
Carnegie Mellon University
Research Showcase @ CMU

Human-Computer Interaction Institute School of Computer Science

7-2006

Applying Machine Learning to Cognitive
Modeling for Cognitive Tutors
Noboru Matsuda
Carnegie Mellon University

William W. Cohen
Carnegie Mellon University

Jonathan Sewall
Carnegie Mellon University

Kenneth R. Koedinger
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/hcii

This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Human-Computer Interaction Institute by an authorized administrator of Research Showcase @ CMU. For more information,
please contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fhcii%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii?utm_source=repository.cmu.edu%2Fhcii%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fhcii%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii?utm_source=repository.cmu.edu%2Fhcii%2F248&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Applying Machine Learning to Cognitive Modeling for Cognitive Tutors

Noboru Matsuda1, William W. Cohen2, Jonathan Sewall1, and Kenneth R. Koedinger1

July 2006
CMU-ML-06-105

School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213

Abstract: The aim of this study is to build an intelligent authoring environment for Cognitive Tutors in
which the author need not manually write a cognitive model. Writing a cognitive model usually requires
days of programming and testing even for a well-trained cognitive scientist. To achieve our goal, we have
built a machine learning agent – called a Simulated Student – that automatically generates a cognitive
model from sample solutions demonstrated by the human domain expert (i.e., the author). This paper
studies the effectiveness and generality of the Simulated Student. The major findings include (1) that the
order of training problems does not affect a quality of the cognitive model at the end of the training
session, (2) that ambiguities in the interpretation of demonstrations might hinder machine learning, and
(3) that more detailed demonstration can both avoid difficulties with ambiguity and prevent search
complexity from growing to impractical levels.

1 Human Computer Interaction Institute, Carnegie Mellon University, PA, USA, {mazda, sewall,
koedinger}@cs.cmu.edu}
2 Machine-Learning Department, Carnegie Mellon University, PA, USA, wcohen@cs.cmu.edu

This material is based upon a work supported by National Science Foundation award number
REC-0537198

Key words: Programming by Demonstration, Inductive Logic Programming, Cognitive Modeling,

Cognitive Tutor, Authoring

1. Introduction
This paper describes how a machine learning technique, namely programming by demonstration, can help
build a cognitive model for Cognitive Tutors.

Cognitive Tutors are known to be very effective, but they require the author to build a cognitive
model that can generate the cognitive steps in the task to be taught. Building a cognitive model requires
detailed analysis of the domain principles (cognitive task analysis, e.g.) as well as significant AI
programming (familiarity with production systems, e.g.). Furthermore, it takes hundreds of hours even for
a skilled expert to build and test a cognitive model (Murray, 1999).

The Cognitive Tutor Authoring Tools (CTAT) suite aims to enable non-programmers to create
problem-specific Cognitive Tutors (Koedinger et al., 2003) simply by demonstration. A problem-specific
model records the steps demonstrated by the author to solve a particular instance of the task (see
section 3). This “model” does not encode general domain principles and hence usually cannot solve
problems other than the one demonstrated. This limitation becomes critical when the Cognitive Tutor
must be applied to a significant number of exercises. This challenge can be resolved by a domain
cognitive model, but providing an aid for non-programmers to build such a model is much more
challenging.

We can assume that our target users (the potential authors) have no difficulty solving problems in the
target domain. Thus, our proposed solution is to apply a machine learning technique that automatically
learns a cognitive model by observing authors solve problems; this is programming by demonstration
(Cypher, 1993). We call our machine-learning agent a Simulated Student in an analogy to human learning:
the Simulated Student observes a teacher’s (i.e., the author’s) problem-solving demonstrations and learns
a set of cognitive skills to reproduce such demonstrations.

This paper first discusses research questions on integrating the Simulated Student as a building block
of an intelligent authoring tool. We then provide a brief overview on Cognitive Tutors and the authoring
tools (CTAT), followed by a general description of Simulated Student. In section 5, we show several
evaluation studies on the usefulness and generality of Simulated Students and discuss lessons learned.

