
Carnegie Mellon University
Research Showcase @ CMU

Tepper School of Business

4-2009

Testing Cut Generators for Mixed-Integer Linear
Programming
François Margot
Carnegie Mellon University, fmargot@andrew.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/tepper

Part of the Economic Policy Commons, and the Industrial Organization Commons

This Article is brought to you for free and open access by Research Showcase @ CMU. It has been accepted for inclusion in Tepper School of Business
by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.

Published In
Mathematical Programming Computation , 1, 69-95.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Ftepper%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/tepper?utm_source=repository.cmu.edu%2Ftepper%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/tepper?utm_source=repository.cmu.edu%2Ftepper%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1025?utm_source=repository.cmu.edu%2Ftepper%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/347?utm_source=repository.cmu.edu%2Ftepper%2F258&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Testing Cut Generators for Mixed-Integer Linear Programming

François Margot ∗

Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213
fmargot@andrew.cmu.edu

September 2007; revised May 2009

Abstract

In this paper, a methodology for testing the accuracy and strength of cut generators
for mixed-integer linear programming is presented. The procedure amounts to random
diving towards a feasible solution, recording several kinds of failures. This allows for a
ranking of the accuracy of the generators. Then, for generators deemed to have similar
accuracy, statistical tests are performed to compare their relative strength. An application
on eight Gomory cut generators and six Reduce-and-Split cut generators is given. The
problem of constructing benchmark instances for which feasible solutions can be obtained
is also addressed.

1 Introduction

Empirical testing of cut generators for Mixed-Integer Linear Programming (MILP) is a prob-
lem appearing in various settings. In its simplest form, it occurs when studying a new class
of cutting planes, or when a new implementation of a cut generator needs to be compared
with an existing one. A related situation is the problem of testing different cutting strategies,
where decisions about which cut generators to apply and how to set their respective param-
eters need to be made. Note also that generators need to be compared on speed (Does the
generator help solving a problem faster?) and accuracy (How often does the generator pro-
duce invalid cuts?). The latter point, in particular, seems to have been completely ignored
in the literature. Developers usually add various safeguards to avoid as much as possible
the generation of invalid cuts due to limited numerical accuracy, but the effectiveness and
pertinence of these safeguards is rarely discussed and almost never supported by data.

Testing accuracy of cut generators is part of the larger problem of testing the accuracy
of MILP solvers. As pointed out by Neumaier et al. [34], very little work has been done
in this area. There has been interest in testing the accuracy of LP solvers and developing
exact LP solvers [5, 12, 20], but virtually nothing for testing the accuracy of MILP solvers.
Neumaier et al. [34] discuss post-processing of the LP solution to ensure a valid lower bound
and variants of several cutting planes algorithms to ensure the validity of the cuts even when
computations are done in finite precision arithmetic. Note also that Applegate et al. [5] have
implemented an exact MILP solver that can be used to solve modest-sized instances, but

∗Supported by ONR grant N00014-09-1-0033.

1

report computing times that are usually two or three orders of magnitude larger than those
of commercial finite precision MILP solvers.

In this paper, we are interested in getting an empirical measure of the accuracy and
strength of a given implementation of a cut generation algorithm with computation per-
formed in finite precision arithmetic. Most empirical papers benchmarking cut generators
run experiments on a collection of MILP instances using one of the two following approaches.
The first one is to apply a cut generator repeatedly on the linear relaxation of the instance
and to report the change in the LP bound. The second one embeds the cut generator in a
branch-and-cut code and reports the solution times and number of nodes to solve the sample
instances. In either cases, the evaluation of the contribution of the cut generator is based on
an average result on the sample instances.

The second approach dominates in published empirical papers, as it benchmarks the
“true” objective: solving instances as fast as possible. But this is more about benchmarking
branch-and-cut codes than testing cut generators. As pointed out by Hooker in [16, 17], this
type of empirical results yield very little insight on how to improve the tested algorithms.
McGeoch develop this idea in several papers [26, 27, 28, 29].

For example, given two algorithms for solving a particular class of instances, one might
want to list properties of instances on which the first algorithm is usually better than the
second one. By carefully devising random instances with and without a particular property,
one can test how the property impacts the performances of the two algorithms and test if one
is significantly better than the other when the property is present in the instance. Studies
of this type can be found in the literature, e.g., for the Bin Packing Problem [26], for the
Generalized Assignment Problem [3], for the Computer Network Design Problem [32], for
computing asymptotic estimates of algorithm complexity [30], for analysis of Integer Linear
Programming algorithms [21], for Network Reoptimization Techniques [2], and for an analysis
of the effect of the choice in starting points for Nonlinear Optimization Algorithms [15].

The goal of this paper is to describe a methodology for testing cut generators in the spirit
of the empirical analysis of algorithms of Hooker and avoiding pitfalls of the two approaches
mentioned above. We now discuss weaknesses of these two approaches.

For the first one, the strength of the cuts generated at the root node is not always a good
indicator of the usefulness of a family of cuts, and it is not clear how many rounds of cutting
should be used to get results relevant for the typical use of the generator. Moreover, this
approach is unlikely to detect that a cut generator generates more invalid cuts than another.
It is also difficult to obtain convincing evidence of the effect of small changes in the parameter
settings of similar cut generators. As an illustration, consider Table 1. It gives the percent
gap closed by ten cutting rounds for six different cuts generators on sample instances (the
generators and instances are described in more detail in sections 3 and 4). The percent gap
closed by ten cutting rounds on instance I is defined as

100 · F − LB
OPT − LB

where OPT is the value of an optimal solution of I, LB is the value of the initial LP relaxation
of I, and F is the value of the LP relaxation obtained after generating ten rounds of cuts.
The last two lines in the table give the average gap closed on the thirty two instances and the
number of instances where the generator has the best performance among the six generators.

2

Table 1: Percent gap closed at the root by ten rounds of cutting for six cut generators on
MIPLIB3 C instances. Best performance on each instance is in bold face.

name G GN G2P4 G2P5 RSP4 RSP5
bell3a c 63.08 63.30 63.08 63.08 62.41 62.41
bell4 c 93.20 92.77 92.94 93.20 48.50 48.79
bell5 c 87.58 87.59 87.58 87.58 64.03 64.03
blend2 c 31.86 31.85 31.86 31.86 31.85 31.85
dcmulti c 68.19 75.32 67.96 68.15 51.31 50.00
dsbmip c 0.00 0.00 0.00 0.00 0.00 0.00
egout c 56.59 56.20 56.59 56.59 22.70 22.70
enigma c 100.00 100.00 100.00 100.00 100.00 100.00
fixnet3 c 6.62 6.62 6.62 6.62 3.19 3.19
fixnet4 c 12.81 13.08 12.81 12.81 9.03 9.03
flugpl c 14.83 14.74 14.83 14.83 16.27 16.27
gen c 60.46 63.35 60.66 60.66 60.79 60.26
gesa3 c 64.13 61.78 64.13 64.13 75.54 75.54
gesa3 o c 64.65 65.83 64.65 64.65 77.05 75.39
gt2 c 80.93 80.95 80.94 80.93 33.97 30.62
khb05250 c 96.20 96.47 96.17 96.20 63.37 63.37
l152lav c 29.62 31.01 26.80 29.62 18.04 20.91
lseu c 64.92 77.79 64.92 64.92 72.13 72.13
misc03 c 14.81 18.48 14.16 14.81 18.97 18.97
misc06 c 69.16 69.28 69.16 69.16 41.31 41.31
mitre c 96.15 99.76 99.76 96.15 94.57 94.57
mod008 c 30.13 30.13 30.13 30.13 50.98 50.98
p0033 c 12.60 12.60 12.60 12.60 12.68 12.68
p0201 c 57.41 53.33 58.00 56.77 58.10 61.64
p0282 c 15.78 12.11 13.79 15.78 6.53 8.47
p0548 c 4.78 4.96 4.78 4.78 4.52 4.56
qnet1 c 29.20 29.26 35.22 29.54 35.63 41.04
qnet1 o c 54.36 51.53 53.38 54.36 64.62 63.79
rgn c 42.53 33.41 27.10 34.89 94.22 94.22
stein27 c 0.00 0.00 0.00 0.00 0.00 0.00
stein45 c 0.00 0.00 0.00 0.00 0.00 0.00
vpm1 c 62.87 59.65 62.20 62.97 75.84 89.24

Average 46.42 46.66 46.03 46.18 42.75 43.37
#Best 9 17 8 9 12 13

The best-to-worse ranking based on the average is GN, G, G2P5, G2P4, RSP5, RSP4. However,
it is clear that the first four algorithms are fairly close to each other and it is difficult to
confidently claim that GN is better than G2P4 based on these results. Indeed, most of the

3

difference in average gap closed between these two algorithms comes from a single instance
(lseu c), G2P4 closes at least 1% more gap than GN on 6 instances while the converse happens
7 times.

