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Abstract

The goal of this paper is to address the problem of evalu@tiegperformance of a system run-
ning under unknown values for its stochastic parametergvAapproach called LAD for Simulation,
based on simulation and classification software, is presert uses a number of simulations with
very few replications and records the mean value of diretthasurable quantities called observ-
ables. These observables are used as input to a classificatidel that produces a prediction for
the performance of the system. Application to an assentbteder system from the literature is
described and detailed results illustrate the strengthefiethod.

Keywords Simulation-Optimization, Logical Analysis of Data, Shastic Models
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1 Introduction

This paper focuses on the optimal design of productionridigton, or queuing systems subject to
stochastic events. These models are configurable by sperialues for stochastic parameters and
values for decision variables and their performance careberibed by a single number. More precisely,
we define aparameterto be a stochastic parameter of the model; we assume thatathe wf any
parameter can not be controlled. An example is the arritalobclients in a queuing system. We define
a manipulableto be a decision variable that can be set within given bouidsexample is the buffer
length of a queue in the system. The performance of a systémspeécified values = (p1,...,p,)

for its ¢ parameters anth = (m, ..., m,) for its » manipulables may be any functid(p, m) or any
other value that can be estimated at the end of a simulatitve nBmesOptimization for Simulation
[20] and Simulation-Optimizatiorj7, 10, 22, 23] have been coined for the problem of finding ealaf
the manipulables that optimize the performance of a systémgiven parameter values. We refer the
reader to the special issue of tidFORMS Journal of Computinggummer 2002, Volume 14 (3) for a
thorough overview of the discipline.

Several approaches using discrete event simulation seftwave been introduced to find good values
for the manipulables of a system with given parameter vdl2@s36, 38]. A common feature of these
approaches is a local search in the space of the feasiblepuiabie values, running simulations to
evaluate the performance. Following the terminology of, [20], asimulationis a collection of runs,
calledreplications of the software for fixed values of the parameters. The sam@an performance
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over replications is used as the expected performance ofytsiem under the given settings of the
parameters. While these approaches have relevance fangodal world problems, they do not address
directly the main problem that a manager of a productioresgsaces, namely how to assess and improve
the performance of the system under current conditions. dnynsituations, the stochastic parameters
are not known and can vary with time (hourly, daily, or seaflgrdepending on the application). This
makes it difficult to set up a realistic simulation of the gyst

The goal of this paper is to address, at least partially, toblpm of evaluating the performance
of a system, under the assumption that the values of theagtictparameters may vary within some
given bounds. We build a classification model to estimate @l the system is run under current
conditions. This model takes as inputs a collection of v&ligalledobservablesthat can be measured
from the running production system and it outputs an indicaalue for the performance. Examples of
observables for a production line are observed minimumemesl maximum and observed average of
service times, inventory levels, profit, production leva production quality. We stress that stochastic
parameter values armt part of the observables, but manipulable values can be. \/datathe approach
on an “assemble-to-order” system from the literature [3&] ahow that the classification obtained by
the model matches closely the actual performance of themsysThe classification model used in the
application is based on thegical analysis of data (LADproposed by Hammer [26] and developed by
Boros et al. [11] and the approach is calletiD for Simulation

One of the crucial challenges in Simulation-Optimizati@sides in the allocation of the compu-
tational resources between the search for a better solatidnthe evaluation of the current candidate
solution [22]. When a classification model with high accyraan be built for a particular application,
it can be used not only for evaluating performances of theeatisystem, but also to enhance the local
search heuristics for Simulation-Optimization mentioabdve: it is possible to reduce the search space
for the heuristic by rejecting quickly all settings not d#died as “good”. When the time for computing
the classification of a setting is a fraction of the time to tpet estimated performance of the setting,
precious computing time can be saved during optimizatiomr @oposal is to execute a number of
simulations with very few replications and record the mealue of the observables. These values are
then used by the classification model and its output is uséldeggerformance of the system under this
particular setting of the manipulables.

Note that the design of the classification model for the gwbht hand might be time consuming.
However, in a situation where the same stochastic modebhas optimized periodically, investing time
to build the classification model beforehand might be wohitav It also allows for optimization “on-
the-fly” that is order of magnitude faster than with simwas with large number of replications. The
approach developed here is thus also interesting when rgogtimization time is critical.

The paper is organized as follows. In Section 2, the propappdoach is described in more details
and a review of related approaches is given. Section 3 pebeiefly the LAD methodology. It will
be clear that several LAD classification models can be cocistd and the evaluation of their respective
performances is necessary. Several performance measardeszribed in Section 4. In Section 5, an
“assemble-to-order” application is presented. Sevetalratives to construct the classification model
are explored and a model with high classification perforreasconstructed. Finally, Section 6 provides
concluding remarks.

2 LAD for Simulation and Related Approaches

Most approaches for Simulation-Optimization in the litara try to find good manipulable values for
given values of the stochastic parameters. In this papesyravimterested in the problem of estimating the



performance of a system running under unknown values fattiwhastic parameters. We want to build a
classification model using directly measurable quant{tteied observables) as inputs and whose output
is an estimation of the system’s performance. Assumingdheth a reliable classification model can be
built, it can be used to speed up heuristics for Simulatigmi@ization by using the model evaluation as
a guide. The idea is to perform a simulation with few replmag, record the values of the observables,
and feed them to the classification system to get the estmafithe performance.