2. Research Questions and Hypotheses
How effective is the learning algorithm used in the Simulated Student? Ideally, the author’s task is to
demonstration solutions to only on a few problems. In our previous study, we showed that solving 10
problems was enough to generate 9 production rules for algebra equation-solving (Matsuda et al., 2005b).
In this paper, we focus on the simplicity of demonstration in terms of the following two research
questions.

Does the order of training problems in demonstration matter? For human learning, it is likely that
students will learn better when first shown easy problems and gradually shifted to more complex ones,
where the complexity of a problem is defined as a number of steps to solve a problem. This observation is
reasonable because human students must operate within their cognitive resources (e.g., cognitive load,
memory limitation, etc). But what about machine learners? Intuitively, providing more difficult problems
over and over again might achieve a better learning outcome because they provide more opportunities for
learning each skill. This question is important because we want the Simulated Student to learn domain
principles with fewer demonstrated problems (discussed in section 5.1).

Does the organization of demonstrations matter? In the previous study, we observed that
Simulated Student could learn wrong production rules (Matsuda et al., 2005b). This could occur when an
ambiguity exists in the interpretation of demonstration. For example by observing that “3x=9 simplifies
x=3,” Simulated Student might infer that “the right hand side of the simplified equation is the coefficient
of the term in the left hand side of the original equation”; this rule leads to the erroneous behavior “5x=10
simplifies as x=5.” This type of misconception could have been avoided if the author used an example
problem whose answer was not coincidentally equal to the coefficient of the original term. In general, the

ambiguity problem could be avoided by providing demonstrations on various types of problems at various
levels of detail. We call the diversity in those aspects the organization of demonstration (discussed in
section 5.2).

How general is the Simulated Student framework? So far, we have worked on an algebra
equation as an example domain. The generality of the framework should be tested on other domains as
well (discussed in section 5.3).

3. Authoring Cognitive Tutors: No general solution yet

3.1. Cognitive Tutors and the Authoring Tools: CTAT

Building a Cognitive Tutor requires 2 basic tasks: (1) building a graphical user interface (GUI), and (2)
building a cognitive model.

CTAT integrates with off-the-shelf tools for building GUIs. Those tools enable authors to simply
drag and drop various GUI components (e.g., text boxes, drop-down menus, buttons, etc) into a custom
dialogue without actually writing any code. Figure 1 is a GUI to learn to solve algebraic equations. This
Equation Tutor simply has two text boxes, one for the left hand side and the other for the right hand side
of equations. Other GUI elements such as the “Message” window, the “Done” and “Help” buttons are
common in all tutors hence embedded in the GUI automatically.

Figure 1: Example GUI for Equation Tutor

The distinguishing feature of Cognitive Tutors is model tracing, the process that identifies whether or
not a student is performing the target task correctly. While the student is solving a problem, the Tutor
monitors each step and provides appropriate hints and error messages. The tutor can do this because its
cognitive model generates the steps in one or more solutions, while its model-tracing algorithm compares
student input with the generated steps to determine where the student is in the solution space.

CTAT also provides tools to build a version of cognitive model that enables the tutor to perform a
limited type of model tracing. The following section explains this.

3.2. Building a Pseudo Tutor: Problem-Specific Cognitive Modeling

The simplest version of cognitive model that can be authored with CTAT is a record of solution
demonstrated by the author. The author uses the same GUI that the student will use and solves the same
problems in the same way that the students are expected to perform. (Koedinger et al., 2004).

These so-called pseudo-intelligent tutors (Pseudo Tutors for short) can perform model tracing on
problems demonstrated a priori. However, if more problems are required than an author can practically

demonstrate then the Pseudo Tutor technology is inadequate. To overcome this restriction, one needs to
build a generalized cognitive model: with this, the Cognitive Tutor can perform model tracing on any
instance of the problem. The following section describes these generalized models.

3.3. Building Fully Functional Model Tracing Tutor: Domain-General Cognitive

Modeling

A generalized cognitive model is represented as a set of production rules. CTAT has tools to aid manually
writing and debugging production rules in Jess (Friedman-Hill, 2003). But building a successful cognitive
model in this way is problematic for authors who are neither cognitive scientists nor AI programmers.
The next section describes our solution: using a Simulated Student to automatically generate a cognitive
model by demonstration.