Comparing performances of algorithms by statistical tests is well covered in the literature.
We refer the reader to [8] for an excellent introduction to the topic. The basic test commonly
used when comparing performances of two algorithms is a t-test1. Such a test comparing
GN and G2P4 rates their difference in performances as non significant with a 95% confidence
level. This is not very surprising, as the difference is small and the number of experiments
is low. A little bit more surprising, perhaps, is that even the difference between GN and
RSP4 is not significant with a 95% confidence level. This illustrates the difficulty of obtaining
convincing evidence for the superiority of a cut generator with this approach when differences
in performances and number of sample instances are small.

The second approach, embedding the cut generator in a branch-and-cut code, is also
problematic. First, due to the complexity of the branch-and-cut algorithm, the results of the
tests are affected by a multitude of side-effects introduced by small changes in cut generation.
For example, the choice of branching variable might change completely when cut generation is
modified if the choice is based on the solution of the LP relaxation. As a result, small changes
in cut generation might yield completely different enumeration trees, with large variance in
performances. This approach, of course, gives important insight on how to use various cut
generators within one particular branch-and-cut code, but it is questionable if studies with
one code are relevant for another code. The variation in performances of these experiments
is larger than for the first approach, but the number of experiments remains relatively low.
It is thus still difficult to obtain statistically significant results. Moreover, these experiments
do not provide a clean feedback on the effect of modifications of a cut generator if more than
one cut generator is used. It is well-known for example that Mixed-Integer Gomory cuts
[14], Mixed-Integer Rounding cuts [33], and Disjunctive cuts [6, 19] are equivalent [22]. It is
then difficult to assess the contribution of one cut generator when several of them are used
together.

The second approach is marginally better than the first one for testing if cut generators
generate invalid cuts; when the optimal solution value is known, one can compare it to the
solution value found. It is generally assumed implicitly that all computations were accurate
when the code finds an optimal solution of the instance. However, it might be the case that
an optimal solution is found early in the search by a heuristic algorithm. What happens
afterwards with the cut generators is then moot. To push things to the extreme, having a cut
generator that generates invalid cuts can even appear positive, as the solution time might go
down significantly.

To avoid these problems, one can run the branch-and-cut code using only one cut generator
and turning off the heuristic algorithm, with the drawback that an instance that could be
solved in minutes requires a much longer solution time. Assuming that it is possible to solve
the instance in this way, the size of the enumeration tree would be a reasonable measure
for the strength of the generated cuts. Indeed, cutting planes are used to reduce the size
of the enumeration tree and strong cuts should yield small enumeration trees. However, the
results would still be affected by other parts of the branch-and-cut code (branching variable

1A short description of this test is given in Section 4.2.

4

selection, in particular) and they would not provide much information on the accuracy of the
cut generator.

Table 2: Average number of variables set while diving towards a given feasible solution (20
trials for each solution). Ten rounds of cutting are applied after each setting of a variable.
Number of solutions used is listed in column #Sol. Best performance on each instance is in
bold face.

name #Sol. G GN G2P4 G2P5 RSP4 RSP5
bell3a c 12 13.00 13.00 12.15 12.30 12.35 12.35
bell4 c 11 30.75 30.75 30.90 31.10 31.45 32.35
bell5 c 11 19.70 19.70 20.45 19.95 21.75 21.85
blend2 c 10 41.80 41.80 39.70 36.90 45.00 42.70
dcmulti c 12 27.28 26.81 25.60 25.06 25.05 26.38
dsbmip c 1 42.20 42.20 43.55 42.60 47.45 43.60
egout c 1 24.10 24.10 23.95 23.20 37.60 37.20
enigma c 1 15.10 11.75 13.90 14.10 13.40 16.70
fixnet3 c 11 119.35 119.35 119.15 119.15 122.05 122.05
fixnet4 c 1 136.44 137.41 136.30 138.55 138.65 139.20
flugpl c 10 4.20 4.20 4.15 4.15 4.10 4.10
gen c 13 16.75 18.45 19.90 19.65 20.85 20.15
gesa3 c 1 18.65 18.65 18.40 18.80 19.85 20.80
gesa3 o c 1 19.15 19.15 20.35 19.80 22.90 22.70
gt2 c 19 31.30 34.80 36.95 37.58 36.20 35.65
khb05250 c 12 13.90 13.90 14.30 14.30 15.75 15.85
l152lav c 14 34.40 34.60 31.05 31.05 32.40 32.40
lseu c 13 13.25 13.80 14.30 15.65 15.80 16.55
misc03 c 16 12.05 10.70 10.55 12.30 11.05 12.25
misc06 c 1 6.75 6.75 5.95 5.95 10.00 10.00
mitre c 11 42.05 51.40 79.35 86.15 83.25 76.70
mod008 c 25 11.15 11.15 13.50 13.80 15.25 15.40
p0033 c 11 9.85 9.90 11.05 9.90 11.65 12.05
p0201 c 15 11.85 10.80 12.25 13.95 12.75 11.85
p0282 c 1 40.50 40.74 43.45 45.70 51.30 48.25
p0548 c 11 95.20 96.00 113.90 121.95 132.85 131.60
qnet1 c 1 44.15 48.20 46.15 46.45 45.65 46.15
qnet1 o c 1 53.75 52.45 46.20 52.95 50.00 50.10
rgn c 1 11.55 11.55 13.95 11.75 7.50 7.50
stein27 c 12 12.90 11.65 12.35 12.80 11.05 11.90
stein45 c 14 22.00 20.75 20.60 20.10 21.05 20.95
vpm1 c 1 24.95 24.95 24.50 27.10 19.45 22.00
Average −− 31.2 31.34 32.23 32.92 34.28 34.24
#Best −− 14 8 8 6 4 2

5

This paper proposes to address these issues using an algorithm we call random diving
towards a 0-feasible solution. A detailed description of this algorithm and the definition
of a 0-feasible solution are given in Section 2 and the generation of 0-feasible solutions is
addressed in Section 3. A sketch of the algorithm is the following: For an instance I with
optimal solution x∗, simulate the path of the enumeration tree of a branch-and-cut code that
will end with an LP relaxation containing x∗. More precisely, repeat the following operations
until a feasible solution x̄ is obtained: apply the cut generator, get an optimal solution x̄ of
the current LP relaxation, pick uniformly at random an integer variable xi with x̄i fractional
and set its value to x∗i . The fact that x∗ is feasible implies that it should not violate any of
the generated cuts. As the choice of the variable to be set is random, it is possible to repeat
this diving a number of times (we use 20 trials in this paper) and record the average number
of variables set before reaching an integer solution and the number of times x∗ violates one
or more generated cuts.

This algorithm gives also information on the strength of the generated cuts, as the number
of variables set during a dive is the length of a possible path of the enumeration tree of
a branch-and-cut algorithm. The randomization makes the estimation independent of the
particular branching variable choice used in a branch-and-cut code, focusing more on the
strength of the generated cuts themselves. It should be clear that, in this paper, the meaning
of the term “strength” for a cut generator relates to the size of the enumeration tree of a
branch-and-cut algorithm using the generator. There are other pertinent measures of strength
of families of cuts, each with its own purpose.

Note that the diving algorithm can be applied using any feasible solution in place of x∗.
As an illustration of strength comparison, consider Table 2 with the average results for this
diving algorithm for the same generators and instances as in Table 1.

One can note that the ranking of the algorithms based on their average performances in
tables 1 and 2 are quite similar. For Table 2, the best-to-worse ranking is G, GN, G2P4, G2P5,
RSP5, RSP4. This ranking is obtained from the ranking of Table 1 by swapping G with GN and
G2P4 with G2P5. However, a major difference between the two tables is that statistical tests
(see Section 4.2 for details) based on the results of the diving experiments show that, with
a 95% confidence level, G and GN are better than G2P4 which is better than G2P5 which is
better than RSP4 and RSP5. Only the ranking between G and GN and between RSP4 and RSP5
can not be determined with that confidence level.

The paper is organized as follows. Section 2 describes in detail the proposed method for
testing a cut generator. This method, random diving towards a feasible solution, requires
the knowledge of a feasible solution of the instance, where the feasibility requirement is much
stricter than the commonly used “not violating too much any constraint”. This requirement
is quite difficult to meet for many usual benchmark MILP instances. Section 3 describes how
benchmark instances were altered to obtain the instances and 0-feasible solutions used in
the application example of Section 4. This application example tests eight Gomory cut gen-
erators and six Reduce-and-Split generators. First, these fourteen generators are compared
for accuracy in Section 4.1 and six of them are deemed having similar accuracy. These six
generators are then compared for strength in Section 4.2. Conclusions are given in Section 5.

An extended abstract of this paper appeared in [24].

6

2 Random diving towards 0-feasible solutions

Consider the instance I of an MILP instance:

min c · x+ d · y
s.t. A · x+B · y ≥ b

x ∈ Rn1

y ∈ Zn2 ,

(1)

where c ∈ Qn1 , d ∈ Qn2 , b ∈ Qm, A is an m × n1 rational matrix, and B is an m × n2

rational matrix. Let (xI , yI) be a solution of I and let ε ≥ 0. The solution is ε-integer if each
entry in yI is within ε of an integer value. The solution is ε-feasible if it is ε-integer and the
absolute violation of any of the constraints A · xI +B · yI ≥ b is at most ε.