We first review briefly some of the classical approaches fotimipation-Simulation. A typical
approach for finding good values of the manipulables is siagplin its simplest form (known as a
factorial design experimenur factorial sampling, a discretization of the domain of each manipulable
is chosen and all possible choices of values from their éfism@d domains are evaluated. This is the
methodology used in [25] for optimizing manipulables forwst-region solver. This method is of course
limited to cases where the number of manipulables is smdlvarere the number of discretized values
for each manipulable domain is small. When factorial sangpis impractical, it is possible to sample
only a subset of all possible choices of manipulable valt@s their discretized domains while covering
well, in a statistical sense, the discretized manipulapées. The choice of points to evaluate is based on
orthogonal array designsa well-known tool in statistics [16, 32, 33] or on the constion of optimal
design of experiments [45]. The number of evaluated poirdpsiconsiderably compared to the number
used in a factorial sampling, but the approach is limitedHgyfact that introducing many discretization
points in the domain of the manipulables is still not praadtid@o overcome this difficulty, it is possible to
iteratively refine the discretization around points of ietds. Examples are discussed in [9, 41]. A more
sophisticated approach coupling experimental designs lttal search is developed by Adenso-Diaz
and Laguna [1].

Instead of applying a heuristic optimization techniquerdixe entire search space, we propose to
derive an LAD classification model that discriminates thedyeettings from the average and bad ones.
The construction of the LAD classification model is as fokowsiven the stochastic model under consid-
eration and domains for its stochastic parameters, a tioiteof simulations are performed with various
valuesp’ = (p],...,py) for its ¢ parameters and values’ = (m7,...,m?) for its » manipulables
forj =1,..., N. These simulations are done with sufficiently many replicet so that the estimation
75(pj, m7) of the performancé(p’, m’) can be trusted. (This might require a large number of replica
tions [14] as the rate of convergence of the mean of a sampieaegilications is typicallyO(/n).) That
estimation and the values of thebservables’ = (o}, ...,0}) are recorded. They form a collection of
N data pointgP(p?, m7), o/) calledexperiment setThe LAD classification model is then designed so
that its evaluation functiorf(o’) behaves similarly tcf?(pf,mj) forj =1,..., N. While the construc-
tion of the model itself is intricate, software implemegtithis step is available. Section 3 gives more
information about the methodology and software.

Once the LAD classification model is built, it can be usedtjgimith most heuristics: For a given
setting of the values of the manipulables, we execute a nuoflsmulations with very few replications
and record the mean value of the observables. The LAD cleatsiin model then is used as a predictor
for the performance of the system under this particulairgetif the manipulables. If the LAD classi-
fication model is accurate enough to discriminate good addsb#ings, precious time can be saved by
discarding the latter and focusing more on the former. Niste that the correct answer is obtained even
if the prediction of the LAD classification model is not nuncetly accurate: it is enough for the LAD
classification system to rank the choices of manipulabléngstin the same order as given by their true
performance.

This method is related to the concept of ordinal optimizaficst proposed by [35] (see also [17, 34]).
Ordinal optimization does not aim at identifying the bestisg, but concentrates on finding settings that
can be shown to be good with a high probability, and reducesetuired simulation time dramatically



[34]. It was shown [14, 17] that less simulation effort is deé to develop a good ordering of solutions
than it is required to estimate their actual performancé [EOr a large class of systems, Dai [17] showed
that the probability of correctly selecting the best sys$esetting using ordinal optimization converges
at an exponential rate.

Building upon thisselection screeningor indifference-zone rankingechniques have been proposed
(see [13] for a review). In [15], the best simulated systendéntified through a Bayesian procedure.
The “optimal computing budget allocation” method [14] deBnfor a limited computational budget, the
number of replications to be allocated to each simulaticordter to maximize the probability of ranking
the settings and selecting the good ones correctly (see[2d§pb Two-step methods, applicable to
simulation problems in which the number of settings is ldygefinite and when a number of replications
have been conducted for each setting, are proposed in [tO4&h They first isolate subsets of good
system settings from the very bad ones, before attemptidgtErmine the best setting using a ranking
procedure. While this is in the same spirit as the approaebgmted in this paper, a major difference
is that the latter does not require to run a sample of rejmicatfor each possible setting, as the LAD
classification model is (hopefully) able to extrapolatehte full search space the information given by
performance values for a collection of settings. In additiour approach is not restricted to discrete-
event simulation models and it can handle directly manigegwith non discrete domain.

3 Logical Analysis of Data

The logical analysis of data (LAD) is a combinatorial lofjased optimization methodology that was
initially created [26] and used for the analysis and classifbn of binary data [3]. Its application scope
was later extended [11] to data sets containing numerigéhlas. This section presents an overview
of the method as applied to the case studied in this papeglgahe construction of a system hopefully
replicating the behavior of the function with val@®(p’, m’/) when evaluated at the poin{ for j =
1,...,N. LAD models can be constructed using tbat ascope software [2] which is available for
academic research. We refer the reader to [4, 5] for a deiseripf the most distinguishing features of
the implementation of the LAD method Dat ascope.

LAD is usually used as a classification mechanism: Given ecibn of points labelegbositive
or negative the goal is to derive a small set of patterns that returnseéeh point in the collection,
a classification that matches its label as accurately ashp@ssWVe describe in section 3.1 the LAD
methodology for this case. Extension to the case where t & an experiment is a continuous
or categorical indicator instead of a binary one was stutieiammer et al. [29, 30] and Kogan and
Lejeune [39] for reverse-engineering the Standard&Padduation of entities’ creditworthiness, which
takes the form of an alphanumerical (i.e., AAA, AA+, etc.gdit risk rating system.

3.1 LAD: Positive/Negative Case

Assume that the experiment set is a collectiom\opoints (27, o’) wherez’ has value 1 for a positive
experiment and O for a negative one ads ans-vector recording the values of the observables.