4. Authoring Cognitive Tutors with Programming by Demonstration
This section briefly describes how to author with programming by demonstration and then presents a
basic architecture of Simulated Student. More detailed explanations can be found elsewhere (Matsuda et
al., 2005a).

4.1. Cognitive Modeling by Demonstration

When building a Cognitive Tutor by demonstration, the author must specify (by double-clicking) all the
GUI elements that should appear in the production rule. Those GUI elements are called the focus of
attention, because they are the elements that control decision making for the step performed. For example,
in Figure 2, the author specifies “6x,” “4x+6,” and “6x-4x” (highlighted) as the focus of attention to
enter “6.” The author’s demonstration is visualized as a directed graph where a node represents a solution
state and an edge a cognitive skill (i.e., a production rule) to be applied to change a state. It is the author’s
task to annotate each edge with a skill name, which corresponds to a name of the production rule to be
learned by the Simulated Student.

Figure 2: Providing focus of attention during demonstration

Simulated Student’s learning is incremental and interactive. When a step is demonstrated, even
before its skill name is labeled, Simulated Student attempts to model trace the step. A result of
model-tracing is then reported to the author that allows him/her to assess the quality of the production
rules. When the author annotates the name of the step, the Simulated Student generates a new production
rule or modifies an existing one.

4.2. Structure of Learned Production Rules

A sample Jess production rule is shown in Figure 3. A production rule consists of two major parts: the left
hand side (LHS) specifies the conditions of working memory elements (WMEs) required for the
production rule to be applied, and the right hand side (RHS) specifies actions to be taken upon
application.

 (defrule trans-lr-lhs

?problem <- (problem (interface-elements ?table1 ? ? ?))

?table1 <- (table (columns ?column1))

?column1 <- (column (cells $?m1 ?cell0 $?))

?cell0 <- (cell (value ?val0&~nil))

?problem <- (problem (interface-elements ? ?table2 ? ?))

?table2 <- (table (columns ?column2))

?column2 <- (column (cells $?m2 ?cell1 $?))

?cell1 <- (cell (value ?val1&~nil))

?column1 <- (column (cells $?m3 ?cell2 $?))

?cell2 <- (cell (name ?selection) (value ?input))

(test (consecutive-row ?cell0 ?cell2))

(test (same-column ?cell0 ?cell2))

(test (distinctive ?cell0 ?cell2))

(test (consecutive-row ?cell1 ?cell2))

(test (same-column ?cell1 ?cell2))

(test (distinctive ?cell1 ?cell2))

(test (polynomial ?val0))

(test (not (has-var-term ?val1)))

=>

(bind ?input (first-var-term ?val0))

(modify ?cell2 (value ?input)))

LHS

RHS

WME path

Topological

constraints

Feature

constraints

WME

conditions

Working Memory Element (WME)
(defrule trans-lr-lhs

?problem <- (problem (interface-elements ?table1 ? ? ?))

?table1 <- (table (columns ?column1))

?column1 <- (column (cells $?m1 ?cell0 $?))

?cell0 <- (cell (value ?val0&~nil))

?problem <- (problem (interface-elements ? ?table2 ? ?))

?table2 <- (table (columns ?column2))

?column2 <- (column (cells $?m2 ?cell1 $?))

?cell1 <- (cell (value ?val1&~nil))

?column1 <- (column (cells $?m3 ?cell2 $?))

