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Abstract

The goal of this paper is to address the problem of evaluatingthe performance of a system run-
ning under unknown values for its stochastic parameters. A new approach called LAD for Simulation,
based on simulation and classification software, is presented. It uses a number of simulations with
very few replications and records the mean value of directlymeasurable quantities called observ-
ables. These observables are used as input to a classification model that produces a prediction for
the performance of the system. Application to an assemble-to-order system from the literature is
described and detailed results illustrate the strength of the method.

Keywords: Simulation-Optimization, Logical Analysis of Data, Stochastic Models
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1 Introduction

This paper focuses on the optimal design of production, distribution, or queuing systems subject to
stochastic events. These models are configurable by specifying values for stochastic parameters and
values for decision variables and their performance can be described by a single number. More precisely,
we define aparameterto be a stochastic parameter of the model; we assume that the value of any
parameter can not be controlled. An example is the arrival rate of clients in a queuing system. We define
a manipulableto be a decision variable that can be set within given bounds.An example is the buffer
length of a queue in the system. The performance of a system with specified values̄p = (p1, . . . , pq)
for its q parameters and̄m = (m1, . . . ,mr) for its r manipulables may be any functionP(p̄, m̄) or any
other value that can be estimated at the end of a simulation. The namesOptimization for Simulation
[20] andSimulation-Optimization[7, 10, 22, 23] have been coined for the problem of finding values of
the manipulables that optimize the performance of a system with given parameter values. We refer the
reader to the special issue of theINFORMS Journal of Computing, Summer 2002, Volume 14 (3) for a
thorough overview of the discipline.

Several approaches using discrete event simulation software have been introduced to find good values
for the manipulables of a system with given parameter values[20, 36, 38]. A common feature of these
approaches is a local search in the space of the feasible manipulable values, running simulations to
evaluate the performance. Following the terminology of [10, 20], asimulation is a collection of runs,
called replications, of the software for fixed values of the parameters. The sample mean performance
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over replications is used as the expected performance of thesystem under the given settings of the
parameters. While these approaches have relevance for solving real world problems, they do not address
directly the main problem that a manager of a production system faces, namely how to assess and improve
the performance of the system under current conditions. In many situations, the stochastic parameters
are not known and can vary with time (hourly, daily, or seasonally depending on the application). This
makes it difficult to set up a realistic simulation of the system.

The goal of this paper is to address, at least partially, the problem of evaluating the performance
of a system, under the assumption that the values of the stochastic parameters may vary within some
given bounds. We build a classification model to estimate howwell the system is run under current
conditions. This model takes as inputs a collection of values (calledobservables) that can be measured
from the running production system and it outputs an indicator value for the performance. Examples of
observables for a production line are observed minimum, observed maximum and observed average of
service times, inventory levels, profit, production level,or production quality. We stress that stochastic
parameter values arenotpart of the observables, but manipulable values can be. We validate the approach
on an “assemble-to-order” system from the literature [36] and show that the classification obtained by
the model matches closely the actual performance of the system. The classification model used in the
application is based on thelogical analysis of data (LAD)proposed by Hammer [26] and developed by
Boros et al. [11] and the approach is calledLAD for Simulation.

One of the crucial challenges in Simulation-Optimization resides in the allocation of the compu-
tational resources between the search for a better solutionand the evaluation of the current candidate
solution [22]. When a classification model with high accuracy can be built for a particular application,
it can be used not only for evaluating performances of the current system, but also to enhance the local
search heuristics for Simulation-Optimization mentionedabove: it is possible to reduce the search space
for the heuristic by rejecting quickly all settings not classified as “good”. When the time for computing
the classification of a setting is a fraction of the time to getthe estimated performance of the setting,
precious computing time can be saved during optimization. Our proposal is to execute a number of
simulations with very few replications and record the mean value of the observables. These values are
then used by the classification model and its output is used asthe performance of the system under this
particular setting of the manipulables.

Note that the design of the classification model for the problem at hand might be time consuming.
However, in a situation where the same stochastic model has to be optimized periodically, investing time
to build the classification model beforehand might be worthwhile. It also allows for optimization “on-
the-fly” that is order of magnitude faster than with simulations with large number of replications. The
approach developed here is thus also interesting when shortreoptimization time is critical.

The paper is organized as follows. In Section 2, the proposedapproach is described in more details
and a review of related approaches is given. Section 3 presents briefly the LAD methodology. It will
be clear that several LAD classification models can be constructed and the evaluation of their respective
performances is necessary. Several performance measures are described in Section 4. In Section 5, an
“assemble-to-order” application is presented. Several alternatives to construct the classification model
are explored and a model with high classification performance is constructed. Finally, Section 6 provides
concluding remarks.

2 LAD for Simulation and Related Approaches

Most approaches for Simulation-Optimization in the literature try to find good manipulable values for
given values of the stochastic parameters. In this paper, weare interested in the problem of estimating the
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performance of a system running under unknown values for thestochastic parameters. We want to build a
classification model using directly measurable quantities(called observables) as inputs and whose output
is an estimation of the system’s performance. Assuming thatsuch a reliable classification model can be
built, it can be used to speed up heuristics for Simulation-Optimization by using the model evaluation as
a guide. The idea is to perform a simulation with few replications, record the values of the observables,
and feed them to the classification system to get the estimation of the performance.