Table 1 illustrates an experiment set containing 5 experimeecording the values of three observ-
ables. Each componenf of the [3 x 3]-matrix in Table 1 gives the value taken by observabia
experimentj. The column labeled returns the outcome (positive #f = 1, negative ifz/ = 0) of the
experiment.

The LAD method generates and analyzes exhaustively a malj@es of combinations of possible
values for the observables which can describe the positiveegative nature of an experiment. It uses
optimization techniques to extract models taking the fofna dimited number of significankogical



Table 1: Experimental Set

Experiment| Observables | Outcome
7 01 0y 03 z
1 35 38 28 1
2 26 3.8 5.0 1
3 1.0 16 3.7 1
4 35 22 39 0
5 23 14 10 0

patterns LAD has been very successfully applied to multiple medatassification problems (see [28]
for a review) and credit risk rating and data mining probld¢a®s 30, 31, 39].

The purpose of LAD is to discover a binary-valued functipmvhich is constructed as a weighted
sum of logical functions of binary variables related to ths&rvables, and provides an accurate discrim-
ination between positive and negative experiments. Totoactsthe functionf, the experiment set is
first transformed into dinarized data sein which the components can only take the values 0 and 1.
Each original numerical observable is replaced by sevaénalp ones. This is achieved by defining, for
each observable;, a set ofK (i) values{c; , | k =1,..., K (i)} calledcut pointsand associated binary
variables{y; » | k = 1,...,K(i)}. The value of these binary variables for data pgist o’) is then
defined as:

yj _ { 1 if Og 2. Cik
bk 0 otherwise.
The choice of the values of the various cut points is basedstatistical analysis of the experiment set.
Table 2 provides the binarized experimental data set quoreing to the data above, and reports the
valuesc; ;, of the cut pointsk for each observable;, and those of the binary variablgék associated
with any cut pointk of observable in experimentj. For exampleyi1 = 1 sinceo} = 3.5 is larger than
C11 = 3.0.

Table 2: Binarized Data Set

Observables 01 09 03

. 1,1 €12 €13 | C21 €22 | €C31 C32 C33

Cut Points 30 2.4 15/ 30 20|40 30 20
Jlyi1 Y12 Y13 | Y21 Y22 | Y31 Y32 Y33 || 2
1 1 1 1 1 1 0 0 1 1
Binary 2 0 1 1 0 0 1 1 1 1
Variables 3 0 0 0 0 1 0 1 1 1
4 1 1 1 0 0 0 1 1 0
5 0 0 1 0 1 0 0 0 0

A discretized data setan then be created [27]; it has the same dimension as thiear&xperi-
ment set and whose components thereafter callediariables are mapped to the observables. The
discretization of the binarized data set is carried out hsvis:

K (i)
‘TZ = Zyz]’,k" for i:17°°'787j:17°”7N’
k=1



Table 3 below displays the discretized data set.

Table 3: Discretized Data Set

Experiment| Variables | Outcome
] 1 To X3 z
1 3 2 1 1
2 2 0 3 1
3 o 1 2 1
4 3 0 2 0
5 1 1 o0 0

Positive (resp., negativgdatternsimpose upper and lower bounds on the values of a subset of the
variables, such that a high proportion of the positive (resggative) experiments in the discretized data
set satisfy the conditions imposed by the pattern, and agvighortion of the negative (resp., positive)
experiments violate at least one of the conditions of theepat An experiment in the data setisvered
by a pattern if it satisfies the conditions of the pattern. Sdlection of the patterns is achieved by solving
a set covering problem (see [11] for details). Tdegreeof a pattern is the number of variables whose
values are bounded by the pattern. Phevalenceof a positive (resp., negative) pattern is the proportion
of positive (resp., negative) experiments covered by ite Ailmogeneityf a positive (resp., negative)
pattern is the proportion of positive (resp., hegative)egipents among those covered by it.

Considering the data above,

1 <2 and x5 <2

is a positive pattern of degree 2 covering two positive ols@ns and one negative observation. There-
fore, its prevalence and homogeneity are both equal to 2/3.

The first step in applying LAD to a data set is to generate dliepas for the data set, a collec-
tion calledpandectin the LAD terminology. The number of patterns containedhie pandect can be
extremely large. The substantial redundancy among therpatiof the pandect makes necessary the
extraction of (relatively small) subsets of patterns, sidfit for differentiating positive and negative
experiments in the data set. Such collections of positivkragative patterns are called LADodels
Limitations on the size of the model, i.e. the number of ideldi patterns, are usually imposed by restrict-
ing the degree, the prevalence, and the homogeneity of th&ideyed patterns. Models incorporating
patterns of low degree, high prevalence and high homogehaite been shown to be the most effective
in LAD applications [12]. A model is supposed to include wifintly many positive (resp., negative)
patterns to guarantee that each of the positive (resp.timepaxperiments in the data set is covered by
at least one of the positive (resp., negative) patternsémtbdel. Furthermore, good models tend to
minimize the number of experiments in the discretized detasvered simultaneously by both positive
and negative patterns in the model.