?cell2 <- (cell (name ?selection) (value ?input))

(test (consecutive-row ?cell0 ?cell2))

(test (same-column ?cell0 ?cell2))

(test (distinctive ?cell0 ?cell2))

(test (consecutive-row ?cell1 ?cell2))

(test (same-column ?cell1 ?cell2))

(test (distinctive ?cell1 ?cell2))

(test (polynomial ?val0))

(test (not (has-var-term ?val1)))

=>

(bind ?input (first-var-term ?val0))

(modify ?cell2 (value ?input)))

LHS

RHS

WME path

Topological

constraints

Feature

constraints

WME

conditions

Working Memory Element (WME)

Figure 3: An example of production rule for algebra equation

The LHS of a learned production rule has two types of conditions: WME paths and WME conditions.
A WME path identifies a working memory element representing a particular GUI element. The WME
conditions represent constraints that must hold among GUI elements. There are, in turn, two types of
WME conditions: topological constraints and feature constraints. Topological constraints are
requirements on the locations of GUI elements (e.g., two cells next to each other). Feature constraints
make requirements on the value of the GUI elements (e.g., a cell contains a polynomial expression). Since
feature constraints can be directly translated into first order logic, we employ FOIL (Quinlan, 1990) to
identify them.

The RHS of a learned production rule specifies actions to take on GUI elements. In the Equation
Tutor, these actions read values from one or more cells, generate a new value from them, and write the
new value to another cell.

5. Evaluation of Simulated Student
To evaluate the efficiency and generality of Simulated Student, we conducted three studies,
corresponding respectively to the research questions in section 2: the test on the sequence of problems, the
test on the organization of demonstration, and the cross domain generalization test.

5.1. Sequence of Problems Demonstrated

The main purpose of this study is to see if a difference in the sequence of problems demonstrated affects
Simulates Student’s learning.

5.1.1. Methods

Eight training problems for algebra equation-solving were demonstrated with 10 different production
rules in a total of 54 steps (i.e., production rule applications). Table 1 shows the use of the rules (columns)
in each of the problems (rows): an asterisk ‘*’ indicates that the corresponding production rule was
applied once on this problem; two asterisks ‘**’ means that the rule was applied twice.

Table 1: Training problems used for the curriculum evaluation

The training problems were selected to cover the most basic skills in this domain. The numbers in
the margins show the total numbers of rule applications. To compare learning outcomes from different
training-problem sequences, 12 different problem sets were created by randomly ordering these eight
training problems.

Ten feature predicates and 24 operators were provided as the background knowledge (Table 2).

Problem do-arith-lhs do-arith-rhs done add-lhs add-rhs div-lhs div-rhs multi-lhs multi-rhs copy-rhs

x/7 = 6 * * * * * 5

8x = 16 * * * * * 5

-x = 5 * * * * * 5

x + 4 = 9 * * * * * 5

3x + 4x = 21 ** * * * * * 7

4x + 5 = 13 ** ** * * * * * 9

(x + 5)/6 = 7 ** ** * * * * * 9

x/4 + 5 = 8 ** ** * * * * * 9

12 11 8 4 4 4 4 3 3 1 54

Table 2: Feature predicates and operators used for the curriculum evaluation

Feature Predicates for LHS conditions Operators for RHS actions

HasCoefficient

VarTerm

Monomial

Polynomial

HasVarTerm

HasConstTerm

AllSameTypeTerms

NotNull

CanBeSimplified

IsFractionTerm

CopyTerm Coefficient

InverseTerm ReverseSign

EvalArithmetic RemoveCoefficient

FirstVarTerm LastTerm

LastConstTerm RemoveFirstVarTerm

RemoveLastTerm RemoveLastConstTerm

Denominator Numerator

AddTerm DivTerm

MulTerm DivTen

ModTen AddTermBy

DivTermBy MulTermBy

GCD LCM

For validation, seven test problems were solved in a total of 67 steps (production rule applications)

with the ten production rules generated from the training problems. Each time a training problem had
been completely demonstrated, a validation test was run over the seven test problems, and solution steps
were model-traced. The accuracy of a production rule was measured as the ratio m/N where N is the total
number of times the rule should be applied in the seven test problems, and m is the number of steps that
were correctly model-traced.

5.1.2. Results

Figure 4 shows the learning curves for each training condition in terms of the accuracy of production
rules defined above. The x-axis shows the number of times that a production rule was applied in the
demonstration (i.e., the opportunity of learning). The y-axis shows the average accuracy of the production
rule. The graph is aggregated across all the production rules for each condition. The bold curve shows an
average across the conditions.

