
Carnegie Mellon University
Research Showcase

Tepper School of Business

11-1-2009

Symmetry in Integer Linear Programming
François Margot
Carnegie Mellon University, fmargot@andrew.cmu.edu

Follow this and additional works at: http://repository.cmu.edu/tepper
Part of the Economic Policy Commons, and the Industrial Organization Commons

This Book Chapter is brought to you for free and open access by Research Showcase. It has been accepted for inclusion in Tepper School of Business by
an authorized administrator of Research Showcase. For more information, please contact research-showcase@andrew.cmu.edu.

Recommended Citation
Margot, François, "Symmetry in Integer Linear Programming" (2009). Tepper School of Business. Paper 259.
http://repository.cmu.edu/tepper/259

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Ftepper%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/tepper?utm_source=repository.cmu.edu%2Ftepper%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/tepper?utm_source=repository.cmu.edu%2Ftepper%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1025?utm_source=repository.cmu.edu%2Ftepper%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/347?utm_source=repository.cmu.edu%2Ftepper%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/tepper/259?utm_source=repository.cmu.edu%2Ftepper%2F259&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Symmetry in Integer Linear Programming

François Margot ∗

Abstract An integer linear program (ILP) is symmetric if its variables can be per-
muted without changing the structure of the problem. Areas where symmetric ILPs
arise range from applied settings (scheduling on identical machines), to combina-
torics (code construction), and to statistics (statistical designs construction). Rela-
tively small symmetric ILPs are extremely difficult to solve using branch-and-cut
codes oblivious to the symmetry in the problem. This paper reviews techniques de-
veloped to take advantage of the symmetry in an ILP during its solution. It also
surveys related topics, such as symmetry detection, polyhedral studies of symmetric
ILPs, and enumeration of all non isomorphic optimal solutions.

1 Introduction

An integer linear program (ILP) is symmetric if its variables can be permuted
without changing the structure of the problem. Symmetric ILPs frequently appear
when formulating classical problems in combinatorics or optimization. For example,
graph coloring, scheduling of jobs on parallel identical machines, covering design or
codes construction are problems involving symmetries. Additional real world exam-
ples can be found in [107, 108, 109]. Even for relatively modestly sized problems,
ILPs with large symmetry groups are difficult to solve using traditional branch-and-
bound or branch-and-cut algorithms. (We assume that the reader is familiar with
these procedures, as excellent introductions can be found in [38, 59, 90, 117].) The
trouble comes from the fact that many subproblems in the enumeration tree are iso-
morphic, forcing a wasteful duplication of effort.

François Margot
Tepper School of Business, Carnegie Mellon University, e-mail: fmargot@andrew.cmu.edu

∗ Supported by ONR grant N00014-97-1-0196.

1

2 François Margot

Even fairly small symmetric ILPs might be difficult to solve using state-of-the-art
ILP solvers. Table 1 gives characteristics of a few problems. The first three problems
are covering, packing, and orthogonal array construction problems (see [15] for de-
tails), the next two are covering problems (see [74] for details), cod93 is a binary
error-correcting code construction (see [74] for details), and ST S81 is a covering
problem with a constraint matrix corresponding to a Steiner triple system (see [74]
for details). Finally, codbt24 is the problem of constructing a binary-ternary cov-
ering code of radius one with two binary entries and four ternary ones [9, 28]: For
integers a,b≥ 0, let W be the set of words of length a+b where the first a entries in
a word take value in {0,1} and the last b entries take value in {0,1,2}. The problem
codbtab is then the problem of finding a minimum cardinality set C ⊆W such that
for each w ∈W , there exists c ∈C such that the Hamming distance between w and c
is at most one. (An LP formulation of each problem listed in this paper is available
[71].)

Despite the rather small number of variables and small integrality gap (except
for cod93 and ST S81 where the gap is quite large; OA2(6,3,3,2) has no gap at
all; it amounts to prove that no integer solution with value 54 exists), these prob-
lems are challenging for state-of-the-art codes. Using one of the leading commer-
cial codes available today, finding an optimal solution (when it exists) is relatively
easy. Proving its optimality, however, is much harder. Setting the upper bound value
to the optimal value (except for the infeasible problem OA2(6,3,3,2)), only prob-
lems CA7(7,2,4,7) (6 minutes) and OA2(6,3,3,2) (19 hours) can be solved in less
than 24 hours. On the other hand, a code taking advantage of the symmetry in the
problem (the code of [75], described in Section 9) is able to solve most of them in
under a minute. The exceptions are PA7(7,2,4,7) (1 hour and 30 minutes), cov1174
(1 hour and 15 minutes), and codbt24 (10 hours) 2.

Problem n Opt. LP |G|
CA7(7,2,4,7) 128 113 112 645,120
PA7(7,2,4,7) 128 −108 −112 645,120
OA2(6,3,3,2) 729 – 54 33,592,320

cov1054 252 51 50 3,628,800
cov1174 330 17 15.71 39,916,800
cod93 512 −40 −51.20 185,794,560

codbt24 324 36 29.45 248,832
ST S81 81 61 27 1,965,150,720

Table 1 Problem characteristics; n is the number of variables, Opt. is the optimal value, LP is the
value of the LP relaxation of the initial formulation, and |G| is the number of permutations in the
symmetry group.

2 The machine used is a 64 bits Monarch Empro 4-Way Tower Server with four AMD
Opteron 852 2.6GHz processors, each with eight DDR-400 SDRAM of 2 GB and run-
ning Linux Fedora 9. The compiler is g++ version 4.3.0 20080428 (Red Hat
4.3.0-8). Results are obtained using only one processor.

Symmetry in Integer Linear Programming 3

Various techniques for dealing with symmetric problems have been studied by
several research communities, yielding similar approaches. However, since the fa-
vorite algorithmic tools available to each community are different, slightly different
algorithms have been developed. In this paper, we survey some of the approaches
that have been developed in the Mathematical Programming community for solving
symmetric ILPs. Limited comparisons and pointers to similar approaches developed
in the Computer Science and Constraint Programming communities are given. A re-
cent survey of techniques developed in the Constraint Programming Community to
solve symmetric problems is [49].

The main approaches to deal with symmetries that are discussed here are per-
turbation (Section 4), fixing variables (Section 5), symmetry breaking inequalities
(Section 8), and pruning of the enumeration tree (Section 9). The remainder of the
paper covers related topics, such as detecting symmetries (Section 3), symmetric
polyhedra (Section 6), partitioning problems (Section 7), enumeration of all non
isomorphic solutions (Section 11), further developments using isomorphism prun-
ing (Section 12), choice of formulation (Section 13), and the use of additional sym-
metries (Section 14). Finally, basic definitions and notation are covered in Section
2, and a very brief introduction to computational group representation is given in
Section 10.

2 Preliminaries

In this section, basic definitions and notation are presented. The reader is invited
to use standard references on permutation groups [20, 52, 102] to complement the
extremely succinct material given here.

An unordered set containing elements e1, . . . ,en is denoted by the notation
{e1, . . . ,en} while an ordered set of the same elements is denoted by (e1, . . . ,en).

Let Π n be the set of all permutations of the ground set In = {1, . . . ,n}. Π n is
known as the symmetric group of In. A permutation π ∈ Π n is represented by an
n-vector, with πi being the image of i under π . The permutation π such that πi = i
for i = 1, . . . is the identity permutation and is denoted by I.

If v is an n-vector and π ∈ Π n, let w = π(v) denote the vector w obtained by
permuting the coordinates of v according to π , i.e.,

wπi = vi for all i ∈ In.

The composition of two permutations π1,π2 ∈ Π n, written π1 ·π2, is defined as
the permutation h = π1(π2). The composition of permutations is associative, i.e. for
any π1,π2,π3 ∈G, we have (π1 ·π2) ·π3 = π1 ·(π2 ·π3). The neutral element for the
composition is the identity permutation, i.e. for any π ∈Π n, we have π ·I = I ·π = π .

A subset G ⊆ Π n with the composition operation defined above is a group, if it
contains the identity permutation I and satisfies the following properties:

(i) For any g1,g2 ∈ G, we have g1 ·g2 ∈ G;

4 François Margot

(ii) For any permutation g ∈ G, there exists an inverse permutation g−1 ∈ G such
that g ·g−1 = g−1 ·g = I.

If G is a group, the permutation g−1 of point (ii) above is unique. The number of
permutations in G, denoted by |G|, is the order of the group. A group is finite if its
order is finite. All groups considered in this paper are finite. A subgroup of a group
G is any subset of G that is a group. To simplify the notation, we make no difference
between a set S ⊆ In and its characteristic vector. Hence π(S) is the subset of In

containing πi for all i ∈ S.
Let K = {0,1, . . . ,k} for some positive integer value k. We consider an integer

linear program of the form

min cT x

s.t. Ax≥ b, (1)
x ∈ Kn ,

where A is an m× n matrix, b is an m-vector, c is an n-vector, and all three have
rational entries. Let Q be the set of all feasible solutions of ILP (1). Note that some-
times not all n variables are requested to be integer, or some variables have slightly
different bounds. These are small extensions of the model, and most results and al-
gorithms can be adapted to handle them. However, symmetry between continuous
variables is not always exploited.

The symmetry group G of ILP (1) is the set of all permutations π of the n variables
mapping Q on itself and mapping each feasible solution on a feasible solution having
the same value, i.e.

G = {π ∈Π
n |cT x̄ = cT

π(x̄) and π(x̄) ∈ Q for all x̄ ∈ Q} .

Example 1. The following ILP with four binary variables is used to illustrate several
definitions.

min x1 +x2 +x3 +x4

s.t. x1 +x2 ≥ 1
x2 +x3 ≥ 1

x3 +x4 ≥ 1
x1 +x4 ≥ 1

x1, x2, x3, x4 ∈ {0,1}.

(2)

The set Q contains 7 solutions: (1,0,1,0), (0,1,0,1), (1,1,1,0), (1,1,0,1),
(1,0,1,1), (0,1,1,1), and (1,1,1,1). The symmetry group G of ILP (2) contains
eight permutations: the identity permutation I, (2,3,4,1), (3,4,1,2), (4,1,2,3),
(3,2,1,4), (4,3,2,1), (1,4,3,2), and (2,1,4,3).

ut

It is straightforward to check that G is indeed a group. Note that in most situations
G is not known, but a subgroup G′ of G is. All the results in this paper hold if G is

Symmetry in Integer Linear Programming 5

replaced by G′, but it should be expected that symmetry removal obtained with G′

is weaker than the one obtained with G.
The orbit of any v ∈ Rn under G is

orb(v,G) = {w ∈ Rn | w = g(v) for some g ∈ G} .

The stabilizer of any v ∈ Rn in G is the subgroup of G given by:

stab(v,G) = {g ∈ G | g(v) = v} .

Given a set H = {g1, . . . ,gs} ⊆ Π n, the collection of all g ∈ Π n that can be
obtained by composing the given permutations in an arbitrary way (including using
any of them more than once) is the group G generated by H. The permutations in
H are generators of G. Any subgroup of Π n can be generated by a set of O(n2)
generators.

Given a group G⊆Π n and a nonempty set J ⊆ {1, . . . ,n}, the restriction of G to
J is the set of all permutations of the elements in J that are induced by permutations
in stab(J,G). The restriction of G to J is a group.

A vector v∈Rn is lexicographically smaller (resp. lexicographically larger) than
a vector w∈Rn if for some 1≤ p≤ n we have vi = wi for i = 1, . . . , p−1 and vp < wp
(resp. vp > wp). This is denoted by

v <L w (resp. v >L w).

Given a group G⊆Π n, a vector v is lexicomin (resp. lexicomax) in its orbit under
G if there is no g ∈ G with g(v) <L v (resp. g(v) >L v).

Example 1 (cont.). The two permutations (2,3,4,1) and (1,4,3,2) form a set
of generators for G. The orbit of the vector v = (0,1,0,1) contains only vector
(1,0,1,0) in addition to v itself. Vector v is lexicomin in its orbit under G. The
stabilizer of v is the subgroup G′ of G containing four permutations: I, (3,4,1,2),
(3,2,1,4), and (1,4,3,2). The restriction of G to J = {2,4} contains only the iden-
tity and the permutation swapping 2 and 4 as stab(J,G) = stab(v,G) = G′.

ut

3 Detecting symmetries

In most cases where a symmetric ILP occurs, the fact that symmetries are present is
known to the modeler. However, sometimes only a subgroup G′ of the true symmetry
group G is known. Devising techniques to compute generators of the symmetry
group of an ILP is thus of practical importance.

The main difficulty to face is that G is implicitly defined in term of the feasible
set of the ILP. By definition, an ILP with n variables and an empty feasible set has
Π n for its symmetry group. As deciding if the feasible set of an ILP is empty or not
is an NP-complete problem, it is rather easy to show that deciding if G = Π n is also

6 François Margot

an NP-complete problem. Indeed, adding two integer variables 0 ≤ y1,y2 ≤ k and
the constraint y1 +y2 = 1 to the ILP, we get that the symmetry group of the modified
ILP is Π n+2 if and only if the original one is infeasible.

While this leaves little hope to find a polynomial-time algorithm for comput-
ing generators of G, the situation is in fact much worse. The implicit definition of
G makes it difficult to design practical algorithms for this task, even worst-case
exponential-time ones. One practical algorithm computes a subgroup GLP of G de-
fined as the symmetry group of the LP relaxation: Consider an ILP of the form (1)
with n variables and m constraints. For a permutation π ∈ Π n and a permutation
σ ∈ Π m of the m rows, let A(π,σ) be the matrix obtained from A by permuting its
columns according to π and its rows according to σ . The subgroup GLP is given by

GLP = {π ∈Π
n |π(c) = c and ∃ σ ∈Π

m s.t. σ(b) = b, A(π,σ) = A} .