We first review briefly some of the classical approaches for Optimization-Simulation. A typical
approach for finding good values of the manipulables is sampling: In its simplest form (known as a
factorial design experimentor factorial sampling), a discretization of the domain of each manipulable
is chosen and all possible choices of values from their discretized domains are evaluated. This is the
methodology used in [25] for optimizing manipulables for a trust-region solver. This method is of course
limited to cases where the number of manipulables is small and where the number of discretized values
for each manipulable domain is small. When factorial sampling is impractical, it is possible to sample
only a subset of all possible choices of manipulable values from their discretized domains while covering
well, in a statistical sense, the discretized manipulable space. The choice of points to evaluate is based on
orthogonal array designs, a well-known tool in statistics [16, 32, 33] or on the construction of optimal
design of experiments [45]. The number of evaluated points drops considerably compared to the number
used in a factorial sampling, but the approach is limited by the fact that introducing many discretization
points in the domain of the manipulables is still not practical. To overcome this difficulty, it is possible to
iteratively refine the discretization around points of interests. Examples are discussed in [9, 41]. A more
sophisticated approach coupling experimental designs with local search is developed by Adenso-Diaz
and Laguna [1].

Instead of applying a heuristic optimization technique over the entire search space, we propose to
derive an LAD classification model that discriminates the good settings from the average and bad ones.
The construction of the LAD classification model is as follows. Given the stochastic model under consid-
eration and domains for its stochastic parameters, a collection of simulations are performed with various
valuespj = (pj

1, . . . , p
j
q) for its q parameters and valuesmj = (mj

1, . . . ,m
j
r) for its r manipulables

for j = 1, . . . , N . These simulations are done with sufficiently many replications so that the estimation
P̂(pj,mj) of the performanceP(pj ,mj) can be trusted. (This might require a large number of replica-
tions [14] as the rate of convergence of the mean of a sample ofn replications is typicallyO(

√
n).) That

estimation and the values of thes observablesoj = (oj
1, . . . , o

j
s) are recorded. They form a collection of

N data points(P̂(pj ,mj), oj) calledexperiment set. The LAD classification model is then designed so
that its evaluation functionf(oj) behaves similarly tôP(pj,mj) for j = 1, . . . , N . While the construc-
tion of the model itself is intricate, software implementing this step is available. Section 3 gives more
information about the methodology and software.

Once the LAD classification model is built, it can be used jointly with most heuristics: For a given
setting of the values of the manipulables, we execute a number of simulations with very few replications
and record the mean value of the observables. The LAD classification model then is used as a predictor
for the performance of the system under this particular setting of the manipulables. If the LAD classi-
fication model is accurate enough to discriminate good and bad settings, precious time can be saved by
discarding the latter and focusing more on the former. Note also that the correct answer is obtained even
if the prediction of the LAD classification model is not numerically accurate: it is enough for the LAD
classification system to rank the choices of manipulable settings in the same order as given by their true
performance.

This method is related to the concept of ordinal optimization first proposed by [35] (see also [17, 34]).
Ordinal optimization does not aim at identifying the best setting, but concentrates on finding settings that
can be shown to be good with a high probability, and reduces the required simulation time dramatically
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[34]. It was shown [14, 17] that less simulation effort is needed to develop a good ordering of solutions
than it is required to estimate their actual performance [10]. For a large class of systems, Dai [17] showed
that the probability of correctly selecting the best system’s setting using ordinal optimization converges
at an exponential rate.

Building upon this,selection, screeningor indifference-zone rankingtechniques have been proposed
(see [13] for a review). In [15], the best simulated system isidentified through a Bayesian procedure.
The “optimal computing budget allocation” method [14] defines, for a limited computational budget, the
number of replications to be allocated to each simulation inorder to maximize the probability of ranking
the settings and selecting the good ones correctly (see also[24]). Two-step methods, applicable to
simulation problems in which the number of settings is largebut finite and when a number of replications
have been conducted for each setting, are proposed in [10] and [43]. They first isolate subsets of good
system settings from the very bad ones, before attempting todetermine the best setting using a ranking
procedure. While this is in the same spirit as the approach presented in this paper, a major difference
is that the latter does not require to run a sample of replications for each possible setting, as the LAD
classification model is (hopefully) able to extrapolate to the full search space the information given by
performance values for a collection of settings. In addition, our approach is not restricted to discrete-
event simulation models and it can handle directly manipulables with non discrete domain.

3 Logical Analysis of Data

The logical analysis of data (LAD) is a combinatorial logic-based optimization methodology that was
initially created [26] and used for the analysis and classification of binary data [3]. Its application scope
was later extended [11] to data sets containing numerical variables. This section presents an overview
of the method as applied to the case studied in this paper, namely the construction of a system hopefully
replicating the behavior of the function with valueP(pj ,mj) when evaluated at the pointoj for j =
1, . . . , N . LAD models can be constructed using theDatascope software [2] which is available for
academic research. We refer the reader to [4, 5] for a description of the most distinguishing features of
the implementation of the LAD method inDatascope.

LAD is usually used as a classification mechanism: Given a collection of points labeledpositive
or negative, the goal is to derive a small set of patterns that returns, for each point in the collection,
a classification that matches its label as accurately as possible. We describe in section 3.1 the LAD
methodology for this case. Extension to the case where the label of an experiment is a continuous
or categorical indicator instead of a binary one was studiedby Hammer et al. [29, 30] and Kogan and
Lejeune [39] for reverse-engineering the Standard&Poor’sevaluation of entities’ creditworthiness, which
takes the form of an alphanumerical (i.e., AAA, AA+, etc.) credit risk rating system.

3.1 LAD: Positive/Negative Case

Assume that the experiment set is a collection ofN points(zj , oj) wherezj has value 1 for a positive
experiment and 0 for a negative one andoj is ans-vector recording the values of the observables.