It is quite difficult to find how often a cut generator for MILP generates invalid cuts. We
suggest to estimate this by generating a set S of feasible solutions and testing how often one of
them is cut. In order to have a valid test, it is necessary that the solutions in S are 0-feasible
solutions, as any solution that is not ε-feasible for some ε > 0 might correctly be cut by a
generated cut. This is more than a minor problem, as MILP solvers return slightly infeasible
solutions on most instances. Even worse, it is usually impossible to set the required precision
on the solution returned by the solver. Most of them have options for setting feasibility
tolerance and integer tolerance of the solution, but due to numerical inaccuracies in the
LP solver or in the cut generation, pruning, fixing of variables or other, getting 0-feasible
solutions is virtually impossible. The way we generate instances with 0-feasible solutions is
described in the next section.

In this section, just assume that we have a 0-feasible solution (xI , yI) of an instance I of
(1). Assume that we want to test the accuracy of a cut generator. We can dive towards the
solution, while using the cut generator, and record if the solution is still ε-feasible or not for
some value of ε (we use ε = 10−6 in the tests). More precisely:

Algorithm 1: Diving towards a 0-feasible solution.

1. Start with the LP relaxation of I; flag := 0.

2. Repeat

2.1 Repeat k times

2.1.1. Generate and apply cuts.
2.1.2. Resolve the LP.
2.1.3. If the LP is infeasible then flag := 2 and stop.
2.1.4. Otherwise, let (x̄, ȳ) be the optimal LP solution.

2.2. If (xI , yI) is not ε-feasible then flag := 1 and continue.

2.3. If (x̄, ȳ) is ε-integer then stop.

2.4. Otherwise select randomly an index j with ȳj fractional.

2.5. Set yj := yI
j in the LP.

2.6. If a time limit is reached then flag := 3 and stop.

7

The algorithm either terminates with flag = 0, meaning that the LP relaxation has an
ε-integer feasible optimal solution and (xI , yI) is still ε-feasible, or it raises one of three types
of failures indicated by the value of flag:

• flag = 1: (xI , yI) is no longer ε-feasible, but another ε-integer feasible solution is
reached.

• flag = 2: The LP relaxation is infeasible.

• flag = 3: The time limit is reached.

Terminating with flag = 1 or flag = 2 is annoying, but reaching flag = 1 is less severe
than reaching flag = 2, as a slight alteration of the values of the continuous variables xI

might restore ε-feasibility. Note also that reaching flag = 2 implies that (xI , yI) is infeasible,
i.e., that flag = 1 is implicitly raised too. Terminating with flag = 3 is not an indication
that invalid cuts have been generated, but this is an indication that the time spent for solving
the LP or for generating the cuts is unusually high, or that the random branching choices
have been unlucky. The former case indicates some problems with the generator, although
no precision problem. A study of the average time per iteration of the algorithm could easily
distinguish between the two cases. Alternatively, one could consider reaching flag = 3 a
serious failure if the time limit is large enough.

Notice that it is possible that the algorithm terminates in step 2.3 with a solution (x̄, ȳ)
that is ε-integer but not ε-feasible. It could also happen that the algorithm stops in step
2.1.3, reporting incorrectly that the LP is infeasible due to a similar lack of precision in
the LP solver. However, both cases seems quite unlikely to happen, in particular if some
control on the numerical stability of the instance and of the generated cuts are used (this is
addressed in the next section). Note that these problems could be avoided by using an exact
LP solver such as QSopt ex [5], Lpex [12], or perPlex [20]. However, if the cut generator is
intended to be used with a non-exact LP solver, an investigation of the joint reliability of the
cut generator and LP solver is more relevant than an investigation of the reliability of a cut
generator coupled with an exact LP solver.

It is debatable what should be reported in the case where the time limit is reached in
step 2.6 with flag = 1 already set. Maybe reporting that both flag values 1 and 3 were
raised would be better. This has virtually no impact for the results reported in this paper,
as the case occurred only a couple of time for five of the generators, and all these occurred
on a single instance creating numerous numerical failures for these generators. This instance
(bienst1 c) and related numerical issues are discussed in Section 4.1.

The above scheme has several interesting features: First, the randomization in step 2.4
allows for statistical testing. From one instance with a few hundred of integer variables,
one can generate many observations. It is also possible to make statistics on the number
of variables set to integer values in step 2.4 before reaching an integer solution (this allows
for an estimation of the strength of the generated cuts), cut generation time, LP resolve
time, evolution of the lower bound, and, of course, the failure types. Observe also that, in
opposition to the experiments tracking only the gap closed at the root, some information is
derived from instances that either have a zero gap (such as enigma) or for which the cut
generator fails to reduce the gap at the root (such as stein27 and stein45).

8

On the other hand, we do not get information on the effect of the cuts on any deterministic
branching choice, or on the size of the enumeration tree obtained by a branch-and-cut code.
This test is devised to test the accuracy of the cuts, not to predict the power of a cut
generation strategy in a branch-and-cut algorithm. In a branch-and-cut algorithm, many
parameters interfere with each other, such as cutting strategy and branching strategy. It is
then difficult to assign praise or blame on either cutting or branching strategy independently
of the other. This test is focused on cut generators alone and its goal is to obtain information
about how to rank and improve performances of various cut generators. Note, however, that
it is conceivable that some information about the effect of a cut generator on the size of the
enumeration tree could be obtained by modifying Algorithm 1 in order to explore a restricted
enumeration tree “centered” around the feasible solution, in a way similar to the restricted
enumeration performed in the MILP heuristic local branching [13] and variants [11].

The underlying contention advanced in this paper is that a fair comparison of strength of
cut generators has to take into account the respective accuracy of the generators. One can
try to describe Pareto-optimal cut generators with respect to strength and accuracy, or, as
pursued in this paper, try to set the parameters of the generators in order to get a similar
accuracy and then compare these generators with respect to strength.

Note also that a test similar to Algorithm 1 could be devised for other parts of a branch-
and-cut algorithm, such as preprocessing and variable fixing, but this seems to require that
the 0-feasible solution then used is the unique optimal solution of the MILP. This requirement
can be lifted only if the modifications made to the instance are valid for all feasible solutions
(or, at least the solution at hand). For example, fixing integer variables based on reduced
cost fixing or based on the result of strong branching computations might correctly exclude
some feasible solutions. Valid column aggregation or variable fixing can even exclude some
optimal solutions.

Note that Algorithm 1 could also be used to test the accuracy of an LP solver, putting
more stress on it than in tests only on the instance I as done in [5, 12, 20]. As mentioned
in [34], ill-conditioning is likely to arise in the LP relaxation of subproblems created by
branch-and-cut.

3 Generation of 0-feasible solutions

As mentioned in the previous section, Algorithm 1 requires diving towards a 0-feasible so-
lution. However, generating such a solution is quite challenging for many MILP benchmark
instances. This section explains what was done to construct the benchmark instances and
0-feasible solutions used in this paper. A reader not interested in these details can skip this
section. The only information relevant for the remainder of the paper is that instances are
constructed from usual benchmark instances by reducing the number of significant digits in
coefficients and right-hand side entries and by possibly enlarging slightly the feasible region.
The instance names and number of 0-feasible solutions obtained are listed in Figure 1.

Let us first explain the goals pursued. The first objective is to limit accuracy problems
created by the initial formulation. The second one is getting instances for which generating 0-
feasible solutions is not too difficult. Finally, we would like to have instances whose structure
is similar to classic benchmark instances. We thus chose to start with instances from MIPLIB3

9

[7] and from a collection called MITT put together by Mittelmann [31], selecting (and altering
slightly) some of the instances, as described below.

Define the dynamism of an instance as the largest ratio between the smallest and largest
absolute values of coefficients in a constraint. Some instances from MIPLIB3 such as arki001
has dynamism as high as 1.3·1010. Basic numerical analysis [37] can easily convince the reader
that the likelihood of inaccurate rounding errors with severe consequences when solving this
instance is quite high. This is not to say that this instance is useless. It might be quite
interesting to test the accuracy of an LP solver, or to test the robustness of a branch-and-cut
code. It is just inappropriate for testing the accuracy of a cut generator, in our opinion.

The MIPLIB instances selected for inclusion in the benchmark were the thirty six instances
from MIPLIB3 that are not in MIPLIB2003 [1], except three: air03, mod010, and swath. The
first one is excluded since it is solved at the root by most cutting plane algorithms, the second
one since very few cuts are generated (in most runs not a single cut is produced) and the
third one since the three instances swath1, swath2, and swath3 from MITT are relaxations of
swath. In total, we thus have thirty three MIPLIB3 instances and 10 MITT instances.

Note that this selection of instances is quite arbitrary. As the results of this paper show,
the conclusions on the strength and precision of cut generators depend on the test instances.
If an actual test of generators is performed, it is thus important to select appropriately the
test instances to reflect the types of instances the code will face in the future. Since the
results in this paper are only for illustration purposes, not much effort was made in this
selection. Note that rounded instances and 0-feasible solutions for all the MIPLIB3 instances
are available from [25], as well as code for producing them for any other instance.