Example 1 (cont.). For ILP (2), we have GLP = G, as permuting both the variables
and constraints according to any π ∈ G yields an ILP identical to ILP (2).

However, consider the ILP obtained by adding to ILP (2) the inequality

−2x1 −x2 −2x3 −2x4 ≥−6 . (3)

Let H be its symmetry group and HLP be the symmetry group of its LP relaxation.
One can check that the only feasible solution of ILP (2) that becomes infeasible is
(1,1,1,1). It follows that H is identical to G. However, adding (3) destroys in the
LP relaxation the symmetry between x2 and the other variables. As a result, we have
that HLP contains only I and (3,2,1,4) and H 6= HLP.

ut

In the case where A is a (0,1)-matrix, it is possible to cast the computation of
generators of GLP as computing generators of the automorphism group of a bipartite
graph with colored vertices. (The automorphism group of a graph is the set of all
permutations of its nodes that maps adjacent nodes to adjacent nodes.) Indeed, the
matrix (

0 AT

A 0

)
can be seen as the adjacency matrix of a bipartite graph H having one vertex for
each column of A and one for each row of A, the two sets of vertices forming the
two sides of the bipartition. Two column-vertices (resp. row-vertices) have the same
color if and only if their corresponding objective coefficients (resp. right hand side
coefficients) are identical. Any automorphism of H that fixes both sides of the bi-
partition and the color classes induces a permutation of the columns of A that is in
GLP. Any permutation of GLP can be extended to an automorphism of H that fixes
the bipartition and color classes.

When A is not a (0,1)-matrix, it is possible to modify the above construction to
get the correct result. Details can be found in [103]. Note that mapping the instance
of a problem to a colored graph such that color preserving automorphisms of the
graph correspond to symmetries of the problem is standard procedure. For example,

Symmetry in Integer Linear Programming 7

see [1, 98, 99] for satisfiability problems and [95] for Constraint Programming in
general.

The computational complexity status of computing generators of the automor-
phism group of a graph is an open problem as it is equivalent to the complexity
status of the famous Graph Isomorphism problem (see [69] for a detailed discussion
of complexity of problems related to permutation groups). However, efficient algo-
rithms (such as nauty [77], Saucy [32], as part of MAGMA [10] or GAP [113]) are
available and perform satisfactorily in many instances.

Another track is to formulate the problem of computing permutations in GLP as
an ILP [66], although this approach seems unlikely to be competitive when the order
of GLP is large.

While working with GLP instead of G might result in a loss of efficiency, most
applications have a known LP formulation for which GLP is either a large subgroup
of G or G itself, except for infeasible problems. Usually, the symmetry group used
is either built from the modeler knowledge or by computing GLP for some ILP
formulation.

4 Perturbation

One of the first idea that comes to mind when facing a symmetric problem is to
perturb it slightly to destroy the symmetry or to capture some of the symmetry in
the problem. For example, adding a small random perturbation to the coefficients ci
for i = 1, . . . ,n easily destroys the symmetry in the problem. This, in general, does
not help much and can even be counter-productive. The main reason is that when
ILP (1) is infeasible, the same amount of work has to be done regardless of the
objective function. In addition, even if the ILP is feasible, once the algorithm has
found an optimal solution, the remainder of the computation can be seen as solving
an infeasible ILP. Destroying symmetry by perturbation of the objective function
thus achieves very little and using symmetry information in an efficient way while
solving the problem is a far superior alternative.

The same is true for the “lexicographic” perturbation ci = 2i for i = 1, . . . ,n that
can be used for certain binary problems, with the additional caveat that this trans-
formation is numerically unstable and can only be used for very small problems.

Using perturbation is sometimes helpful when trying to find a good solution, but
using symmetry information is a superior approach when dealing with an infeasible
problem or when proving optimality of a solution.

5 Fixing variables

Another simple idea to reduce symmetry in an ILP is to fix variables. While this
could be considered a special case of symmetry breaking inequalities (a topic cov-

8 François Margot

ered in Section 8), we treat it separately as it can easily be combined with other
techniques for dealing with symmetric ILPs when it is used as a preprocessing step.

Let ILP be a particular instance of ILP (1) with symmetry group G. Suppose that
it is known that, for some t ≥ 1, some index set F = {i1, . . . , it} and some values
{x̄i1 , . . . , x̄it}, ILP has an optimal solution with xi = x̄i for all i ∈ F . Let the fixed ILP
(FILP) be obtained by adding to ILP the constraints xi = x̄i for all i ∈ F . Let the
reduced ILP (RILP) be obtained from ILP by substituting xi by x̄i for all i ∈ F . Let
GF (resp. GR) be the symmetry group of FILP (resp. RILP). Note that FILP is an
ILP with n variables, while RILP has n− t variables.

Example 2. Consider the ILP with six binary variables

min x1 +x2 +x3 +x4 −x5 −x6

s.t. x1 +x2 −x5 −x6 ≥ −1
x2 +x3 −x6 ≥ 0

x3 +x4 −x5 −x6 ≥ −1
x1 +x4 −x5 ≥ 0
x1 +x2 +x5 ≥ 1

x3 +x4 +x6 ≥ 1
x1, x2, x3, x4 x5, x6 ∈ {0,1}.

(4)

Its feasible set contains 36 solutions, 9 with (x5,x6) = (0,0), 10 with (x5,x6) =
(1,0), 10 with (x5,x6) = (0,1), and 7 with (x5,x6) = (1,1). The symmetry group G
of ILP (4) contains only two permutations: I and (3,4,1,2,6,5).

A simple analysis of ILP (4) proves that there exists an optimal solution with
x5 = 1 and x6 = 1. Adding these two constraints to the ILP yields FILP and its
symmetry group GF is G. Substituting x5 and x6, we get RILP which is exactly
ILP (2) with a symmetry group GR containing eight permutations generated by
{(2,3,4,1),(1,4,3,2)}.

ut

In this section, we discuss properties that might indicate which of the formula-
tions ILP, FILP or RILP should be used. This is of course a difficult question and
only partial answers or rules of thumb can be given.

Let v be the n-vector with vi = x̄i for all i ∈ F and vi =−1 otherwise. Assuming
that in FILP there is at least two possible values for variable xi for all i /∈ F , we have
that GF = stab(v,G). It follows that |GF | ≤ |G|. On the other hand, GR contains
a subgroup G′ that is the restriction of stab(v,G) to the variables indices in the
complement of F . As shown in Example 1 at the end of Section 2, the order of a
restriction of a group can be smaller than the order of the group itself and thus we
might have |GR| < |stab(v,G)| = GF . However, as shown in Example 2, it is also
possible to have |GR| > |G|. As a result, there is no general relation between |GR|
and either |GF | or |G|.

Which of the three ILP formulations to use depends on the solution algorithm A.
If A is a branch-and-bound algorithm oblivious to symmetry, regardless of the sizes
of the symmetry groups, using either FILP or RILP produces similar results, and

Symmetry in Integer Linear Programming 9

this should not be worse than using ILP. (A very simple illustration can be found in
[57].) On the other hand, if A uses the symmetry group of the problem, the situation
is not so clear cut. If A is efficient in using the symmetry group, it might be better to
solve ILP than FILP or RILP. In the remainder of the section, we give two examples
where this happens. In general, however, it should be expected that solving FILP or
RILP is more efficient, in particular if the number of fixed variables is large.

An example where solving ILP is easier than solving FILP is for an ILP formu-
lation to solve the classical edge coloring problem for a graph H with maximum
vertex degree ∆ . We want to decide if a coloring of the edges of H with ∆ colors
exists or not, such that any two edges sharing an endpoint receive distinct colors.
A simple ILP formulation for edge coloring (EC) uses ∆ binary variables xe j for
j = 1, . . . ,∆ for each edge e in the graph with the meaning that xe j = 1 if and only
if e receives color j. Constraints are simply

∆

∑
j=1

xe j = 1 for each edge e ∈ E(H), (5)

∑
e∈δ (v)

xe j ≤ 1 for all v ∈V (H), for all j = 1, . . . ,∆ , (6)

where δ (v) is the set of edges incident with vertex v. The symmetry group G of EC
is the product of the automorphism group of the graph H with the symmetric group
on the ∆ colors.

Obviously, permuting the ∆ colors in any feasible solution of EC yields another
feasible solution. For a vertex v of maximum degree ∆ , all edges in δ (v) must re-
ceive ∆ distinct colors. As a result, it is valid to fix the colors on δ (v) to any valid
coloring. This will break the symmetry between the colors, yielding the FEC for-
mulation. The symmetry group GF contains all permutations of G fixing edges in
δ (v) and their colors. Using this ILP formulation for coloring the edges of a clique
on 9 nodes and fixing the colors as described above results in a solution time orders
of magnitude larger for FEC than for EC for algorithms of [75].

Going back to the general case, it is also sometimes the case that solving ILP is
better than solving RILP. An example from [74] is the code construction problem
cod93 listed in Table 1. It has 512 variables, a group with order 185,794,560, an
optimal value of −40 and an LP relaxation value of −51.20. By fixing a few vari-
ables and substituting them in the formulation, one obtains an equivalent problem
cod93r that has 466 variables, a group order of 362,880, an optimal value of −39
and an LP relaxation value of −47.00. Yet, several algorithms using the symmetry
in the problem require a smaller enumeration tree to prove that no solution of value
smaller than−40 exists in cod93 than to prove that no solution of value smaller than
−39 exists in cod93r.

If ILP is binary and an algorithm based on pruning of the enumeration tree (see
Section 9) is used, it can be shown that fixing a set F of variables to value 1 and then
use the algorithm on FILP is never superior to using the algorithm on the original
ILP and branching first on the variables in F , creating only one subproblem corre-
sponding to the fixing. A similar result for non binary ILPs can be stated provided

10 François Margot

that the variables and the values to which they are fixed satisfy a technical condi-
tion. It follows that for these algorithms, solving FILP is not a good idea. A similar
result holds for comparing ILP with RILP: the latter might be preferable only if
|GR|> |stab(v,G)|.

6 Symmetric polyhedra and related topics

The definition of a symmetric ILP given in Section 2 involves the objective function
c. If c in (1) is replaced by the zero vector, the symmetry group G of the correspond-
ing ILP is the symmetry group of the polyhedron corresponding to the convex hull
of the characteristic vectors of the solutions of the problem. (Note that this group
should not be confused with the group of the geometric symmetries of the poly-
hedron; only symmetries permuting space coordinates are considered here.) Many
combinatorial polyhedra have large symmetry groups. Just to cite one example, the
polytope associated with the Traveling Salesman Problem (TSP) [3, 63] on the com-
plete graph on n nodes has a symmetry group of order n!. This statement might be
a little bit misleading, since there are many ILP formulations of the TSP, some of
them having less symmetry than others. We are talking here about the most stud-
ied formulation using exclusively binary edge variables xi j for all i, j = 1, . . . ,n and
i < j. This polytope has received a lot of attention and has been the focus of intense
computational studies in the last decades with impressive results [3]. However, in
these studies, the topic of symmetry is rarely considered, as the objective function
used in most instances essentially destroys the symmetry.

Similarly, many polyhedra related to combinatorial problems have large sym-
metry groups, but studies of their facial structure rarely rely on this knowledge.
There are several polytopes closely linked to permutations or permutation groups:
The permutahedron is the convex hull of all permutations of the entries of the n-
vector (1,2,3, . . . ,n). Its complete linear description is known [6]. A generalization
of this polytope is the permutahedron of a poset, the convex hull of all permuta-
tions π such that if i < j is the poset, then πi < π j. Its complete linear description
is known for some classes of posets [4]. The assignment polytope is the convex hull
of all binary n×n matrices with exactly one nonzero entry per row and per column.
These matrices are in bijection with permutations of n elements: For a matrix M and
permutation π , entry Mi j = 1 if and only if πi = j. A complete linear description
of the assignment polytope is known [84]. In [13, 14], the permutation polytope is
studied. This polytope is the convex hull of the vertices of the assignment polytope
corresponding to permutations that are in a given group G. While a complete linear
description of the permutation polytope is given in [14], that paper also proves that
deciding if one of its inequalities is violated by a given matrix M̄ is an NP-complete
problem.

Let Q be the feasible set of an ILP with variables x and let P be the convex hull
of Q. The action of altering the ILP by adding to it a number of variables y, adding a
number of constraints and modifying the original constraints such that the projection

Symmetry in Integer Linear Programming 11

of the resulting feasible set on the space of the x variables remains P is known as
a lifting P′ of P. If Q has a symmetry group G, a symmetric lifting of P is a lifting
P′ of P such that G is the restriction of the symmetry group of P′ to the x variables.
Two important results of Yannakakis [118] are that neither the matching polytope
nor the TSP polytope have a symmetric lifting of subexponential size.

One notable exception where the symmetry group G of the polyhedron plays a
central role in the study of its facial structure is the problem of obtaining its com-
plete linear description by enumeration. Typically, extreme points of the polyhedron
are partitioned into orbits under G and then, for one vertex v in each orbit the facets
incident to v are described. These algorithms are based on clever enumeration pro-
cedures using the symmetry group of the polyhedron and can be carried out for
problems of small dimension. For example, a complete linear description is known
for the TSP polytope on a complete graph with up to 10 nodes [27], the Linear Or-
dering polytope with up to 8 items [27], the Cut polytope on a complete undirected
graph with up to 9 nodes [27], the Metric cone and Metric polytope on a complete
graph with up to 8 nodes [35, 36].