Table 1 illustrates an experiment set containing 5 experiments recording the values of three observ-
ables. Each componentoj

i of the [3 × 3]-matrix in Table 1 gives the value taken by observablei in
experimentj. The column labeledz returns the outcome (positive ifzj = 1, negative ifzj = 0) of the
experiment.

The LAD method generates and analyzes exhaustively a major subset of combinations of possible
values for the observables which can describe the positive or negative nature of an experiment. It uses
optimization techniques to extract models taking the form of a limited number of significantlogical
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Table 1: Experimental Set
Experiment Observables Outcome

j o1 o2 o3 z

1 3.5 3.8 2.8 1
2 2.6 3.8 5.0 1
3 1.0 1.6 3.7 1
4 3.5 2.2 3.9 0
5 2.3 1.4 1.0 0

patterns. LAD has been very successfully applied to multiple medicalclassification problems (see [28]
for a review) and credit risk rating and data mining problems[29, 30, 31, 39].

The purpose of LAD is to discover a binary-valued functionf which is constructed as a weighted
sum of logical functions of binary variables related to the observables, and provides an accurate discrim-
ination between positive and negative experiments. To construct the functionf , the experiment set is
first transformed into abinarized data setin which the components can only take the values 0 and 1.
Each original numerical observable is replaced by several binary ones. This is achieved by defining, for
each observableoi, a set ofK(i) values{ci,k | k = 1, . . . ,K(i)} calledcut pointsand associated binary
variables{yi,k | k = 1, . . . ,K(i)}. The value of these binary variables for data point(zj , oj) is then
defined as:

yj
i,k =

{

1 if oj
i ≥ ci,k

0 otherwise.

The choice of the values of the various cut points is based on astatistical analysis of the experiment set.
Table 2 provides the binarized experimental data set corresponding to the data above, and reports the

valuesci,k of the cut pointsk for each observableoi, and those of the binary variablesyj
i,k

associated

with any cut pointk of observablei in experimentj. For example,y1
1,1 = 1 sinceo1

1 = 3.5 is larger than
c1,1 = 3.0.

Table 2: Binarized Data Set
Observables o1 o2 o3

Cut Points
c1,1 c1,2 c1,3 c2,1 c2,2 c3,1 c3,2 c3,3

3.0 2.4 1.5 3.0 2.0 4.0 3.0 2.0
j y1,1 y1,2 y1,3 y2,1 y2,2 y3,1 y3,2 y3,3 z

Binary
Variables

1 1 1 1 1 1 0 0 1 1
2 0 1 1 0 0 1 1 1 1
3 0 0 0 0 1 0 1 1 1
4 1 1 1 0 0 0 1 1 0
5 0 0 1 0 1 0 0 0 0

A discretized data setcan then be created [27]; it has the same dimension as the original experi-
ment set and whose componentsxj

i , thereafter calledvariables, are mapped to the observables. The
discretization of the binarized data set is carried out as follows:

xj
i =

K(i)
∑

k=1

yj
i,k, for i = 1, . . . , s, j = 1, . . . , N.
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Table 3 below displays the discretized data set.

Table 3: Discretized Data Set
Experiment Variables Outcome

j x1 x2 x3 z

1 3 2 1 1
2 2 0 3 1
3 0 1 2 1
4 3 0 2 0
5 1 1 0 0

Positive (resp., negative)patternsimpose upper and lower bounds on the values of a subset of the
variables, such that a high proportion of the positive (resp., negative) experiments in the discretized data
set satisfy the conditions imposed by the pattern, and a highproportion of the negative (resp., positive)
experiments violate at least one of the conditions of the pattern. An experiment in the data set iscovered
by a pattern if it satisfies the conditions of the pattern. Theselection of the patterns is achieved by solving
a set covering problem (see [11] for details). Thedegreeof a pattern is the number of variables whose
values are bounded by the pattern. Theprevalenceof a positive (resp., negative) pattern is the proportion
of positive (resp., negative) experiments covered by it. The homogeneityof a positive (resp., negative)
pattern is the proportion of positive (resp., negative) experiments among those covered by it.

Considering the data above,
x1 ≤ 2 and x2 ≤ 2

is a positive pattern of degree 2 covering two positive observations and one negative observation. There-
fore, its prevalence and homogeneity are both equal to 2/3.

The first step in applying LAD to a data set is to generate all patterns for the data set, a collec-
tion calledpandectin the LAD terminology. The number of patterns contained in the pandect can be
extremely large. The substantial redundancy among the patterns of the pandect makes necessary the
extraction of (relatively small) subsets of patterns, sufficient for differentiating positive and negative
experiments in the data set. Such collections of positive and negative patterns are called LADmodels.
Limitations on the size of the model, i.e. the number of included patterns, are usually imposed by restrict-
ing the degree, the prevalence, and the homogeneity of the considered patterns. Models incorporating
patterns of low degree, high prevalence and high homogeneity have been shown to be the most effective
in LAD applications [12]. A model is supposed to include sufficiently many positive (resp., negative)
patterns to guarantee that each of the positive (resp., negative) experiments in the data set is covered by
at least one of the positive (resp., negative) patterns in the model. Furthermore, good models tend to
minimize the number of experiments in the discretized data set covered simultaneously by both positive
and negative patterns in the model.