As shown in the figure, the accuracy of production rules converged to the maximum at the end of the
learning sessions regardless of the order of training problems. The current learning algorithm employed in
Simulated Student is not problem-order sensitive when enough problems were demonstrated.

Figure 4: Learning curves aggregated across production rules and test problems

To see how many training problems were needed to reach the correct production rules, the changes
in the LHS conditionals and the RHS operator sequences across the learning opportunities were compared.
Table 3 shows the number of learning opportunities needed for each of the production rules to have
correct LHS conditionals. For all but one (the “done” rule) production rule, three learning opportunities
were sufficient to learn “correct” LHS conditionals.

Table 3: Number of training problems needed to learn correct LHS conditionals

Learning opportunities

Rule #Conditionals Average Min Max

multi-lhs(A,B) 2 1.9 1 2

do-arith-lhs(A,B) 1 2.3 2 3

add-lhs(A,B) 2 2.3 2 4

mult-rhs(A,B,C) 2 2.3 2 3

div-lhs(A,B) 3 2.3 2 3

div-rhs(A,B,C) 2 2.4 2 3

do-arith-rhs(A,B,C) 1 2.6 2 3

add-rhs(A,B,C) 2 2.7 2 4

done(A,B) 4 5.3 4 7
To our surprise, the RHS operator sequences for nine of the 10 production rules were captured

correctly on the first rule application. The remaining rule, “add-lhs” was overly specific even when all
eight training problems were demonstrated. This rule cancels a constant term in the LHS as a part of an
upper level operation to “move” the cancelled term to RHS. The learned incorrect rule said “take the last
term in LHS, reverse its sign, and add it to RHS”; the rule fails on a test problem such as “2-3x=17,”
because in this case it is the first term that must be cancelled. This is an example of what we call
ambiguity in demonstration. The next section addresses this issue in detail.

5.2. Organization of Demonstration

The organization of demonstration in this study is twofold: (1) the ambiguity in the problem
representation, and (2) the level of detail provided in demonstration.

The ambiguity of the problem representation refers to the presence of a nondeterministic
interpretation of the demonstration especially in the feature extraction. For example, the problem “3x=9”
is ambiguous when it is simplified as “x=3,” because “3” in the RHS could be “the coefficient of 3x” or
“the quotient of 9 divided by the coefficient of 3x.” This ambiguity can be clarified by another instance of
an isomorphic problem, say, 5x=10, where the isomorphic problems can be solved by applying same
production rules in the same order. We call this type of ambiguity parameter ambiguity.

Another type of ambiguity can be even more subtle. The term 5 in 2x+5=4, which must be
transposed to the right hand side (resulting in the equation 2x=4-5), could be a term in the left hand side
that is either the last term, a constant term, the first constant term, etc. This type of ambiguity cannot be
clarified with isomorphic problems but instead requires another problem with different structure to work
as a negative example against irrelevant interpretation. For example, the term 5 cannot be the last term in
LHS in 2x+5-3x+6. We call this type of ambiguity structure ambiguity.

In this paper, we consider only parameter ambiguity and test a specific hypothesis: providing more
detailed demonstration on problems with parameter ambiguities suppresses learning wrong production
rules. To test this hypothesis, we have compared two demonstrations at the different level of detail on the
same set of problems.

We have also hypothesized that decreasing a level of detail also affects learning on the problems that
have no parameter ambiguity.

5.2.1. Methods

Thirteen problems shown in Table 4 were used for the study. Two different demonstrations were provided
on those problems. The less detailed demonstration showed only a simplified equation after applying all
algebraic operations. For example, when dividing both sides of an equation (say, 3x=9) with the same
number (3), the demonstration shows the result of the division (x=3) without any intermediate steps (e.g.,
3x/3=9/3). Table 4 shows how 13 problems were solved, with an asterisk showing a single rule
application. This demonstration suffers from parameter ambiguity on the first four problems in Table 4.
Those problems have multiple interpretations on the right hand side of the solution state, because the
exact same number appears in the left hand side of the original equation. The 5th through 8th problems
are isomorphic to the first four problems but have no parameter ambiguity; hence the erroneous
production rules should be corrected by the time that the first eight problems are demonstrated.