All enumeration algorithms are limited in the size of instances they can tackle.
They might give hints on the form of the complete linear description for all instances
but, most of the time, classes of facet defining inequalities for large instances are not
facet defining in smaller ones. The search for facet defining inequalities for symmet-
ric polytopes thus requires some effort. One could hope that some generic process
could be used to generate strong valid (let alone facet defining) inequalities using
the symmetry group of the polytope, but no such process seems to be known. Most
derivations of valid inequalities are problem specific and only use the existence of
the symmetry group in a limited way. For many symmetric ILPs used to test the
existence of combinatorial objects (such as problems similar to those listed in Table
1) the gap between the optimal value of the ILP formulation and its LP relaxation
is large. The generation of strong valid inequalities for these problems has received
little attention. One recent paper [70] does this for the very hard problem codbt06,
better known as the Football Pool problem [28, 53] or as the construction of an op-
timal ternary covering code of length 6. This problem is still open despite extensive
efforts for solving it [67, 86].

One main tenet of polyhedral combinatorics is that the knowledge of families of
facets of the convex hull P of the feasible set of an ILP is useful for solving the
problem, even if the complete linear description of P is not known. If the number of
facets in a family F is exponential in the size of the problem encoding, F can still be
used in an efficient way providing that it has an efficient separation algorithm. Such
an algorithm takes a point x̄ as input and either outputs one inequality corresponding
to a facet in F violated by x̄ or guarantees that all such inequalities are satisfied by
x̄.

Many papers describe facets and separation algorithms for specific symmetric
polyhedra. For a symmetric problem with symmetry group G, any valid inequality
for P of the form ax ≤ a0 generates a collection of “symmetric” inequalities of
the form g(a) · x ≤ a0 for all g ∈ G. This naturally leads to look for a separation
algorithm for this class of inequalities, i.e. an algorithm for the following problem:

12 François Margot

LINEAR OPTIMIZATION UNDER SYMMETRY

Input: A group G permuting the elements in In given by a set of t generators,
a vector a ∈ Rn and a point x̄ ∈ Rn;

Output: A permutation g ∈ G maximizing g(a) · x̄.

In practice, the typical situation is to look for the most violated inequality in a
class of facets under all possible permutations in G, and numerous examples where
this can be done efficiently are known. For example, virtually all exact separation
algorithms for facets of the TSP polytope described in [3] fall into this category.
Nevertheless, it is straightforward to show that the above problem is NP-hard, using
a polynomial transformation from the following problem (a variant of Problem 5 of
[14], variant shown there to be NP-hard):

MAXIMUM OVERLAP UNDER SYMMETRY

Input: A group G permuting the elements in In given by a set of t generators,
and two functions φ1,φ2 : In→{0,1};

Output: A permutation g ∈ G maximizing |{i ∈ In | φ1(i) = φ2(g(i))}|.

Indeed, define ai := φ2(i) and x̄i := φ1(i) for all i ∈ In. For g ∈ G, k, ` = 0,1 and
s = 1,2, define

yg
k` = |{i ∈ In | φ1(i) = k, φ2(g(i)) = `}|
zs = |{i ∈ In | φs(i) = 1}| .

The first problem asks for a permutation g ∈ G maximizing yg
11 while the second

problem asks for maximizing yg
11 +yg

00. But as yg
11 +yg

10 = z1 and yg
10 +yg

00 = n− z2,
we have yg

11 + yg
00 = 2 yg

11 +n− z1− z2. As the above transformation is polynomial
in the size of the instance of the second problem, it is a polynomial time reduction
from the second problem to the first one.

7 Partitioning problems

Several classes of symmetric problems arising in practice are of the partitioning
type: Given a set S of s elements, find a partition of S into at most t subsets with
each of the subsets having to meet the same requirements. There is immediately a
symmetry between the subsets in the partition. A typical ILP formulation for such a
problem uses binary variables xi j for all i = 1, . . . ,s and j = 1, . . . , t with the meaning

xi j =
{

1 if i is assigned to subset j,
0 otherwise. (7)

The problem formulation might use additional variables yi for i = 1, . . . ,ny with
yi ∈ Z for i ∈ Y ⊆ {1, . . .ny}. The problem can then be written as

Symmetry in Integer Linear Programming 13

min cxT x+ cyT y

Ax x+Ay y≥ b,
t

∑
j=1

xi j = 1, for all i = 1, . . . ,s, (8)

xi j ∈ {0,1}, for all i = 1, . . . ,s, j = 1, . . . , t

yi ∈ Z for all i ∈ Y,

where Ax is an m×(s · t) matrix, Ay is an m×ny matrix, cx is an (s · t)-vector, cy is
an ny-vector, and b is an m-vector and all these matrices and vectors are rational. In
addition, we assume that any permutation of the t subsets can be extended to a per-
mutation in the symmetry group of the ILP. In other words, if h is any permutation
of It , then there exists a permutation h′ of Iny and

(x11, . . . ,xs1,x12, . . . ,xs2, . . . ,x1t , . . . ,xst ,y1, . . . ,yny)

is feasible if and only if

(x1h(1), . . . ,xsh(1),x1h(2), . . . ,xsh(2), . . . ,x1h(t), . . . ,xsh(t),yh′(1), . . . ,yh′(ny))

is and both solutions have the same objective value. We also assume that the vector
cx is symmetric with respect to the t subsets, i.e. writing c(xi j) for the entry of cx

corresponding to variable xi j, we assume that c(xi j) = c(xi j′) for all j, j′ = 1, . . . , t.
A few examples of problems fitting this model are bin packing, cutting stock,

scheduling on identical machines, graph coloring (either vertex-coloring or edge-
coloring), and graph partitioning. Many other practical problems featuring partitions
into interchangeable subsets fit this model too (see [108] for examples).

Note that, in addition to the symmetry between the subsets, it is possible that
some symmetry between the elements also occurs. Such symmetry occurs for ex-
ample for graph coloring with a graph with a nontrivial automorphism group, or for
bin packing with multiple items having identical dimensions. The material in this
section concentrate on dealing with the symmetry between subsets only.

7.1 Dantzig-Wolfe decomposition

To address the symmetry between the subsets of the partition, a Dantzig-Wolfe de-
composition approach can be tried: Given the collection of all binary s-vectors z` for
` = 1, . . . ,u corresponding to the characteristic vector of a subset of the partition, the
above problem can sometimes be reformulated with variables λ ` for ` = 1, . . . ,u and
objective vector cλ with cλ

` = ∑
s
i=1 c(xi1) z`

i :

min cλ T
λ + cyT y

14 François Margot

s.t. Aλ λ +Ay′ y≥ b′,
u

∑
`=1

z`
i λ

` = 1, for all i = 1, . . . ,s

u

∑
`=1

λ
` = t,

λ ` ∈ {0,1} for ` = 1, . . . ,u,

yi ∈ Z for all i ∈ Y.

This reformulation makes the symmetry between the subsets of the partition dis-
appear, as it only asks for t of the given z` vectors that are disjoint and cover all
items in S, without paying attention to their ordering. The disadvantage is of course
the large number of variables. This type of formulation requires column generation
procedures, as soon as the size of the problem is non trivial. A pricing problem for
vectors z` not included in the formulation then has to be solved.

Examples of successful applications of this approach can be found for the cutting
stock problem [114, 115], scheduling [34, 37, 7, 116], edge coloring [83], vertex
coloring [79], and graph partitioning [80].

7.2 Partitioning orbitope

Consider the polytope obtained by taking the convex hull of the feasible solutions
to the partitioning part of ILP (8), namely:

t

∑
j=1

xi j = 1, for all i = 1, . . . ,s, (9)

xi j ∈ {0,1}, for all i = 1, . . . ,s, j = 1, . . . , t . (10)

Assuming that this system is part of a larger problem that has a symmetry be-
tween the sets in the partition, one can try to remove that symmetry from the prob-
lem by partitioning the feasible set of (9)-(10) in equivalence classes under that
symmetry and by selecting one representative of each class. One natural way to do
this is to arrange variables xi j for i = 1, . . . ,s, j = 1, . . . , t in a matrix X with xi j being
the entry in row i and column j of X . A matrix X̄ is feasible if its entries x̄i j satisfy
the constraints in (9)-(10). The symmetry group GC considered here is the group
that permutes the columns of X̄ in any possible way. For column j of X̄ , define its
value v j as

v j =
s

∑
i=1

2s−i · x̄i j .

Symmetry in Integer Linear Programming 15

A matrix X̄ is then a representative of its equivalence class under GC if and only
if its columns are ordered in non increasing order of their values. The partitioning
orbitope, introduced in [61], is the polytope obtained as the convex hull of these rep-
resentative matrices. Its complete linear description is known and is based on shifted
column inequalities (SCI). An SCI has a bar formed by variables {xī j̄,xī j̄+1, . . . ,xīt}
for some 2 ≤ ī ≤ s, 2 ≤ j̄ ≤ min{ī, t} and a shifted column (SC) consisting of
ī− j̄+1 variables, exactly one on each of the diagonals xd+1,1,xd+2,2, . . . ,xd+ j̄−1, j̄−1
for d = 0, . . . , ī− j̄ and with the condition that the variable selected in diagonal d
has a column index no larger than the one of the variable selected in diagonal d +1
for d = 0, . . . , ī− j̄− 1. See Figure 1. The SCI with bar B and shifted column S is
then x(B)− x(S)≤ 0, using the notation x(A) = ∑

xi j∈A
xi j.

Theorem 1. [61] A linear description of the the partitioning orbitope is given by

t

∑
j=1

xi j = 1, for all i = 1, . . . ,s (11)

x(B)− x(S)≤ 0, for all SCI, with B its bar and S its SC, (12)
xi j = 0, for i = 1, . . . ,s, j = i+1, . . . t, (13)
xi j ≥ 0, for i = 1, . . . ,s, j = 1, . . . t . (14)

The packing orbitope is obtained by replacing in (9) the equality sign by ≤. A
result similar to Theorem 1 is given in [61] for the packing orbitope.

While the formulation of Theorem 1 has an exponential number of constraints,
efficient separation algorithms are given in [61]. Empirical results using this for-
mulation and further development of fixing algorithms based on it can be found in
[60].

Note that the ordering of the objects in S, or equivalently the ordering of the
rows in the matrix X might have a big influence on the efficiency derived from the
partitioning orbitope. An extreme example is solving an edge coloring problem on

Fig. 1 Graphic representation
of an SCI with s = 7, t = 6,
ī = 6, and j̄ = 4. Entries in
the shaded rectangle form the
bar B and have coefficients 1;
exactly one entry in each of
the three diagonal segments
has a coefficient −1; these
three entries form the shifted
column S. All other entries
have coefficient 0, including
entries in the top right shaded
part corresponding to con-
straints (13).

d = 0

d = 1

d = 2

16 François Margot

a graph H with maximum vertex degree ∆ using the ILP formulation described in
Section 5. If the edges corresponding to the first ∆ rows of X are edges adjacent to
a vertex v of maximum degree in H, the constraints (5)-(6) together with (13)-(14)
immediately imply xii = 1 for all i = 1, . . . ,∆ . As a result, all SCI inequalities are
satisfied and the gain obtained by using the partitioning orbitope amounts to fixing
the colors on the edges adjacent to v. It is likely, however, that a different ordering
of the rows of X allows to derive more strength from the SCI. The effect of different
orders of the elements in S when using the orbitope has not been investigated.

It could be the case that the partitioning orbitope is particularly useful when it
is not clear how to construct a set S of t objects, no two of which can be in the
same subset. This is the case for the graph partitioning problem, problem used in
the computational experiments of [60].

Alternative integer linear descriptions for the partitioning orbitope are sometimes
used and examples can be found in [81, 92]. Generalizing Theorem 1 to the case
where the right hand side of (9) is larger than 1 seems difficult, but would have
practical implications.

7.3 Asymmetric representatives

Consider the partitioning problem where the goal is to minimize the number of
subsets required to partition the s elements, with the additional constraint that the
elements in any set Ud from a given list U = {U1, . . . ,Uw} can not all be assigned
to the same subset of the partition. (We assume that |Ud | ≥ 2 for all d = 1, . . . ,w
since otherwise the problem is infeasible.) For example, the problem of coloring the
nodes of a graph H = (V,E) with the minimum number of colors fits this description,
taking V as elements and U as the list of all pairs of elements corresponding to edges
in E.

An ILP formulation for this problem (named Asymmetric Representatives and
developed for node coloring [23, 24, 25] but that can be generalized to handle the
description above), uses binary variables zi j for all i = 1, . . . ,s and j = 1, . . . ,s with
the meaning

zi j =
{

1 if i is the representative of j,
0 otherwise. (15)

The idea of the formulation is that each element selects an element as its rep-
resentative, all elements selecting the same representative forming a subset of the
partition. Representative elements are elements i with zii = 1. The formulation is as
follows.

min
s

∑
i=1

zii

Symmetry in Integer Linear Programming 17

s.t.
s

∑
i=1

zi j = 1, for all j = 1, . . . ,s, (16)

∑
j∈Ud

zi j ≤ (|Ud |−1) · zii, for all d = 1, . . . ,w, i = 1, . . . ,s, (17)

zi j ∈ {0,1}, for all i = 1, . . . ,s, j = 1, . . . ,s. (18)

Inequalities (16) force each element to select exactly one representative, while
an inequality (17) prevents the elements in set Ud to all select i as representative and
requires that zii = 1 if node i is used as representative of one of the elements in Ud .

This formulation might or might not have symmetries, but the symmetry between
the subsets in the partition is destroyed. Nevertheless, this formulation still has sev-
eral equivalent solutions: for a given partition of the elements, all elements in a
subset of the partition can select any of the elements in the subset to get a feasible
solution with the same objective value. The formulation can thus also impose that
zi j = 0 for all i > j. (A more general formulation is given in [25], using a partial
order on the elements instead of the total order used here.) For coloring the nodes
of a graph H = (V,E), the formulation simplifies to

min
s

∑
i=1

zii

s.t. ∑
(i, j)6∈E

zi j = 1, for all j = 1, . . . ,s, (19)

zi j + zik ≤ zii, for all distinct i, j,k, with (i, j),(i,k) 6∈ E,(j,k) ∈ E,(20)
zi j ∈ {0,1}, for all i = 1, . . . ,s, j = 1, . . . ,s, (21)

zi j = 0, for all i = 1, . . . ,s, j = 1, . . . ,s, with i > j, (22)
zi j = 0, for all (i, j) ∈ E. (23)

Polyhedral results for this formulation can be found in [23, 24, 25] and [22]
gives computational results. Investigation of a similar formulation for the stable set
problem is available in [21].