An LAD model can be used for classification in the following way. An experiment which satisfies
the conditions of some of the positive (resp., negative) patterns in the model, but which does not satisfy
the conditions of any of the negative (resp., positive) patterns in the model, is classified as positive (resp.,
negative). An experiment satisfying both positive and negative patterns in the model is classified with
the help of adiscriminantthat assigns specific weights to the patterns in the model [12]. More precisely,
let np andnn represent the number of positive and negative patterns in the model, and letcp(j) (resp.,
cn(j)) represent the numbers of positive (resp., negative) patterns which cover a new experimentj. The
value of the discriminant is defined as

∆(j) =
cp(j)

np

− cn(j)

nn
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and the classification by the model is determined by the sign of ∆(j). An experiment for which∆(j) = 0
is left unclassified. Note that in the above formula, the discriminant of an experimentj is computed by
giving the same weightw+

r , r = 1, . . . , np (resp.,w−

s , s = 1, . . . , nn) to all positive (resp., negative)
patterns withw+

r = w−

r if and only if the number of positive patterns is equal to thatof the negative
ones. Alternative weighting schemes in which the weight of apattern is a function of its homogeneity
and/or prevalence, its degree, or is determined in such a waythat the classification accuracy of the
discriminant is maximized are detailed in [12].

4 Evaluation Methodology

In order to evaluate the accuracy of a classification model, several measures are traditionally used. This
section reviews those that are used in the application. Subsection 4.1 covers thequalityof a classification.
Subsection 4.2 describes thecumulative accuracy profile(CAP), also calledLorenz curveor power test.

4.1 Classification Quality

Results for the classification of the experiments in a data set are displayed in the form of a classification
matrix (Table 4).

Table 4: Classification Table
Experiment Classification of Experiments

Classes Positive Negative Unclassified
Positive a c e
Negative b d f

The valuea (resp.,d) represents the percentage of positive (resp., negative) experiments that are
correctly classified. The valuec (resp.,b) is the percentage of positive (resp., negative) experiments that
are misclassified. The valuee (resp.,f ) represents the percentage of positive (resp., negative) experi-
ments that remain unclassified. Clearly,a + c + e = 100% andb + d + f = 100%. The quality of the
classification is defined [6] by

Q =
a + d

2
+

e + f

4
. (1)

4.2 Cumulative Accuracy Profile

A key measure of the quality of a classification model is thecumulative accuracy profile(CAP), also
calledLorenz curveor power test. It has been widely used in medicine [40] and credit risk [18,19, 47] to
estimate the quality of machine learning, support vector machine and data mining approaches. Consider
a classification model which returns a discriminant value for each experiment. An experiment with
large discriminant value is classified as positive. Assume that theN experiments(z1, o1), . . . , (zN , oN )
are ordered in non-increasing of their discriminant values. For i = 0, . . . , N , let q(i) be the number of
positive experiments (i.e., experimentsj with zj = 1) in {(z1, o1), . . . , (zi, oi)}, letq be the total number
of positive experiments and letPR = q

N
be the fraction of positive experiments. The point( i

n
, q(i)

q
) is

then a point of the CAP curve of the model. That curve is drawn in the 2-dimensional unit square with
x-axis corresponding to percent of experiments andy-axis to percent of positive experiments.
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A perfect classification function would have experiments{(z1, o1), . . . , (zq, oq)} as theq positive
experiments and its CAP curve would be a line from(0, 0) to (PR, 1) followed by a straight horizontal
line joining(PR, 1) to (1, 1). Conversely, the expected CAP curve of a model without any discriminative
power (i.e., random classification) would be a straight linefrom (0, 0) to (1, 1). In reality, the CAP curve
of classification models run between these two extremes.

The LAD model assigns a discriminant value∆(j) to each experimentj, used to draw its CAP
curve. A high discriminant value indicates that the considered experiment is positive and should result
in a high value (i.e., within 10% of the best known value) of the metrics of interest, thereafter referred to
asresponse.

The classification measure derived from the CAP curve is calledaccuracy rateAR

AR =
AC

AC + AP
(2)

and is defined as the ratio of the areaAC (shaded area in Figure 1) between the Lorenz curve (dotted
line in Figure 1) of the classification model and the line joining (0, 0) to (1, 1) to the areaAP between
the line representing the perfect classification (bold linein Figure 1) and the line joining (0, 0) to (1, 1)
representing the random classification.

Figure 1: Cumulative Accuracy Profile
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TheAR measure is related to the classical parametric Wilcoxon rank sum and Mann-WhitneyU tests
[42] that are typically used to verify whether two distributions are identical. Denoting by∆(j1) (resp.,
∆(j2)) the discriminant value of an experimentj1 (resp.,j2) classified as positive (resp., negative) by
the classification model, the Mann-WhitneyU test counts the number of pairs(j1, j2) for which the
inequality ∆(j2) < ∆(j1) holds. If the classification function were perfect, the number of correctly
classified pairs would be equal to|Np| · |Nn| with |Np| (resp.,|Nn|) referring to the number of positive
(resp., negative) experiments. If the classification were random,∆(j2) < ∆(j1) would happen with
probability 0.5, and thus0.5 · |Np| · |Nn| experiments would be correctly classified. Therefore, in this
paper, we calculate the value of the accuracy ratioAR by means of the unbiased Mann-Whitney estimator
Û

Û =

∑

(j1,j2)

αj1,j2

|Np| |Nn|
(3)
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with αj1,j2 = 1 if ∆(j2) < ∆(j1) and equal to 0 otherwise.

4.3 Informational Content of Classification Metrics

The accuracy rate is the ratio of the performance improvement of the model being evaluated over the
naive model to that of the perfect model over the naive model.It reflects the ability of the model to
correctly rank the experiments. The accuracy is at its highest level (100%) if the ranking/ordering of the
experiments in non increasing order of their discriminant values is exactly the same as the one obtained
by ranking the experiments in non increasing order of the metrics with respect to which one seeks to
classify them.