Table 4: Training problems used in the study for organization of demonstration

done trans-lr-lhs trans-lr-rhs trans-rl-lhs trans-rl-rhs div-lr-lhs div-lr-rhs multi-lr-lhs multi-lr-rhs

x+3=6 * * * 3

x-5=0 * * * 3

3x=9 * * * 3

x/8=1 * * * 3

x+5=8 * * * 3

x-4=10 * * * 3

4x=12 * * * 3

x/4=3 * * * 3

3x-4=2 * * * * * 5

3x=2x+4 * * * 3

3x-3=2x+5 * * * * * 5

2=-3x+11 * * * * * * * 7

13=x+8 * * * * * * * 7

13 8 8 4 4 5 5 2 2 51

Next, a detailed demonstration was made for the first four training problems shown in Table 4. In the
detailed demonstration, those problems were solved by applying five production rules (instead of three as
in the less detailed demonstration). The intermediate steps for the algebraic operations are explicitly
demonstrated, and new production rules called “do-arith-lhs” and “do-arith-rhs” were
introduced. For instance, the problem “x+3=6” is solved as “x+3-3=6-3” by applying rules
“d-trans-lr-lhs” and “d-trans-lr-rhs.” It then becomes “x=3” by applying “do-arith-lhs”
and “do-arith-rhs.” The detailed demonstration is summarized in Table 5.

Table 5: The detailed demonstrations

done do-arith-lhs do-arith-rhs d-trans-lr-lhs d-trans-lr-rhs d-div-lr-lhs d-div-lr-rhs d-multi-lr-lhs d-multi-lr-rhs

x+3=6 * * * * * 5

x-5=0 * * * * * 5

3x=9 * * * * * 5

x/8=1 * * * * * 5

4 4 4 2 2 1 1 1 1 51

5.2.2. Results

We first examined the RHS operator sequences to see how they are generated during the learning progress.
With the less detailed demonstration, several wrong production rules were generated and then fixed by the
end of the learning session. On the other hand, with the detailed demonstration, RHS operators were
learned correctly on the first demonstration for 7 out of 9 production rules. In the remaining two rules,
“d-trans-lr-lhs” and “d-trans-lr-rhs,” there were still wrong operator sequences learned
(overly specific). Together these two rules transform, say, “x+3=6” into “x+3-3=6-3.” Changing a level
of detail does not improve learning on problems with structural ambiguity.

The difference in the degree of detail also affects the search complexity. When details of the
demonstration decrease, search complexity increases because Simulated Student must search all implicit
operations. As a result, when the number of RHS operators reaches four, the search becomes impractical
as shown in Table 6.

Table 6: Search complexity with demonstrations at different levels of detail

A dash mark ‘-’ means that there
was no rule generated at the
specified operator length. “Space”
shows the number of nodes
expanded in the search space.

In summary, less detailed demonstrations are risky for two reasons: (1) they increase the chance of
parameter ambiguity, so that it becomes more likely to learn incorrect rules; and (2) the resulting
production rules tend to have more RHS operators, so that the search complexity becomes impractical.
The same issue could interact with human students’ learning. We have yet to investigate how the level of
demonstration affects students’ learning.

5.3. Cross Domain Generalization

In addition to the algebra equation, we have tested Simulated Student in three other domains:
multi-column multiplication, fraction addition, and Tic-Tac-Toe. The main purpose for these studies was
to explore whether or not adding features and FOIL extends the generality and accuracy of the Simulated

Detailed
demonstration

Less detailed
demonstration # RHS

operators Time [sec] Space Time [sec] Space

1 0.00 1 0.00 1

2 0.12 19 0.04 6

3 10.21 1452 40.31 3563

4 - - 2396.52 212780

Student beyond that shown in a previous study, which also employed programming by demonstration for
authoring of Cognitive Tutors (Jarvis et al., 2004). Unlike the machine-learning agent in the previous
study, (1) only our Simulated Student employs FOIL to learn the feature constraints in LHS, and (2) only
our Simulated Student identifies the topological constraints. Thus, the question here is how the production
rules learned with these features are different from the production rules that do not have such LHS
conditionals.