8 Symmetry breaking inequalities

A natural way to get rid of symmetry in a problem is to add symmetry breaking
inequalities. There are two main ways to do so. The first one, using dynamic sym-
metry breaking inequalities, is to generate inequalities during the solution process.
These inequalities might be invalid for the initial formulation but, due to the devel-
opment of the enumeration, it is guaranteed that adding them does not prevent the
discovery of an optimal solution. The second one, using static symmetry breaking
inequalities, is to add inequalities to the initial formulation (explicitly or implicitly),
cutting some of the symmetric solutions while keeping at least one optimal solution.

18 François Margot

An example of static symmetry breaking inequalities are the inequalities describing
the partitioning orbitope of Section 7.2.

8.1 Dynamic symmetry breaking inequalities

Several examples of static symmetry breaking inequalities can be found in the Math-
ematical Programming literature. On the other hand, dynamic symmetry breaking
has been investigated mostly in the Constraint Programming literature [43, 45, 50,
91, 94, 96, 97]. The main reason for this is that constraint programming can express
constraints in a form different than linear inequalities [111]. Indeed, when the ILP is
not binary, some of the constraints described below simply can not be expressed by
linear inequalities. For binary problems, however, an example is the isomorphism
inequalities of [73].

The basis of most dynamic symmetry breaking inequalities is that if a node a of
the enumeration tree has a subset of variables (xi1 , . . . ,xik) fixed respectively to some
values (vi1 , . . . ,vik), then for any g ∈ G adding an inequality that cuts all solutions
with (xg(i1), . . . ,xg(ik)) fixed respectively to values (vi1 , . . . ,vik) can be added at some
nodes of the enumeration tree. However, this inequality is not valid for the initial
formulation and can only be added during the enumeration.

The drawback of this approach is either the huge number of constraints to handle
[50], or the choice of a subset of constraints to use [31, 94, 96], or the design of a
separation algorithm. In [45], an implementation based on the computational group
theory package GAP [113] is presented.

8.2 Static symmetry breaking inequalities

The most general description of static symmetry breaking inequalities for the sym-
metry group G of ILP (1) is probably the following. A fundamental region for G is
a closed set F in Rn such that:

(i) g(int(F)) ∩ int(F) = /0, ∀g ∈ G, g 6= I,

(ii) ∪g∈G g(F) = Rn,

where int(F) denotes the interior of F . Observe that point (i) forces F to be not too
large, while point (ii) implies that F contains at least one optimal solution of ILP
(1). Indeed, if x∗ is an optimal solution, (ii) guarantees that g(F) contains x∗ for
some g ∈ G or, equivalently, that g−1(x∗) ∈ F . We thus get:

Theorem 2. Let G be the symmetry group for ILP (1) and let F be a fundamental
region for G. Then an optimal solution to ILP (1) can be found by optimizing over
the intersection of the feasible set of ILP (1) with F.

Symmetry in Integer Linear Programming 19

It turns out that finding a linear description of a fundamental region for G is quite
easy, at least in theory. The following result can be found in [52].

Theorem 3. Let G be the symmetry group of ILP (1) and let x̄∈Rn such that g(x̄) 6=
x̄ for all g ∈ G,g 6= I. Then

F = {x ∈ Rn | (g(x̄)− x̄) · x≤ 0, ∀g ∈ G, g 6= I} (24)

is a fundamental region for G.

The obvious practical weakness of this result is the huge number of inequali-
ties (one for each permutation g ∈ G, except the identity) in this description with
many of them not being facet defining for F . Another weakness, shared by almost
all practical methods using static symmetry breaking inequalities, is that several iso-
morphic solutions might still be present in the boundary of F . In practice, relatively
simple sets of static symmetry breaking inequalities are used, and most of them can
be derived using a weak version of Theorem 2, as given in the next corollary.

Corollary 1. Theorem 2 remains true when the fundamental region F is replaced
by the region obtained from Theorem 3 by relaxing its statement in either of the
following ways (or both):

(i) Inequalities in (24) are written only for a subset of permutations in G;
(ii) The condition that g(x̄) 6= x̄ for all g ∈ G, g 6= I is removed.

Proof. The proof of (i) is immediate. For (ii), let F be the feasible set defined by
(24) for x̄. For any real number ε > 0, define x̄(ε) ∈ Rn such that x̄(ε)i = x̄i + ε i for
i = 1, . . . ,n. For ε > 0 small enough, all components of x̄(ε) are distinct and thus,
using (24), it defines a fundamental region Fε for G. Let Q be the set of feasible
solutions to ILP (1) and let z ∈Q−F . We now show that there exists ε(z) > 0, such
that z /∈ Fε for all 0 < ε < ε(z). This implies that F contains all the feasible points
from a fundamental region, yielding the result. Define

hz(ε) = max
g∈G
{(g(x̄ε)− x̄ε) · z} .

Observe that hz(ε) is the maximum of a finite number of polynomials in ε of degree
n and thus is a continuous function in ε . As z /∈ F , we have hz(0) > 0, implying that
there exists ε(z) > 0 such that hz(ε) > 0 for all 0 < ε < ε(z). As Q is a finite set, for
0 < δ < min{ε(z) | z ∈ Q} we have Fδ ∩Q⊆ F ∩Q.

ut

We list a few applications of Theorem 2 or Corollary 1 below.
i) The ILP has integer variables 0 ≤ xi ≤ k for i = 1, . . . ,n and G restricted on

these variables contains all permutations of In. Add inequalities

x1 ≥ x2 ≥ . . .≥ xn .

20 François Margot

This result is widely known and used routinely. It can be obtained using Corollary
1 with x̄ defined by x̄i = i for i = 1, . . . ,n and observing that the n− 1 inequalities
given above dominate the remainder of the inequalities obtained from the theorem.

ii) The ILP has integer variables 0 ≤ xi j ≤ k for i = 1, . . . ,s and j = 1, . . . , t and
G, when restricted to these variables, contains all permutations of the first indices
and all the permutations of the second indices. In other words, when arranging the
variables xi j in a two dimensional matrix X as in Section 7.2, all permutations of
the rows of X and all the permutations of the columns of X can be extended to
permutations in G. Add inequalities expressing that the columns of X must be in
non increasing lexicographic order and that the rows of X must be in non increasing
lexicographic order [40, 41]. This is the Lex2 symmetry breaking set, following the
terminology of [96]. This result can be obtained from Theorem 2 using a matrix
X̄ with X̄i j = (k + 1)s·t−(i−1)·t− j for i = 1, . . . ,s and j = 1, . . . , t. For example, for
s = 3, t = 4 and k = 1 we get

X̄ =

 2048 1024 512 256
128 64 32 16

8 4 2 1

 .

Using only the permutations in G that either swap two adjacent columns or swap two
adjacent rows, we get the Lex2 set of constraints. For example, using the permutation
swapping the first two columns, we get the inequality

−1024 x11−64 x21−4 x31 +1024 x12 +64 x22 +4 x32 ≤ 0 (25)

implying the non increasing lexicographic ordering of these columns. Similarly,
using the permutation swapping the first two rows, we get the inequality

− 1920 x11−960 x12−480 x13−240 x14

+ 1920 x21 +960 x22 +480 x23 +240 x24 ≤ 0 (26)

implying the non increasing lexicographic ordering of these rows. Of course, us-
ing inequalities (25) or (26) is not advisable in practice when s or t is large, due to
the numerical instability introduced by large coefficients. This is an example where
Constraint Programming is a more flexible framework than Mathematical Program-
ming to handle symmetry, as the lexicographic orderings on the rows and columns
do not have to be expressed as linear inequalities.

However, in the case where k = 1 and exactly one entry in each row must have
value 1, we can do much better than using the linear inequalities above: To enforce
the non increasing lexicographic ordering of the columns, we can use the Shifted
Column inequalities of Section 7.2 and to enforce the non increasing lexicographic
ordering of the rows, we can use the inequalities

xip ≤
t

∑
j=p

xi+1, j for i = 1, . . . ,s−1, p = 1 . . . , t .

Symmetry in Integer Linear Programming 21

Note that [41] shows that when X̄ must have exactly one 1 per row, the Lex2 set
of constraints can be reinforced by adding the constraints that the sum of the entries
in each column is also non increasing, i.e. adding the constraints

s

∑
i=1

xi j ≥
s

∑
i=1

xi, j+1 for j = 1 . . . , t−1 .

This result is of course implied by the inequalities obtained from Theorem 2 (it
is implied by the lexicographic ordering of the columns and of the rows) but it does
not seem easy to derive it algebraically directly from the inequalities obtained from
the theorem.

iii) The generalization of (ii) where the matrix X is d-dimensional with d ≥ 3 and
where any permutation of indices along any dimension of the matrix can be extended
to a permutation in G can be handled similarly to (ii). For i = 1, . . . ,d, define Xi,` as
the (d− 1)-dimensional matrix obtained from X by selecting all entries whose ith
index is equal to `.

Imposing, for each i = 1, . . . ,d, and each possible value of ` that the entries in
Xi,` are lexicographically not smaller than entries in Xi,`+1 is valid [40]. This result
can be derived from Theorem 2 similarly to (ii). A weaker result for the case where
entries in X are binary, imposing only that the sum of the entries in Xi,` is not smaller
than the sum of the entries in Xi,`+1 is given in [101].

(iv) The matrix X is a s× t matrix and any permutation of the columns of X can
be extended to a permutation in G. A lexicographic ordering on the columns of X
can be imposed. This can be done using the inequalities

s

∑
i=1

(k +1)s−i · xi j ≥
s

∑
i=1

(k +1)s−i · xi, j+1 for j = 1, . . . , t−1,

but this is not numerically very stable when s is large. Note that this is identical to
case (i) applied to the variables corresponding to ∑

s
i=1 (k+1)s−i ·xi j for j = 1, . . . , t.

Application of this idea can be found [33] for solving a layout problem and in [56]
for solving lot-sizing problems. Of course, in special cases, the partitioning orbitope
of Section 7.2 for example, better inequalities can be used. Weaker conditions have
also been tested on practical problems (see [56, 93, 108] for examples and compar-
isons) such as the following three possibilities: First,

s

∑
i=1

xi j ≥
s

∑
i=1

xi, j+1 for j = 1, . . . , t−1 .

This can be obtained from Corollary 1 using X̄i j = j for i = 1, . . . ,s, j = 1 . . . , t.
Second,

s

∑
i=1

i · xi j ≥
s

∑
i=1

i · xi, j+1 for j = 1, . . . , t−1,

22 François Margot

This can be obtained from Corollary 1 using X̄i j = i · j for i = 1, . . . ,s, j = 1 . . . , t.
Finally,

s

∑
i=1

i2 · xi j ≥
s

∑
i=1

i2 · xi, j+1 for j = 1, . . . , t−1 .

This can be obtained from Corollary 1 using X̄i j = i2 · j for i = 1, . . . ,s, j = 1 . . . , t.
It should be noted that the impact of different sets of static symmetry breaking

inequalities is difficult to estimate. In most cases, only empirical evaluation of spe-
cific implementations for specific classes of problems are available. Very little is
known about desirable properties of such a set. Discussion related to the choice of
x̄ and separation of the inequalities in (24) when G is the symmetric group Π n or
a cyclic group can be found in [44]. In [66], a ranking of sets of static symmetry
breaking inequalities is introduced. It is based on the maximum number of points in
the orbit of an extreme point of the polytope that are cut by the set of inequalities.

The discussion of efficiency of different sets of static symmetry breaking in-
equalities when embedded in a branch-and-bound algorithm is muddled by the in-
teraction between the set of inequalities and valid choices for branching decisions.
Some experiments have been made [56, 107, 108, 109], but no definite answer is
available. There are simply too many variables to consider: problem classes, formu-
lation choice, large or small group order, choice of algorithm, coupling with other
symmetry breaking techniques, etc.

Deciding with confidence beforehand that using a given set of dynamic symmetry
breaking inequalities is better or worse than using a given set of static symmetry
breaking inequalities is extremely difficult. One general rule of thumb is that for
problems with a symmetry group of order up to a few thousands of permutations,
dynamic symmetry breaking might be very effective. However, when the order of
the symmetry groups is larger than, say, a million, dynamic symmetry breaking
inequalities can be effective, but only when coupled with other symmetry breaking
techniques. Some limited comparisons are reported in [91, 97].

9 Pruning the enumeration tree

A special case of static symmetry breaking inequalities for ILP (1) is obtained from
Theorem 2 and Theorem 3 using x̄i = (k +1)n−i, for = 1, . . . ,n in the latter. Then, a
vector z ∈ {0, . . . ,k}n is in the fundamental region F if and only if (g(x̄)− x̄) · z≤ 0
for all g ∈ G, which is equivalent to

max{g(x̄) · z | g ∈ G} ≤ x̄ · z and to max{x̄ ·g(z) | g ∈ G} ≤ x̄ · z.

This last expression is equivalent to say that z is in F if and only if z is lexicomax
in its orbit under G, due to the particular choice of x̄. This is hardly a surprising
or difficult result, and restricting the search for lexicomax (or lexicomin) solutions

Symmetry in Integer Linear Programming 23

in their orbit has been used routinely (see [19, 100, 104, 112], just to name a few,
more general expositions and applications can be found in [62, 78]). In [31], in
the setting of clausal propositional logic, predicates similar to the constraints above
are derived. Results on reducing the number of constraints that must be included
to break all symmetries is also discussed. However, the number of constraints that
must be included is, in general, too large for this approach to work. Experiments
with a small subset of the constraints that does not break all symmetries have been
tried [1, 31, 94, 96]. Moreover, even if it were possible to add all these inequalities,
the resulting feasible set rarely is an integral polytope, implying that some work is
left do be done to solve the problem. An alternative is to handle these constraints by
pruning the enumeration tree: Node a of the enumeration tree is pruned if it can be
shown that none of the solutions in the subtree rooted at a is lexicomax in its orbit.