On the other hand, the classification quality reflects the ability of the model to discriminate good
experiments from bad ones but does not account for the ranking of the experiments according to a given
numerical or categorical criterion. It takes into account the percentage of true positives (a/2), the per-
centage of true negatives (d/2), and the percentage of unclassified experiments ((e + f)/4).

We illustrate the complementarity of the two classificationmetrics with the following example. Con-
sider a data set composed of 50 positive and 50 negative experiments and assume that the LAD model
generates the classification results displayed in Table 5.

Table 5: Relationship between Classification Metrics: Example 1
Experiment Classification of Experiments

Classes Positive Negative Unclassified
Positive 90% 10% 0
Negative 0 100% 0

The classification quality is equal to 95%. On the other hand,the accuracy rate significantly varies
depending on the ranking of the five misclassified experiments. All we can say is that the accuracy rate
ranges between 80% and 100%. Recall that the accuracy rate orders the experiments by decreasing value
of the discriminant value. If, in this ordering, the five positive experiments classified as negative by the
LAD model occupy positions

• 46 to 50, the accuracy rate is equal to 100%;

• 71 to 75, the accuracy rate is equal to 90%;

• 96 to 100, the accuracy rate is equal to 80%;

Proposition 1 A classification quality of 100% implies that the model has a 100% accuracy rate.

The proof is straightforward. The converse is not necessarily true, as the order of the experiments by
non increasing discriminant value can start with all the positive experiments followed by all the negative
ones, but with all experiments classified as negative. Whilethe accuracy rate of the model is 100%, its
classification quality is 50% if there are as many positive experiments as negative ones in the experiment
set.

The above discussion attests the relevance and the complementarity of the information provided by
the two classification metrics to evaluate the discrimination power of a model.
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5 Application Example

In this section, we evaluate the added value of our approach using a computational study. We were
not successful in obtaining a variety of complex problems from the literature. (We are supportive of
Pasupathy and Henderson’s initiative [44] to develop a taxonomy and a publicly available testbed of
Simulation-Optimization problems.)

Therefore, we evaluate our optimization approach on several variants of an assemble-to-order prob-
lem used in [36], in which items are made to stock to supply thedemands for finished products, and
various finished products are assembled to order from the items. The system operates using a continuous-
review base-stock policy: each demand for a unit of an item triggers a replenishment order for that item.
Items are produced one at a time on specific facilities, and production intervals are usually stochastic.

5.1 Problem Description

The specific assemble-to-order system we study is well knownin the simulation-based optimization
literature [36]. It has eight itemsvi, i = 1, . . . , 8, and five types of customerscj, j = 1, . . . , 5. Different
types of customers come into the system as Poisson arrival processes with different ratesλj , j = 1, . . . , 5,
and each of them requires a set of key items and a set of secondary items. If any of the key items
are out of stock, the customer leaves. If all key items are in stock, the customer buys the product
assembled from all the key items and the available secondaryitems. A sold item generates a unit profit
pi, i = 1, . . . , 8, and each item in inventory has a holding cost per periodhi, i = 1, . . . , 8. There are
inventory capacitiesCi, i = 1, . . . , 8 for each item. The item production time is normally distributed
with meanµi, i = 1, . . . , 8 and standard deviationσi, i = 1, . . . , 8. The objective is to find the the
optimal inventory levelsmi, i = 1, . . . , 8 for each item to maximize the expected total profitw defined
as the response.

We thus have a model with:

• 21 stochastic parameters which are the customers’ arrival ratesλj , j = 1, . . . , 5 (Table 6), the
mean production timesµi, i = 1, . . . , 8 and the standard deviation of the production timesσi, i =
1, . . . , 8 (Table 7);

Table 6: Arrival Rate of Customers
j 1 2 3 4 5

λj 3.6 3 2.4 1.8 1.2

• 8 manipulables which are the optimal inventory levelsmi, i = 1, . . . , 8.

5.2 Procedures for Model Construction and Validation

The methodology used to generate an LAD model in the cases listed below is as follows: Observables
are selected (Section 5.3.1 describes the different set of observables considered in our tests), and a set of
experiments is created, each experiment being specified by achoice of values for all the manipulables
and for the stochastic parameters. We generate 1000 experiments:

• 500 experiments have fixed values for the stochastic parameters (using values in Tables 6 and
7). We use a 2-folding approach and assign 250 of them to the training set with fixed stochastic
parameters (TRFSP) and we use them used to derive LAD models;the other 250 are assigned to
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Table 7: Item Production Time: Average and Standard Deviation
i µi σi

1 0.15 0.0225
2 0.40 0.0600
3 0.25 0.0375
4 0.15 0.0225
5 0.25 0.0375
6 0.08 0.0120
7 0.13 0.0195
8 0.40 0.0600

the testing set with fixed stochastic parameters (TEFSP) andare used to validate the LAD models
derived using TRFSP;

• 500 experiments have variable values for the stochastic parameters which can take any value (with
uniform distribution) within±20% of their mean values reported in Tables 6 and 7; 250 of them
are assigned to the training set with variable stochastic parameters (TRVSP) and are used to derive
LAD models and to validate the LAD models derived using TRFSP; the other 250 are assigned
to the testing set with variable stochastic parameters (TEVSP) and are used to validate the LAD
models derived using TRFSP and TRVSP.

For each experimentj, a simulation with a given numbers of replications is run with a warm-up
process of 20 periods and the average profitwj over the next 50 periods is computed. In the remainder,
a long simulation(resp.,short simulation) is a simulation withs = 50 (resp.,s = 5).