An LAD model can be used for classification in the followingywa&n experiment which satisfies
the conditions of some of the positive (resp., negativelepas in the model, but which does not satisfy
the conditions of any of the negative (resp., positive)grat in the model, is classified as positive (resp.,
negative). An experiment satisfying both positive and tieggatterns in the model is classified with
the help of adiscriminantthat assigns specific weights to the patterns in the modél M@re precisely,
let n,, andn,, represent the number of positive and negative patternsimibdel, and let,(j) (resp.,
cn(j4)) represent the numbers of positive (resp., negative) npatt@hich cover a new experimejit The
value of the discriminant is defined as




and the classification by the model is determined by the digk(¢). An experiment for whictA(j) = 0

is left unclassified. Note that in the above formula, theritisinant of an experiment is computed by
giving the same weighw;",» = 1,...,n, (resp.,w;,s = 1,...,n,) to all positive (resp., negative)
patterns withw," = w, if and only if the number of positive patterns is equal to tbfithe negative
ones. Alternative weighting schemes in which the weight patiern is a function of its homogeneity
and/or prevalence, its degree, or is determined in such athatythe classification accuracy of the
discriminant is maximized are detailed in [12].

4 Evaluation Methodology

In order to evaluate the accuracy of a classification mo@ekrsl measures are traditionally used. This
section reviews those that are used in the application. &gtibs 4.1 covers thguality of a classification.
Subsection 4.2 describes tbemulative accuracy profil@CAP), also called.orenz curveor power test

4.1 Classification Quality

Results for the classification of the experiments in a datargedisplayed in the form of a classification
matrix (Table 4).

Table 4: Classification Table
Experiment|  Classification of Experiments

Classes | Positive| Negative| Unclassified
Positive a c e
Negative b d f

The valuea (resp.,d) represents the percentage of positive (resp., negatigerienents that are
correctly classified. The value(resp.,b) is the percentage of positive (resp., negative) experisiat
are misclassified. The value(resp., f) represents the percentage of positive (resp., negatiesrie
ments that remain unclassified. Cleatly} ¢ + e = 100% andb + d + f = 100%. The quality of the

classification is defined [6] by
at+d e+ f

Q="F—+——. (1)

4.2 Cumulative Accuracy Profile

A key measure of the quality of a classification model is ¢henulative accuracy profiléCAP), also
calledLorenz curveor power test It has been widely used in medicine [40] and credit risk [l18,47] to
estimate the quality of machine learning, support vectochime and data mining approaches. Consider
a classification model which returns a discriminant valuedach experiment. An experiment with

large discriminant value is classified as positive. Assuma¢theN experimentgz',o'),..., (2", 0o")
are ordered in non-increasing of their discriminant valdesri = 0,..., N, let¢(i) be the number of
positive experiments (i.e., experimeritwith 2/ = 1)in {(z!,0!),..., (2%, 0%)}, letq be the total number

of positive experiments and IR = £ be the fraction of positive experiments. The pcﬂin%ﬂ; %) is
then a point of the CAP curve of the model. That curve is drawiihé 2-dimensional unit square with
z-axis corresponding to percent of experiments giaXis to percent of positive experiments.



A perfect classification function would have experimefits!,o!), ..., (z%,0%)} as theq positive
experiments and its CAP curve would be a line fr@in0) to (PR, 1) followed by a straight horizontal
line joining (PR, 1) to (1,1). Conversely, the expected CAP curve of a model without asgrihinative
power (i.e., random classification) would be a straight fiven (0, 0) to (1, 1). In reality, the CAP curve
of classification models run between these two extremes.

The LAD model assigns a discriminant valdie(j) to each experimenj, used to draw its CAP
curve. A high discriminant value indicates that the congdeexperiment is positive and should result
in a high value (i.e., within 1% of the best known value) of the metrics of interest, theezaftferred to

asresponse
The classification measure derived from the CAP curve igdaltcuracy rateAR
AC
AR = 36 ap )

and is defined as the ratio of the ard&' (shaded area in Figure 1) between the Lorenz curve (dotted
line in Figure 1) of the classification model and the line jioin(0, 0) to (1, 1) to the ared P between
the line representing the perfect classification (bold imEigure 1) and the line joining (0, 0) to (1, 1)

representing the random classification.

Figure 1: Cumulative Accuracy Profile

PIR ¥ Perfect classification

—
o
S
3

Random classification

% of Positive Experiments

% of Experiments 100%

The AR measure is related to the classical parametric Wilcoxok sam and Mann-Whitney/ tests
[42] that are typically used to verify whether two distrilauts are identical. Denoting k¥ (j;) (resp.,
A(j2)) the discriminant value of an experimefit (resp.,j2) classified as positive (resp., negative) by
the classification model, the Mann-Whitnéy test counts the number of paifg, jo) for which the
inequality A(j2) < A(j1) holds. If the classification function were perfect, the nembf correctly
classified pairs would be equal t,| - |N,,| with | N,,| (resp.,|N,,|) referring to the number of positive
(resp., negative) experiments. If the classification warelom,A(j2) < A(j1) would happen with
probability 0.5, and thus.5 - |N,| - | N,,| experiments would be correctly classified. Therefore, is th
paper, we calculate the value of the accuracy rdtibby means of the unbiased Mann-Whitney estimator

U
('Z )aj17j2
U _ J1,J2 (3)
RARRA

8



with o, j, = 1if A(j2) < A(j1) and equal to O otherwise.

4.3 Informational Content of Classification Metrics

The accuracy rate is the ratio of the performance improvérkthe model being evaluated over the
naive model to that of the perfect model over the naive motteleflects the ability of the model to
correctly rank the experiments. The accuracy is at its lHglevel (100%) if the ranking/ordering of the
experiments in non increasing order of their discriminaalugs is exactly the same as the one obtained
by ranking the experiments in non increasing order of theriogewith respect to which one seeks to
classify them.

On the other hand, the classification quality reflects thétyliif the model to discriminate good
experiments from bad ones but does not account for the rqmifithe experiments according to a given
numerical or categorical criterion. It takes into accoun& percentage of true positives/@), the per-
centage of true negativeg /), and the percentage of unclassified experimeats-(f)/4).