In the two arithmetic domains, multi-column multiplication and fraction addition, the same 10
feature predicates and 24 operators provided in the Equation Tutor (Table 2) are used. Hence it was also
of interest to see whether having extra features and operators would bias learning.

5.3.1. Multi-column multiplication

This tutor has rows and columns of cells in a single table as shown in Figure 5. Some of the empty cells
must be filled, but each only with a single digit. Filling in a cell corresponds to a single rule application.

Figure 5: Multi-Column Multiplication Tutor

A 2-digit × 2-digit problem was solved in 14 steps with 10 unique rules. Simulated Student was able
to learn all 10 productions in less than a few seconds each.

Ten operators (out of 24) appeared in the production rules. As for the LHS conditions, the
topological constraints were captured correctly as well. FOIL did not find any feature constraints at all.
This is because that the objects of manipulation in this tutor are all single digit numbers with no specific
features that need to be extracted. However, this observation also depends on the strategy taken in the
demonstration. For example, the production rule for writing a carry could be applied only when the
product of two digits is greater than 10. Such constraint did not appear in the LHS conditionals in our
study, because a carry was always filled in even when it was zero.

5.3.2. Fraction addition

The student’s interface for the Fraction Tutor consists of 12 cells as shown in Figure 6. A problem is to
add two fractions, shown vertically in the left-most column, by first finding a common denominator (the
top two fractions in the middle column), then adding those two fractions (the bottom fraction in the
middle column), and then reducing the result. There are eight unique steps to fill in eight cells in the
second and third columns.

Figure 6: Student Interface for Fraction Tutor

Simulated Student was able to learn all eight rules correctly. There was parameter ambiguity that
affected learning a rule to calculate the denominator. The example shown in Figure 6 illustrates this
problem. The author’s intention was that the denominator “12” must be the least common multiple of the
denominators, but in this particular case, it could be simply the product of 3 and 4.

5.3.3. Tic-Tac-Toe

The third example is a Tic-Tac-Toe Tutor. The student’s interface consists of a single 3 by 3 table. A
problem represents a particular situation of the game, and students are supposed to pick the next best
move, which is either to prevent the opponent from winning, to bring an immediate win, or to place a
token in the central cell.

Figure 7: Tic-Tac-Toe Tutor

The most interesting issue observed through this experiment is that a fatal move, which by definition
is a move that loses the game, could be identified as fatal only at the end of the demonstration. To learn
rules to avoid fatal moves, the examples must be classified as either positive or negative retroactively
after observing later moves.

6. Discussion

6.1. Practicality of Authoring by Demonstration

For algebra equation solving where problems are solvable in at most 10 steps and the problems share
production rules (i.e., the same production rule appears across several problems), building cognitive
model with programming by demonstration works quite well with relatively a few training problems,
given that the demonstration is well organized in terms of the level of detail (discussed more in
section 6.3).

6.2. Impact of the Sequence in Training Problems

From an authoring point of view, it is convenient that the order of training examples does not affect the
quality of the production rules at the end of the learning session. The author need not carefully design a
curriculum sequence.

A probable reason that the problem sequence does not matter to Simulated Student’s learning is that
the learning algorithm employed in Simulated Student is not cumulative in the way production rules are
generated and/or refinement. Whenever an instance of production-rule application is demonstrated,
Simulated Student attempts to generate a whole set of production rules that are consistent with all rule
applications demonstrated so far. Thus, at the end of a learning session, the only constraint that the set of
production rules hold is the consistency with the demonstrated rule applications regardless of the order.

6.3. Impact of Organization of Demonstration

The level of detail of demonstration is a particularly important question, because it affects both Simulated
Student’s learning and, probably, human students’ learning also.