Short simulations are run for 215 (of the 250 experiments in the training set) to build the LAD
classification model without using too much time. Long simulations are used to classify the experiments.
Experiments are then ordered in decreasing order of their long-simulation average profitwj . Denoting
by w∗ = max

j
wj , we associate to each experimentj an outcomezj taking value

• 1 if wj ∈ [0.9 · w∗, w∗]

• 0 if wj < 0.85 · w∗

• -1 if wj ∈ [0.85 · w∗, 0.9 · w∗[

Experiments in the training sets TRFSP and TRVSP withzj = 1 or zj = 0 are used to construct
patterns and derive the LAD models whose accuracy is evaluated with respect to the measures presented
in Section 4. We set the threshold values 0.9 and 0.85 definingzj based on the results of numerous prior
tests. (As Table 13 shows, the results are robust with respect to these threshold values.)

As explained in Section 3, the LAD method depends on a few control parameters (degree, preva-
lence, etc.). In this paper, all the LAD models are constructed by using a standard/default setting for the
LAD control parameters. More precisely, the selected patterns have degree 3, 100% homogeneity and
prevalence at least equal to 10% and 5 cut points are generated for each observable. Two main reasons
motivate our choice of not customizing the setting of the LADcontrol parameters to the studied prob-
lem. First, the very conclusive results (see next section) obtained with standard settings show that the
proposed approach can be used by non-LAD experts and does notrequire spending excessive time on
the understanding of the arcane of the LAD method. Second, the reliance upon standard setting is a way
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to hedge against the risk of developing an overfitted model. Nevertheless, as standard LAD settings does
not prevent overfitting, we resort to a 2-folding cross-validation procedure to obtain a more definite state-
ment regarding the overfitting issue. We derive the classification model with a subset of the experiments
(the training set) and evaluate the quality of the model withrespect to the classification it generates on
the experiments not used for its construction (the testing set).

5.3 Constrained Simulation-Optimization Problem with Integer-Ordered Variables

In this section, we consider the original definition of the problem [36] in which all the decision variables,
i.e. the manipulables, are discrete. Based on Pasupathy andHenderson’s taxonomy [44], we call the
associated problem aconstrainedSimulation-Optimization problem withinteger-ordered variables.

We study two variants of the problem: The first one has fixed values for the stochastic parameters
and the second one let them vary within 20% of their expected values. The results show that, in the first
variant, a model based on the manipulables and the expected profit gives good results. However, in the
second variant, having a broader set of observables is essential.

5.3.1 Fixed Value of Stochastic Parameters

In this section, we use the training set TRFSP (fixed stochastic parameters) to derive and analyze three
LAD models:

• MOD I uses as observables the 8 manipulablesoi, i = 1, . . . , 8;

• MOD II uses as observables the 8 manipulables and the short simulation average profito9;

• MOD III uses as observables the 8 manipulables, the short simulation average profito9 and the
short simulation averages of:

– item inventory levelsoi, i = 10, . . . , 17,

– lead timeo18,

– ratio of lead time to total timeo19,

– number of production lots in a work cell (work-in-progress)o20,

– revenueo21,

– total number of items producedo22,

– number of stockoutso23.

Note that when the stochastic parameters have fixed values, the expected profit is a function of the 8
manipulables. MOD I is trying to find an LAD model working withthis set of variables. MOD II adds
one (important) observable, the observed average profit. MOD III adds 14 observables, whose utility
will be demonstrated in the next section when stochastic parameters are not fixed.

Table 8 displays the classification of the experiments in thetraining set TRFSP with the three models.
The three models have a classification quality superior to 90% on the training set. We note that MOD I
does not generate incorrect classification, but leaves about 20% (resp., 8%) of the positive (resp., nega-
tive) experiments unclassified and that MOD II and MOD III arethe two top performers on the training
set. The classification accuracyAR of MOD I (resp., MOD II, MOD III) is equal to 97.62% (resp.,
98.74%, 98.83%). We note that a better classification might be obtained by fine-tuning the LAD control
parameters for the problem at hand or by using another marginclassifier.
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Table 8: Classification Quality on Training Set TRFSP.

Classification of Experiments
Experiment MOD I MOD II MOD III

Classes Positive Negative Unclassified Positive Negative Unclassified Positive Negative Unclassified

Positive 80.49% 0% 19.51% 95.12% 0% 4.88% 100% 0% 0%
Negative 0% 92.31% 7.69% 0% 99.41% 0.59% 0% 100% 0%

Q 93.20% 98.63% 100%

We now validate the three derived models and check whether the high classification accuracy subsists
when the models are applied to experiments not used in their derivation. Indeed, overfitting, i.e., the
phenomenon of building a model that is in close concordance with the observed data but has no predictive
ability, may occur. In case of overfitting, the model has a high classification power on the training data,
but performs poorly on new observations.

The classification quality of the three models on the testingset TEFSP is given in Table 9.

Table 9: Classification Quality on Testing Set TEFSP

Classification of Experiments
Experiment MOD I MOD II MOD III

Classes Positive Negative Unclassified Positive Negative Unclassified Positive Negative Unclassified

Positive 69.23% 0% 30.77% 100% 0% 0% 100% 0% 0%
Negative 8.77% 83.33% 7.89% 0.88% 98.25% 0.88% 0.88% 98.25% 0.88%

Q 85.95% 99.34% 99.34%

Figure 2 shows that MOD II and MOD III have the same classification quality, almost 10% higher
than the one of MOD I. We recall that the bold (resp., diagonal) line in Figure 2 represents the perfect
(resp., random) classification.