We illustrate the complementarity of the two classificatietrics with the following example. Con-
sider a data set composed of 50 positive and 50 negativeimqrgs and assume that the LAD model
generates the classification results displayed in Table 5.

Table 5: Relationship between Classification Metrics: Epigni

Experiment| Classification of Experiments
Classes | Positive| Negative| Unclassified
Positive 90% 10% 0
Negative 0 100% 0

The classification quality is equal to 95%. On the other hémelaccuracy rate significantly varies
depending on the ranking of the five misclassified experisiefdll we can say is that the accuracy rate
ranges between 80% and 100%. Recall that the accuracy daesdhe experiments by decreasing value
of the discriminant value. If, in this ordering, the five fog experiments classified as negative by the
LAD model occupy positions

e 46 to 50, the accuracy rate is equal to 100%;
e 7110 75, the accuracy rate is equal to 90%;

e 96 to 100, the accuracy rate is equal to 80%;
Proposition 1 A classification quality of 100% implies that the model ha®@% accuracy rate.

The proof is straightforward. The converse is not necdgstitie, as the order of the experiments by
non increasing discriminant value can start with all thetpasexperiments followed by all the negative
ones, but with all experiments classified as negative. Whéeaccuracy rate of the model is 100%, its
classification quality is 50% if there are as many positiveeziments as negative ones in the experiment
set.

The above discussion attests the relevance and the compbaite of the information provided by
the two classification metrics to evaluate the discrimorapower of a model.



5 Application Example

In this section, we evaluate the added value of our approaiiga computational study. We were
not successful in obtaining a variety of complex problenmsrfithe literature. (We are supportive of
Pasupathy and Henderson'’s initiative [44] to develop anarny and a publicly available testbed of
Simulation-Optimization problems.)

Therefore, we evaluate our optimization approach on skvar@ants of an assemble-to-order prob-
lem used in [36], in which items are made to stock to supplyddmands for finished products, and
various finished products are assembled to order from thesitd he system operates using a continuous-
review base-stock policy: each demand for a unit of an itéggars a replenishment order for that item.
Items are produced one at a time on specific facilities, andumtion intervals are usually stochastic.

5.1 Problem Description

The specific assemble-to-order system we study is well kniowthe simulation-based optimization
literature [36]. It has eight items;, ¢ = 1,. .., 8, and five types of customers, j = 1, ..., 5. Different
types of customers come into the system as Poisson arraegpses with differentratesg, j = 1,...,5,
and each of them requires a set of key items and a set of segonelms. If any of the key items
are out of stock, the customer leaves. If all key items aretaeks the customer buys the product
assembled from all the key items and the available seconttang. A sold item generates a unit profit
pi, i = 1,...,8, and each item in inventory has a holding cost per petipd = 1,...,8. There are
inventory capacitie€’;,i = 1,...,8 for each item. The item production time is normally disttéai
with meany;, ¢+ = 1,...,8 and standard deviation;, 7« = 1,...,8. The objective is to find the the
optimal inventory levelsn;, i = 1,...,8 for each item to maximize the expected total prafitlefined
as the response.

We thus have a model with:

e 21 stochastic parameters which are the customers’ aratash;,; = 1,...,5 (Table 6), the
mean production timeg;,: = 1, ..., 8 and the standard deviation of the production timgs =
1,...,8 (Table 7);

Table 6: Arrival Rate of Customers
j 1 (2] 3 4 5

Aj|136]3]24]18]12

¢ 8 manipulables which are the optimal inventory levelsi = 1,...,8.

5.2 Procedures for Model Construction and Validation

The methodology used to generate an LAD model in the caged lelow is as follows: Observables
are selected (Section 5.3.1 describes the different sdisgfrgables considered in our tests), and a set of
experiments is created, each experiment being specifiedchpiae of values for all the manipulables
and for the stochastic parameters. We generate 1000 exqrgsm

e 500 experiments have fixed values for the stochastic paeasé@ising values in Tables 6 and
7). We use a 2-folding approach and assign 250 of them to #livéirtg set with fixed stochastic
parameters (TRFSP) and we use them used to derive LAD madtelsther 250 are assigned to
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Table 7: Item Production Time: Average and Standard Denati
NNz gi

0.15| 0.0225
0.40| 0.0600
0.25| 0.0375
0.15| 0.0225
0.25| 0.0375
0.08 | 0.0120
0.13| 0.0195
0.40| 0.0600

O~NO O WNPE

the testing set with fixed stochastic parameters (TEFSPasndsed to validate the LAD models
derived using TRFSP;

e 500 experiments have variable values for the stochastanpeters which can take any value (with
uniform distribution) within+20% of their mean values reported in Tables 6 and 7; 250 of them
are assigned to the training set with variable stochast@meters (TRVSP) and are used to derive
LAD models and to validate the LAD models derived using TRF®BE other 250 are assigned
to the testing set with variable stochastic parameters @EVand are used to validate the LAD
models derived using TRFSP and TRVSP.

For each experiment, a simulation with a given number of replications is run with a warm-up
process of 20 periods and the average profibver the next 50 periods is computed. In the remainder,
along simulation(resp.,short simulatiol is a simulation withs = 50 (resp.,s = 5).