These forty three instances are then modified in order to obtain instances for which 0-
feasible solutions can be constructed. The modifications are of two types. First, all coefficients
and right-hand sides are replaced by their respective d-digits rounding, i.e., the closest number
represented with a mantissa with up to d digits and multiplied by an integer power of ten.
In addition, a d-digits rounding of a value v with 0 < v < 10−d (resp. −10−d < v < 0) can
only be 0 or or 10−d (resp. −10−d or 0). All entries of the 0-feasible solution sought should
also be d-digits roundings. These rounding operations might give an infeasible instance, in
particular for instances with several equality constraints. To restore feasibility and to be able
to generate 0-feasible solutions (with d significant digits), the right-hand sides are modified,
enlarging slightly the feasible region. We could use an exact-arithmetic MILP solver such
as QSopt ex [5] to solve the modified instances. However, it is not guaranteed that a d-
digits rounding of the solution obtained by QSopt ex would be 0-feasible. Also, large MILP
instances that are part of usual benchmark instances can not be solved in a reasonable amount
of time in exact arithmetic with current codes.

Let a d-digits rounding of a solution (x, y) of (1) be obtained by a d-digits rounding of
each xj , and by rounding each yj to the closest integer having at most d significant digits.

While it is debatable if rounding the coefficients in the instance truly makes the instance
more stable numerically or not, the fact that we also use 0-feasible solutions that are rounded
to d digits is likely to force the solution slightly in the interior of the feasible region, making
it less likely to be cut due to numerical errors. Of course, this makes the generation of these
solutions more difficult.

Note that it is almost impossible to modify these instances in order to get no rounding
errors affecting the results. The most commonly used representation of a double number

10

uses 8 bytes and has roughly 16 digits of precision and thus a rounding unit εM ≈ 10−16. The
relative error on computing a sum z1 + . . . + zn is less than κ · εM where κ is the condition
number of the sum, defined as:

κ =
|z1|+ . . .+ |zn|
|z1 + . . .+ zn|

.

This gives, of course, an upper bound on the error, and the actual error is usually smaller.
Nevertheless, it is no surprise that making sums with large positive and negative numbers
can lead to major loss of precision in the computation. Note also that most instances have
variables with no upper bounds, implying that, potentially, having very large absolute values
in a sum is possible. In addition, some cut generators (such as Gomory cut generators, see
Section 4 for details) generate cuts with right-hand side between 0 and 1, but with coefficients
on the left-hand side that might be large. Computing the violation of a solution that violates
the cut only slightly is then exactly the type of computation that might suffer from severe
loss of precision. Nevertheless, limiting the number of significant digits in the instances and
0-feasible solutions might help to reduce the likelihood of damaging rounding errors.

Indeed, observe that the product of any two numbers having mantissas with 6 decimal
digits has a mantissa of at most 12 decimal digits and can thus be computed with no error
assuming that no overflow for the exponent occurs, something we can safely assume for the
instances at hand. To compute exactly the left-hand side of an inequality a · x ≤ b where
both the coefficient vector a and the solution x have 6 significant digits, the number of digits
required can be bounded by

d̄ =

⌈
log10

(
max

{∑n
i=1 (ai · xi)

+ , −
∑n

i=1 (ai · xi)
−}

10−6 · t

)⌉
, (2)

where (ai · xi)+ = max(0, ai · xi), (ai · xi)− = min(0, ai · xi), and t = min{|ai · xi| : |ai · xi| >
0, i = 1, . . . , n}. Indeed, the numerator (resp. denominator) of the fraction is an upper
bound (resp. lower bound) on the absolute value of the largest number (resp. smallest
nonzero number) that can occur during the computation of the sum. It turns out that for
the instances and solutions used in the experiments, we have d̄ ≤ 16. This guarantees that
feasibility of the solutions produced for the modified instances can be checked accurately
without having to rely on exact arithmetic packages. Note that, however, when checking
ε-feasibility of (xI , yI) with respect to the generated cuts in Algorithm 1, it could happen
that numerical errors in the computations induce a wrong answer. As equation (2) indicates,
the probability of this occurring can be reduced by lowering the dynamism of the generated
cuts.

The algorithm used to adjust the coefficients of an instance I and generate a 0-feasible
solution with a value close to the original optimal value is Algorithm 2.

If the algorithm reaches step 6, then (x̄, ȳ) is a 0-feasible solution for Ī. However, we do
not claim that (x̄, ȳ) is an optimal solution for Ī.

Note that in step 5.5, when computing a new upper (resp. lower) bound on a constraint,
the d-digits rounding is obtained by rounding up (resp. down). When dealing with an equality
in step 5.5, the equality is first transformed to a ranged constraint and then either the lower
or upper bound (as appropriate) is modified. On the other hand, when initially rounding the

11

right-hand side of an equality in step 4, the equality is not modified to a ranged constraint.
As a result, the initial rounded instance might be infeasible or unbounded and modifications
in step 5.5 always enlarge the feasible set of the instance.

Algorithm 2: Modifying an MILP formulation and solution.

1. Let d be the maximum number of significant digits to use.

2. Solve I with an MILP solver, setting parameters on the precision of the solution to
the highest possible level. Let (x′, y′) be the solution.

3. Let (x̄, ȳ) be a d-digits rounding of (x′, y′).

4. Let Ī be the instance obtained by replacing every entry in I by a d-digit rounding of
the entry.

5. Repeat up to k times

5.1. Let ĪF be the linear program obtained by fixing y = ȳ in Ī.

5.2. If ĪF is infeasible, go to step 5.5. If it is unbounded, stop with a failure.

5.3. Let (x̄, ȳ) be a d-digit rounding of the optimal solution of ĪF .

5.4. If (x̄, ȳ) is 0-feasible for Ī then go to step 6.

5.5. Replace the right-hand side value for all violated constraints in Ī by a d-digits
rounding of the left-hand side value obtained for (x̄, ȳ).

5.6. Let δ be the maximum absolute change of any right-hand side entry in step 5.5
and let ∆ the relative change in objective function value for the last two solutions
(x̄, ȳ). If δ < 10−d and ∆ < 10−d then go to step 6.

6. Write Ī, (x̄, ȳ) and stop.

The stopping criterion in step 5.6 is useful on a couple of instances of MIPLIB3 namely
qnet1 and qnet1 o, and on several MITT C instances (bc1,bienst1,seymour,swath1,swath2,
and swath3). Without this condition, the algorithm never stops before hitting the maximum
iteration number.

If the algorithm performs k iterations of step 5 without finding a 0-feasible solution, the
current solution and instance are written out. This happened a few times on the selected
instances (dsbmip, gesa3, gesa3 o, and misc06, neos2, neos3). The algorithm had a single
failure, on instance rentacar. In this case, the initial LP becomes infeasible when coefficients
are rounded to 6 significant digits2. Note that this instance has a dynamism larger than 1010

and should probably have been discarded on that basis alone. Another MIPLIB3 instance,
dsbmip, creates difficulties as it contains several hundred of free rows and several variables
appearing only in these rows. Once these rows and variables are removed, the algorithm runs
successfully.

2The failure was traced to the fact that this instance has a number of rows that have no nonzero left-hand
side coefficients, a case that was not handled properly with the original implementation.

12

To generate more than one 0-feasible solution for an instance Ī, we try to obtain a
diversified set of 0-feasible solutions that are within 10% of the value obtained by the 0-
feasible solution (x̄, ȳ) of Algorithm 2. This is achieved using a simple branch-and-bound
algorithm on instance Ī with a customized selection rule for the next node to be processed
and an upper bound 10% higher than the optimal value of the solution (x̄, ȳ). (This upper
bound is not changed during the course of the algorithm, as any solution within 10% of the
value of (x̄, ȳ) is potentially interesting.) At node a, let `a(yi) and ua(yi) be the lower and
upper bounds on variable yi for i = 1, . . . , n2. The distance of a to (x̄, ȳ) is defined as

n2∑
i=1

{max(0, `a(yi)− ȳi) + max(0, ȳi − ua(yi))}

This value is positive only if (x̄, ȳ) is not feasible at node a. The branch-and-bound
algorithm always dives from the current node, picking the son with largest distance to (x̄, ȳ).
A time limit of 10 minutes on this diving algorithm is set and we hope to generate 10 alternate
solutions. All feasible solutions found are recorded. Then, each of them is rounded as in steps
5.1 and 5.3 of Algorithm 2. If the resulting solution is 0-feasible for Ī, it is saved and discarded
otherwise.

The instances and solutions used in this paper are obtained using Algorithm 2 with d = 6
and k = 10. They are available from [25]. The names of the modified instances are the
original names with a “ c” appended. Note that for instances bienst1 c and swath3 c, we
are unable to generate additional 0-feasible solutions using d = 6. The additional solutions
generated have d = 8 for bienst1 c and d = 7 for swath3 c. The initial solutions used
as input to Algorithm 2 are obtained using Cplex 10.1 [18], but Clp 1.3 (available from
COIN-OR [9]) is the LP solver used in Algorithm 2. The diving algorithm is coded on top of
the generic branch-and-cut-and-price software BCP (version stable/1.0) [9, 23] with Clp as
LP solver.

The number of solutions generated and the instances considered are listed in Figure 1.
This gives 275 solutions for the thirty two MIPLIB3 C instances and 81 solutions for ten MITT C
instances.