As shown in the study for organization of demonstration, as more algebraic operators are implicitly
involved in a step demonstrated, it becomes more expensive (in time and space) to generate a production
rule, and, more importantly, the Simulated Student is more likely to learn a wrong production rule. The
latter pitfall becomes critical when the demonstration steps have parameter ambiguity. To prevent
Simulated Student from learning incorrect rules, the author needs to provide a detailed demonstration or
carefully design problems so that they do not have parameter ambiguity.

From the cognitive studies in the sciences of learning, it is known that to start from fully-
demonstrated worked-out examples and then to gradually fade scaffolding facilitates learning (Renkl &
Atkinson, 2003). Yet the current model of Simulated Student does not explain why such fading strategy
works. This is a future research issue.

6.4. Limitations

The success of the learning depends in part on the available features and operators. The goal is to reduce
programming effort for the author, so ideally the features and operators should be simple to code.
However, some of the features and operators used in the current studies are not so simple. For instance,
“CanBeSimplified” is one of the more complex features. If this feature is left out, Simulated Student
composed rules that were overly general. For example, without this feature some productions had (not
(polynomial x)) instead of (not (canBeSimplified x)). As a consequence, the performance of
model tracing decreased. In particular, the performance of do-arith-lhs, which had 100% accuracy
with CanBeSimplified, decreased to 84%.

7. Conclusion
The evaluation studies support the thesis that Simulated Student can be a building block of intelligent
authoring tools for Cognitive Tutors, while some issues for future improvement are suggested.

So far we have only tested modeling functionality of Simulated Student in the laboratory studies. To
test whether this cutting-edge technology actually facilitates authoring Cognitive Tutors, evaluation
studies for authoring with real human authors on a practical domain must be conducted.

As a broader benefit, Simulated Student might also inform cognitive studies for human learning.
That is, Simulated Student has potential interests in simulating human learning and testing cognitive
principles in teaching and learning as well. We will conduct more studies along this line of exploration.

Reference

Cypher, A. (Ed.). (1993). Watch what i do: Programming by demonstration. Cambridge, MA: MIT Press.
Friedman-Hill, E. (2003). Jess in action: Java rule-based systems. Greenwich, CT: Manning.
Jarvis, M. P., Nuzzo-Jones, G., & Heffernan, N. T. (2004). Applying machine learning techniques to rule

generation in intelligent tutoring systems. In J. C. Lester (Ed.), Proceedings of the international
conference on intelligent tutoring systems (pp. 541-553). Heidelberg, Berlin: Springer.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B., & Hockenberry, M. (2004). Opening the door
to non-programmers: Authoring intelligent tutor behavior by demonstration. In J. C. Lester, R. M.
Vicari & F. Paraguaçu (Eds.), Proceedings of the seventh international conference on intelligent
tutoring systems.

Koedinger, K. R., Aleven, V. A. W. M. M., & Heffernan, N. (2003). Toward a rapid development
environment for cognitive tutors. In U. Hoppe, F. Verdejo & J. Kay (Eds.), Proceedigns of the
international conference on artificial intelligence in education (pp. 455-457). Amsterdam: IOS
Press.

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2005a). Applying programming by demonstration in an
intelligent authoring tool for cognitive tutors. In Aaai workshop on human comprehensible
machine learning (technical report ws-05-04) (pp. 1-8). Menlo Park, CA: AAAI association.

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2005b). Building cognitive tutors with programming by
demonstration. In S. Kramer & B. Pfahringer (Eds.), Technical report: Tum-i0510 (proceedings
of the international conference on inductive logic programming) (pp. 41-46): Institut fur
Informatik, Technische Universitat Munchen.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International
Journal of Artificial Intelligence in Education, 10, 98-129.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5(3), 239-266.
Renkl, A., & Atkinson, R. K. (2003). Structuring the transition from example study to problem solving in

cognitive skill acquisition: A cognitive load perspective. Educational Psychologist, 38(1), 15-22.

	Carnegie Mellon University
	Research Showcase @ CMU
	7-2006

	Applying Machine Learning to Cognitive Modeling for Cognitive Tutors
	Noboru Matsuda
	William W. Cohen
	Jonathan Sewall
	Kenneth R. Koedinger

	Microsoft Word - CMU-ML-06-105.doc