A direct use of this idea leads to algorithms that fix (or build) an order on the
variables and where lexicomax solutions with respect to that order are sought. These
algorithms are presented in Section 9.1. However, it is possible to relax the need of
an order on the variables. The resulting algorithms are covered in Section 9.2. Both
types of algorithms are similar and it might help to study first algorithms working
with a fixed order on the variables, as their description is a little bit simpler.

We focus on three different algorithms for tackling problems with arbitrary sym-
metry groups. These algorithms were developed independently of each other and
look different, although they all use the same basic principles. These algorithms
are: Symmetry Backtracking Search (SBS) [11, 12], Symmetry Breaking via Dom-
inance Detection (SBDD) [39, 46, 96], and Isomorphism Pruning (IsoP) [74, 75].
Algorithms for handling special symmetry groups (such as product of several dis-
joint symmetric groups) have been studied too [42].

Related but simpler and less efficient algorithms for solving quadratic assign-
ment problems can be found in [8, 76]. They essentially just avoid the creation of
isomorphic subproblems from the same parent node. Nevertheless, this simple op-
eration makes a difference when solving difficult benchmark quadratic assignment
problems [2].

A few definitions are necessary to help in the description of the algorithms.
Let a be a node of the enumeration tree T and, for i = 1, . . . ,n, let Da

i be the
possible values for variable xi at node a. Let ILPa be the ILP (1) with the additional
constraints xi ∈ Da

i for i = 1, . . . ,n. The path of a in T is the path Pa from the root
node of T to a. A node a1 is a son of node a if aa1 is an edge of T and the path of
a1 goes through a. See Figure 2.

We consider the following three branching rules at node a:

(i) Partitioning: Select a variable xi with |Da
i | ≥ 2. Partition Da

i into 2 ≤ ` ≤ |Da
i |

non empty sets Da
i (1), . . . ,Da

i (`). Create the ILP for son a j for j = 1, . . . , ` by
replacing xi ∈ Da

i in ILPa by xi ∈ Da
i (j). To avoid cumbersome notation, we

assume that the partition of Da
i satisfies that, for all 1 ≤ j ≤ `− 1, if t ∈ Da

i (j)
and t ′ ∈ Da

i (j +1) then t < t ′.
(ii) Splitting: Select a variable xi such that Da

i = {v1, . . . ,v`} with ` ≥ 2 and v j <
v j+1 for j = 1, . . . , `−1. Create the ILP for son a j for j = 1, . . . , `, by replacing
xi ∈ Da

i in ILPa by xi = v j.

24 François Margot

(iii) Minimum Index Splitting: Similar to (ii), the only difference is that i must be the
smallest index with |Da

i | ≥ 2.

It should be clear that (ii) is more restrictive than (i) and that (iii) is more re-
strictive than (ii). Note also that if one chooses ` = |Da

i | in (i), the resulting rule is
(ii). In this section, we assume implicitly that one of these three rules is used, with
an arbitrary rule for selecting the branching variable for Partitioning and Splitting.
Suppose that a branching rule is fixed and let T be the enumeration tree obtained
following that rule, pruning nodes only when they are infeasible (pruned nodes are
included in T). Tree T is called the full enumeration tree for the selected branching
rule. Note that if a is a feasible leaf of T then |Da

i |= 1 for all i = 1, . . . ,n. Feasible
leaves of T are in bijection with the feasible solutions of the ILP.

9.1 Pruning with a fixed order on the variables

In this section, we assume that a total order on the variables is fixed from the begin-
ning of the algorithm. To simplify notation and without loss of generality we take
this order as the natural order defined by the indices on the variables, with x1 being
the first variable in the order.

Note that the material in this section can be adapted so that the order used is built
during the execution of the algorithm: The algorithm works with a partial order
that is refined during the execution. The initial partial order is an order where all
variables have the same priority. Then, each time an operation is performed, it must
be valid for an extension of the current partial order and the partial order is modified
to include the corresponding constraints. However, the resulting algorithm can be
seen as a constrained version of the algorithms presented in Section 9.2 and as such
does not deserve much attention.

We know that node a of the enumeration tree can be pruned if none of the optimal
solutions in the subtree rooted at a can be lexicomax in its orbit. It is possible to

Fig. 2 Node a and the order-
ing of its sons; path Pa (in
bold); b to the immediate left
of Pa; c to the left of Pa.

a
3

a
2 a

1

root

b b’

a

c

Symmetry in Integer Linear Programming 25

identify situations were this holds using the following extension of lexicographic
ordering.

Given two nodes a and b of T , we say that Db = (Db
1, . . . ,D

b
n) is lexico-set larger

than Da = (Da
1, . . . ,D

a
n), written Db >Ls Da, if and only for some t ∈ {1, . . . ,n} we

have min{ j | j ∈ Db
i } ≥max{ j | j ∈ Da

i } for i = 1, . . . , t−1 and min{ j | j ∈ Db
t }>

max{ j | j ∈ Da
t }. By extension, the definition applies to any pair of n-vectors of

subsets of In. We write g(Da) for the vector of subsets obtained by permuting the
entries of Da according to g.

Example 3. Consider Da
1 = {0,1}, Da

2 = {0}, Da
3 = {1}, Da

4 = {1} and Db
1 = {1},

Db
2 = {1}, Db

3 = {0}, Db
4 = {0,1}. We have Db >Ls Da and for g = (3,4,2,1), we

have g(Da) = Db.
ut

We then have:

Theorem 4. Let a be a node of the full enumeration tree T . If there exists g∈G such
that g(Da) >Ls Da then node a can be pruned.

The pruning done by Theorem 4 is called isomorphism pruning (IP). It is imme-
diate that if IP is able to prune node a, it is also able to prune all sons d of a, as
Dd

i ⊆ Da
i for all i = 1, . . . ,n and thus g(Dd) >Ls Dd if g(Da) >Ls Da. Nodes of T

that are not pruned thus form a subtree of T containing the root of T as well as all
solutions that are lexicomax in their orbit. The validity of the pruning follows.

If we assume that at the root r of T we have Dr
i = {0, . . . ,k} for all i = 1, . . . ,n,

IP is virtually useless until branching on variable x1 has occurred. In general, IP is
more efficient when the domains Da

i for i = 1, . . . , t are small and t is large. As a
consequence, most algorithms using IP also use the Minimum Index Splitting rule
[19, 26, 72, 73, 74, 75, 96, 100].

Having the branching order essentially fixed from the beginning is a minor re-
striction when pure backtracking enumeration algorithms are used, but it is poten-
tially a major drawback when using branch-and-bound algorithms or other domain
reduction techniques, as it is well known that a clever branching variable choice
can reduce the enumeration tree drastically. Nevertheless, algorithms based on IP
and a fixed ordering of the variables have been shown, on many instances, to be
orders of magnitude faster than a branch-and-bound algorithm oblivious to existing
symmetries. It should be noted, however, that different orderings of the variables
produce wildly different performance, transforming a problem that can be solved in
seconds into one that is essentially impossible to solve. For many problems, finding
a “reasonable” ordering of the variables is not too difficult. However, as mentioned
in Section 5, for proving that no proper coloring of the edges of a clique on 9 nodes
with 8 colors exists, two “reasonable” ordering of the variables yield running times
that are orders of magnitude apart.

26 François Margot

9.1.1 Additional domain reduction or additional inequalities

Some care must be taken when additional inequalities or variable domain reduction
techniques are used together with IP (or symmetry breaking inequalities, but we
focus on IP here). It is valid to use either, provided that it can be shown that at
least one optimal solution x∗ that is lexicomax in its orbit under G remains feasible.
This is usually quite difficult to prove, but the following are examples where this is
possible:

(i) ILP cutting planes: Add any inequality to ILPa that is valid for the convex hull
of the integer solutions of ILPa; indeed, as no integer point is cut by these, all
optimal solutions that are lexicomax in their orbit are kept. This implies that any
of the standard cutting plane generators for ILP (Gomory, Cover, Knapsack, etc.)
can be used.

(ii) Strict exclusion algorithms: Excluding value v from Da
i for some i is valid if it

is known that no optimal solution x̄ of ILP, valid for ILPa and lexicomax in its
orbit, has x̄i = v. This implies that many of the usual techniques for excluding
values for variables can be used. It is however necessary to stress that merely
guaranteeing that there is an optimal solution x̄ of ILPa with x̄i 6= v is not enough
for having the right of excluding value v from Da

i .
(iii) Strict exclusion algorithms working under symmetry: Similar to (ii) with the

additional constraint that if xi 6= v is produced by the algorithm for ILPa then,
for any g ∈ G, it can produce that xg(i) 6= v in the ILP obtained by permuting the
variables in ILPa according to g. This requirement prevents the use of exclusion
algorithms that use information related to lexicographic order. It is, however,
usually met by typical exclusion algorithms that are used in ILP. The interest of
imposing the constraint of working under symmetry on the exclusion algorithms
is explained later in this section and also in Section 10.

(iv) IP exclusion: Suppose that at node a, for some g ∈ G, and for some t ∈
{1, . . . ,n}, we have min{ j | j ∈ Da

g(i)} = max{ j | j ∈ Da
i } for i = 1, . . . , t and

max{ j | j ∈ Da
g(t)} > max{ j | j ∈ Da

t }. Notice that any feasible solution x̄ for
ILPa with x̄g(t) = v for v = max{ j | j ∈ Da

g(t)} is not lexicomax in its orbit, as
g−1(x̄) is lexicographically larger. It is thus valid to exclude v from Da

g(t).
(v) Orbit exclusion: Suppose that at node a, for some p ≥ 1, we have |Da

i | = 1 for
i = 1, . . . , p and |Da

p+1|> 1. Let v be the vector defined by vi = Da
i for i = 1, . . . , p

and vi =−1 otherwise. Let O be an orbit under the stabilizer of v in G. Let D be
the intersection of the domains Da

i for all i ∈O. Set Da
i = D for all i ∈O.

Note that (ii) and (iii) were introduced in [74, 75] and that particular cases of (iv)
have been used in [11, 12] as well as many papers in the Constraint Programming
literature (this is a filtering algorithm), as well as under the name 0-fixing in [74, 75].
Observe that (iv) does not fit the conditions of (iii). It is important to understand also
that (v) is valid only if the other exclusion algorithms used satisfy (iii) or (iv). (v)
was introduced in [75] under the name orbit fixing and a generalization of (v) is also
given there.

Symmetry in Integer Linear Programming 27

9.2 Pruning without a fixed order of the variables

The practical need, mentioned in Section 9.1, of branching using the Minimum In-
dex Splitting to perform IP can however be relaxed. A few definitions are needed
before continuing the presentation.

Graphically, the full enumeration tree T is drawn with the root at the top and the
sons a j of a for j = 1, . . . , ` are drawn from right to left below a, starting with a1 (see
Figure 2). We say that a j′ is to the left of a j if j < j′. A node b is to the immediate
left of Pa if b is the son of a node c ∈ Pa−a and b is to the left of the son of c that
is part of Pa. A node c is to the left of Pa if c is in the subtree rooted at a node to the
immediate left of Pa.

If we assume that the domains of the variables are modified only by the branching
operation, we have [39]:

Theorem 5. Let a be a node of the full enumeration tree T . If there exists a node b
to the immediate left of the path of a and a permutation g ∈ G such that Da

g(i) ⊆ Db
i

for i = 1, . . . ,n then a can be pruned.

Proof. All optimal solutions of the ILP are feasible leaves of T . Since T is drawn
according to the convention above, the orbit O under G of any optimal solution has
one solution s∗ that is to the left of the path to any s ∈ O− s∗. We claim that no
node t in the path to s∗ is pruned by the pruning of the statement. Indeed, if t is
pruned, then there exists b to the left of the path of t and g ∈ G with Dt

g(i) ⊆ Db
i

for i = 1, . . . ,n. But then g(s∗) is a feasible leaf of T to the left of the path to s∗, a
contradiction with the definition of s∗.

ut

To showcase the connection between Theorem 5 and the lexicographic pruning
of Section 9.1, suppose that the branching rule used to produce T in Theorem 5 is the
Minimum Index Splitting rule. The pruning made by Theorem 5 is then equivalent
to the one done by Theorem 4.

One major difference, however, between the two theorems is that Theorem 4 has
the same efficiency when additional exclusion of values are done whereas, as stated,
Theorem 5 might miss some pruning due to shrinkage of some domains in b. This
motivates the tracking of branching decisions that have been made on the path of
a. Let oa be the order list at a, where oa is simply the ordered list of the indices
of the variables used as branching variables on the path of a. In this section, we
assume that the Splitting branching rule is used to simplify the presentation, but the
algorithms can handle the Partitioning branching rule.

The definition of lexico-set larger given in Section 9.1 can be extended so that
comparisons are made according to an ordered list of indices: Let o be an ordered list
of p indices with oi denoting the ith element in the list. We say that, with respect to
o, Db = (Db

1, . . . ,D
b
n) is lexico-set larger than Da = (Da

1, . . . ,D
a
n), written Db >os Da,

if and only for some t ∈ {1, . . . , p} we have min{ j | j ∈ Db
oi
} ≥ max{ j | j ∈ Da

oi
}

for i = 1, . . . , t−1 and min{ j | j ∈ Db
ot}> max{ j | j ∈ Da

ot}.
We then have [11, 12]:

28 François Margot

Theorem 6. Let a be a node of the full enumeration tree T obtained using the Split-
ting branching rule and let oa be the order list at a. If there exists g ∈ G such that
g(Da) >oas Da then node a can be pruned.

