6-2013

Spatially Resolved Mapping of Electrical Conductivity across Individual Domain (Grain) Boundaries in Graphene

Kendal W. Clark
Oak Ridge National Laboratory

X.-G. Zhang
Oak Ridge National Laboratory

Ivan Vlassiouk
Oak Ridge National Laboratory

Guowei He
Carnegie Mellon University

Randall M. Feenstra
Carnegie Mellon University, feenstra@andrew.cmu.edu

See next page for additional authors

Follow this and additional works at: http://repository.cmu.edu/physics

Part of the Physics Commons

Published In
ACS Nano, 7, 9, 7956-7966.

This Article is brought to you for free and open access by the Mellon College of Science at Research Showcase @ CMU. It has been accepted for inclusion in Department of Physics by an authorized administrator of Research Showcase @ CMU. For more information, please contact research-showcase@andrew.cmu.edu.
Authors
Kendal W. Clark, X.-G. Zhang, Ivan Vlassiouk, Guowei He, Randall M. Feenstra, and An-Ping Li
Spatially Resolved Mapping of Electrical Conductivity across Individual Domain (Grain) Boundaries in Graphene

Kendal W. Clark,¹ X.-G. Zhang,¹ Ivan V. Vlassiouk,² Guowei He,³ Randall M. Feenstra,³ and An-Ping Li¹*

¹ Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
² Measurement Science & Systems Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
³ Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

*Corresponding author: apli@ornl.gov

Abstract

All large-scale graphene films contain extended topological defects dividing graphene into domains or grains. Here, we spatially map electronic transport near specific domain and grain boundaries in both epitaxial graphene grown on SiC and CVD graphene on Cu subsequently transferred to a SiO₂ substrate, with one-to-one correspondence to boundary structures. Boundaries coinciding with the substrate step on SiC exhibit a significant potential barrier for electron transport of epitaxial graphene due to the reduced charge transfer from the substrate near the step edge. Moreover, monolayer-bilayer boundaries exhibit a high resistance that can change depending on the height of substrate step coinciding at the boundary. In CVD graphene, the resistance of a grain boundary changes with the width of the disordered transition region between adjacent grains. A quantitative modeling of boundary resistance reveals the increased electron
Fermi wave vector within the boundary region, possibly due to boundary induced charge density variation. Understanding how resistance change with domain (grain) boundary structure in graphene is a crucial first step for controlled engineering of defects in large-scale graphene films.

Keywords: Graphene, electronic transport, grain boundary, defect, scanning tunneling microscopy, potentiometry

Graphene, due to its unique electronic structure, has quickly become one of the most notable “wonder-materials” poised to transform the electronics and nanotechnology landscape. The proposed applications could push the existing limits of microelectronics, chemical sensing instruments, biosensors, ultra-capacitance devices, flexible displays and other innovations. Targeting such applications, researchers are investigating large scale graphene synthesis by thermal decomposition of Si from SiC (0001) surfaces as well as chemical vapor deposition (CVD) on noble and transition metal substrates. The symmetry of the graphene honeycomb lattice is a key factor in determining many of graphene’s unique electronic properties and application prospects. However, all large-scale graphene contain structural defects. High density of substrate steps and changes in graphene layer thickness can seriously degrade electron transport properties in epitaxial graphene films on SiC. CVD growth of graphene on Cu is able to produce predominantly monolayer graphene. But large scale graphene is often polycrystalline consisting of randomly oriented domains. Domain shapes depend on growth conditions yielding hexagonal grains in our APCVD approach. When these individual graphene grains coalesce into a film, graphene grain boundaries (GBs) form. These extended defects break the lattice symmetry and are believed to have a major impact on the electronic properties, especially
in transport, along the graphene sheets.14,18,19 Huang \textit{et al.} detected no measurable electrical resistance from GBs within their instrument limit.20 However, Yu \textit{et al.} found that the presence of GBs significantly increases the resistance in partially grown graphene islands.14 The ambiguity in these findings arose from a lack of knowledge of the precise domain/grain morphology for the samples measured. While there are recent studies that produced maps of the electronic properties of graphene GBs using scanning tunneling microscope (STM)21 and of graphene conductance using micro four-point probe and non-contact terahertz time-domain spectroscopy measurements,22 a one-to-one correspondence between defect structures and transport properties is still lacking. Indeed, because of the large length-scale difference between the atomic-scale defect structures and transport functions whose variations range from atomic-scale to mesoscale, few techniques have the capability of probing the relationship between the two.

