R<(p) — BR(p) uniformly ase — 0. Thus condition (a) holds, and (ii) is proved.
Proof of (i): Adding and subtractingg R(¢(t)) and rearranging terms, the difference inclusidn (7) may bigem as
q(t+1) = q(t) + w{BR(q(t)) — BR*(q(t))}

€1 {BR(q(t)) —q(t)} . (16)

Thus, the proces$g(t)} fits the template of Theorefd 2 with(t) := q(t), M (t) := BR(q(t)) — BR(q(t)), and F(z) :=
BR(x) — z. It was shown in[[P] that” satisfies A4. It is sufficient to show that the procdss (16sfes conditions (a) and
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(b) of TheoreniP. Condition (b) is trivially satisfied singé&) € A" for all t. Since M (t) is defined the same manner as in
case (i), the proof that condition (a) is satisfied follows #ame reasoning as in the proof of assertion (ii). ]

The following lemma relates internally chain transitivessef (10) to the set of MCE, and the internally chain tramsiti
sets of [(1]l) to the set of SNE; combined with Leninha 1 this witlye Theoren]1.

Lemma 2. LetI' be an identical interests game. Lé&tbe a permutation-invariant partition ofi. Then,
(i) Every internally chain transitive set ¢ffL1) is contained in the set of SNE.

(i) Every internally chain transitive set flQ) is contained in the set of MCE.

Proof: Proof of (i): Let W := —U. By Section[\V-A (in particular, sed_(IL2)})} is a Lyapunov function for the set of

SNE with z(t) := ¢(t). Note thatl¥ is multilinear and hence continuously differentiable.

For a differentiable functiorf : R™ — R, we sayx € R™ is a critical point off if for ¢ = 1,...,m, the partial derivative
at x is zero, i.e,aizj (z) = 0. By Sard’s Theorem ([20], p. 69), i’ P is the critical points set ofV, thenWW (C'P) contains

no intervals. By definition, the set @Y ' is contained in the critical points set 6f, and hence also contained in the critical
points of IW. Furthermore, by definitionS N £ C N E, and hence the sétN E is contained in the critical points set of .
Thus, by Propositiofil1, every internally chain transitie¢ sf (I1) is contained in the s&tN E.
Proof of (ii): Note that, by Lemm@ 4 € BR(p) = p € BR(p). Thus,p € MCFE impliesthatp € SNE. LetV : A" — R,
with V(p) :== 2 3" | U(p;,p—;), and note that by Lemnid 3/(p) = U(p). Invoking again Sard’s Theorer®y,( N E) contains
no intervals, and henc&(SNE) C U(NFE) contains no intervals. Sinc€(SNFE) contains no intervalsy/ (M CE) also
contains no intervals.

By SectiorlY (in particular, se€(lL4)) the functidhis a Lyapunov function for the set of MCE with(¢) := ¢(t). It follows

from Propositior 1L that every chain transitive set[of] (10amtained inM CE. ]

A. Proof of Theorem 1

Theoren{]L follows directly from Lemma&s 1 ahH 2.

VII. CONCLUSIONS

Classical Fictitious Play (FP) is robust to alterations le tempirical distribution step-size process and robustetsi-b
response perturbations. These robustness properties @ltanteresting modifications to FP which can be of greatcpcal
value. Empirical Centroid Fictitious Play (ECFP) is a getieation of FP designed for large games. The paper showad th
ECFP is also robust to step-size alterations and bestiespperturbations. This result enables future researclonsiaer

practical modifications to ECFP, similar to those alreadyettgped for FP.
APPENDIX

Lemma 3. LetC be a partition of N, and forp € A" let p be as defined ir3). Then% S Ui, p—i) = U(p).

Proof: Let I be an index set fo€ and letm be the cardinality off. For k € I, andj € Cy note that

|C| ™! Z pi] D)

1€C, j

[Crl|U(p) = |C|U (Pj, p—5) = |Ci|U(

= Z Ul(lpil;, p—j) = Z U(pi, P—i),

i€Cl, i€Cy
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where the second line follow from the definition @f (see [(8)), the third by multilinearity df’, and the fourth by permutation

invariance of elements if;. Thus,

%ZU(piaﬁ—i) = %Z Z U(pi, p—i)

kel ieCy

= S IGIUG) = 5 > UE) = Uk

kel

Lemma 4. Letq € A", let ¢ be as defined if3), and lete > 0. If p € BR*(g), thenp € BR*(q).

Proof: Let i € N. Recall thatp := (py, ..., p,) with p; = p?». There holds

U(pi,q—i) = U( |C¢(i)|71 Z il 2q-i)

JE€CH ) i

=Csn|™" D Ullpslira-i(1))
J€C )

= [Cyn)| ™ Z U([ps)is [0, 3 ig)
J€C% ()

=|Cyi)| 7! Z U(lpslj, @i G- ig)
J€C% ()

=Co|™" D Ullpilja-—i(t)
J€C )

> |Con| ™" Y. max (U(ay,q-;) —€)
. pEA]‘
JE€Cyu

:|C¢(i)|,1 Z r,nag(v(U(Oéi,(j,i)—e)
i€Cs

= OCI?GaKI U(aiv (jfl) -6

where the first line follows by the definition gf (see[(B)), the second from the multilinearity @f the fourth by permutation
invariance of elements af',(;), the sixth by the fact that, by hypothesjs, € BR;(7-;), and the seventh by permutation

invariance of elements af',(;). Since this holds for all € N, it follows thatp € BR(q). [ |

Lemma 5. Assume Al1 holds and suppose the action sequén@g};>, is chosen according t@). Then centroid process

{q(t)}>1 follows the differential inclusiorf7).

Proof: Note thatg(t + 1) may be written recursively as

q(t+1) = q(t) +

@+ 1) - a()).

By Lemma4,a(t+1) € BR*(q(t)) impliesa(t+1) € BR“(q(t)). Substituting this into the above recursion and rearrangin
terms shows thafg(¢)} follows the difference inclusiorl]7). [ |
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