
Carnegie Mellon University
Research Showcase @ CMU

Human-Computer Interaction Institute School of Computer Science

7-2007

Predicting Students’ Performance with
SimStudent: Learning Cognitive Skills from
Observation
Noboru Matsuda
Carnegie Mellon University

William W. Cohen
Carnegie Mellon University

Jonathan Sewall
Carnegie Mellon University

Gustavo Lacerda
Carnegie Mellon University

Kenneth R. Koedinger
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/hcii

This Conference Proceeding is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Human-Computer Interaction Institute by an authorized administrator of Research Showcase @ CMU. For more information,
please contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fhcii%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii?utm_source=repository.cmu.edu%2Fhcii%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fhcii%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii?utm_source=repository.cmu.edu%2Fhcii%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Predicting Students’ Performance with SimStudent:

Learning Cognitive Skills from Observation1

Noboru Matsuda
1
, William W. Cohen

2
, Jonathan Sewall

1
,

Gustavo Lacerda
2
, and Kenneth R. Koedinger

1

1
Human-Computer Interaction Institute

2
Machine Learning Department

Carnegie Mellon University

Abstract. SimStudent is a machine-learning agent that learns cognitive skills by demonstration.

SimStudent was originally built as a building block for Cognitive Tutor Authoring Tools to help an author

build a cognitive model without significant programming. In this paper, we evaluate a second use of
SimStudent, viz., student modeling for Intelligent Tutoring Systems. The basic idea is to have SimStudent

observe human students solving problems. It then creates a cognitive model that can replicate the

students’ performance. If the model is accurate, it would predict the human students’ performance on
novel problems. An evaluation study showed that when trained on 15 problems, SimStudent accurately

predicted the human students’ correct behavior on the novel problems more than 80% of the time.

However, the current implementation of SimStudent does not accurately predict when the human students
make errors.

Keywords. Cognitive modeling, programming by demonstration, inductive logic programming,

Cognitive Tutor, intelligent authoring.

1. Introduction

SimStudent [1] was originally built as an intelligent building block for the Cognitive Tutor

Authoring Tools (CTAT) [2]. In this authoring environment, an author can build a cognitive

model that represents domain principles for a target task without significant AI-programming.

Instead, the author is asked only to demonstrate the task, both correctly and incorrectly, using a

tutor interface built with CTAT. SimStudent then learns how to perform the target task (or how

to make a mistake) by generalizing the author’s demonstration. The fundamental technology

used in SimStudent is programming by demonstration [3].

Since SimStudent can generalize actions taken in the tutor interface, theoretically speaking,

SimStudent should be able to model the domain principles that a human student acquired while

solving problems with the Tutor. In other words, SimStudent can be used to dynamically

generate a student model for an individual student using Cognitive Tutor.

The ultimate goal of the current project is to evaluate whether SimStudent can be used for

student modeling. A preliminary study showed that SimStudent can model human students’

correct behaviors [4]. On the other hand, modeling students’ erroneous behaviors is quite

challenging, partly because the human students make non-systematic errors such as slips and

random errors. Although building a descriptive model of student misconceptions (telling why a

particular behavior was observed) might be challenging, building a predictive model of student

performance (telling whether a student would perform a next step correctly or not) might be

tractable. Such a predictive model might give us further insight into designing a descriptive

model of the student’s knowledge, which represents the student’s misconceptions. As an initial

step towards our ultimate goal, the current paper addresses two research questions: (1) Can

SimStudent learn domain principles by observing an individual student’s performance? (2) Can

1
 The research presented in this paper is supported by the National Science Foundation Award No. REC-

0537198. This work was also supported in part by the Pittsburgh Science of Learning Center, which is

funded by the National Science Foundation Award No. SBE-0354420

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R. (2007).

Predicting students’ performance with simstudent that learns cognitive skills

from observation. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Proceedings

of the International Conference on Artificial Intelligence in Education (pp.

467-476). Amsterdam, Netherlands: IOS Press.

SimStudent predict an individual student’s behavior on novel problems with the domain

principles learned from the individual student?

2. Related Studies

There have been a wide variety of machine-learning techniques studied so far for student

modeling, including synthetic, analytic, and stochastic methods. Ikeda et al [5] built an

inductive logic learner in conjunction with a truth maintenance system to inductively construct a

hypothetical student model. Baffes et al [6] applied a machine learning technique to modify a

given set of domain principles to be consistent with the student’s incorrect behaviors. Similarly,

Langley et al [7] applied a theory-refinement technique to model an individual student’s

behavior given a general model of the domain. MacLaren et al [8] applied a reinforcement

learning method based on the ACT-R model [9] to model the process in which the students’

knowledge activation patterns are strengthened. There are more studies on applications of

machine-learning for student modeling.