The very high value of the two classification metrics for the testing sets strongly support the claim
that no overfitting occurs. Indeed, the very high classification quality (> 98.6%) and accuracy (> 96.7%)
of MOD II and MOD III do not decrease significantly when applied to the experiments in the testing set.
The same comment does not extend to MOD I.

The above results show that, when values of the stochastic parameters are fixed, MOD II and MOD
III are able to identify good decision settings based on the short-simulation average value of their observ-
ables. Clearly, the LAD models MOD II and MOD III predict withhigh accuracy when the performance
of the system is within a predefined percentage of its optimalperformance value. This is very useful and
is described as “an ideal performance guarantee” in [8]. Moreover, the fact the LAD model provides this
by relying on the observables of short simulations matters very much. Indeed, as noted by [21, 37], the
determination of a high quality decision “in the fewest number of evaluations is the core problem”. We
also note that MOD II is more parsimonious in the sense that ituses less observables than MOD III to
reach similar classification quality and accuracy.

The objective is now to verify whether the above conclusion can be extended when the defining
values of the stochastic parameters vary within an interval. More precisely, the second validation phase
pertains to the application of the three models to experiments not used in their derivation and in which the
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Figure 2: Cumulative Accuracy Profiles on Testing Set TEFSP
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stochastic parameters are not fixed but can take any value within ±20% of their mean value. The three
LAD models are used to classify the experiments in the sets TRVSP and TEVSP, with results displayed
in Table 10.

Table 10: Classification Quality on Experiments in Sets TRVSP and TEVSP.

Classification of Experiments
Experiment MOD I MOD II MOD III

Classes Positive Negative Unclassified Positive Negative Unclassified Positive Negative Unclassified

Positive 39.31% 45.09% 15.61% 74.57% 15.03% 10.40% 78.61% 17.92% 3.47%
Negative 4.07% 93.02% 2.91% 11.05% 86.63% 2.33% 8.72% 83.72% 7.56%

Q 70.79% 83.78% 83.92%

For each model, the classification quality on the sets containing experiments with varying stochas-
tic parameters (Table 10) is significantly lower than that onthe training (TRFSP, Table 8) and testing
(TEFSP, Table 9) sets containing experiments with fixed values of the stochastic parameters. This seri-
ously challenges the applicability of the LAD models derived with experiments having fixed stochastic
parameters for the differentiation of experiments having varying stochastic parameters. Moreover, the
drop in classification quality is accompanied by a decrease in the classification accuracy (Figure 3) for
each model. The reduction in classification accuracy is particularly significant for MOD I and MOD II.

It appears clearly that none of three models built with respect to experiments with fixed values of
the stochastic parameters enables the determination of good decision settings when the values of the
stochastic parameters vary.

5.3.2 Varying Values of Stochastic Parameters

In this section, we derive three new LAD models, MOD IV, MOD V and MOD VI, on the basis of the
experiments in the training set TRVSP. The patterns characterizing MOD IV (resp., MOD V, MOD VI)
are defined with respect to the exact same observables used byMOD I (resp. MOD II, MOD III). A key
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Figure 3: Cumulative Accuracy Profiles on Sets TRVSP and TEVSP with Varying Stochastic Parameters
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difference is that MOD IV, MOD V and MOD VI are inferred from a set of experiments (TRVSP) having
varying values of the stochastic parameters, instead of, asit is the case for MOD I, MOD II and MOD
III, being derived from a set of experiments (TRFSP) having fixed values of the stochastic parameters.

The first objective of this section is to construct models enabling the accurate differentiation of good
and bad decision settings based on short simulation of experiments characterized by varying values of
the stochastic parameters. The second objective is to checkthe robustness of the models and to validate
them using the 2-folding technique described in Section 5.2.

Table 11 gives the details of the classification obtained with MOD IV, MOD V and MOD VI on the
training set TRVSP.

Table 11: Classification Quality on Training Set TRVSP

Classification of Experiments
Experiment MOD IV MOD V MOD VI

Classes Positive Negative Unclassified Positive Negative Unclassified Positive Negative Unclassified

Positive 67.27% 0% 32.73% 88.18% 0% 11.82% 100% 0% 0%
Negative 0% 43.64% 56.36% 0% 91.82% 8.18% 0% 100% 0%

Q 77.73% 95.00% 100%

The commonalities between the three models are that they have about the same classification accu-
racy (Figure 4) and that none of them wrongly classified any ofthe observations in the training set. The
models however differ in terms of their discrimination power: MOD VI classifies perfectly all exper-
iments while MOD V (resp., MOD IV) leaves about 9% (resp., 50%) of the experiments unclassified.
Clearly, MOD IV which solely relies on the manipulables doesnot have the classification ability required.

We now proceed to the validation of the models, and we check inparticular whether the high classi-
fication quality of MOD V and MOD VI remains when they are applied to the experiments (not used for
their derivation) of the testing set TEVSP.