Here we combine conventional and novel microscopic techniques to bridge these length scales. By using a scanning tunneling potentiometry (STP) setup with a cryogenic four-probe STM as illustrated in Fig. 1a, the spatial variation of the local electrochemical potential $\mu_{ec}(x,y)$ is resolved across individual grain (domain) boundaries on a graphene surface in the presence of a current. With STM and scanning electron microscope (SEM), we examine the boundary structure and electronic properties. Potential maps are then measured in regions spanning a specific type of boundary, yielding a spatially distribution of electrical conductivity. The relationship between structure and transport is extracted down to the atomic scale for each individual defect.

\section*{Results and discussion}

\subsection*{Graphene domain boundaries on SiC}
First, we examine the structures of graphene domain boundaries, defined by changes in layer thickness and substrate steps in epitaxial graphene grown on a Si-faced SiC (0001) substrate.\(^2\)\(^,\)\(^23\) Figure 1b is the STM image of a boundary between monolayer (ML) and bilayer (BL) graphene, clearly showing moiré pattern and atomic lattice of graphene with a background due to the \((6\sqrt{3} \times 6\sqrt{3})R30^\circ\) reconstructed buffer layer.\(^24\) The BL graphene appears much smoother than the ML. Because the graphene layer is formed through the graphitization of SiC (0001), a ML-BL boundary almost always coincides with an underlying substrate step.\(^9\) STM images on both sides of the step show that the lattice structure of graphene remains unchanged across the boundary, indicating a carpet-like growth mode covering the substrate step and terraces. The relation between the graphene lattice and the moiré pattern allows us to identify that the step runs primarily parallel to the [11̅20] direction of the SiC substrate just as the steps observed for the hydrogen etched SiC(0001) substrates.\(^25\) The extra layer underneath the graphene carpet has a primarily armchair type of edge structure. On the same sample surface, ML-ML boundaries can also be identified, as defined purely by a substrate step. Figure 1c shows a ML-ML boundary with a ML graphene blankets across a mono-layer substrate step.

The electronic properties of graphene boundaries are then examined by scanning tunneling spectroscopy (STS). Figure 1d shows the STS data measured across a ML-BL boundary as shown in Fig. 1e. Far away from the boundary, STS spectrum taken on ML graphene shows a minimum at zero bias (spectrum 12 in Fig. 1d), while the spectrum on BL graphene (spectrum 1 in Fig. 1d) shows a distinct minimum around \(-0.373\) eV as well as the minimum at zero bias, consistent with previous observations on similar materials.\(^25,26\) The local minimum at zero bias is due to the suppression of electron tunneling to graphene states near Fermi level \((E_F)\) and simultaneous giant enhancement of electronic tunneling at higher energies.
due to a phonon-mediated inelastic channel.27 The minimum at -0.373 V fits well to the position of the Dirac point (E_D), which shifts with the doping concentration.25 For ML graphene, a linear DOS with a minimum at $E_D = -(0.48\pm0.05)eV$ is expected.25 However, the expected dip in the DOS in tunneling spectra corresponding to the Dirac point of ML graphene on SiC(0001) is overwhelmed by the underlying buffer layer.25 Approaching the boundary from the BL side, the STS minima at E_D clearly shift toward lower energies. As proposed previously by Low \textit{et al.}, the carrier concentration can vary at the step edges due to increased distance and suppressed interactions between graphene and SiC.9 As shown in Fig. 1d, the local minimum corresponding to E_D changes from 0.373 eV to 0.293 eV when moving the measuring site from 10 nm away to 1 nm away from the boundary. As a first order estimate of the doping, we can convert these Dirac point values to charge-carrier concentration using the equation $n = \frac{E_D}{\hbar^2 v_F^2}$, where \hbar is Planck's constant divided by 2π, and n is the carrier concentration, and v_F is the Fermi velocity ($v_F = 10^6$ m/s). The two values of E_D yield n-type dopings of 1.0×10^{13} cm$^{-2}$ in the bulk BL graphene and 6.3×10^{12} cm$^{-2}$ at about 1 nm from the boundary. Less than 1 nm from the boundary, the E_D minimum merges with the zero bias minimum and thus is not resolved by STS, indicating a much lower carrier concentration in close proximity (<1 nm) of the boundary.

Figure 2 shows the potential distribution maps of the area near a ML-BL boundary (a and b) and a ML-ML boundary (c and d) with a source current flowing either from right to left side (a and c) of the boundary or in the reverse direction (b and d). In the potential map, the measured quantity $\mu_{ee}(x,y)$ characterizes the electronic energy level filling in a nonequilibrium situation and its gradient describes the local electric field driving the electric transport.28 When current flows from the right side of the boundary to the left, a clear potential drop occurs at the step edge, with a lower potential on left terrace and higher potential on the right terrace. When the current flows
from the left side of the boundary to the right, the relative potentials between the two domains are reversed. A clear potential drop is observed both at the ML-BL and ML-ML boundaries.