The current study is about an application of a cutting-edge technology for student modeling.

The proposed system is unique in two ways: (1) the fundamental framework used in SimStudent,

inductive logic programming [10], is domain-general, and hence it is applicable to a wide range

of domains; (2) SimStudent has a dual role in this context – to automatically model a domain

principle used in a Cognitive Tutor, and to model a student’s performance while he/she is using

the Cognitive Tutor. The former cognitive model enables the Cognitive Tutor to perform model-

tracing (see section 3.2), whereas the latter model allows the Cognitive Tutor to diagnose a

student’s competency to, say, proactively select a problem on which the student is likely to

make a mistake, which in turn triggers learning.

3. Experimental Setting: Algebra I Cognitive Tutor

For the current experiment, we used the Algebra I Tutor developed by Carnegie Learning

Inc. The Algebra I Tutor is a Cognitive Tutor for high school algebra used in real classroom

situations in more than about 2000 schools nationwide in the United States [11].

We used tutor-interaction logs representing interactions between the Cognitive Tutor and

individual human students. The current data were collected from a study conducted in an urban

high school in Pittsburgh. There were 81 students involved in the study. There were 15 sections

taught by the tutor, which covered most of the skills necessary to solve linear equations. In the

current study, we focus on the log data for the first eight sections. The equations in those

sections only contain a single unknown and have the form A+B=C+D where each of A, B, C,

and D is either a constant or an unknown term in the form of Nx with a constant number N.

3.1. Tutoring interaction

The unit of analysis in the current paper is a single problem-solving step performed by the

human students using the Cognitive Tutor interface. A problem-solving step is slightly different

from an equation-transformation step, which corresponds to an action that transforms one

equation into another complete equation when solving an equation with paper and pencil.

There are two types of problem-solving steps: (1) an action step is to select an algebraic

operation to transform an equation into another (e.g., to declare that I will “add 3x to both sides”

of the equation), and (2) a type-in step is to do a real arithmetic calculation (e.g., “to enter -4” as

a result of adding 3x to -4-3x). By performing these problem-solving steps, a given equation is

transformed as follows: a student first selects an action and then applies it to both sides of the

equation. For example, for the equation shown in Figure 1 (a), the student selected “Add to both

sides” from the pull down menu (b), which in turn prompts the student to specify a value to

add (c). This completes the first problem-solving step, which is an action step. The student then

enters the left- and right-hand sides of the new equation separately, in two type-in steps. Figure

1 (d) shows the moment when the student has just typed in the left-hand side.

 (a) A given equation (b) Selecting an action

 (c) Entering a value to be added (d) Typing-in a left-hand side

Figure 1: Screen shot for the Algebra I Tutor.

In summary, three problem-solving steps correspond to a single equation-transformation

step, which transforms one equation into another. Sometimes, however, the tutor carries out the

type-in steps for the student, especially when new skills are introduced.

When a student makes an error, the tutor provides feedback. The student can also ask for a

hint (by pressing the “[?]” button on the left side of the tutor window) when he/she gets stuck.

Every time a student performs a step, the tutor logs it. In this study, we are particularly

interested in the following log information: (1) The place where the step was made, called

Selection. This corresponds to an element on the graphical user interface, e.g., the left-hand side

of an equation, or a pull-down menu on the menu bar. (2) The name of the skill used, called

Action, which is either the name of the algebraic operation selected from the menu for an action

step, or the symbol “type-in” for a type-in step. (3) The value entered, called Input. For example,

the value specified (12.29 in Figure 1 (c)) to be added to both sides for the “add” action step

mentioned above, or the left- and right-hand side entered for the type-in steps. (4) The

correctness of the step, which is either “correct”, “error”, or “hint” (when the student asked for a

hint).

Using the first three pieces of information mentioned above, a problem-solving step is

represented with a tuple <Selection, Action, Input>. The tuple plays an important role for

SimStudent’s learning, as described in section 4.2.

3.2. Cognitive model and model-tracing

As mentioned above, the tutor provides immediate feedback on the steps. This is possible

because the tutor has a cognitive model, represented as a set of production rules that are

sufficient to perform the target task. A cognitive model can include both correct and incorrect

(called “buggy”) production rules. When a step is performed by a student, the tutor attempts to

find a production rule that matches the step. This technique is called model-tracing.

4. The Architecture of SimStudent

This section is a brief overview of SimStudent. We first explain how SimStudent learns

cognitive skills from demonstrations. The double meaning of “demonstration” in the current

context is then explained – a demonstration by an author who is building a Cognitive Tutor, and

a “demonstration” in the tutor-interaction log representing a real student’s performance. Due to

the space limitation, we only provide a brief overview. See Matsuda et al [1] for more details.