Short simulations are run for 215 (of the 250 experimentshi ttaining set) to build the LAD
classification model without using too much time. Long siatioins are used to classify the experiments.
Experiments are then ordered in decreasing order of theg-&imulation average profit’. Denoting
by w* = max w’, we associate to each experimgran outcome:’ taking value

J

e 1ifw/ €[0.9-w*, w*

e 0if w <0.85 - w*

o -1lifw/ €[0.85  w*, 0.9 w*|

Experiments in the training sets TRFSP and TRVSP with= 1 or 2/ = 0 are used to construct
patterns and derive the LAD models whose accuracy is exalwaith respect to the measures presented
in Section 4. We set the threshold values 0.9 and 0.85 definibgsed on the results of numerous prior
tests. (As Table 13 shows, the results are robust with respézese threshold values.)

As explained in Section 3, the LAD method depends on a fewrcbparameters (degree, preva-
lence, etc.). In this paper, all the LAD models are constdidty using a standard/default setting for the
LAD control parameters. More precisely, the selected patbave degree 3, 100% homogeneity and
prevalence at least equal to 10% and 5 cut points are geddmteach observable. Two main reasons
motivate our choice of not customizing the setting of the Lédhtrol parameters to the studied prob-
lem. First, the very conclusive results (see next sectitmdined with standard settings show that the
proposed approach can be used by non-LAD experts and doesquite spending excessive time on
the understanding of the arcane of the LAD method. Secoerdgliance upon standard setting is a way
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to hedge against the risk of developing an overfitted modeleitheless, as standard LAD settings does
not prevent overfitting, we resort to a 2-folding cross-dation procedure to obtain a more definite state-
ment regarding the overfitting issue. We derive the clasgifin model with a subset of the experiments

(the training set) and evaluate the quality of the model wéigpect to the classification it generates on
the experiments not used for its construction (the testitg s

5.3 Constrained Simulation-Optimization Problem with Integer-Ordered Variables

In this section, we consider the original definition of thelgem [36] in which all the decision variables,
i.e. the manipulables, are discrete. Based on Pasupathidanderson’s taxonomy [44], we call the
associated problema@nstrainedSimulation-Optimization problem witimteger-ordered variables

We study two variants of the problem: The first one has fixede&lor the stochastic parameters
and the second one let them vary within 20% of their expectdaleg. The results show that, in the first
variant, a model based on the manipulables and the expexiétigives good results. However, in the
second variant, having a broader set of observables istedsen

5.3.1 Fixed Value of Stochastic Parameters

In this section, we use the training set TRFSP (fixed stothpatameters) to derive and analyze three
LAD models:

e MOD I uses as observables the 8 manipulables =1, ..., 8;
e MOD Il uses as observables the 8 manipulables and the shautagion average profiy;

e MOD lll uses as observables the 8 manipulables, the shorlatimn average profibg and the
short simulation averages of:

item inventory levels;, i = 10,...,17,

lead timeog,
ratio of lead time to total timeo,

number of production lots in a work cell (work-in-progressy),

revenuensy,

total number of items produced,,

number of stockoutsss.

Note that when the stochastic parameters have fixed vaheegxpected profit is a function of the 8
manipulables. MOD I is trying to find an LAD model working withis set of variables. MOD Il adds
one (important) observable, the observed average profitDMOadds 14 observables, whose utility
will be demonstrated in the next section when stochastiampaters are not fixed.

Table 8 displays the classification of the experiments inrtiaing set TRFSP with the three models.
The three models have a classification quality superior %6 80 the training set. We note that MOD |
does not generate incorrect classification, but leavest&i®e (resp., 8%) of the positive (resp., nega-
tive) experiments unclassified and that MOD Il and MOD III #re two top performers on the training
set. The classification accuraeyR of MOD | (resp., MOD II, MOD lll) is equal to 97.62% (resp.,
98.74%, 98.83%). We note that a better classification mighdtidained by fine-tuning the LAD control
parameters for the problem at hand or by using another melagsifier.

12



Table 8: Classification Quality on Training Set TRFSP.

Classification of Experiments
Experiment MOD | MOD Il MOD Il
Classes Positive | Negative | Unclassified| Positive | Negative | Unclassified|| Positive | Negative | Unclassified
Positive 80.49% 0% 19.51% || 95.12% 0% 4.88% 100% 0% 0%
Negative 0% 92.31%| 7.69% 0% 99.41%| 0.59% 0% 100% 0%
Q 93.20% 98.63% 100%

We now validate the three derived models and check whetbénigiin classification accuracy subsists
when the models are applied to experiments not used in tieeivadion. Indeed, overfitting, i.e., the
phenomenon of building a model that is in close concordantietiae observed data but has no predictive
ability, may occur. In case of overfitting, the model has ahitassification power on the training data,
but performs poorly on new observations.

The classification quality of the three models on the tessgtgr EFSP is given in Table 9.

Table 9: Classification Quality on Testing Set TEFSP

Classification of Experiments
Experiment MOD | MOD Il MOD Il
Classes Positive | Negative | Unclassified|| Positive | Negative | Unclassified|| Positive | Negative | Unclassified
Positive 69.23% 0% 30.77% 100% 0% 0% 100% 0% 0%
Negative 8.77% | 83.33%| 7.89% || 0.88% | 98.25%| 0.88% | 0.88% | 98.25% | 0.88%
Q 85.95% 99.34% 99.34%

Figure 2 shows that MOD Il and MOD Il have the same classificatjuality, almost 10% higher
than the one of MOD I. We recall that the bold (resp., diagphiaé in Figure 2 represents the perfect
(resp., random) classification.

The very high value of the two classification metrics for tasting sets strongly support the claim
that no overfitting occurs. Indeed, the very high classificatjuality (> 98.6%) and accuracy$ 96.7%)
of MOD Il and MOD Ill do not decrease significantly when apgli® the experiments in the testing set.
The same comment does not extend to MOD 1.