4 Application example

As an example of application of Algorithm 1, tests on variants of four cut generators are
reported. Note that the purpose of this section is to illustrate the type of analysis that
can be done using the proposed method. The tested generators were hand picked without
extensive study and it is almost certain that none of the variants tested in this section is the
ideal generator. The four generators are:

1. CglGomory: The default Gomory cut generator of the Cut Generation Library (Cgl) of
COIN-OR [9]. This generator is denoted by G in the remainder.

2. CglGomory nogcd: CglGomory removes some of the generated cuts based on the re-
sult of a greatest common divisor computation for coefficients of the integer variables.
CglGomory nogcd skips this step. This generator is denoted by GN in the remainder.

13

Figure 1: MIPLIB3 C instances (left) and MITT C instances with number of 0-feasible solutions.

name #sol. name #sol.
bell3a c 12 l152lav c 14
bell4 c 11 lseu c 13
bell5 c 11 misc03 c 16
blend2 c 10 misc06 c 1
dcmulti c 12 mitre c 11
dsbmip c 1 mod008 c 25
egout c 1 p0033 c 11
enigma c 1 p0201 c 15
fixnet3 c 11 p0282 c 1
fixnet4 c 1 p0548 c 11
flugpl c 10 qnet1 c 1
gen c 13 qnet1 o c 1
gesa3 c 1 rgn c 1
gesa3 o c 1 stein27 c 12
gt2 c 19 stein45 c 14
khb05250 c 12 vpm1 c 1

name #sol.
bc1 c 1
bienst1 c 13
ip c 6
mas284 c 26
neos2 c 4
neos3 c 1
prod1 c 11
swath1 c 9
swath2 c 4
swath3 c 6

3. CglGomoryTwo: A Gomory cut generator written by the author that has many pa-
rameters. This generator uses optimal tableau information provided by the LP solver
whereas G and GN recompute the optimal tableau from the optimal basis information.
This generator is denoted by G2 in the remainder.

4. CglRedSplit: The default Reduce-and-Split [4] cut generator of Cgl. This generator
uses optimal tableau information provided by the LP solver, similarly to G2. This
generator is denoted by RS in the remainder.

All these generators are based on the mixed-integer Gomory cut (MIG) formula, RS having
a heuristic way to generate linear combinations of the rows of the optimal Simplex tableau
before using the MIG formula. This formula is usually applied to one row of the optimal
tableau whose basic variable is integer. For example, assume that {yj |j ∈ M} are integer
variables and that {xj |j ∈ N} are continuous nonnegative variables, a row of the optimal
tableau having yi as basic variable might be:

yi +
∑

j∈M\i

āijyj +
∑
j∈N

āijxj = āi0 . (3)

Define

fj = āij − bāijc for all j ∈M ∪N ∪ {0} . (4)

Then if f0 > 0, the MIG cut is:∑
fj≤f0

fjyj +
∑

fj>f0

f0(1− fj)
1− f0

yj +
∑

āij>0

āijxj −
∑

āij<0

f0

1− f0
āijxj ≥ f0 . (5)

14

As mentioned in the previous section, applying this formula blindly to generate cuts is
likely to generate some invalid cuts. This is why all the generators listed above have ways
to prevent the generation of invalid cuts as well as for discarding small coefficients in a cut.
(Ways to generate Gomory cuts in finite precision arithmetic that are valid if validity is tested
with infinite precision arithmetic are given in [34] when all variables are bounded, and in [10]
in general; however, it is not clear how “safe” these cuts are when used in finite precision
arithmetic.) Generators G2 and RS are fully parametrized, making it easy to use them with
different values of the parameters. Generators G and GN on the other hand have hard-coded
constants requiring modification of the code to experiment with different settings. This is
the reason behind the use of the G2 generator for varying values of the parameters instead of
the G generator for the experiments.

The parameters that are modified in the experiments and their default values (in G2 and
RS) are:

• LUB = 104: If the absolute value of the upper bound on a variable is larger than that,
it is considered large.

• EPS COEFF = 10−5: Any cut coefficient smaller than that for a variable that does not
have a large upper bound is replaced by zero.

• EPS COEFF LUB = 10−13: Similar to EPS COEFF for variables having a large upper bound.

• MAXDYN = 108: A cut is discarded if none of the variables with nonzero coefficient have
a large upper bound and its dynamism is larger that this value.

• MAXDYN LUB = 1013: Similar to MAXDYN, but for cuts where some of the variables with
nonzero coefficients have a large upper bound.

• AWAY = 0.05: Lower bound on the absolute value of min{f0, 1 − f0} (refer to (4) for
the definition of f0).

• MINVIOL = 10−7: If the violation of the cut by the current optimal solution of the LP
relaxation is lower than this number, the cut is discarded.

In addition to the default settings above, five variants of G2 and RS are tested. All variants
are more restrictive than the default generator and should generate fewer and “safer” cuts.
Variants are labeled G2P1 through G2P5 and RSP1 through RSP5 with parameters set as in
the default setting except the following: P1 has MINVIOL = 10−4, P2 has MINVIOL = 10−2,
P3 has AWAY = 0.08, P4 has MAXDYN = 104 and MAXDYN LUB = 108, and P5 has MAXDYN = 106

and MAXDYN LUB = 1010.
All generators are set so that there is no limit on the number of cuts they generate and a

limit of 1,000 for the number of nonzero entries in a cut. The latter is obtained by setting the
limit parameter of the generators to min{n+ 1, 1001} where n is the number of variables in
the instance. All results are obtained using k = 10 in Algorithm 1.

Before discussing the results, let us make it clear that these choices of ten rounds of cutting
and up to 1,000 non zeroes entries in a cut are intended to put stress on the generators and
LP solver. Using 10 rounds of cutting after each fixing of a variable is also probably not

15

the optimal setting for using these generators in a branch-and-cut code. Nevertheless, the
comparison across the fourteen variants considered is a fair one.

The machine used for the test is a 64 bits Monarch Empro 4-Way Tower Server with
four AMD Opteron 852 processors, each with eight DDR-400 SDRAM of 2 GB and running
Linux Fedora 7. The compiler is g++ version 4.1.2 20070502 (Red Hat 4.1.2-12).

The LP solver used is Clp (stable version 1.3) without lapack and blas libraries. The
generators G, GN and RS are from Cgl (stable version 0.5). Both Clp and Cgl are available
from COIN-OR [9].

4.1 Comparing accuracy

The goal of this section is to compare the accuracy of the fourteen generators. We first
compare the eight Gomory cut generators on the MIPLIB3 C instances. We use Algorithm 1
with k = 10, a time limit of 10 minutes for each dive, and 20 trials for each 0-feasible solution
as listed in Figure 1.

In total, each cut generator is tested by 5,500 trials on the MIPLIB3 C instances and 1,620
trials on the MITT C instances.

Table 3: Gomory cut generators comparison on MIPLIB3 C instances.

Flag
name 0 1 2 3
G 5,332 1 6 161
GN 5,319 3 5 173
G2 5,315 0 39 146
G2P1 5,359 0 38 103
G2P2 5,390 0 26 84
G2P3 5,440 0 23 37
G2P4 5,473 0 11 16
G2P5 5,456 0 10 34

Table 3 reports the value of flag at the end of Algorithm 1 for the eight variants of
Gomory cut generators. In term of success (i.e. flag = 0), the winner is G2P4. For failures
of types 1 or 2 (the most critical ones) both G and GN perform best, but the number of trials
they are unable to complete within the time limit (10 minutes cpu) is much larger. There is
an obvious difference in the failure patterns for these algorithms. A partition of them into
the four pairs {G, GN}, {G2, G2P1}, {G2P2, G2P3}, and {G2P4, G2P5} seems a fair grouping.
In term of failure 1 and 2, pairs {G, GN}, and {G2P4, G2P5} are similar, but the latter solve
many more instances within the time limit.

The detailed breakdown of trials ending with flag > 0 for the eight generators is given
in Table 4.

From Table 4, results regarding failures of types 1 and 2 on three instances are worth
pointing out: First, dcmulti c creates problems for four out of six variants of G2. This
instance has 548 variables, 75 of them binary, 290 constraints with a maximum absolute

16

Table 4: Distribution of failures for the Gomory cut generators on the MIPLIB3 C instances.