4.1. Modeling student-tutor interaction in the Algebra I Tutor

SimStudent learns a single production rule for each problem-solving step demonstrated. In

the most general case, when demonstrating a step, the demonstrator must specify two additional

things: (1) a skill name, and (2) a focus of attention. In the study using Algebra I Tutor log,

however, both of these could be derived without explicit specification as explained below.

The skill name must be consistent across problems throughout the demonstration. In the

Algebra I Tutor, the skill name for an action step is an abbreviation of the action name shown in

the tutor interface. For example, in the step shown in Figure 1 (a-c), the skill name to select

“Add 12.29 to both sides” is called “add.” The skill name for a type-in step consists of the skill

name of the corresponding action step and “-typein.” So, for example, the skill name for the

type-in step shown in Figure 1 (d) is called “add-typein.”

The focus of attention is the set of elements on the tutor interface used to determine what

action is to be taken. For example, the problem-solving step shown in Figure 1 (b) – “add 12.29

to both sides” – requires two elements, “5.37” and “-12.29+5.53y” as the focus of attention.

There is, however, an issue in getting the focus of attention when SimStudent is used to model

real students’ performance – the real students do not indicate their focus of attention. We have

assumed that both the left-hand side and right-hand side are used as the focus of attention for the

action steps. For the type-in steps, we presume that the skill name and the expression

immediately above the expression to be typed-in are the focus of attention. So, for example, for

the type-in step shown in Figure 1 (d), where “5.37+12.29” was typed-in, the skill name “Add

12.29 to both sides” and the expression “5.37” are used as the focus of attention.

4.2. Learning algorithm

Production rules learned by SimStudent are written in the Jess production rule description

language [12]. A production rule consists of three major parts: what, when, and how. The what-

part specifies which elements of the tutor interface are involved in the production rule. The

when-part shows what feature conditions must hold among the elements in the what-part for a

production rule to be fired. The how-part specifies what computation should be done with the

what-part to generate a correct “Input” (described in section 3.1).

SimStudent utilizes three different learning algorithms to learn these three parts separately.

The what-part is learned as a straightforward generalization of the focus of attention. Each

element in the focus of attention can be identified uniquely in terms of its location on the tutor

interface. Constraints on the location are generalized from the most specific description using

absolute positions (e.g., the 2nd and the 3rd cells) to the most general description that represents

arbitrary elements (e.g., any two cells). A moderate generalization uses relative locations (e.g.,

two consecutive cells).

SimStudent uses FOIL [13] to learn the when-part. The target concept is the “applicability”

of a particular skill given a focus of attention. When a step for a particular skill S is

demonstrated, the instance of demonstration serves as a positive example for the skill S and a

negative example for all other skills. We provide FOIL with a set of feature predicates as the

background knowledge with which to compose hypotheses for the target concept. Some

examples of such feature predicates are isPolynomial(_), isNumeratorOf(_,_),

isConstant(_). Once a hypothesis is found for the target concept, the body of the hypothesis

becomes the what-part on the left-hand side of the production rule. For example, suppose that

FOIL found a hypothesis S(A, B) :- isPolynomial(A), isConstant(B) for the applicability

of the skill S. The left-hand feature condition for this production rule says that “the value

specified in the first focus of attention must be polynomial and the second value must be a

constant.”

SimStudent uses iterative-deepening depth-first search to learn an operator sequence for the

right-hand side of the production rules. When a new instance of a particular skill is

demonstrated, SimStudent searches for the shortest operator sequence that derives the

demonstrated action (i.e., the “Input”) from the focus of attention for all instances demonstrated

thus far. The operators are provided as background knowledge.

5. Modeling Real Students

How well does SimStudent predict real students’ performance? How often does SimStudent

make incorrect predictions, whether reporting a correct step as incorrect or an incorrect step as

correct? To answer these questions, we analyzed SimStudent’s fidelity at predicting human

students’ performance. We are interested not only in how well SimStudent predicts real

students’ correct steps, but also – or even more, for educational purposes – in how well it

predicts incorrect steps.

5.1. Data: Tutor-interaction log

The students’ learning log data were converted into problem files. Each problem file

contains the sequence of problem-solving steps made by a single real student for a single

equation problem. There are three types of steps: correct, buggy, and error. The correct steps

are those that were model-traced with a correct production rule by the Carnegie Learning Tutor.

The buggy steps are those that were model-traced with a buggy production rule. The error steps

were not model-traced either with a correct or a buggy production rule.