9.2.1 Additional domain reduction or additional inequalities

As in Section 9.1, it is possible to couple the pruning of Theorem 6 with domain
reduction techniques and cutting planes, with restrictions similar to those listed in
Section 9.1.1.

It is easy to overlook that two techniques conflict with each other. An example
reported in the literature [96] is the attempt to use jointly the pruning of Theorem 6
with the Lex2 symmetry breaking constraints described in Section 8.2.

While this is perfectly valid if Theorem 4 or Theorem 6 is used with an ordering
of the variable for which lexicomax solutions satisfy the Lex2 constraints, it might
fail when Theorem 6 is used with an arbitrary order.

10 Group representation and operations

While Theorem 5 and Theorem 6 form the basis for pruning algorithms, they are
existence results. For a practical implementation, we need an algorithm checking if
there exists g∈G satisfying the statement. The implementation of SBS from [11, 12]
and implementation of IsoP from [74, 75] work with an arbitrary group given by
a collection of generators. The implementations of SBDD from [39, 96] use prob-
lem specific algorithms or work only for very simple groups (typically symmetric
groups). The SBDD implementation of [46] uses an approach similar to [11, 12], but
few details are available, preventing a finer comparison with the implementations
of SBS and IsoP. This section covers the basics for handling computational group
operations needed in a branch-and-bound algorithm and points differences between
the implementations of [11, 12] and [74, 75]3.

The group representation and algorithms are based on the Schreier-Sims repre-
sentation of G, a tool widely used in computational group theory [16, 17, 18, 19, 54,
62, 64, 65]. The reader is referred to [16, 17, 55, 106] for a comprehensive overview
of the field.

Let G0 = G and Gi = stab(i,Gi−1) for i = 1, . . . ,n. Observe that G0,G1, . . . ,Gn
are nested subgroups of G. For t = 1, . . . ,n, let orb(t,Gt−1) = { j1, . . . , jp} be the
orbit of t under Gt−1. Then for each 1 ≤ i ≤ p, let ht, ji be any permutation in Gt−1
sending t on ji, i.e., ht, ji [t] = ji. Let Ut = {ht, j1 , . . . ,ht, jp}. Note that Ut is never
empty as orb(t,Gt−1) always contains t.

Arrange the permutations in the sets Ut , t = 1, . . . ,n in an n×n table T , with

3 The algorithms of [74, 75] assume a fixed order of the variables, but as pointed out first by
Ostrowski [87] and as the presentation in this paper shows, this requirement can be waived.

Symmetry in Integer Linear Programming 29

Tt, j =
{

ht, j if j ∈ orb(t,Gt−1),
/0 otherwise.

Example 4. As observed in Example 1, the symmetry group of ILP (2) is G =
{I,(2,3,4,1),(3,4,1,2),(4,1,2,3),(3,2,1,4),(4,3,2,1),(1,4,3,2),(2,1,4,3)}.

We have G0 := G and orb(1,G0) = {1,2,3,4} with h1,1 = I, h1,2 = (2,3,4,1),
h1,3 = (3,4,1,2), and h1,4 = (4,1,2,3). Then G1 := stab(1,G0) = {I,(1,4,3,2)}
and orb(2,G1) = {2,4} with h2,2 = I and h2,4 = (1,4,3,2).

Finally, G2 := stab(2,G1)= {I}, G3 := stab(3,G2)= {I} and G4 := stab(4,G3)=
{I}. The corresponding table T is:

1 2 3 4
1 I h1,2 h1,3 h1,4
2 I h2,4
3 I
4 I

ut

The table T is called the Schreier-Sims representation of G. It is possible to make
a small generalization of the presentation by ordering the points of the ground set in
an arbitrary order β , called the base of the table. In that case, the subgroups G(β)t
for t = 1, . . . ,n are defined as the stabilizer of βt in G(β)t−1, with G(β)0 = G. The
corresponding table is denoted by T (β). Row t of T (β) corresponds to the element
t, U(β)t is the set of non empty entries in row t of T (β) and J(β)t denotes the
corresponding set of indices { j ∈ In | T (β)[t, j] 6= /0}, also called the basic orbit of
t in T (following the terminology of [65]). When the base β is fixed, we sometimes
drop the qualifier (β) in these symbols, but from now on each table T is defined
with respect to a base.

The most interesting property of this representation of G is that each g ∈ G can
be uniquely written as

g = g1 ·g2 · . . . ·gn (27)

with gi ∈ Ui for i = 1, . . .n. Hence the permutations in the table form a set of
generators of G. It is called a strong set of generators, since the equation (27) shows
that g ∈ G can be expressed as a product of at most n permutations in the set.

Given a permutation g ∈ G, it is easy to find the n permutations g1, . . . ,gn of
equation (27): the permutations g2, . . . ,gn all stabilize element 1, forcing g1 to be
T [1,g(1)]. Then, as g3, . . . ,gn all stabilize element 2, we must have (g1 · g2)(2) =
g(2), i.e. g2(2) = (g−1

1 · g)(2) and thus g2 = T [2,(g−1
1 · g)(2)]. A similar reasoning

yields g3, . . . ,gn.
Algorithms for creating the table T (β) and for changing the base β of the repre-

sentation can be found in [16, 18, 19, 54, 55, 62, 64, 65, 106]. For a group G given by
a set T of generators, algorithms for creating the table and with worst-case running
time in O(n6 +n2 · |T |) [62] have been devised. Faster but more complex algorithms
are also known [5, 55, 58, 105, 106]. The complexity of the algorithm of Jerrum

30 François Margot

[58] is in O(n5 +n2 · |T |) and the one of Babai et al. [5] is in O(n4 · logc n+n2 · |T |)
where c is a constant and one from [106] is O(n2 · log3 |G|+ |T | ·n2 · log |G|). Since
we might assume that the permutation group is given by a set of strong generators,
the speed of the algorithm for finding the representation of the group is not partic-
ularly relevant here. Note also that the cardinality of the ground set of the groups
that are usually of interest are small (for computational group theory standards, at
least) and that the simpler algorithms perform satisfactorily in the large majority of
the cases.

Algorithms for changing the base of the table can be found in [11, 19, 30, 55, 62,
106] with worst-case running time up to O(n6), while more complex algorithms run
in almost linear time. An algorithm with worst case complexity in O(n6) or even
O(n4) might seem impractical for values of n≥ 100. It turns out that the complexity
bounds given above are very pessimistic and are usually attained for the symmetric
group on n elements. The amount of time spent in the algorithms dealing with the
group operations for the applications of [74, 75] stays below 10% of the total cpu
time.

Although the algorithms are described here for a 2-dimensional table T , a more
space efficient implementation uses a vector of ordered lists instead, as most entries
in the table are usually empty. For example, when solving the covering design prob-
lem cov1054 mentioned in Section 1, n = 252, the group has order 10! = 3,628,800,
but the number of entries in the table is, on average, 550. It is worth noting that most
of the cpu time used by the group algorithms is spent multiplying permutations.
Speedup may be obtained in some cases by keeping permutations in product form
(see [55, 106] for details).

Property (27) is the corner stone of the algorithm testing the existence of g ∈ G
satisfying Theorem 6. To simplify the notation, assume that the Minimum Index
Splitting rule is used, and thus at node a, for some p≥ 1, we have oa

i = i and xi = vi
for i = 1, . . . , p.

We use a backtracking algorithm to construct g, if it exists: For v = 1, . . . ,k, let Fa
v

be the set of indices of variables that have value v at a, i.e. Fa
v = {i∈ In | Da

i = {v}}.

0) Let g0 := I, let i = 1 and let T be a Schreier-Sims table for G with base
(1,2, . . . ,n) and initialize the sets Fa

v for v = 0, . . . ,k.
1) Let v be the value that xi takes at a;
2) If g−1

i−1(i) ∈ Fa
w for some w > v then STOP;

3) For all j ∈ gi−1(Fa
v) do

3.1) Let hi := T [i, j]
3.2) If hi 6= /0 then

3.2.1) Remove index g−1
i−1(j) from Fa

v

3.2.2) gi := h−1
i ·gi−1;

3.2.3) i := i+1; If i≤ p then go to step 1);

If the algorithm terminates in step 2), then gi−1 is a permutation showing that
a can be pruned, according to Theorem 6. Although this algorithm is essentially
the one used in implementations, important variations occur. The implementations

Symmetry in Integer Linear Programming 31

of SBS of [11, 12] and of IsoP of [74, 75] differ in modifications reducing the
pruning that is done to improve running time. Another important difference is that
in [11, 12], the algorithm is called before the branching variable is chosen while in
[74, 75] it is called to weed out all values in the domain of the selected branching
variable that would lead to a node that could be pruned by isomorphism. Advantages
of the former is that information about the orbits of variables can be used to select the
branching variable (experiments with different selection rules are described in [88]),
while the latter leverages the fact that the operations performed by the algorithm at
different sons of a node are very similar and can be collapsed efficiently in one
application of the algorithm as described below.

Note that in both implementations of [11, 12] and [74, 75], the sets Fa
v contain

only the indices in {1, . . . , p}. The motivation for this choice is firstly the orbit ex-
clusion algorithm of Section 9.1.1. Secondly, the fact that the stabilizer used in the
orbit exclusion algorithm is a group means that orbit computations can be performed
by computing generators of that group.

This last point is the approach taken in [11, 12], where a clever shortcut is used:
when step 3.2.2) is reached with i = p, orbits are updated to reflect the effect of
gp and backtracking can be made directly to the smallest index i in step 3.2.2) for
which hi 6= I. This potentially speeds up the execution, but might miss some pruning
that could be obtained from step 2.

In [74, 75] the algorithm is used before branching on variable xp+1. In other
words, at node a, assuming that more than one value is in Da

p+1, the index p + 1
would appear in Fa

v for all v ∈ Da
p+1. The algorithm is then modified as follows:

(i) In step 2), if g−1
i−1(i) = p + 1, then instead of stopping, the value w is removed

from Da
p+1 and p + 1 is removed from Fa

w . This is an application of the domain
reduction (iv) of Section 9.1.1.

(ii) If the stopping criterion is met in step 2), but p + 1 was the index g−1
i−1(j) in

an earlier step 3.2.1) used to build the current permutation gi−1, then we can
backtrack to that step 3.2.1), remove the value v from Da

p+1, remove p + 1 from
Fa

v and continue. This is also an application of (iv) of Section 9.1.1.
(iii) In step 3.2.1), if g−1

i−1(j) = p+1, then p+1 is removed from all the sets Fa
w .

Using these modifications, the values in Da
p+1 at termination of the algorithm are

the values that need to be used to create sons by splitting. Of course, if that domain
is empty then a is pruned.

Another modification used in [74, 75] is to ignore variables that have been set
to 0 by branching. Suppose that variables that have been set to positive values by
branching at a are (i1, . . . , it) and assume that the base β of T starts with these
elements in that order. The above algorithm is then run with i := i1 and instead of
incrementing i by one, it skips from i j to i j+1. The justification for this modification
is that if xī = 0 is set for some ī, and a permutation g is obtained in Step 2) of the
algorithm, then the minimum value in the domain of j = g−1(ī) can not be smaller
than 0. Using the original algorithm, we could exclude from Da

j all values larger
than 0 and continue. This reduction is possibly missed by the modified algorithm,
but it remains correct.

32 François Margot

The importance of this modification is on display when solving a problem where
the variables taking a positive value in any optimal solution is a small subset of
the variables. (This is an usual feature of combinatorial problems that are typically
solved by ILP.) The depth of the backtracking of the modified algorithm is then
much smaller, with a significant impact on the running time.

Unfortunately, there is no direct comparison available between the implementa-
tions of [11, 12] and [74, 75], as the only published results for the former are for the
well-known Queens problem: On an n× n chessboard, place n queens that do not
attack each other. It would be foolish to draw conclusions on implementations of
algorithms designed to handle groups with large orders based only on results on an
application where the group order is 8. In Section 13, a comparison (hardly an ideal
one but a little bit more meaningful) between implementations of SBDD and IsoP
is given.

11 Enumerating all non isomorphic solutions

One important application of the pruning algorithms of Section 9 is their use for
enumerating all non isomorphic solutions to a symmetric ILP. Pruning is the only
technique that can reliably list only non isomorphic solutions, as, in general, sym-
metry breaking inequalities are either too expensive to use or do not remove all
symmetry from the problem. There is interest emanating from the Combinatorics
and Statistics communities (among others) for enumerating all non isomorphic
graphs or matrices with certain properties. For example, covering designs [51, 82]
or balanced incomplete block designs [29] have a long history. For small values of
the parameters, complete or implicit enumeration algorithms were used to gener-
ate solutions. Enumerating all non isomorphic solution is interesting, since these
objects are used to build other mathematical objects or used to test conjectures.
A few of the enumeration results obtained by pruning algorithms are available in
[15, 26, 68, 73, 75, 78, 94, 96, 104]. Note that the solutions obtained by a pruning
algorithm are non isomorphic solutions with respect to the symmetry group G used
by the algorithm. It might happen that G is only a subgroup of the symmetry group
of the feasible set of the problem and thus that isomorphic solutions remain in the
output.

Enumerating all non isomorphic solutions also provides a powerful debugging
tool. Replicating enumeration results on problems having thousands of non isomor-
phic solutions is a much better indication that an algorithm is correct than when it is
run to find an optimal solution. Indeed, in symmetric problems, a faulty algorithm
can still find optimal solutions with surprising ease, whereas it is more likely that at
least one of the non isomorphic optimal solutions is missed or that two isomorphic
solutions appear in the output when enumerating all non isomorphic solutions.

Some empirical results for enumeration of all non isomorphic solution to a com-
binatorial problem are given in Section 13.

