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Abstract— Mobile robots need maps or other forms of ge-
ometric information about the environment to navigate. The
mobility sensors (LADAR, stereo, etc.) on these robotic vehicles
can however populate these maps only up to a distance of a
few tens of meters. A navigation system has no knowledge about
the world beyond this sensing horizon. As a result, path planners
that rely only on this knowledge are unable to anticipate obstacles
sufficiently early and have no choice but to resort to an inefficient
local obstacle avoidance behavior.

However, recent developments in the computer vision com-
munity allows us to collect geometric information about the
environment far beyond this sensing horizon. The coarse 3D
geometric estimation that can be recovered is derived from
an appearance-based model. That uses a multiple-hypothesis
framework to robustly estimate scene structure from a single
image and estimating confidences for each geometric label. This
3D geometric estimation is used with a previously presented
navigation strategy that reasons about sensor constraints and
plans for measurements while navigating towards the goal.

The validity of the sensing method and navigation strategy is
supported by results from simulations as well as field experiments
with a real robotic platform. These results also show that
significant reduction in path length can be achieved by using
this framework.

I. INTRODUCTION

Mobile autonomous systems use some form of geometric

representation of the environment to plan a path to their

destination. This information is often represented as a 2.5D

map of the environment. When such a mobile robot is to

navigate in an unstructured outdoor environment, it can not

rely on the availability of maps. The system will need to

autonomously assess the drivability of the terrain.

Typical mobility sensors, such as Laser Radar (LADAR) or

passive stereo vision are used to build the required geometric

representation of the terrain; however, these systems will only

acquire data up to a few tens of meters to 100 meters. As a

result, the planner has no knowledge about what to encounter

beyond the sensed perimeter and is thus unable to anticipate

obstacles sufficiently early and has no choice but to plan

paths close to obstacle boundaries. This effect is known as the

myopic planning effect (Figure 1). We have shown in previous

work [14] that we can alleviate this problem by using mid-

range sensing.

Unfortunately, these sensing methods come with their own

constraints. These may include increased computation time,

which prevents continuous acquisition of data; narrow field

of view; sparse data; constraints on data acquisition procedure

(for example, structure from motion (SFM) techniques require

that video data be acquired over a sufficiently long traverse in

order to establish a long enough baseline [1], [2]).

Fig. 1. Top: poor performance due to lack of sensor planning and mid-
range sensing, the robot has to rely on mobility sensor data only. Bottom: the
pinch point is detected earlier, which allows the planner to adjust the path
accordingly.

Current developments in the computer vision commu-

nity [3], [4] has given us another method of obtaining mid-

range sensing data. This technique allows us to estimate the

geometric structure of the environment from a single image.

In the remainder of this paper, we will show how this novel

reconstruction method can be used as an acquisition technique

for mid-range data. We have extended our previous work in

the area of mid-range sensing and path planning to leverage

this new reconstruction technique to plan paths beyond the

typical sensing horizon.
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Fig. 2. Geometric labelling and reconstruction for example unstructured environments. Top: original image, center row, the labelled classes “ground” (green),
“vertical” (red) and “sky” (blue) a darker shade represents a lower confidence, distances are in meters. The bottom row shows the corresponding navigation
map with 0 denoting traversable and 1 representing an obstacle.

II. MID-RANGE SENSING FROM SINGLE-VIEW GEOMETRY

In previous work [3], we demonstrated the ability to es-

timate 3D scene geometry from a single outdoor image.

Although it is generally mathematically impossible to recover

3D information from a single 2D projection, we are able to

succeed by taking advantage of the natural structure in our

world. Most scenes can be characterized simply by the ground

plane, the things that stick out of the ground (usually at right

angles due to gravity), and the sky. After learning the structure

of our world through appearance-based models of geometry,

we are able to estimate the coarse geometry of the scene given

a single input image.

Our models are learned from a diverse set of images,

obtained from Google image search, that are representative

of outdoor scenes. We learn how to segment the image into

geometric classes (“ground”, “vertical”, and “sky”) and train

classifiers to recognize each of these classes given a segmented

image. After performing an oversegmentation [5] into super-

pixels, we group the superpixels according to the probability

that pairs of superpixels belong to the same geometric class.

We then estimate the likelihood that each segment is “good”

(i.e., that it is entirely composed of one geometric label)

and the likelihood of each possible geometric label, given

that the segment is good. These likelihoods are learned by

boosted decision trees [6] using a logistic regression version

of Adaboost [7] that provides probabilistic estimates. The

robustness of our algorithm results from using a large and

varied set of image cues, including color, texture, location,

perspective cues, and from combining estimates from multiple

segmentations to get the final estimate of geometry.