The classification quality of MOD V and MOD VI on the testing set decreases (compared to Table
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Figure 4: Cumulative Accuracy Profiles on Training Set TRVSP
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Table 12: Classification Quality on Testing Set TEVSP

Classification of Experiments
Experiment MOD IV MOD V MOD VI

Classes Positive Negative Unclassified Positive Negative Unclassified Positive Negative Unclassified

Positive 69.84% 6.35% 23.81% 85.71% 3.17% 11.11% 100% 0% 0%
Negative 11.29% 43.55% 45.16% 9.68% 88.71% 1.61% 9.68% 90.32% 0%

Q 73.94% 90.39% 95.16%

11) but remains very high (> 90%). The following observations highlight the superior performance
of MOD VI. First, the classification quality and the accuracyrate of MOD VI are higher than those
of MOD V for both the testing and training sets. Second, the classification accuracy of MOD VI is
invariant (> 95.25%) regardless of whether it is used on the testing or training set. This contrasts with
the classification accuracy of MOD V which drops from 92.64% to 84.09% when used to classify the
experiments in respectively the training and testing sets.We now provide the results of six additional
tests in which the binary outcomezj (i.e. the long simulation expected profit) of each experiment in the
testing set TEVSP is successively defined as

zj = 1 if and only if wj > α · w∗

for α = 85%, 87.5%, 90%, 92.5%, 95%, 97.5%.
Table 13 provides the classification qualityQ and accuracyAR (see also Figure 6) of the LAD model

MOD VI when applied to the experiments of the set TEVSP whose outcome is defined as described
above.

The very convincing results displayed above provide a further validation of MOD VI and show its
applicability and high accuracy to classify experiments with varying values of the stochastic parameters
and that were not used to construct the model. The very high values of the classification quality and
accuracy rates for various definitions of the outcome of the experiments in the testing set is a very strong
indicator of the stability of the model and the absence of overfitting. This result is very important in view
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Figure 5: Cumulative Accuracy Profiles on Testing Set TEVSP
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Table 13: Classification Quality and Accuracy Rate
α Q AR

85% 95.16% 92.20%
87.5% 95.16% 95.99%
90% 95.16% 94.83%

92.5% 95.16% 95.25%
95% 92.00% 92.90%

97.5% 90.62% 93.18%

of the occasional reports in the literature that the high fit of machine learning methods such as support
vector machine is achieved at the cost of overfitting (see, for example, [46]).

5.4 Constrained Simulation-Optimization Problem with Continuous and Integer Vari-
ables

We have also considered a variant of the assemble-to-order problem where half of the manipulables are
defined as continuous variables. The inventory levelsmi of itemsi = 1, . . . , 4 are defined as contin-
uous variables, taking any value in[1, 12], while inventory levels of items 5 to 8 are defined as integer
variables, taking any integer value in[1, 12]. The associated problem is called aconstrainedSimulation-
Optimization problem withcontinuous variables.

The results are in perfect agreement with those obtained forthe problem described in the preceding
section and illustrate the applicability of the proposed method to both Simulation-Optimization problems
with integer-ordered variables and Simulation-Optimization problems with continuous variables. For
sake of brevity, we do not include the details of the computational tests.
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6 Conclusion

In this paper, we develop an approach to identify good settings of decision variables of a stochastic
system. A distinct feature of this work is the assumption that the values of the stochastic parameters
of the system are unknown, but whose effect on the system can be captured by recording the values of
quantities readily available at the end of a simulation. TheLAD model provides an “an ideal performance
guarantee” [8], since it predicts with striking accuracy when the performance of the system is within a
predefined percentage of a targeted value or of its optimal performance value. An important feature
[21, 37] is that the very accurate classification is obtainedby using as inputs the short-simulation (i.e.,
limited number of replications) expected value of the observables.

Obviously, the construction of the LAD model requires time.However, this must be put in perspec-
tive with the following observations. First, the LAD model is very economical. For the problem studied,
the derivation of the LAD model only requires the running of alimited number (250) of simulations with
only a sample of them being used in the construction of the model. Moreover, in order to accurately
separate bad from good experiments, the LAD model uses as only inputs (i.e., observables) the manip-
ulables and other observables whose values are obtained by running short-simulations. This means that
the LAD model gives its verdict (good or bad) about an experiment in very short-fashion (after only 5
replications). Second, the construction effort is largelyoffset by the gain in time when using the model as
part of a local search heuristic. Moreover, in a case where the same stochastic model must be optimized
periodically, the time invested to construct the classification model beforehand is worthwhile. What we
can safely say at this point is that the running of 5 replications for an experiment takes less than 1 second
on a standard PC and that the construction of the LAD model using the Datascope software takes a few
seconds.

It is part of our future research plans to assess the time needed to construct the LAD model and,
more importantly, to evaluate the overall computational savings that our approach will permit over the
entire Simulation-Optimization process. Indeed, the LAD classification model is very accurate in dis-
tinguishing “good” from “bad” experiments and can thus improve the use of computing resources by
allocating more time to promising experiments. To test the benefits of this key feature, we plan to use
the LAD-based classification model in an iterative optimization procedure. An experiment classified
“bad” by the LAD classification model would be immediately dropped from further consideration by the
optimization-based simulation algorithm, while an experiment classified as “good” would receive more
attention (i.e., more replications would be run for this experiment) in order to obtain a very accurate
estimate of its results.

Finally, we also note that the proposed approach is not contingent on the running of a sample of
replications for each possible setting and that empirical results show that the LAD for Simulation ap-
proach performs equally well for Simulation-Optimizationproblems with integer-ordered variables and
with continuous and integer variables.
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Figure 6: Cumulative Accuracy Profiles
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*1 0.85 if j jz w w= > *1 0.875 if j jz w w= >

*1 0.9 if j jz w w= > *1 0.925 if j jz w w= >

*1 0.975 if j jz w w= >*1 0.95 if j jz w w= >

22


	Carnegie Mellon University
	Research Showcase @ CMU
	11-22-2008

	Optimization for Simulation: LAD Accelerator
	Miguel A. Lejeune
	François Margot
	Recommended Citation