Based on the 2D potential distribution, the direction and magnitude of the component of the local transport field $E(x,y)$ can be extracted using the relation, $E = -\frac{1}{e}\nabla \mu_{ec}(x, y)$. The field is computed numerically along the x, y directions from the STP data array. For a potential map acquired near a ML-BL boundary as shown in Fig. 3a, the field is visually displayed in Fig. 3b using a quiver plot, with the length of the arrow indicating the magnitude and the head pointing along the direction of the field. This 2D distribution analysis brings out two points. The apparent width of boundary displayed in the potential maps has a much larger spatial extent compared to the topology transition which is atomically sharp. This is consistent with the observation of the gradual reduction of chemical potential near the boundary (Fig. 1d). Second, the electric field is very strong near the boundary but weak on the terraces, and shows a clear variation along the boundary, causing a non-uniform current density distribution across the boundary.

The conductivity can be extracted from the potential map by solving the conduction equations. The current conservation condition is

$$\nabla \cdot \mathbf{j} = \frac{\partial}{\partial x}(\sigma_x E_x) + \frac{\partial}{\partial y}(\sigma_y E_y) = 0. \tag{1}$$

Additional equations are obtained by assuming $\nabla \times \mathbf{j} = 0$ which means that there are no closed current loops. We write out this condition as,

$$\oint (\sigma_x E_x dx + \sigma_y E_y dy) = 0. \tag{2}$$

By solving these equations numerically using appropriate boundary conditions, we obtain the conductivity for each position where the electrochemical potential is measured. Fig. 3c shows the map of the conductivity component along the source current direction. The conductivity on the
terraces is very uniform, with a clearly depressed conductivity at the boundary. Because we do not know all the boundary conditions to determine the total current within the region of measurement, it is not possible to uniquely determine the conductivities from the potential distribution alone. Therefore the calculated conductivity values in Fig. 3c are relative to an unknown scale. Ji et al. estimated the local current density based on the measured total current density using a Laplace equation. Here we instead measure the conductivity of each terrace across the boundary independently using the four-probe STM, which offers a model-independent reference “standard” to normalize the conductivity map. The graphene sample can be regarded as infinitely large in comparison with the probe spacing for four-point contact measurements (<2µm). For a uniform 2D conductor, the measured resistance is related to the surface conductivity (σs) by

\[R_{2D} = \frac{1}{2\pi\sigma_s} \ln \frac{s_{13}s_{24}}{s_{23}s_{14}}, \]

where \(s_{ij} \) is the separation between probes \(i \) and \(j \). By locating all four probes onto the ML graphene terrace, we find the conductivity to be (1.2 ± 0.2) mS as shown in Fig. S1 in the Supporting Information. By comparing this independently measured conductivity and the averaged ML conductivity derived from the potential map, we can quantify the scale bars in the conductivity maps in Fig. 3c. Note that Eq. (3) is only rigorously valid for a uniform 2D system. Under the conditions that the conductivity variation between different domains is not very large and that the probe spacing is smaller than the 2D domain size, this equation provides a good approximation to estimate the conductivity of the domain. The error should be proportional to the fluctuation in the conductivity between domains which contributes to an overall error bar in
our 2D conductivity map, but should have minimal impact on the estimate of the grain boundary conductance.

Table 1 summarizes the measured conductivities of ML and BL graphene, and different boundaries on SiC substrate. The following points are noted:

(i) The resistance of ML-BL heterojunction is higher than ML-ML homojunctions, while BL graphene has a similar bulk resistance as ML. Based on the measured graphene conductivity and the carrier concentration, the carrier mobility can be estimated as \(\mu = \frac{\sigma}{ne} \approx 813 \text{ cm}^2/\text{V} \cdot \text{s} \). Previous studies by Ji et al.\(^8\) attributed the higher resistance at ML-BL boundary to the intrinsic wavefunction mismatch at the junction of ML and BL graphene.

(ii) The resistance of the boundary over a higher step is significantly greater than a similar boundary over a lower step. The resistance change is closely related to the change in the width of the transition region for boundaries associated with different step heights.