On a test set of 250 images, we obtain an average pixel-wise

accuracy of 86% when labeling the image into “ground”, “ver-

tical”, and “sky”. More results and details on the method are

presented in [3]. Figure 2 shows an example of the geometric

information provided by our algorithm, with probabilistic con-

fidences displayed in the RGB channels of the output image.

MATLAB code for this algorithm can be downloaded from:

http://www.cs.cmu.edu/˜dhoiem/projects/popup

By making the assumption that the terrain local to the robot

is planar we can use the recovered geometric information to

produce a coarse estimate of the geometry of the environment.

This process is fairly straightforward if the intrinsic and

extrinsic parameters (with respect to the robot coordinate

system) are known. With the camera parameters known we

can reproject the geometric labels back into a navigation map.

For all ground labels with a confidence greater than 0.5 a ray

of free space is traced from the camera origin until the first

vertical geometric label is encountered. The remainder of the

cells that belong to this vertical segment are projected onto

a vertical surface which gives us the height of the obstacle.

No assumptions are made about cells that are occluded by an

obstacle.

For each location in the map we can find the geometric label

in the image such that we can mark cells traversable if they

belong to the ground class and obstacles are constructed at the

boundary of the ground/vertical intersection by projecting the

remainder of the vertical segment on the vertical axis.



III. PLANNING VIEW-POINTS

Since the camera has a limited and possibly obstructed field

of view it is necessary to reason about from which position

and in which direction we should take our next measurement.

In addition we would like to limit ourselves to only those

measurements that are strictly necessary for navigation. We

would therefore like to minimize the required amount of

measurements since it is fairly expensive to compute geometric

information from images (approximately a minute).

Let us formulate this notion of “useful measurement”.

Consider a candidate observation position u in our map. At

this position, we can point our sensor at an angle θ. Given the

field of view and minimum and maximum sensing distance

of the sensor, we can define a sensor footprint. In addition

we define L as the set of all possible binary navigation maps.

Each labelling of a binary navigation map (LjεL) has an
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Fig. 3. Illustration of the path computed with (Cs) and without sensing
(Cns) in an example world configuration.

associated probability P (Lj). Given such a labelling and the

map cells the camera can see, one can compute the cost of

getting from the current robot location x to the goal vG by not

making the observation at u: Cns(Lj ,x,vG), and the cost of

getting to the goal making the observation: Cs(Lj ,x,u, θ,vG)
(Figure 3). Intuitively, Cns(Lj ,x,vG) is the cost of the path

executed if no sensors other than the short-range mobility

sensors are used and the map is in configuration (Lj). The

utility ψ for visiting u while navigating to the goal is defined

as:

ψu(x,vG) = 1 − maxθ

(∑
j

P (Lj)(Cns(Lj ,x,vG)−Cs(Lj ,x,u,θ,vG))
Cns(Lj ,x,vG)

)

(1)

In principle, the utility can be computed everywhere in the

map and the resulting utility map can be used by the planner

to select the most favorable sensing position. In principle, the

utility ψu can be computed at every u by simulating the two

paths of cost Cns and Cs. This “forward simulation” [8]–[10]

is at the heart of our approach.

Both Cs and Cns can be evaluated by running the planner on

different “virtual” configurations of the world map correspond-

ing to different configurations Lj . In reality, however, this

would require the enumeration of all possible configurations

of the world which is clearly a combinatorially large set.

Furthermore, the sum above must be evaluated, in principle,

not only for all cell locations, but also for all possible sensor
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Fig. 4. A snapshot of an example run that shows the selection of observation
locations. Clockwise from the top left is depicted: Terrain map (ground truth),
Observed terrain map, Mid-range pencils of rays, binary hallucinated obstacle
map and the utility map.

orientations. Therefore, the computation of the optimal utility

function defined above is not tractable so we use a common

approximation method that instead of averaging over all pos-

sible environments uses the Maximum A Posteriori (MAP)

estimate or most probable world [11]–[14].

This most likely world or “Hallucinated world” gives us

the locations in which obstacles are anticipated. If observing

these anticipated obstacles yields a positive utility (Eq.1), the

camera can be directed to confirm the existence of these

obstructions [14].

We can use this utility for gathering geometric information

from images to find view-points along our route to the goal.