G GN G2 G2P1 G2P2 G2P3 G2P4 G2P5

name trials 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
bell4 c 220 - 1 - - 1 - 7 - 7 - 4 - 2 - - - - -
bell5 c 220 - - - - - - 12 - 12 - 7 - 13 - - - 1 -
dcmulti c 240 - - 14 - - 26 7 66 6 58 9 66 5 37 - 16 - 25
dsbmip c 20 - - - - - - - - - - 1 1 - - - - - -
fixnet4 c 20 - - 4 - - 3 - 2 - 1 - 1 - - - - - -
gen c 260 - - - - - - 1 - 1 - 1 - - - - - - -
gt2 c 380 - 2 - - 4 - 9 - 9 - 3 - 2 - 8 - 9 -
misc03 c 320 - - - - - - - - - - - - 1 - 1 - - -
mitre c 220 - 3 - - - - 1 - 1 - 1 - - - - - - -
p0033 c 220 - - - 1 - - - - - - - - - - - - - -
p0201 c 300 - - 2 - - - 2 - 2 - - - - - 2 - - -
p0282 c 20 - - - - - 1 - - - - - - - - - - - -
p0548 c 220 1 - 141 1 - 143 - 78 - 44 - 16 - - - - - 9
stein27 c 240 - - - 1 - - - - - - - - - - - - - -

value of 265 for right-hand side, dynamism of 600, and a maximum absolute value of 500 for
the entries of the 0-feasible solutions used. None of this is particularly alarming. It seems
thus likely that the collection of cuts added by the generators is the culprit for the failures.
An even more surprising situation is obtained with the instance gt2 c. This instance has 188
variables, 24 of them binary, 29 constraints with a maximum absolute value for right-hand
side of about 6,600, all variables bounds at most 15 in absolute value, dynamism of 152,
and a maximum absolute value of 9 for the entries of the 0-feasible solutions used. Yet, all
generators fail at least twice on this instance. The instance mitre c creates difficulties for
some of the generators. It is a little bit larger (more than 10,000 variables), but all variables
are binary and its dynamism, 1.63, is quite low. Finally, let us point out two extremely
surprising failures for GN on p0033 c (33 variables, all binary) and stein27 c (27 variables,
all binary, and with a binary constraint matrix).

Table 5: Reduce-and-Split cut generators comparison on MIPLIB3 C instances.

Flag
name 0 1 2 3
RS 5,359 1 40 100
RSP1 5,362 1 32 105
RSP2 5,372 1 27 100
RSP3 5,430 3 20 47
RSP4 5,478 0 4 18
RSP5 5,428 1 4 67

Let us now turn to the six variants of the RS generator. Table 5 shows that the variants
RSP4 and RSP5 are clearly safer than the others. However, most of the failures of types 1 or 2
occur on a single instance, dcmulti c. Overall the results are similar to the results obtained
by the six corresponding variants of the G2 generator discussed above, except for instance
dcmulti c and instance gt2 c. The first one is handled better by the variants of the G2
generator and the second one by the variants of the RS generator. Note also here the failure

17

Table 6: Distribution of failures for the Reduce-and-Split cut generators on the MIPLIB3 C
instances.

RS RSP1 RSP2 RSP3 RSP4 RSP5

name trials 1 2 3 1 2 3 1 2 3 1 2 3 2 3 1 2 3
bell4 c 220 - 12 - - 12 - - 6 - - 4 - - - - 1 -
bell5 c 220 - 1 - - 1 - - 1 - - 1 - - - - - -
dcmulti c 240 - 23 100 - 15 105 - 17 100 - 8 47 4 18 - - 67
dsbmip c 20 - 1 - - 1 - - - - - - - 2 - - - -
gt2 c 380 1 - - 1 - - 1 - - - - - - - 1 - -
mitre c 220 - 3 - - 3 - - 3 - 1 1 - - - - 2 -
misc03 c 320 - - - - - - - - - - 1 - - - - 1 -
p0201 c 300 - - - - - - - - - 1 3 - - - - - -
stein27 c 240 - - - - - - - - - 1 - - - - - - -

of RSP3 on stein27 c.
For the MITT C instances, the global comparison for the Gomory cut generators is given in

Table 7. The raw numbers indicate a superior performance for the G and GN generators, with
only G2P4 coming close. However, a closer look at the repartition of the failures of types 1 and
2 listed in Table 8 shows that, for the variants of the G2 generator, most of the failures occur
on bienst1 c. Removing this instance makes G2P4 and G2P5 comparable to G and GN. What
happens on bienst1 c for most of the failures is that after adding valid cuts (keeping the
0-feasible solution under consideration ε-feasible for the LP) and resolving, one of the rows
of the optimal tableau returned by the solver is not satisfied within ε = 10−6. The G and GN
generators do not suffer this type of failures, as they recompute the optimal tableau from the
basis information. In other words, a lack of precision in the solver optimal tableau causes the
failures. Solving this instance with the variants of the G2 generator on a different machine
(32-bits, with lapack and blas available to the solver) results in no failures of type 2. The
bienst1 c instance has 505 variables, 28 of them binary, 576 constraints with a maximum
absolute value of 15 for right-hand side, dynamism of 81, and a maximum absolute value of
51 for the entries of the 0-feasible solutions used.

Let us also mention that this lack of precision in the optimal tableau information the LP
solver provides is not a particular weakness of Clp. In preliminary tests, we also tested a
commercial solver and this type of failure was much more common than with Clp, at least
when the LP solver is interfaced using the Open Solver Interface (Osi) of COIN-OR.

A second instance, swath1 c, creates some problems for all solvers. The source of the
problem here is not apparent: This instance has 6,805 variables, 2,306 of them binary, 884
constraints with a maximum absolute value of about 19 for right-hand side, dynamism of
1,100, and a maximum absolute value of 404 for the entries of the 0-feasible solutions used.
Note also that the six failures occurring for each algorithm never occur for the same 0-feasible
solution. (This observation holds for all instances and all failures of types 1 or 2: when many
failures occur, they are spread out over several solutions.) All algorithms have trouble with
the same solutions, G and GN failing once on solution 2 and four times on solution 4, G2P3
failing twice on solutions 1 and 2 and four times on solution 4, all the other generators failing
twice on solutions 1, 2, and 4.

Let us now turn to the six variants of the RS generator. Table 9 shows that the variants
RSP4 and RSP5 are clearly safer than the others. However, most of the failures of type 2
occur on bienst1 c for reasons explained above. Overall the results are similar to the results

18

Table 7: Gomory cut generators comparison on MITT C instances.

Flag
name 0 1 2 3
G 1,135 5 0 480
GN 1,077 5 1 537
G2 1,058 11 185 366
G2P1 1,060 9 158 393
G2P2 1,062 11 183 364
G2P3 1,052 9 117 442
G2P4 1,260 11 72 277
G2P5 1,089 6 25 500

Table 8: Distribution of failures for the Gomory cut generators on the MITT C instances.

G GN G2 G2P1
name trials 1 2 3 1 2 3 1 2 3 1 2 3
bienst1 c 260 - - 238 - - 256 5 181 74 3 155 102
ip c 120 - - - - - - - 2 - - 2 -
neos2 c 80 - - 55 - 1 76 - 2 70 - 1 75
neos3 c 20 - - 20 - - 20 - - 20 - - 19
prod1 c 220 - - 167 - - 185 - - 202 - - 197
swath1 c 180 5 - - 5 - - 6 - - 6 - -

G2P2 G2P3 G2P4 G2P5
name trials 1 2 3 1 2 3 1 2 3 1 2 3
bienst1 c 260 5 181 74 1 116 143 5 72 130 - 24 221
ip c 120 - 2 - - 1 - - - - - 1 -
neos2 c 80 - - 70 - - 74 - - 79 - - 70
neos3 c 20 - - 16 - - 19 - - 20 - - 19
prod1 c 220 - - 204 - - 206 - - 48 - - 190
swath1 c 180 6 - - 8 - - 6 - - 6 - -

obtained by the six corresponding variants of the G2 generator.
Let us denote by MITT C NOB the collection of MITT C instances minus the instance bienst1 c.

Table 11 aggregates the results of the G, GN, G2P4, G2P5, RSP4 and RSP5 generators on the
union of the MIPLIB3 C and MITT C NOB instances. It support the claim that the six listed
generators have more or less the same accuracy after excluding the instance bienst1 c. The
other generators fail significantly more frequently. Note that statistical tests (such as the
non-parametric Wilcoxon signed-rank test [8, 36]) could also be applied to confirm that the
six selected generators have similar failure rates, but this seems unnecessary if one consider
only failures with flag = 1 and flag = 2. The case of experiments ending with flag = 3

19

Table 9: Reduce-and-Split cut generators comparison on MITT C instances.

Flag
name 0 1 2 3
RS 1,135 8 67 410
RSP1 1,130 8 56 426
RSP2 1,123 8 64 425
RSP3 1,174 9 79 358
RSP4 1,360 9 4 247
RSP5 1,135 8 12 465

Table 10: Distribution of failures for the Reduce-and-Split cut generators on the MITT C
instances.

RS RSP1 RSP2 RSP3 RSP4 RSP5
name trials 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
bienst1 c 260 - 64 195 - 51 209 - 58 202 - 77 183 1 4 237 - 11 241
ip c 120 - 2 - - 2 - - 2 - - - - - - - - - -
neos2 c 80 - 1 6 - 2 6 - 3 4 - 1 2 - - 7 - 1 13
neos3 c 20 - - 2 - 1 5 - 1 6 - 1 2 - - 3 - - 2
prod1 c 220 - - 207 - - 206 - - 213 - - 171 - - - - - 209
swath1 c 180 7 - - 7 - - 7 - - 8 - - 7 - - 7 - -
swath3 c 120 1 - - 1 - - 1 - - 1 - - 1 - - 1 - -

is more difficult to deal with, since they do not correspond to precision failures, but could
potentially lead to failures of type 1 or 2 if left running longer. In this paper, we simply
ignore them and treat the corresponding experiments as if they were missing. If a real test
of generators is done using the method, setting the time limit to a high enough value so that
very few experiments end with flag = 3 occur might be wise.