The values of the transition region width in Table 1 are measured directly from potential maps across the boundary. These measurements reveal an electronic transition region arising from the doping concentration change near the boundary as shown in STS (Fig. 1d) and the boundary scattering effect as indicated by the electric field distribution (Fig. 3b). The electronic transition region coincides with a structural transition region near the step edge, although the latter is usually much narrower in width, e.g., an atomically sharp transition shown by STM images in Fig. 1. In fact, the structural transition region was experimentally examined with cross-sectional TEM images\(^{30,31}\) where a deformation region of graphene is seen and graphene pulls away from the substrate near the substrate step of SiC. Theoretical considerations suggest that in the deformation region, the substrate-induced doping in graphene is substantially reduced due to
the suppressed interaction between graphene and the substrate. Our STS data in Fig. 1d provide a direct visual evidence of such a carrier depletion region at the boundary.

Grain boundaries in CVD graphene

We now turn to the GBs in CVD graphene. The growth of hexagonal graphene domains on Cu foil by atmospheric pressure CVD was described previously by Vlassiouk et al. The graphene islands are shown in SEM image in Fig. 4a as large hexagonal patches of single ML graphene, over 10 µm across, on the copper foil surface. Minor density of bi- and tri-layers (darker areas in Fig 4a) is easily resolved by SEM and further measurements were performed on single layer graphene crystals. Since graphene growth on Cu foil in our approach leads to the formation of randomly orientated grains, the coalescence of neighboring graphene grains forms boundaries where grains with different orientation angles meet. From SEM images, the angle between the individual hexagonal graphene patches can be conveniently measured. The atomic structures of graphene on Cu foil is resolved in STM image shown in Fig. 4b, and large scale textures can be seen (inset of Fig. 4b) that reflects the features on Cu foil in the conformal graphene film. The edges of graphene grains are mostly seen parallel to a zigzag direction in the graphene lattice, as previously observed on similar materials. The graphene film is then transferred to a SiO₂/Si substrate and annealed at 600 °C in UHV to clean the surface. Raman spectra taken at different locations confirm that the substrate is mostly covered by ML graphene. Some debris are not removed in sample preparation process and remain on the surface as shown in SEM image in Fig. 4c and AFM image in Fig. 4d. Based on SEM and AFM images, several misorientation angles of 9°, 12°, 14° and 21° between graphene grains have been identified. Note that, on the atomic and microscopic scales the grain boundary is not always a straight line and
usually deviates from the macroscopic angle (global angle) as the crystal structure minimizes energy during the growth process. The deviations are very small in comparison to the global angle measured from the SEM image. The surface also displays wrinkles induced by thermal stress and substrate steps32 which often coincide with the grain boundaries.

Electrical transport is first measured by four-point contact method with the 4-probe STM near a single grain boundary, as shown in the inset of Fig. 4d. The movable four STM probes can contact each grain to allow simultaneous measurements of both intra-grain (within the grain) and inter-grain (across the GB) transport.29 The resistance obtained for the left grain $R_L = 408 \, \Omega$, right grain $R_R = 549 \, \Omega$, and across grain boundary $R_{GB} = 760 \, \Omega$, respectively, while keeping the probe distances approximately the same. Using Eq. (3), we can derive a conductivity for left and right grains as 0.28 mS and 0.24 mS respectively. This measurement is similar to that measured on multi-terminal devices fabricated from two coalescent graphene grains,14 confirming that the grain boundary provides an ‘extra’ resistance. The measured conductivities for 14 individual grains fall in a range of (0.20 ~ 0.41) mS, corresponding to roughly (5 ~ 11)e^2/h. Note, the minimum DC conductivity of graphene on SiO$_2$ of $\sigma_{\min} = (2 ~ 12)e^2/h$ found by Tan et al.33 and an earlier study34 reporting $\sigma_{\min} = 4e^2/h$.

The spatially resolved STP maps for grain boundaries with (a) and without (b) wrinkles are shown in Fig. 5, where the top panel shows topography images, middle panel shows corresponding $\mu_{\text{eq}}(x,y)$, and bottom panel shows the extracted conductivity component along the current direction, respectively. Clearly potential drops and reduced conductivity are observed at both grain boundary locations in comparison with the uniform grain regions. To further verify the effect of wrinkles on conductivity, we have measured the conductivity of a wrinkle that is 20 nm in width and 2 nm in height in the absent of a GB, and obtained a conductivity value (0.1
approximately 40% of that of the bulk grain. The corresponding resistance (200 Ω·µm) agrees very well with a calculated value (200 – 300 Ω·µm) for graphene wrinkles from Zhu et al.\(^35\) The wrinkle at GB site is much narrower and only plays a secondary role in the increase of the GB resistance in comparison with GB itself.