The complete navigation strategy is composed of the following

steps: 1) capture an image and compute geometric information,

2) infer obstacles, compute utility of an extra measurement, 3)



hand-off the location of maximum utility as a way-point/view-

point to the vehicle planner, 4) repeat (Figure 4). More details

of the view planning algorithm can be found in [15].

IV. EXPERIMENTAL EVALUATION

Several experiments were carried out to validate the pro-

posed algorithm. These include results from field tests with

an autonomous vehicle, as well as results from a much larger

set of simulated experiments.

In the example field experiment, we used an ATRV-JR

mobile robot equipped with a firewire camera and SICK

laser range finder to navigate a simple course on campus

(Figure 5). The robot was to navigate to a location behind the

shown obstacle. The navigation map used on the robot was a

Fig. 5. Our experimental plaform is based on an ATRV-JR equiped with a
firewire camera and SICK laser range finder. The vehicle planner [16] and
laser processing run on the robot. The image processing is done off-line and
results are send back to the robot.

150x150m grid with a 0.5m resolution. The camera resolution

was 1024x768 which covered a field of view of about 50◦.

The Laser data was used to compute mobility terrain data and

was artificially limited to 2m. For logistical reasons only, the

experiment was setup with a scaled down sensing range and

environment size. Localization was provided by an on-board

GPS and laser ring gyro. The vehicle planner [16] and laser

processing run on the robot. The image processing is done

off-line and the robot stays in place until results are received

send back.

In Figure 6 and 7 the results of this example run are shown.

The displays in Figure 6 shows the initial measurement and

corresponding geometry computed by the robot. Interesting to

note is that it finds a clear path to the immediate left of the

obstacle. The robot navigates to the goal through this corridor

while planning for one more observation location closer to the

obstacle (Figure 7).

The field experiments are encouraging, but it is difficult to

evaluate performance over a large set of conditions (environ-

ment configuration, sensor characteristics, start and goal point

locations) that are statistically meaningful. This is particularly

hard given the wide range of variation in possible terrain

configurations observed in the real world, which is very dif-

ficult to generate in physical experiments. In order to analyze

more closely the performance of the algorithm, we conducted

controlled experiments for a substantial number of runs using
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Fig. 6. Example range measurement from a single image. Top left:
the original image, top right: the geometric labels. The navigation map is
displayed in the lower panel. As before, the traversability ranges from 0 for
traversable to 1 for an obstacle. Distance is in meters

a simulator on data from the U.S. Geological Survey with a

simple simulated sensor model and the robot modeled by a

single point.

We have executed 500 trial runs with randomly chosen start

and goal positions and analyzed the data in the following

way: First, we compare the lengths of the paths generated by

using the mid-range sensor planning method with the paths

executed by using mobility sensing only. This is shown in

Figure 8, in which the runs are sorted in the order of increasing

gain for the sensor-based planning method. This first type of

analysis is intended to evaluate the amount gained from using

sensor planning. It is important to note that the gain can vary

dramatically depending on the start and goal points. Intuitively,

little gain can be expected if the area between the start and goal

points is completely unobstructed, in which case any planning

strategy would perform well.

Second, it is important to compare the paths obtained with

our sensor planning heuristics with the paths generated by

using a mid-range sensor that senses all the time in every

direction, since our claim is that the algorithm generates a

”good” selection of when/where to sense during motion of

the robot. If our planner were to generate paths that have

substantially higher cost than those generated by using the

“sense all the time/everywhere” strategy, it would indicate that
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mid-range sensor measurements at the positions annotated with the recovered
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laser range finder plotted for ground truth comparison.
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our heuristics can be improved. This part of the analysis is

summarized in Figure 9, in which the lengths of the paths

generated from our planning approach and from the “sense

all the time/everywhere” approach are plotted (with (+)) as

a scatter plot. The plot indicates that the lengths are similar,

i.e., the values are scattered near the diagonal (the correlation

coefficient is ρ = 0.99). This result verifies empirically our

hypothesis that continuous sensing of the environment is

not necessary, provided that suitable heuristics are used for

computing when and where to sense.
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Finally, a third type of analysis uses the paths generated by

an omniscient planner, which has complete knowledge of the

entire map prior to execution, as the baseline for comparison.