Table 11: Failures for six cut generators on the union of the MIPLIB3 C and MITT C NOB
instances.

Flag
name 0 1 2 3
G 6,445 6 6 403
GN 6,392 8 6 454
G2P4 6,680 6 11 163
G2P5 6,530 6 11 313
RSP4 6,820 8 4 28
RSP5 6,555 9 5 291

20

4.2 Comparing strength

While Algorithm 1 is designed to test the accuracy of a generator, it is possible to get
information about the strength of the generated cuts by performing statistical tests on the
number of variables set to integer values in step 2.4 in each trial. The statistical test commonly
used when comparing performances of two algorithms is a t-test. This is a test to decide if
the means of two normally distributed populations are equal. It provides an estimate of
the probability to obtain a result at least as extreme than the one observed, assuming that
the two populations have the same mean. The normality assumption can be relaxed when
the number of observations is large enough (typically, more than 20 observations) or non-
parametric tests (Wilcoxon test, for example) can be used. We refer the reader to [8, 36] for
a detailed discussion of alternative tests.

However, when comparing more than two algorithms, pairwise comparisons using t-tests
can lead to inaccurate and inconsistent results. To address this problem, other tests looking
at the whole set of algorithms at once are to be preferred. In this paper, we use Tukey’s
Honest Significant Differences test (THSD test). Both the t-test and THSD test are based on
Analysis of Variance (ANOVA). The purpose of ANOVA is to attribute the variation observed
in the response variable (in our case, the number of integer variables set to integer values
in step 2.4) to the different factors of the experiment (in our case, the cut generator, the
instance, and the solution used). We hope to see that a significant portion of the variation is
attributed to the algorithm, meaning that it is unlikely that all tested algorithms have similar
average strength. The output of a THSD test for k algorithms is a list of k(k−1)

2 confidence
intervals for the difference of the performances of each pair of algorithms and the assessed
probability to obtain the observed results if the algorithms have the same mean performance.

The statistical design used for our application is a two-way factorial design with three
factors: “algorithm” (denoted by f1 in the tables below, “instance” (f2), and “solution” (f3).
The factor “solution” is embedded in the factor “instance”, and the factor “algorithm” is
crossed with “instance/solution”. For each value of “algorithm”, “instance”, and “solution”,
we have 20 observations for the number of variables fixed to integer values. The observations
for runs that fail are removed. Hence, if none of the observations results in a failure, we have
a balanced design. Otherwise, assuming that only a low percentage of runs end with a failure,
the design is slightly unbalanced. This is supported by the tables listed in Section 4.1. Both
ANOVA and THSD might give misleading results with unbalanced designs, but can handle
slightly unbalanced designs. Moreover, we are mostly interested in the effect associated with
the factor f1 (i.e., the effect associated with using different algorithms), and the ANOVA
computations can be trusted for the main factor, even with unbalanced designs.

The results below are obtained using the statistical package R [35] version 2.7.2 (2008-08-
25). Based on the results of the previous section, the six algorithms G, GN, G2P4, G2P5, RSP4
and RSP5 are compared. Table 12 gives the ANOVA results. The row “f1” gives information
about the effect associated with the factor “algorithm”: the number of degree of freedom of
the F -statistics (“Df”), a measure of the variance in the results associated with f1 (“Sum
Sq”) and its average value (“Mean Sq”), the value of the F -statistics (“F value”), and the
probability to observe a value larger than the F value assuming that all algorithms have
the same average performance (“Pr(> F)”). A code appears next to that last value, with
“***” meaning that the value is lower than 0.001, allowing an easy identification of significant

21

factors. The other codes are listed below the table. The effect associated with a factor is
significant at the α level if the value in the last column is smaller than 1 − α. One can
see that the effect associated with the factor f1 (“algorithm”) is significant with more than
95% confidence. The row f2 can be interpreted similarly for the factor “instance”, the row
f2:f3 (resp. f1:f2, f1:f2:f3) is for the effect associated with a pair “instance/solution”
(resp. a pair “algorithm/instance”, a triple “algorithm/instance/solution”). Finally, the row
Residuals gives the variance left unexplained.

Table 12: ANOVA results for generators G, GN, G2P4, G2P5, RSP4 and RSP5 on the MIPLIB3 C
instances.

Df Sum Sq Mean Sq F value Pr(> F)
f1 5 202175 40435 1423.9016 < 2.2 · 10−16 ***
f2 31 26711291 861655 30342.8362 < 2.2 · 10−16 ***
f2:f3 243 317521 1307 46.0139 < 2.2 · 10−16 ***
f1:f2 155 494726 3192 112.3973 < 2.2 · 10−16 ***
f1:f2:f3 1215 40600 33 1.1767 2.589 · 10−5 ***
Residuals 30836 875659 28
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 13: THSD results for generators G, GN, G2P4, G2P5, RSP4 and RSP5 on the MIPLIB3 C
instances.

G GN G2P4 G2P5 RSP4 RSP5
G · · − − − −
GN · · − − − −
G2P4 + + · − − −
G2P5 + + + · − −
RSP4 + + + + · ·
RSP5 + + + + · ·

The results of the THSD test are given in Table 13. A “+” (resp. “−”) entry in row A
and column B means that algorithm A required more (resp. less) variables to be fixed than
algorithm B with a significance threshold of 95%. A (“.”) entry means that no conclusion
can be drawn from the results.

A total order can almost be derived from Table 13: G and GN have similar strengths, but
both are superior to G2P4 which is superior to G2P5 which is superior to RSP4 and RSP5, the
latter two having similar strengths.

The discussion in Section 4.2 shows that the algorithms have similar reliability on the
MITT C NOB instances. The comparison of strength below is thus made on these instances.
Tables 14 and 15 give these results.

22

Table 14: ANOVA results for generators G, GN, G2P4, G2P5, RSP4, and RSP5 on the MITT C NOB
instances.

Df Sum Sq Mean Sq F value Pr(> F)
f1 5 98988 19798 432.5540 < 2 · 10−16 ***
f2 8 1431133 178892 3908.5782 < 2 · 10−16 ***
f2:f3 59 13183 223 4.8817 < 2 · 10−16 ***
f1:f2 37 30777 832 18.1739 < 2 · 10−16 ***
f1:f2:f3 280 14211 51 1.1089 0.1070
Residuals 6546 299604 46
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 15: THSD results for generators G, GN, G2P4, G2P5, RSP4, and RSP5 on the MITT C NOB
instances.

G GN G2P4 G2P5 RSP4 RSP5
G · + − + − −
GN − · − · − −
G2P4 + + · + − ·
G2P5 − · − · − −
RSP4 + + + + · +
RSP5 + + · + − ·

Table 15 indicates that GN and G2P5 have similar strengths and are superior to G which
is superior to G2P4 and RSP5, these two having similar strengths and being superior to RSP5.

To illustrate the difference that the sample instances make, let us now look at the results
for the analysis on the union of the MIPLIB3 C instances and the MITT C NOB instances. These
are given in Tables 16 and 17. One can see that overall G and GN are comparable and superior
to G2P5, G2P4, RSP5, RSP4 in that order.

The conclusions reached on the strength of the generators depend on the sample instances,
as illustrated by the slightly different rankings obtained on the MIPLIB3 C, MITT C NOB in-
stances and their union. Note that while G is a tiny bit safer than GN and both have identical
strengths on the MIPLIB3 C instances, GN turns out stronger on the MITT C NOB instances,
but this is not apparent on the union of the two instance sets. However, since G is overall
significantly slower than GN, GN seems to be a better generator than G on these instances.

As a side remark, note that although ANOVA finds a significant effect for the “in-
stance”/“solution” pair, the ranking of the algorithms by the THSD test seems to be quite
stable across solutions. For example, repeating the above analysis using a single 0-feasible
solution (the one found by Algorithm 2) for each instance yields rankings identical to those
listed above.

23

Table 16: ANOVA results for generators G, GN, G2P4, G2P5, RSP4, and RSP5 on the union of
MIPLIB3 C and MITT C NOB instances.

Df Sum Sq Mean Sq F value Pr(> F)
f1 5 246112 49222 466.7201 < 2 · 10−16 ***
f2 31 24574728 792733 7516.5840 < 2 · 10−16 ***
f2:f3 274 1060311 3870 36.6924 < 2 · 10−16 ***
f1:f2 155 702060 4529 42.9473 < 2 · 10−16 ***
f1:f2:f3 1367 131360 96 0.9111 0.9904
Residuals 37589 3964307 105
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Table 17: THSD results for generators G, GN, G2P4, G2P5, RSP4, and RSP5 on the union of
MIPLIB3 C and MITT C NOB instances.