Table 2 summarizes the conductivity values measured at different types of grain boundary. All GBs show effective conductivity less than one-third of the bulk conductivity of a grain. For GBs without wrinkles (highlighted with blue font in Table 2), at first glance there seems to be a positive correlation between misorientation angle and the GB resistance, and that wrinkles at GB seem to further increase the GB resistance.\(^36\) However, our analysis below shows that the deciding factor for GB resistance is actually the width of the electronic transition region at the GB. Similar to the graphene on SiC, the electronic transition region at GB measured from STP map is much wider than the atomically sharp structural transition shown by TEM images.\(^20\) The GB resistance measured here is more than an order of magnitude smaller than those obtained by Tsen et al.\(^37\) with lithographically fabricated contacts where processing-induced contaminations could potentially increase GB resistance values.

Yazyev and Louie\(^38\) have calculated the conductance of a GB and found the conductance would be nearly 70% to 80% of the bulk graphene conductance. In contrast, our measured grain boundary conductance is less than one-third of the bulk conductance, far below the theoretical prediction. Thus, the measured GB conductance values cannot be explained by scattering from a coherent and atomically sharp boundary. As evident from the spatial dependent conductance maps, there is a relatively wide electronic transition region at grain boundaries. The transition region can have different charge density due to e.g. self-doping,\(^39\) and very different amount of disorder, in particular vacancies,\(^40\) which can contribute to a larger resistance than the lattice
mismatch alone. Such a transition region has been analyzed by Castro Neto et al., who found that the combination of localized defects and the lack of electron-hole symmetry around the Dirac points lead to self-doping, i.e. shifting of the Fermi energy in comparison with the clean graphene regions. Van Tuan et al. recently showed that the grain boundary exhibits large charge fluctuations over the width of approximately 1 nm with the maximum local carrier density one order of magnitude greater than the average density. This would suggest that the Fermi wave vector in the transition region is much larger than in the graphene domains.

To analyze the scattering effect of the transition region, we assume that the self-doping arises from an attractive potential, which we model as square well. The depth of the well will lead to a different Fermi wave vector for electron wave functions inside the transition region than in bulk grains. This leads to a variation in the resistance of the transition region in accordance with its transmission probability,

$$T = \frac{1}{1 + \frac{(k_F^2 - k_{F,T}^2)^2 \sin^2 k_{F,T} d}{4 k_F^2 k_{F,T}^2}},$$

where d is the width of the transition region, $k_{F,T}$ is the Fermi wave vector of the electron wave function in the transition region and k_F is the Fermi wave vector in the bulk grain region. The precise form of this transmission is not so important for our argument, since other shapes for the potential profiles in the transmission region will similarly lead to a transmission function with oscillatory behavior as a function of d. For a line boundary the transmission needs to be integrated over all incident angles, which should truncate at a maximum transverse wave vector value of k_F, to yield transmission per unit length. We approximate this quantity by simply multiplying the transmission probability with k_F. The line resistance is then found from the Landauer formula,

\[R_{\text{trans}} = \frac{h}{2e^2T_{K_F}} = \frac{h}{2e^2} \left[\frac{1}{k_F} + \frac{(k_{F,T}^2 - k_{F}^2)^2}{4k_F^2k_{F,T}^2} \sin^2 k_{F,T}d \right]. \quad (5) \]

The second effect, that of disorder, is not easily captured in a quantum transport model. When there is a finite electron scattering lifetime \(\tau \), a naïve application of the mean-field approximation makes the wave vector in the transition region complex,

\[k_1 = k_{F,T} + \frac{i}{\nu_F \tau} \]

where \(\nu_F \) is the Fermi velocity. Using this complex wave vector in Eq. (5) would lead to an exponentially growing resistance. However, such a complex wave vector does not take into account the so-called vertex corrections, which are due to current carried by electrons scattered into a given conduction channel (\(i.e., \) the scatter-in terms). The rigorous computation of the vertex corrections is cumbersome. Here we employ a simple approximate procedure\(^{42} \) whereby the transmission coefficient is computed with a real wave vector, which by itself underestimates the boundary resistance, and the diffusive contribution is added back as a separate Ohmic term over the thickness of the transition region. This procedure is exact for the model of free electrons with random point scatterers.\(^{43} \)

The diffusive contribution is thus calculated as,

\[R_{\text{dif}} = \frac{d}{\sigma_{\text{dif}}} = \frac{hd}{2e^2\nu_F k_{F,T} \tau}. \quad (6) \]