The above results show that, when values of the stochasaengters are fixed, MOD Il and MOD
Il are able to identify good decision settings based on toetssimulation average value of their observ-
ables. Clearly, the LAD models MOD Il and MOD llI predict wittigh accuracy when the performance
of the system is within a predefined percentage of its optpadiormance value. This is very useful and
is described as “an ideal performance guarantee” in [8].ddeer, the fact the LAD model provides this
by relying on the observables of short simulations matterg much. Indeed, as noted by [21, 37], the
determination of a high quality decision “in the fewest n@nbf evaluations is the core problem”. We
also note that MOD Il is more parsimonious in the sense thades less observables than MOD llI to
reach similar classification quality and accuracy.

The objective is now to verify whether the above conclusian be extended when the defining
values of the stochastic parameters vary within an inteMalre precisely, the second validation phase
pertains to the application of the three models to experisent used in their derivation and in which the

13



Figure 2: Cumulative Accuracy Profiles on Testing Set TEFSP

Cumulative Accuracy Profile

MOD Il & MOD Ill: AR =96.74%

A MOD I: AR = 86.97%

% of Positive Experiments

% of Experiments

stochastic parameters are not fixed but can take any valbhéwi0% of their mean value. The three
LAD models are used to classify the experiments in the seSHRand TEVSP, with results displayed
in Table 10.

Table 10: Classification Quality on Experiments in Sets TR\ARd TEVSP.

Classification of Experiments
Experiment MOD | MOD Il MOD Il
Classes Positive | Negative | Unclassified|| Positive | Negative | Unclassified|| Positive | Negative | Unclassified
Positive 39.31%| 45.09%| 15.61% || 74.57%| 15.03%| 10.40% | 78.61%| 17.92%| 3.47%
Negative 4.07% | 93.02% 2.91% 11.05%| 86.63%| 2.33% 8.72% | 83.72%| 7.56%
Q 70.79% 83.78% 83.92%

For each model, the classification quality on the sets coingiexperiments with varying stochas-
tic parameters (Table 10) is significantly lower than thattos training (TRFSP, Table 8) and testing
(TEFSP, Table 9) sets containing experiments with fixedeshf the stochastic parameters. This seri-
ously challenges the applicability of the LAD models dediweith experiments having fixed stochastic
parameters for the differentiation of experiments haviagying stochastic parameters. Moreover, the
drop in classification quality is accompanied by a decreadbd classification accuracy (Figure 3) for
each model. The reduction in classification accuracy isquaarly significant for MOD | and MOD II.

It appears clearly that none of three models built with respe experiments with fixed values of
the stochastic parameters enables the determination af decision settings when the values of the
stochastic parameters vary.

5.3.2 Varying Values of Stochastic Parameters

In this section, we derive three new LAD models, MOD |V, MOD WdaMOD VI, on the basis of the
experiments in the training set TRVSP. The patterns chamiactg MOD IV (resp., MOD V, MOD VI)
are defined with respect to the exact same observables usd@®byi (resp. MOD II, MOD IlI). A key
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Figure 3: Cumulative Accuracy Profiles on Sets TRVSP and TEW&h Varying Stochastic Parameters

Cumulative Accuracy Profile

MOD llI: AR = 85.59%

MOD I: AR =52.03%

MOD II: AR =57.06%

% of Positive Experiments

% of Experiments

difference is that MOD IV, MOD V and MOD VI are inferred from atof experiments (TRVSP) having
varying values of the stochastic parameters, instead of,i@the case for MOD |, MOD Il and MOD
I, being derived from a set of experiments (TRFSP) havirgdivalues of the stochastic parameters.

The first objective of this section is to construct modeldaing the accurate differentiation of good
and bad decision settings based on short simulation of Empets characterized by varying values of
the stochastic parameters. The second objective is to ¢heakbustness of the models and to validate
them using the 2-folding technique described in Section 5.2

Table 11 gives the details of the classification obtaineth WiOD IV, MOD V and MOD VI on the
training set TRVSP.

Table 11: Classification Quality on Training Set TRVSP

Classification of Experiments
Experiment MOD IV MOD V MOD VI
Classes Positive | Negative | Unclassified|| Positive | Negative | Unclassified|| Positive | Negative | Unclassified
Positive 67.27%| 0% 32.73% | 88.18%| 0% 11.82% || 100% 0% 0%
Negative 0% 43.64%| 56.36% 0% 91.82%| 8.18% 0% 100% 0%
Q 77.73% 95.00% 100%

The commonalities between the three models are that they dtzaut the same classification accu-
racy (Figure 4) and that none of them wrongly classified arpefobservations in the training set. The
models however differ in terms of their discrimination pew#OD VI classifies perfectly all exper-
iments while MOD V (resp., MOD 1V) leaves about 9% (resp., 503fthe experiments unclassified.
Clearly, MOD IV which solely relies on the manipulables daeshave the classification ability required.

We now proceed to the validation of the models, and we cheplaiticular whether the high classi-
fication quality of MOD V and MOD VI remains when they are applito the experiments (not used for
their derivation) of the testing set TEVSP.