G GN G2P4 G2P5 RSP4 RSP5
G · · − − − −
GN · · − − − −
G2P4 + + · · − −
G2P5 + + · · − −
RSP4 + + + + · +
RSP5 + + + + − ·

5 Conclusions

Comparing cut generators for MILP is not an easy matter. One might want to compare
speed of generation, speed of reoptimization after adding a round of cuts, or strength of the
generated cuts. Testing for strength, in particular, is difficult. The contention of this paper
is that comparing strength of cut generators without a sense of how accurate the generators
are is not very informative. While one could try to devise a method to test simultaneously
accuracy and strength, we propose here to first assess the accuracy of a cut generator and
then compare the strength of cut generators that have similar accuracy.

The proposed method, random diving towards a feasible solution, has the attractive fea-
ture that its results depend only on the cut generator and the precision of the LP solver.
While the latter dependency introduces a source of numerical error independent from the
generator, it makes sense to test cut generators and LP solver precision together as numeri-
cal error in the LP solver are usually caused by the generated cuts. Possibly weakening the
strength of generated cuts in order to avoid numerical difficulties in the LP solver computa-
tions should be part of fine tuning a cut generator. The dependency of the proposed method
on algorithmic parts outside the cut generator is far smaller than in any other test that we
are aware of. As is usual when testing numerical precision of algorithms, the results might

24

also depend on the machine and compiler used in the tests. The contribution of this paper
is thus more the testing method than the ranking of the generators obtained in Section 4.
The dependency of the ranking obtained on the choice of the sample instances unfortunately
prevents to draw conclusions on the relative strength of families of cuts in general. This
weakness of the proposed method does not seem easy to remove.

Another interesting feature of the method is that analyzing the results raises many in-
teresting questions directly related to improving the performance of a cut generator. For
example, studying why failures occur on an apparently innocuous instance such as gt2 c
might suggest new ways to prevent the generation of invalid cuts. Investigating how aggres-
sive one can be with the parameter setting, yet keeping a low probability of generating invalid
cuts, is a question with important practical implications, in particular if this can be linked
to properties of the instance. The method is well-suited to explore such questions.

The proposed method can be seen as a starting point to develop better testing procedures.
Many modifications of Algorithm 1 could lead to faster testing or more accurate results. For
example, instead of fixing variables as in step 2.5, one could only change the lower or upper
bound on yj to dȳje or bȳjc respectively. When the results of the tests are used to tune
cut generators for their use in a specific branch-and-cut code, it is also possible to replace
the random choice in step 2.4 by a choice closer to the choice that the code will make
or exploring a subtree “centered” around the solution at hand. Adding cut management in
Algorithm 1 similar to what is done in the branch-and-cut code is another important potential
improvement, as it could speed up the testing at the cost of having results dependant on the
particular choice of cut management.

Similarly, potential improvements for the generation of the benchmark instances are possi-
ble. For example, the 0-feasible solutions produced by Algorithm 2 are likely not the optimal
6-digits rounded solution of the corresponding instance. This is not crucial for the exper-
iments in this paper, but might be an issue under different circumstances. Developing an
algorithm for producing benchmark instances with all coefficients rounded to d digits and
corresponding optimal d-digits rounded solutions could be useful.

Acknowledgements

We thank the referees for many valuable comments and suggestions.

References

[1] Achterberg T., Koch T., Martin A., “MIPLIB 2003”, Operations Research Letters 34
(2006), 361–372.

[2] Amini M.M., Barr R.S, “Network Reoptimization Algorithms: A Statistical Design Com-
parison”, ORSA Journal on Computing 5 (1993), 395–408.

[3] Amini M.M., Racer M., “A Rigorous Computational Comparison of Alternative Solution
Methods for the Generalized Assignment Problem”, Management Science 40 (1994),
868–890.

[4] Anderson K., Cornuéjols G., Li Y., “Reduce-and-Split Cuts: Improving the Performance
of Mixed Integer Gomory Cuts”, Management Science 51 (2005), 1720–1732.

25

[5] Applegate D.L., Cook W., Dash S., Espinoza D.G., “Exact Solutions to Linear Program-
ming Problems”, Operations Research Letters 35 (2007), 693–699.

[6] Balas E., “Disjunctive Programming: Cutting Planes from Logical Conditions”, in: Man-
gasarian O.L. et al., eds., Nonlinear Programming, Vol. 2, Academic Press, New York
(1975) 279–312.

[7] Bixby R.E., Ceria S., McZeal C.M., Savelsbergh M.W.P, MIPLIB 3.0,
http://www.caam.rice.edu/∼bixby/miplib/miplib.html.

[8] Cohen P.R., Empirical Methods for Artificial Intelligence, MIT Press (1995).

[9] COIN-OR, http://www.coin-or.org.

[10] Cook W., Dash S., Fukasawa R., Goycoolea M., “Numerically Safe Gomory Mixed-
Integer Cuts”, Working Paper (2008).

[11] Danna E., Rothberg E., Le Pape C., “Exploring Relaxation Induced Neighborhoods to
Improve MIP Solutions”, Mathematical Programming 102 (2005), 71–90.

[12] Dhiflaoui M., Funke S., Kwappik C., Mehlhorn K., Seel M., Schömer E., Schulte R., We-
ber D., “Certifying and Repairing Solutions to Large LPs. How Good are LP-solvers?”,
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(Baltimore, MD, 2003), 255–256, ACM, New York, (2003).

[13] Fischetti M., Lodi A., “Local branching”, Mathematical Programming 98 (2003), no. 1-3,
Ser. B, 23–47.

[14] Gomory R., “An Algorithm for the Mixed Integer Problem”, Technical Report RM-2597,
The RAND Corporation (1960).

[15] Hoaglin D.C., Klema V.C., Peters S.C., “Exploratory Data Analysis in a Study on the
Performance of Nonlinear Optimization Routines”, ACM Transactions on Mathematical
Software 8 (1982), 145–162.

[16] Hooker J.N., “Needed: An Empirical Science of Algorithms”, Operations Research 42
(1994), 201–212.

[17] Hooker J.N., “Testing Heuristics: We Have It All Wrong”, Journal of Heuristics 1 (1995),
33–42.

[18] ILOG CPLEX 10.1 User’s Manual, (2006).

[19] Jeroslow R., “Cutting Plane Theory: Disjunctive Methods”, Annals of Discrete Mathe-
matics 1 (1972) 293–330.

[20] Koch T., “The Final Netlib Results”, Operations Research Letters 32 (2004), 138–142.

[21] Lin B.W., Rardin R.L., “Controlled Experimental Design for Statistical Comparison of
Integer Programming Algorithms”, Management Science 25 (1979), 1258–1271.

26

[22] Marchand H., Martin A., Weismantel R., Wolsey L., “Cutting Planes in Integer and
Mixed Integer Programming”, Workshop on Discrete Optimization, DO’99 (Piscataway,
NJ), Discrete Appl. Math. 123 (2002), 397–446.

[23] Margot F., “BAC : A BCP Based Branch-and-cut Example”, IBM Research Report
RC22799 (W0305-064) (2003), revised August 2008.

[24] Margot F., “Testing Cut Generators for MILP”, Optima 77 (2008), 6–9.

[25] http://wpweb2.tepper.cmu.edu/fmargot/.

[26] McGeoch C.C., “Toward an Experimental Method for Algorithm Simulation”, IN-
FORMS Journal on Computing 8 (1996), 1–15.

[27] McGeoch C.C., “Experimental Analysis of Algorithms”, Notices of the American Math-
ematical Association 48 (2001), 304–311.

[28] McGeoch C.C., “Experimental Analysis of Optimization Algorithms”, Handbook of Ap-
plied Optimization, Oxford University Press (2002), 1044–1052.

[29] McGeoch C.C., “Experimental Analysis of Algorithms”, Handbook of Global Optimiza-
tion, Vol. 2, Kluwer (2002), 489–513.

[30] McGeoch C.C., Sanders P., Fleischer R., Cohen P.R., Precup D., “Using Finite Ex-
periments to Study Asymptotic Performances”, in Experimental Algorithmics: From
Algorithm Design to Robust and Efficient Software, Fleischer et al., eds., Lecture Notes
in Computer Science 2547 (2002), 93–126.

[31] Mittelmann H., http://plato.asu.edu/topics/testcases.html, no longer available.

[32] Nance R.E., Moose R.L., Foutz R.V., “A Statistical Technique for Comparing Heuris-
tics: An Example from Capacity Assignment Strategies in Computer Network Design”,
Communications of the ACM 30 (1987), 430–442.

[33] Nemhauser G.L., Wolsey L.A., “A Recursive Procedure to Generate all Cuts for 0-1
Mixed Integer Programs”, Mathematical Programming 46 (1990) 379–390.

[34] Neumaier A., Shscherbina O., “Safe Bounds in Linear and Mixed-Integer Linear Pro-
gramming”, Mathematical Programming 99 (2004), 283–296.

[35] R statistical software, http://www.r-project.org/.

[36] Sheskin D.J., Parametric and Nonparametric Statistical Procedures, 2nd Ed., Chapman
& Hall/CRC (2000).

[37] Stuart G.W., Matrix Algorithms, Vol. I: Basic Decompositions, SIAM (1998).

27

	Carnegie Mellon University
	Research Showcase @ CMU
	4-2009

	Testing Cut Generators for Mixed-Integer Linear Programming
	François Margot
	Published In

	tmp.1263592125.pdf.aGfYl