Combining the two contributions, the total resistance is,

\[R_{\text{GB}} = \frac{h}{2e^2} \left[\frac{1}{k_F} + \frac{(k_{F,T}^2 - k_{F}^2)^2}{4k_F^2k_{F,T}^2} \sin^2 k_{F,T}d + \frac{d}{k_{F,T}\nu_F \tau} \right]. \quad (7) \]

The gate voltage dependence of this result is consistent with report from Tsen \textit{et al.}\(^{37} \) if we assume that \(k_{F,T} \propto k_F \) when both change with the gate voltage, thus \(R_{\text{GB}} \) scales with \(1/k_F \).
similar to the bulk domain resistance. Note that Tsen et al. only have data for a single transition region width whereas Eq. (8) has explicit dependence on both the wave vectors and the width of the transition region. To reduce the number of parameters in Eq. (8), we simplify the diffusive term to the limiting case of a resistance corresponding to the minimum conductivity for graphene,

\[R_{\text{dif}} = \frac{d}{\sigma_{\text{min}}} = \frac{hd}{4e^2}, \]
(9)

The total GB resistance is then

\[R_{\text{GB}} = \frac{h}{2e^2} \left[\frac{1}{k_F} + \frac{(k_F^2 - k_{F,T}^2)^2}{4k_F^3k_{F,T}^2} \sin^2 k_{F,T}d + \frac{1}{2} \right]. \]
(10)

In Fig. S2 of the Supporting Information we plot all measured GB resistance data for CVD graphene as a function of transition region width. There is no apparent difference between data with and without wrinkles. In this figure we also show two different fits, one using Eq. (10) which includes the diffusive resistance due to disorder (blue curve), and the second without the diffusive term (red curve). Even without including the diffusive term, the model captures the overall trend of the resistance change as a function of the transition region width. This means that the change of the electron wave vector in the transition region is the largest source of GB resistance. By fitting the resistance data to Eq. (10), we find parameters \(k_F = 0.366 \text{ nm}^{-1} \) (in the bulk grain region) and \(k_{F,T} = 1.07 \text{nm}^{-1} \) (in the transition region). This gives an estimated Fermi energy measured from the Dirac point as 241 meV in the bulk region, and an estimated bulk carrier density of \(4.3 \times 10^{12} \text{cm}^{-2} \). Using this number and measured bulk conductivity in the range \((0.20 \sim 0.41) \text{ mS} \), the carrier mobility can be estimated as \((2.9 \sim 6.0) \times 10^3 \text{ cm}^2/\text{V} \cdot \text{s} \). The carrier density in the boundary region can also be estimated by using the value \(k_{F,T} = 1.07 \text{nm}^{-1} \), which
gives the carrier density of 3.6×10^{14} cm$^{-2}$. This is a very high carrier density compared to the value in the bulk, consistent with the presence of self-doping39 and previous observation at GB.41

Conclusion

In summary, we have mapped out the spatial distributions of electrical conductivity near the structural defects in epitaxial graphene grown on SiC and CVD graphene on Cu subsequently transferred to a SiO$_2$ substrate. By combining STM and multiple-probe potentiometry techniques, the transport properties have been correlated to the structures and electronic properties for individual domain or grain boundaries in graphene. For epitaxial graphene, the resistance of ML-BL heterojunction is higher than ML-ML homojunctions while BL graphene has a similar resistance as ML; the resistance of the boundary with a higher step is significantly greater than a similar boundary on a lower step; and the increased resistance is associated with the reduced charge transfer from the substrate near the step edge. For CVD graphene, the measured GB resistance changes with GB transition width and can be quantitatively modeled by considering charge density variation and disorder scattering in the transition region.

Methods:

STM and STP measurements. Our experiments were carried out at 81 K with a Unisoku cryogenic four-probe STM controlled by electronics from RHK and Nanonis with a base pressure of 3×10^{-10} Torr and electrochemically etched tungsten tips.29,44 Two approaches have been used to separate signals from topography and potentiometry. The first, used in the original experiments by Muralt et al.45 uses ac current to control the tip-surface separation and dc current
to identify the voltage drop across the sample which can be distinguished using a lock-in technique. With this approach the topography and potentiometry signals are measured simultaneously. The second approach, introduced by Feenstra and co-workers,46,47 uses an interrupted feedback, first measuring the surface topography, and then retracing that topography with the feedback off to determine the potentiometry. Topology is determined with the feedback loop to the z piezo active. The feedback loop is then interrupted and the tip (or sample) bias used for topographic scanning switched off. With the tip held at a fixed position, $I-V$ characteristics are quickly measured before drift becomes significant (on the order of a few seconds). The recorded I-V curve is post-processed by fitting with a linear equation and the bias voltage at zero tunneling current is extracted from the fit. This zero current bias voltage is the potential value at that point on the sample. This process is repeated at each point on the grid to build up the potential map of the surface.