Such an omniscient planner generates the shortest paths that

can be generated by any planner given the environment and the

selections of start and goal locations. As such, it is a useful

baseline to quantify the degradation of performance due to

limited sensor horizon. This analysis is shown in Figure 9

as well, in which the paths generated by using our mid-sensor

planning strategy and the paths executed by omniscient planner

(marked with ◦) are plotted again as a scatter plot. The graph

shows that the paths generated with mid-range sensor planning

are almost as close to the optimal from the omniscient planner

as they were to the continuous sensing planner. Specifically,

the correlation coefficient is ρ = 0.98 between the paths

planned by the omniscient planner and our mid-range sensor

planning approach.

V. DISCUSSION

Failures in the single-view geometry estimation can arise

from difficulties in segmentation or shadowing. For instance,

in Figure 6, the sidewalk is thought to be an obstacle because

the segmentation algorithm often groups it with the building

(which is more similar in color and texture than the grass).



The geometry estimation may be improved by training from

images taken by the robotic system used for testing in scenes

that the robot is likely to encounter, rather than using general

user photographs for training as was done here.
Additional problems can arise from the assumption that the

environment close to the robot is planar. This can however be

overcome by using the data from a scanning laser range finder

to estimate the orientation of the ground plane. In addition

other cues from the image, specifically the separation between

ground and vertical classes, can be used to estimate the horizon

and register it with the extrinsic camera parameters.
Overall, our experiments have shown that even error prone

unreliable data from monocular vision can aid significantly

to improve long range navigation performance by allowing to

plan a path past the traditional sensing horizon.

Acknowledgments
This work was supported in part by the Robotics Consor-

tium sponsored by the U.S. Army Research Laboratory under

the Collaborative Technlogy Alliance Program, Cooperative

Agreement DAAD-19-01-2-0012. The views and conclusions

contained in this document are those of the authors and should

not be interpreted as representing the official policies, either

expressed or implied, of the Army Research Laboratory or the

U. S. Government.

REFERENCES

[1] K. Konolige and M. Agrawal, “Outdoor mapping and navigation using
stereo vision,” Submitted to International Symposium on Eperimental
Robotics, 2006.

[2] D. Nister, “An efficient solution to the five-point relative pose problem,”
in Conference on Computer Vision and Pattern Recognition, June 2003.

[3] D. Hoiem, A. A. Efros, and M. Hebert, “Geometric context from a single
image,” in International Conference of Computer Vision (ICCV). IEEE,
October 2005.

[4] A. Saxena, S. H. Chung, and A. Ng, “Learning depth from single
monocular images,” in Advances in Neural Information Processing
Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, Eds. Cambridge,
MA: MIT Press, 2006, pp. 1163–1170.

[5] P. Felzenszwalb and D. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, no. 2,
2004.

[6] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:
a statistical view of boosting,” Annals of Statistics, vol. 28, no. 2, 2000.

[7] M. Collins, R. Schapire, and Y. Singer, “Logistic regression, adaboost
and bregman distances,” Machine Learning, vol. 48, no. 1-3, 2002.

[8] A. Kelly and A. T. Stentz, “Rough terrain autonomous mobility - part
2: An active vision, predictive control,” Autonomous Robots, vol. 5, pp.
163 – 198, May 1998.

[9] J. M. Esposito and V. Kumar, “Closed loop motion plans for mobile
robots,” in International Conference on Robotics and Automation, IEEE,
Ed., April 2000, pp. 2777–2782.

[10] S. LaValle, “A game-theoretic framework for robot motion planning,”
Ph.D. dissertation, University of Illinois, Urbana, IL, 1995.

[11] J. Besag, “On the statistical analysis of dirty pictures,” Journal of Royal
Statistical Soc., vol. B-48, pp. 259–302, 1986.

[12] S. Z. Li, Markov Random Field Modeling in Image Analysis. Tokyo:
Springer-Verlag, 2001.

[13] C. S. Won and H. Derin, “Unsupervised segmentation of noisy and
textured images using markov random fields,” CVGIP, vol. 54, pp. 308–
328, 1992.

[14] B. Nabbe, S. Kumar, and M. Hebert, “Path planning with hallucinated
worlds,” in Proceedings: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. IEEE, October 2004.

[15] B. Nabbe, “Extending the path-planning horizon,” Ph.D. dissertation,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, July
2005.

[16] D. Ferguson and A. Stentz, “Field D*: An Interpolation-based Path
Planner and Replanner,” in Proceedings of the International Symposium
on Robotics Research (ISRR), 2005.


	Carnegie Mellon University
	Research Showcase @ CMU
	2006

	Opportunistic Use of Vision to Push Back the Path-Planning Horizon
	Bart Nabbe
	Derek Hoiem
	Alexei A. Efros
	Martial Hebert
	Published In


	untitled