Symmetry in Integer Linear Programming 33

12 Furthering the reach of isomorphism pruning

Isomorphism pruning and other techniques for handling symmetries in ILP help
push the boundaries of the problems that can be solved routinely. However, many
symmetric ILPs have a parametrized formulation yielding a never ending stream of
challenging problems. When trying to solve an ILP, it is possible to use some kind of
partial isomorphism pruning in order to speed up the process. For example, skipping
the isomorphism pruning at deep level in the tree is usually beneficial as illustrated
on a few examples in [96]. Another idea is to use the orbits of the variables not yet
fixed to some values for branching variable selection [88].

Another recent development is the idea of branching on constraints using orbits.
Given a branching corresponding to a valid disjunction a · x ≤ b or a · x ≥ b + 1
one son is created with the first constraint, while the second one is generated using
g(a) · x≥ b+1 for all g ∈ G. Further, when the disjunction is chosen carefully, it is
sometimes possible to enumerate all non isomorphic solution to a · x = t for some
values of t and use these solutions for solving the original problem. This technique
was pioneered by Östergård and Blass [85] in the combinatorics community and
used for improving the lower bound for the Football Pool problem using ILP [67,
86]. In [89], Ostrowski et al. formalize and generalize the technique and apply it
successfully to solve Steiner Triple Systems and Covering Design problems that
were previously out of reach.

A special situation of practical interest occurs when the symmetry group G is the
product of a nontrivial group with a symmetric group. This is the typical situation
for partitioning problems of the form considered in Section 7.2 when symmetry
between the elements is also present. This happens for example for graph coloring
problems where the automorphism group of the graph is non trivial. As symmetric
groups are the most challenging ones to handle using the algorithms mentioned
in Section 10 while they can be handled easily without complex representation, in
[75] hybrid algorithms are used where the symmetric groups are handled directly.
Improvement in reported running times are significant.

13 Choice of formulation

When dealing with a symmetric problem, the choice of the formulation might have
a big impact on the performances of a solution technique. This is well known for
ILPs, and it is even more acute when dealing with symmetries. While tightness of
linear relaxation, number of variables, and constraint types can be used as guides for
choosing an ILP formulation, things are obscured when dealing with a symmetric
ILP, as different variable choices might yield very different symmetry groups. One
would expect that fewer variables and a symmetry group with smaller order is better,
but as described in Section 5 things are not so simple. In [110], several formulations
for constructing a particular class of combinatorial designs are compared.

34 François Margot

Just to have a concrete example illustrating how alternative formulations can
make a big difference, consider the problem of constructing Balanced Incomplete
Block Designs (BIBD). A BIBD is a binary matrix with given dimensions b× v
with exactly k ones per row and constant dot product of value λ between any two of
its columns (see [29] for background material). The results of [46, 96] are obtained
using a nonlinear formulation with b · v binary variables, one for each entry in the
matrix. This yields a formulation where the symmetry group has order v! · b!. It
is not convenient to use these variables to get an ILP formulation. An alternative
linear formulation can be built from a list {R1, . . . ,Rq} of all possible binary rows
of length v and having exactly k ones. Define one integer variable xi taking values
between 0 and λ , indicating how many times row Ri appears in the solution, for
i = 1, . . . ,q. Constraints are that, for each pair j1, j2 of columns, the sum of all
variables corresponding to rows having 1s in columns j1 and j2 should be exactly λ .
This yields a formulation with v!

(v−k)!·k! variables, v(v−1)
2 constraints and a symmetry

group of order v!.
For many instances, the latter formulation seems much simpler to solve than

the former. The following table compares results for three codes for solving BIBD
problems. The comparison is far from ideal, since the three codes are run on differ-
ent machines and the formulations are not identical. Both GAP-ECLIPSE [46] and
SBDD+STAB [96] use the first formulation, while IsoP [75] uses the second one. It
is clear that SBDD+STAB outperforms GAP-ECLIPSE, but this should not be too
surprising as SBDD+STAB uses the particular (extremely simple) structure of the
symmetry group, while GAP-ECLIPSE is a code that can be used with any group.
Nevertheless, the difference in running time on the third problem is quite stunning,
possibly due to different branching variable choices. On the other hand, on hard
problems, IsoP seems significantly faster than SBDD+STAB, even after discount-
ing for the difference in machine speeds. It is likely that part of the difference can
be attributed to the formulation IsoP uses.

v k λ # solutions GAP-ECLIPSE SBDD+STAB IsoP
11 5 2 1 19 0 1
13 4 1 1 42 0 10
13 3 1 2 59,344 0 1
7 3 8 5,413 21,302 115
9 3 3 22,521 34,077 1,147
15 3 1 80 2,522 161
13 4 2 2,461 18,496 5,142
11 5 4 4,393 83,307 3,384

Table 2 Comparison of formulations for BIBD problems. Number of non isomorphic solutions
and times (rounded down) in seconds for enumerating them. Empty entries indicate that the corre-
sponding result is not available. Times for GAP-ECLIPSE are from [46], obtained on a 2.6GHz
Pentium IV processor. Times for SBDD+STAB are from [96], obtained a 1.4GHz Pentium Mobile
laptop running Windows XP. Times for IsoP are obtained on the machine mentioned in Section 1.

Symmetry in Integer Linear Programming 35

14 Exploiting additional symmetries

So far, the only symmetries considered were the symmetries of the original ILP (1).
However, while solving the ILP by branch-and-bound, it is sometimes the case that,
at node a of the enumeration tree, additional symmetries exist in ILPa, as seen in
Example 2 in Section 5. These symmetries can be used when solving ILPa, provided
that they can be identified. This last point is a big hurdle to clear. As pointed out in
Section 3, automatic symmetry detection is a difficult problem in itself. Few papers
attempt to use an automatic symmetry detection algorithm at nodes of the tree, and
when they do, results are unconvincing [88], as the time spend in searching for
additional symmetries is not compensated by a commensurate reduction in the size
of the enumeration tree. Successful exploitation of additional symmetries are limited
to cases where problem specific rules for generating the symmetries are designed
from the start [47]. Development of theory and algorithms for exploiting additional
symmetries can be found in [48].

References

1. Aloul F.A., Ramani A., Markov I.L., Sakallah K.A.: Solving Difficult Instances of Boolean
Satisfiability in the Presence of Symmetry, IEEE Transactions on CAD 22, 1117-1137 (2003).

2. Anstreicher K.M.: Recent Advances in the Solution of Quadratic Assignment Problems,
Mathematical Programming Ser. B 97, 27–42 (2003).

3. Applegate D.L., Bixby R.E., Chvátal V., Cook W.J.: The Traveling Salesman Problem, A
Computational Study, Princeton (2006).

4. von Arnim A., Schrader R., Wang Y.: The Permutahedron of N-sparse Posets, Mathematical
Programming 75, 1–18 (1996).

5. Babai L., Luks E.M., Seress Á.: Fast Management of Permutation Groups I, SIAM Journal
on Computing 26, 1310–1342 (1997).

6. Balas E.: A Linear Characterization of permutation Vectors, Management Science Research
Report 364, Carnegie Mellon University, Pittsburgh, PA (1975).

7. Barnhart C., Johnson E.L., Nemhauser G.L., Savelsbergh M.W.P., Vance P.H: Branch-and-
Price: Column Generation for Solving Huge Integer Programs, Operations Research 46, 316–
329 (1998).

8. Bazaraa M.S., Kirca O.: A Branch-and-Bound Based Heuristic for Solving the Quadratic
Assignment Problem, Naval Research Logistics Quarterly 30, 287–304 (1983).

9. Bertolo R., Östergård P., Weakley W.D.: An Updated Table of Binary/Ternary Mixed Cover-
ing Codes, Journal of Combinatorial Designs 12, 157–176 (2004).

10. Bosma W., Cannon J., Playoust C.: The Magma Algebra System. I. The User Language,
Journal of Symbolic Computations, 24, 235-265 (1997).

11. Brown C.A., Finkelstein L., Purdom P.W.: Backtrack Searching in the Presence of Symmetry,
Lecture Notes in Computer Science 357, Springer, 99–110 (1989).

12. Brown C.A., Finkelstein L., Purdom P.W.: Backtrack Searching in the Presence of Symmetry,
Nordic Journal of Computing 3, 203–219 (1996).

13. Buchheim C., Jünger M.: Detecting Symmetries by Branch&Cut, Mathematical Program-
ming Ser. B, 98, 369–384 (2003).

14. Buchheim C., Jünger M.: Linear Optimization Over Permutation Groups, Discrete Optimiza-
tion 2, 308–319 (2005).

15. Bulutoglu D.A., Margot F.: Classification of Orthogonal Arrays by Integer Programming,
Journal of Statistical Planning and Inference 138, 654-666 (2008).

36 François Margot

16. Butler G.: Computing in Permutation and Matrix Groups II: Backtrack Algorithm, Mathe-
matics of Computation 39, 671–680 (1982).

17. Butler G.: Fundamental Algorithms for Permutation Groups, Lecture Notes in Computer Sci-
ence 559, Springer (1991).

18. Butler G., Cannon J.J.: Computing in Permutation and Matrix Groups I: Normal Closure,
Commutator Subgroups, Series, Mathematics of Computation 39, 663–670 (1982).

19. Butler G., Lam W.H.: A General Backtrack Algorithm for the Isomorphism Problem of Com-
binatorial Objects, Journal of Symbolic Computation 1, 363–381 (1985).

20. Cameron P.J.: Permutation Groups, London Mathematical Society, Student Text 45, Cam-
bridge University Press, (1999).

21. Campêlo M., Corrêa R.C.: A Lagrangian Decomposition for the Maximum Stable Set Prob-
lem, Working Paper (2008), Universidade Federal do Ceará, Brazil.

22. Campêlo M, Campos V.A., Corrêa R.C.: Um Algoritmo de Planos-de-Corte para o Número
Cromático Fracionário de um Grafo. To appear in Pesquisa Operational (2008).

23. Campêlo M., Corrêa R., Frota Y.: Cliques, Holes and the Vertex Coloring Polytope, Informa-
tion Processing Letters 89, 159-164 (2004).

24. Campêlo M., Campos V., Corrêa R.: On the Asymmetric Representatives Formulation for the
Vertex Coloring Problem, Electronic Notes in Discrete Mathematics 19, 337-343 (2005).

25. Campêlo M., Campos V., Corrêa R.: On the Asymmetric Representatives Formulation for the
Vertex Coloring Problem, Discrete Applied Mathematics 156, 1097-1111 (2008).

26. Cameron R.D., Colbourn C.J., Read R.C., Wormald N.C.: Cataloguing the Graphs on 10
Vertices, Journal of Graph Theory 9, 551–562 (1985).

27. Christof T., Reinelt G.: Decomposition and Parallelization Techniques for Enumerating the
Facets of Combinatorial Polytopes, International Journal on Computational Geometry and
Applications 11, 423–437 (2001).

28. Cohen G. Honkala I., Litsyn S., Lobstein A.: Covering Codes, North Holland (1997).
29. Colbourn C.J., Dinitz J.H., (eds.): The CRC Handbook of Combinatorial Designs, CRC Press

(2007).
30. Cooperman G., Finkelstein L., Sarawagi N.: A Random Base Change Algorithm for Per-

mutation Groups, Proceedings of the International Symposium on Symbolic and Algebraic
Computations – ISSAC 90, 161-168, ACM Press (1990).

31. Crawford J., Ginsberg M.L., Luks E., Roy A.: Symmetry-Breaking Predicates for Search
Problems, KR’96: Principles of Knowledge Representation and Reasoning, Aiello L.C.,
Doyle J., Shapiro S. (eds.), 148–159 (1996).

32. Darga P., Liffiton M.H., Sakallah K.A., Markov I.L.: Exploiting Structure in Symmetry Gen-
eration for CNF, Proceedings of the 41st Design Automation Conference, San Diego 2004,
530-534 (2004).

33. Degraeve Z., Gochet W., Jans R.: Alternative Formulations for a Layout Problem in the Fash-
ion Industry, European Journal of Operational Research 143, 80-93 (2002).

34. Desrochers M., Soumis F: A Column Generation Approach to the Urban Transit Crew
Scheduling Problem, Transportation Science 23, 1-13 (1989).

35. Deza A., Fukuda K., Mizutani T., Vo C.: On the Face Lattice of the Metric Polytope, Dis-
crete and Computational Geometry: Japanese Conference (Tokyo, 2002), Lecture Notes in
Computer Science 2866, Springer, 118–128 (2003).

36. Deza A., Fukuda K., Pasechnik D., Sato M.: On the Skeleton of the Metric Polytope, Dis-
crete and Computational Geometry: Japanese Conference (Tokyo, 2000), in Lecture Notes in
Computer Science 2098, Springer, 125–136 (2001).

37. Dumas Y., Desrochers M., Soumis F.: The pickup and delivery problem with time windows,
European Journal of Operations Research 54, 7-22 (1991).

38. Elf M., Gutwenger C., Jünger M., Rinaldi G.: Branch-and-Cut Algorithms for Combinatorial
Optimization and their Implementation in ABACUS, in [59], 155–222 (2001).

39. Fahle T., Shamberger S., Sellmann M.: Symmetry Breaking, Proc. 7th International Confer-
ence on Principles and Practice of Constraint Programming – CP 2001, Lecture Notes in
Computer Science 2239, Springer, 93–107 (2001).

Symmetry in Integer Linear Programming 37

40. Flener P., Frisch A., Hnich B., Kiziltan Z., Miguel I., Pearson J., Walsh T.: Symmetry in
Matrix Models, working paper APES-30-2001, (2001).

41. Flener P., Frisch A., Hnich B., Kiziltan Z., Miguel I., Pearson J., Walsh T.: Breaking Row and
Column Symmetries in Matrix Models, Proc. 8th International Conference on Principles and
Practice of Constraint Programming – CP 2002, Lecture Notes in Computer Science 2470,
Springer, 462–476 (2002).