The classification quality of MOD V and MOD VI on the testing siecreases (compared to Table
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Figure 4: Cumulative Accuracy Profiles on Training Set TRVSP

Cumulative Accuracy Profile

% of Positive Experiments

MOD VI: AR = 95.35%

. - 0
/yMOD V: AR =92.64%

MOD IV: AR =94.22%

% of Experiments

Table 12: Classification Quality on Testing Set TEVSP

Classification of Experiments
Experiment MOD IV MOD V MOD Vi
Classes Positive | Negative | Unclassified|| Positive | Negative | Unclassified|| Positive | Negative | Unclassified
Positive 69.84%| 6.35% 23.81% || 85.71%| 3.17% 11.11% 100% 0% 0%
Negative 11.29% | 43.55%| 45.16% 9.68% | 88.71% 1.61% 9.68% | 90.32% 0%
Q 73.94% 90.39% 95.16%

11) but remains very high> 90%). The following observations highlight the superior peniance
of MOD VI. First, the classification quality and the accuraeye of MOD VI are higher than those
of MOD V for both the testing and training sets. Second, ttessification accuracy of MOD VI is
invariant > 95.25%) regardless of whether it is used on the testing or traingtg Fhis contrasts with
the classification accuracy of MOD V which drops from 92.64%84#.09% when used to classify the
experiments in respectively the training and testing séfe.now provide the results of six additional
tests in which the binary outcom# (i.e. the long simulation expected profit) of each experiniethe
testing set TEVSP is successively defined as

Z =1 ifand only if w’ >a- w*
for a = 85%, 87.5%, 90%, 92.5%, 95%, 97.5%.

Table 13 provides the classification qualilyand accuracyl R (see also Figure 6) of the LAD model
MOD VI when applied to the experiments of the set TEVSP whageame is defined as described
above.

The very convincing results displayed above provide a @srtfalidation of MOD VI and show its
applicability and high accuracy to classify experimentthwiarying values of the stochastic parameters
and that were not used to construct the model. The very higglesaof the classification quality and
accuracy rates for various definitions of the outcome of #peements in the testing set is a very strong
indicator of the stability of the model and the absence offittieg. This result is very important in view
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Figure 5: Cumulative Accuracy Profiles on Testing Set TEVSP

Cumulative Accuracy Profile

MOD VI: AR = 95.25%

MOD IV: AR = 71.65%

% of Positive Experiments

% of Experiments

Table 13: Classification Quality and Accuracy Rate
« Q AR
85% | 95.16% | 92.20%
87.5% | 95.16% | 95.99%
90% | 95.16% | 94.83%
92.5%| 95.16%| 95.25%
95% | 92.00% | 92.90%
97.5%| 90.62%| 93.18%

of the occasional reports in the literature that the highffihachine learning methods such as support
vector machine is achieved at the cost of overfitting (seegxample, [46]).

5.4 Constrained Simulation-Optimization Problem with Continuous and Integer Vari-
ables

We have also considered a variant of the assemble-to-ordblepn where half of the manipulables are
defined as continuous variables. The inventory lewelof itemsi = 1,...,4 are defined as contin-
uous variables, taking any value fin 12], while inventory levels of items 5 to 8 are defined as integer
variables, taking any integer valuelin 12]. The associated problem is called@nstrainedSimulation-
Optimization problem witlcontinuous variables

The results are in perfect agreement with those obtainethéoproblem described in the preceding
section and illustrate the applicability of the proposedtrod to both Simulation-Optimization problems
with integer-ordered variables and Simulation-Optimaatproblems with continuous variables. For
sake of brevity, we do not include the details of the comparnal tests.
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6 Conclusion

In this paper, we develop an approach to identify good ggstiof decision variables of a stochastic
system. A distinct feature of this work is the assumptiort tha values of the stochastic parameters
of the system are unknown, but whose effect on the system eaatured by recording the values of
guantities readily available at the end of a simulation. TAB model provides an “an ideal performance
guarantee” [8], since it predicts with striking accuracyemtthe performance of the system is within a
predefined percentage of a targeted value or of its optimdbipeance value. An important feature
[21, 37] is that the very accurate classification is obtaibgdising as inputs the short-simulation (i.e.,
limited number of replications) expected value of the obeieles.

Obviously, the construction of the LAD model requires tirkiawever, this must be put in perspec-
tive with the following observations. First, the LAD modshiery economical. For the problem studied,
the derivation of the LAD model only requires the running dihsited number (250) of simulations with
only a sample of them being used in the construction of theaiolloreover, in order to accurately
separate bad from good experiments, the LAD model uses gsrgnits (i.e., observables) the manip-
ulables and other observables whose values are obtainadbing short-simulations. This means that
the LAD model gives its verdict (good or bad) about an experitnin very short-fashion (after only 5
replications). Second, the construction effort is largefget by the gain in time when using the model as
part of a local search heuristic. Moreover, in a case wherasdime stochastic model must be optimized
periodically, the time invested to construct the clasditicamodel beforehand is worthwhile. What we
can safely say at this point is that the running of 5 replaraifor an experiment takes less than 1 second
on a standard PC and that the construction of the LAD modabusie Datascope software takes a few
seconds.

It is part of our future research plans to assess the timeedetdconstruct the LAD model and,
more importantly, to evaluate the overall computation&irggs that our approach will permit over the
entire Simulation-Optimization process. Indeed, the LA8&ssification model is very accurate in dis-
tinguishing “good” from “bad” experiments and can thus ioy® the use of computing resources by
allocating more time to promising experiments. To test thediits of this key feature, we plan to use
the LAD-based classification model in an iterative optirtia procedure. An experiment classified
“bad” by the LAD classification model would be immediatelydped from further consideration by the
optimization-based simulation algorithm, while an expennt classified as “good” would receive more
attention (i.e., more replications would be run for this éxment) in order to obtain a very accurate
estimate of its results.

Finally, we also note that the proposed approach is not mgatit on the running of a sample of
replications for each possible setting and that empiriealits show that the LAD for Simulation ap-
proach performs equally well for Simulation-Optimizatiproblems with integer-ordered variables and
with continuous and integer variables.
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Figure 6: Cumulative Accuracy Profiles
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