Graphene growth on SiC. The graphite heater, consisting of a bow-tie shaped graphite plate with 1 mm thickness and narrow neck measuring about 14 mm wide and 20 mm long. A 1 cm \times 1 cm sample rests on this narrow strip, and is heated by currents of typically 200 A passed through the strip. Water-cooled copper clamps and electrical feedthroughs supply the current, and the heater is contained in an ultra-high-vacuum chamber. The SiC graphene growth procedure starts with hydrogen etching at 1620°C for 3 min followed by the graphene growth at 1590°C for 30 minutes in 1 ATM argon environment. The SiC Graphene samples were grown on the Si face of 4H-SiC. The Si face of SiC allows for more controlled growth of the graphene thickness due to the Si face initially growing a buffer layer that acts as a template for the graphene formation as the Si is sublimed from the surface.
CVD growth of graphene on Cu foil and film transfer to SiO$_2$/Si. Our growth recipe is similar to previously published.11,15 In short, we grew graphene by atmospheric CVD process. Before the growth, 125 µm thick copper foil from Nimrod Hall Copper Foil Company, was electropolished in concentrated H$_3$PO$_4$. The foils were loaded in quartz tube and annealed for 1 hour at 1000 °C under 500 sccm flow of 2.5% H$_2$ in Ar atmosphere. The growth was performed by addition of 8 sccm 0.1% CH$_4$ in Ar mixture keeping hydrogen partial pressure unchanged. After 90 min of growth, the furnace was quickly cooled to the room temperature. Graphene transfer was performed by spin coating Microchem 950 A4 PMMA solution (1500 rpm, 45s). Copper foil was etched by 1M FeCl$_3$ solution, floating PMMA was washed with DI water and transferred to Si/SiO$_2$ wafer. PMMA was dissolved by acetone.

Acknowledgement. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The support (GH and RMF) from the National Science Foundation is also acknowledged. We thank G. Gu for discussions and S. Jesse for assistance with data processing of this work.

Supporting Information Available: Additional experimental data and analysis graphs. This material is available free of charge via the Internet at http://pubs.acs.org.

(2) Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; *et al.*: Ultrathin Epitaxial Graphite: 2D Electron Gas

(10) Li, X.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S.: Large-Area Graphene Single Crystals Grown by Low-

Table 1. Electrical conductivity of graphene and domain boundaries across substrate steps on SiC measured at 81 K.

<table>
<thead>
<tr>
<th>Domain boundary type</th>
<th>Current flow direction</th>
<th>Conductivity (mS)</th>
<th>Transition width (nm)</th>
<th>Boundary resistance (Ohm·µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ML</td>
<td>BL</td>
<td>Boundary</td>
</tr>
<tr>
<td>BL/ML with step 1.0nm high</td>
<td>BL to ML</td>
<td>1.2</td>
<td>1.3</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>ML to BL</td>
<td>1.2</td>
<td>1.3</td>
<td>0.13</td>
</tr>
<tr>
<td>BL/ML with step 0.8 Å high</td>
<td>BL to ML</td>
<td>1.2</td>
<td>1.2</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>ML to BL</td>
<td>1.2</td>
<td>1.3</td>
<td>0.84</td>
</tr>
<tr>
<td>ML/ML with step 2.5 Å high</td>
<td>ML to ML</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Table 2. Electrical conductivity of graphene and grain boundaries on SiO$_2$ measured at 81 K.

<table>
<thead>
<tr>
<th>Boundary type</th>
<th>Misorientation Angle (°)</th>
<th>Ratio of conductivity (Boundary/Grain)</th>
<th>GB transition width (nm)</th>
<th>GB resistance (ohm·µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td>9</td>
<td>0.32</td>
<td>3.4</td>
<td>42.5</td>
</tr>
<tr>
<td>GB with wrinkle</td>
<td>12</td>
<td>0.24</td>
<td>3.3</td>
<td>55</td>
</tr>
<tr>
<td>GB with wrinkle</td>
<td>12</td>
<td>0.18</td>
<td>5</td>
<td>111</td>
</tr>
<tr>
<td>GB with wrinkle</td>
<td>12</td>
<td>0.14</td>
<td>4.4</td>
<td>125.7</td>
</tr>
<tr>
<td>GB</td>
<td>14</td>
<td>0.33</td>
<td>5.8</td>
<td>77.3</td>
</tr>
<tr>
<td>GB with wrinkle</td>
<td>14</td>
<td>0.26</td>
<td>6.2</td>
<td>95.4</td>
</tr>
<tr>
<td>GB with wrinkle</td>
<td>14</td>
<td>0.19</td>
<td>4.7</td>
<td>98.9</td>
</tr>
<tr>
<td>GB</td>
<td>21</td>
<td>0.12</td>
<td>4.3</td>
<td>143.3</td>
</tr>
<tr>
<td>Wrinkle</td>
<td></td>
<td>0.40</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Figure captions:

Figure 1. Characterization of epitaxial graphene on a SiC substrate. (a), Schematic of the STP measurement experiment. Two STM probes (probe 1 and probe 2) are in contact with the sample surface applying a constant current. A third tip (probe 3) is positioned between the current probes and scans the sample surface to measure the local electrochemical potential (μ_{ec}) at each point. The close proximity of the two current probes allows a sufficiently large voltage gradient detectable by the scanning probe even with a small applied current. (b), STM images showing a ML-BL graphene boundary. (c), STM images showing a ML-ML graphene boundary defined by substrate step. (d), STS taken near a ML-BL boundary at different locations as shown in the STM image in (e).
Figure 2. Spatially resolved electrochemical potential maps measured at domain boundaries of epitaxial graphene on a SiC substrate: (a), ML-BL with forward (147 \(\mu \)A current from ML to BL). (b), ML-BL with reversed bias condition (147 \(\mu \)A current from BL to ML). (c), ML-ML with forward (154 \(\mu \)A current from ML to BL). (d), ML-ML with reversed bias condition (154 \(\mu \)A current from BL to ML).
Figure 3. Spatially resolved electron transport behaviors revealed by STP measurements at domain boundaries of epitaxial graphene on a SiC substrate. (a), Electrochemical potential map measured at a ML-BL graphene boundary. (b), Electric field distribution derived from the potential map in (a). (c), Conductivity map derived from the potential map in a. Inset, histogram showing the relative conductivity of ML, BL, and their boundary.
Figure 4. Characterization of CVD graphene grown on a Cu foil substrate. (a), SEM image showing coalesced grains on Cu foil. (b), STM images showing graphene textures and atomic structures on Cu foil. Inset, Large range STM image. (c), SEM image of graphene after transferring to SiO$_2$. (d), AFM image showing the grain boundary of two adjacent grains. Inset, SEM image with four STM tips located near a grain boundary. Dash lines indicate the edges of graphene grains.
Figure 5. Spatially resolved electron transport behaviors revealed by STP measurements CVD graphene on SiO$_2$. (a), Electrochemical potentials, electric field distributions, and conductivity map, respectively, measured at a graphene grain boundary (14º) coinciding with structural wrinkles. (b), Electrochemical potentials, electric field distributions, and conductivity map, respectively, measured at two graphene grain boundaries (9º and 21º) without structural wrinkles.
Supporting Information:

Spatially Resolved Mapping of Electrical Conductivity across Individual Domain (Grain) Boundaries in Graphene

Kendal W. Clark¹, X.-G. Zhang¹, Ivan V. Vlassiouk², Guowei He³, Randall M. Feenstra³, and An-Ping Li¹*

¹ Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
² Measurement Science & Systems Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
³ Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

* Corresponding author: apli@ornl.gov

Figure S1. Four-point contact measurements with four-probe STM on conductivity of graphene/SiC. For a uniform two-dimensional conductor, the measured resistance is related to the conductivity (σ) by

\[R_{2D} = \frac{1}{2\pi\sigma_s} \ln \frac{s_{13}s_{24}}{s_{23}s_{14}}, \]

where \(s_{ij} \) is the separation between probes \(i \) and \(j \). By locating all four probes onto the ML graphene terrace, we find the conductivity as \((1.3 \pm 0.2) \) mS.
Figure S2. Grain boundary resistance as a function of transition width for graphene on SiO$_2$. Data points in blue color correspond to those measured at GBs without wrinkle. The total GB resistance is fitted with $R_{GB} = \frac{h}{2e^2} \left[\frac{1}{k_F} + \frac{(k_F^2 - k_{F,T}^2)^2}{4k_F^3k_{F,T}^2} \sin^2 k_{F,T}d + \frac{1}{2}d \right]$ which includes the diffusive resistance due to disorder (blue curve), with fitting parameters $k_F = 0.366$ nm$^{-1}$ and $k_{F,T} = 1.07$ nm$^{-1}$. The second fit without the diffusive term (red curve).