42. Flener P., Pearson J., Sellmann M., Van Hentenryck P., Ågren M.: Dynamic Structural Sym-
metry Breaking for Constraint Satisfaction Problems. To appear in Constraints (2008).

43. Focacci F., Milano M.: Global Cut Framework for Removing Symmetries, Proc. 7th Interna-
tional Conference on Principles and Practice of Constraint Programming – CP 2001, Lecture
Notes in Computer Science 2239, Springer, 77–92 (2001).

44. Friedman E.J.: Fundamental Domains for Integer Programs with Symmetries, Proceedings of
COCOA 2007, Lecture Notes in Computer Science 4616, 146–153 (2007).

45. Gent I. P., Harvey W., Kelsey T.: Groups and Constraints: Symmetry Breaking During Search,
Proc. 8th International Conference on Principles and Practice of Constraint Programming –
CP 2002, Lecture Notes in Computer Science 2470, Springer, 415–430 (2002).

46. Gent I. P., Harvey W., Kelsey T., Linton S.: Generic SBDD Using Computational Group The-
ory, Proc. 9th International Conference on Principles and Practice of Constraint Programming
– CP 2003, Lecture Notes in Computer Science 2833, Springer, 333–347 (2003).

47. Gent I. P., Kelsey T., Linton S., McDonald I., Miguel I., Smith B.: Conditional Symmetry
Breaking, Proc. 11th International Conference on Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science 3709, 333–347 (2005).

48. Gent I.P., Kelsey T., Linton S.T., Pearson J., Roney-Dougal C.M.: Groupoids and Conditional
Symmetry, Proc. 13th International Conference on Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science 4741, 823–830 (2007).

49. Gent I.P., Petrie K.E., Puget J.-F.: Symmetry in Constraint Programming, in Handbook of
Constraint Programming, Rossi F., van Beek P., Walsh T., (eds.), Elsevier, 329–376 (2006).

50. Gent I.P, Smith B.M.: Symmetry Breaking in Constraint Programming, Proceedings of ECAI-
2002, IOS Press, 599-603 (2002).

51. Gordon D.M., Stinson D.R.: Coverings, in The CRC Handbook of Combinatorial Designs,
Colbourn C.J., Dinitz J.H., (eds.), CRC Press, 365–372 (2007).

52. Grove L.C., Benson C.T.: Finite Reflection Groups, Springer (1985).
53. Hämäläinen H., Honkala I., Litsyn S., Östergård P.: Football Pools–A Game for Mathemati-

cians, American Mathematical Monthly 102, 579–588 (1995).
54. Hoffman C.M.: Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Com-

puter Science 136, Springer (1982).
55. Holt D.F., Eick B., O’Brien E.A.: Handbook of Computational Group Theory, Chapman &

Hall/CRC (2004).
56. Jans R.: Solving Lotsizing Problems on Parallel Identical Machines Using Symmetry Break-

ing Constraints. To appear in INFORMS Journal on Computing (2008).
57. Jans R., Degraeve Z.: A Note on a Symmetrical Set Covering Problem: The Lottery Problem,

European Journal of Operational Research 186, 104–110 (2008).
58. Jerrum M.: A Compact Representation for Permutation Groups, Journal of Algorithms 7,

60–78 (1986).
59. Jünger M., Naddef D., (eds.): Computational Combinatorial Optimization, Lecture Notes in

Computer Science 2241, Springer (2001).
60. Kaibel V., Peinhardt M., Pfetsch M.E.: Orbitopal Fixing, Proceedings of the 12th Interna-

tional Integer Programming and Combinatorial Optimization Conference, M. Fischetti, D.P.
Williamson, (eds.), Lecture Notes in Computer Science 4513, Springer, 74–88 (2007).

61. Kaibel V., Pfetsch M.E.: Packing and Partitioning Orbitopes, Mathematical Programming
114, 1–36 (2008).

62. Kreher D.L., Stinson D.R.: Combinatorial Algorithms, Generation, Enumeration, and Search,
CRC Press (1999).

63. Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G., Shmoys D.B.: The traveling salesman prob-
lem, Wiley (1985).

38 François Margot

64. Leon J.S.: On an Algorithm for Finding a Base and a Strong Generating Set for a Group
Given by Generating Permutations, Mathematics of Computation 35, 941–974 (1980).

65. Leon J.S.: Computing Automorphism Groups of Combinatorial Objects, in Computational
Group Theory, Atkinson M.D. (ed.), Academic Press, 321–335 (1984).

66. Liberti L.: Automatic Generation of Symmetry-Breaking Constraints, Proceedings of CO-
COA 2008, Lecture Notes in Computer Science 5165, 328–338 (2008).

67. Linderoth J., Margot F., Thain G.: Improving Bounds on the Football Pool Problem via Sym-
metry Reduction and High-Throughput Computing, working paper (2007).

68. Luetolf C., Margot F.: A Catalog of Minimally Nonideal Matrices, Mathematical Methods of
Operations Research 47, 221–241 (1998).

69. Luks E.: Permutation Groups and Polynomial-Time Computation, in DIMACS Series in
Discrete Mathematics and Theoretical Computer Science 11, Groups and Computation, L.
Finkelstein, W. Kantor (eds.), 139–175 (1993).

70. Marenco J.L., Rey P.A.: The Football Pool Polytope, Electronic Notes in Discrete Mathemat-
ics 30, 75–80 (2008).

71. http://wpweb2.tepper.cmu.edu/fmargot/index.html
72. Margot F.: Pruning by Isomorphism in Branch-and-Cut, Mathematical Programming 94, 71–

90 (2002).
73. Margot F.: Small Covering Designs by Branch-and-Cut, Mathematical Programming Ser. B,

94, 207-220 (2003).
74. Margot F.: Exploiting orbits in Symmetric ILP, Mathematical Programming Ser. B 98, 3–21

(2003).
75. Margot F.: Symmetric ILP: Coloring and Small Integers, Discrete Optimization 4, 40–62

(2007).
76. Mautor T., Roucairol C.: A New Exact Algorithm for the Solution of Quadratic Assignment

Problems, Discrete Applied Mathematics 55, 281-293 (1994).
77. McKay B.D.: Nauty User’s Guide (Version 2.2), Computer Science Department, Australian

National University, Canberra.
78. McKay D.: Isomorph-Free Exhaustive Generation, Journal of Algorithms 26, 306–324

(1998).
79. Mehrotra A., Trick M. A.: A Column Generation Approach for Graph Coloring, INFORMS

Journal on Computing 8, 344–354 (1996).
80. Mehrotra A., Trick M. A.: Cliques and Clustering: a Combinatorial Approach, Operations

Research Letters 22, 1–12 (1998).
81. Méndez-Dı̀az I., Zabala P.: A Branch-and-Cut Algorithm for Graph Coloring, Discrete Ap-

plied Mathematics 154, 826–847 (2006).
82. Mills W.H., Mullin R.C.: Coverings and Packings, in Contemporary Design Theory: A Col-

lection of Surveys, Dinitz J.H., Stinson D.R., (eds.), Wiley (1992), 371–399.
83. Nemhauser G.L., Park S.: A Polyhedral Approach to Edge Colouring, Operations Research

Letters 10, 315-322 (1991).
84. Nemhauser G.L., Wolsey L.A.: Integer and Combinatorial Optimization, Wiley (1988).
85. Östergård P., Blass W.: On the Size of Optimal Binary Codes of Length 9 and Covering

Radius 1, IEEE Transactions on Information Theory 47, 2556–2557 (2001).
86. Östergård P., Wassermann A.: A New Lower Bound for the Football Pool Problem for Six

Matches, Journal of Combinatorial Theory Ser. A 99, 175–179 (2002).
87. Ostrowski J.: Personal communication (2007).
88. Ostrowski J., Linderoth J., Rossi F., Smirglio S.: Orbital Branching, IPCO 2007: The Twelfth

Conference on Integer Programming and Combinatorial Optimization, Lecture Notes in Com-
puter Science 4513, Springer, 104–118 (2007).

89. Ostrowski J., Linderoth J., Rossi F., Smirglio S.: Constraint Orbital Branching, IPCO 2008:
The Thirteenth Conference on Integer Programming and Combinatorial Optimization, Lec-
ture Notes in Computer Science 5035, Springer, 225–239 (2008).

90. Padberg M.W., Rinaldi G.: A Branch-and-Cut Algorithm for the Resolution of Large Scale
Symmetric Travelling Salesman Problems, SIAM Review 33, 60–100 (1991).

Symmetry in Integer Linear Programming 39

91. Petrie K.E, Smith B.M.: Comparison of Symmetry Breaking Methods in Constraint Program-
ming, In Proceedings of SymCon05, (2005).

92. Plastria F.: Formulating logical Implications in Combinatorial Optimisation, European Jour-
nal of Operational Research 140, 338–353 (2002).

93. Puget J.F.: On the Satisfiability of Symmetrical Constrainted Satisfaction Problems, Proceed-
ings of the 7th International Symposium on Methodologies for Intelligent Systems, Lecture
Notes in Artificial Intelligence 689, 350-361, (1993).

94. Puget J.-F.: Symmetry Breaking Using Stabilizers, Proc. 9th International Conference on
Principles and Practice of Constraint Programming – CP 2003, Lecture Notes in Computer
Science 2833, Springer, 585–599 (2003).

95. Puget J.-F.: Automatic Detection of Variable and Value Symmetries, Proc. 11th International
Conference on Principles and Practice of Constraint Programming – CP 2005, Lecture Notes
in Computer Science 3709, Springer, 475–489 (2005).

96. Puget J.-F.: Symmetry Breaking Revisited, Constraints 10, 23–46 (2005).
97. Puget J.-F.: A Comparison of SBDS and Dynamic Lex Constraints, In Proceeding of Sym-

Con06, 56–60 (2006).
98. Ramani A., Aloul F.A., Markov I.L., Sakallah K.A.: Breaking Instance-Independent Symme-

tries in Exact Graph Coloring, Journal of Artificial Intelligence Research 26, 191–224 (2006).
99. Ramani A., Markov I.L.: Automatically Exploiting Symmetries in Constraint Programming,

CSCLP 2004, B. Faltings et al. (eds.), Lecture Notes in Artificial Intelligence 3419, Springer,
98–112 (2005).

100. Read R.C.: Every One a Winner or How to Avoid Isomorphism Search When Cataloguing
Combinatorial Configurations, Annals of Discrete Mathematics 2, 107-120 (1978).

101. Rey P.A.: Eliminating Redundant Solutions of Some Symmetric Combinatorial Integer Pro-
grams, Electronic Notes in Discrete Mathematics 18, 201-206 (2004).

102. Rotman J.J.: An Introduction to the Theory of Groups, 4th ed., Springer (1994).
103. Salvagnin D.: A Dominance Procedure for Integer Programming, Master’s thesis, University

of Padova (2005).
104. Seah E., Stinson D.R.: An Enumeration of Non-isomorphic One-factorizations and Howell

Designs for the Graph K10 minus a One-factor, Ars Combinatorica 21, 145–161 (1986).
105. Seress Á.: Nearly Linear Time Algorithms for Permutation Groups: An Interplay Between

Theory and Practice, Acta Applicandae Mathematicae 52, 183–207 (1998).
106. Seress Á.: Permutation Group Algorithms, Cambridge Tracts in Mathematics 152, Cam-

bridge University Press, (2003).
107. Sherali H.D., Fraticelli B.M.P., Meller R.D.: Enhanced Model Formulations for Optimal Fa-

cility Layout, Operations Research 51, 629–644 (2003).
108. Sherali H.D., Smith J.C.: Improving Discrete Model Representations via Symmetry Consid-

erations, Management Science 47, 1396–1407 (2001).
109. Sherali H.D., Smith J.C., Lee Y.: Enhanced Model Representations for an Intra-Ring Syn-

chronous Optical Network Design Problem Allowing Demand Splitting, INFORMS Journal
on Computing 12, 284–298 (2000).

110. Smith B.: Reducing Symmetry in a Combinatorial Design Problem, Proc. 8th International
Conference on Principles and Practice of Constraint Programming – CP 2002, Lecture Notes
in Computer Science 2470, Springer, 207–213 (2002).

111. Smith B.M., Brailsford S.C., Hubbard P.M., Williams H.P.: The Progressive Party Problem:
Integer Linear Programming and Constraint Programming Compared, Constraints 1, 119–138
(1996).

112. Stanton R.G., Bates J.A.: A Computer Search for B-coverings, in Combinatorial Mathemat-
ics VII, Lecture Notes in Computer Science 829, Robinson R.W., Southern G.W., Wallis W.D.
(eds.), Springer, 37–50 (1980).

113. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4.10 (2007).
(http://www.gap-system.org).

114. Vance P.H.: Branch-and-price Algorithms for the One-dimensional Cutting Stock Problem,
Computational Optimization and Applications 9, 111-228 (1998).

40 François Margot

115. Vance P.H., Barnhart C., Johnson E.L., Nemhauser G.L.: Solving Binary Cutting Stock Prob-
lems by Column Generation and Branch-and-bound, Computational Optimization and Appli-
cations 3, 111-130 (1994).

116. Vance P.H., Barnhart C., Johnson E.L., Nemhauser G.L.: Airline Crew Scheduling: A New
Formulation and Decomposition Algorithm, Operations Research 45188-200 (1997).

117. Wolsey L.A.: Integer Programming, Wiley (1998).
118. Yannakakis M.: Expressing Combinatorial Optimization Problems by Linear Programs, Jour-

nal of Computer and System Sciences 43, 441–466 (1991).

	Carnegie Mellon University
	Research Showcase
	11-1-2009

	Symmetry in Integer Linear Programming
	François Margot
	Recommended Citation