There were 1897 problems solved by 81 individual human students. There were a total of

32709 problem-solving steps. These steps contain 21794 (66.7%) correct steps, 2336 (7.1%)

buggy steps, 4567 (14.0%) error steps, and 4012 (12.3%) hint seeking steps
2
. Since the Algebra

I Tutor already has a wide variety of buggy rules based on empirical studies, the buggy steps

likely capture a fair proportion of the incorrect steps that the human students are likely to make.

Furthermore, we have found (by manually verifying data) that most of the error steps are likely

to be due to slips and random errors in using the tutor interface, which makes the error steps

most challenging to be modeled. Thus, we only used correct and buggy steps for the current

evaluation.

5.2. Method: Validation

For each individual human student, we have taken the first 15 problems for training and the

following five problems for testing. Using these problems, the validation was conducted for

each individual human student separately as follows:

For each of the 15 training problems

Train SimStudent on the correct and buggy steps /* learning */
For each of the five test problems

Attempt to perform the correct steps /* validation */

Production rules had been updated each time a five-problem validation test was taken place.

Notice that only the steps correctly performed by the real student were used for validation. This

is because we are evaluating whether SimStudent could correctly predict if a real student would

successfully perform a step or not. A student’s performance on a step is coded as “success” if

the first attempt at the step is correct; otherwise it is coded as “error.” The Cognitive Tutor

forced real students to perform each step repeatedly until correct in order to proceed to the next

step. Therefore, a chain of correct steps in a log for a single represents an entire solution for the

problem. Hence, for our purpose, it is sufficient to have SimStudent perform only those solution

steps: if SimStudent cannot correctly perform a step, it is a prediction that the real student would

also fail to perform that step correctly on the first attempt.

2
 Asking for a hint is logged as a problem-solving step. As mentioned in section 5.3.2, whenever

a real student asked for a hint on a step, the student’s attempt was coded as “error.”

5.3. Result: Analysis of prediction

59 students solved at least 20 problems. On average, there were a total of 116.8 correct and

buggy steps in the 15 training problems, and 55.6 correct steps in the five test problems.

There were 10 different skills in the log data. One skill appeared in the training problems

very rarely (27 times total across the 59 students) and hence was excluded from the analysis.

The remaining nine skills included five skills for the action steps (add, subtract, multiply, divide,

and clt, which is to “combine like terms”) and four skills for the type-in steps (add-typein,

subtract-typein, multiply-typein, and divide-typein).

We first show the overall performance of problem-solving attempts and then discuss the

analysis of predicting real students’ performance.

5.3.1. Learning curve – how well did SimStudent learn cognitive skills?

Figure 2 shows the average ratio of successful attempts at performing steps in the test

problems, aggregated across all skills and students. The x-axis shows the number of

opportunities that SimStudent had had to learn the particular skills whose performance is shown

on the y axis at that point.

The average ratio of successful

attempts increased as the

opportunities of learning increased.

After training for 16 times, more

than 80% of the steps in the test

problems were performed correctly.

This result shows that

SimStudent did actually learn

cognitive skills from the tutor-

interaction log of the real students.

Below, we will explore two further

issues: How many correct steps in

the test problems were predicted as

correct? Did SimStudent learn

overly general rules that had a

tendency to perform steps

incorrectly?

5.3.2. Analysis of errors in predicting real students performance

The primary purpose of this study is to predict real students’ performance. Hence

SimStudent should not only perform correctly on the steps in which the real students performed

correctly but also fail to perform steps in which the real students failed. Thus, a better analysis is

to count the number of matches between the real students’ and SimStudent’s performance on

the test problems.

We define the result of a prediction as follows: first, the result of performing a step is a

success if there is a production rule fired that reproduces the step correctly; and an error

otherwise. The real student’s step is a success if he/she performed the step correctly at the first

attempt; and an error otherwise
3
. We then define a prediction to be (1) true positive (TP), if

both SimStudent and the human student’s performance were a success, (2) false positive (FP), if

the SimStudent’s attempt was a success while the student’s performance was an error, (3) false

negative (FN), if the result of the SimStudent’s attempt was an error, but the student’s

performance was a success, and (4) true negative (TN), if both the result of the SimStudent’s

and the student’s performance were an error. We define the following measures: Accuracy =

(TP+TN)/(TP+FN+FP+TN), Precision = TP/(TP+FP), Recall = TP/(TP+FN), E[rror]-Precision

= TN/(TN+FN), E[rror]-Recall = TN/(TN+FP). In this study, we are particularly interested in

3
 This includes cases where the student requested a “hint” on the step.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Average of Success

Figure 2: Learning curve showing average ratio of successful

problem-solving attempts aggregated across all skills and all students.

The x-axis shows the number of opportunities for learning a skill

E-Precision and E-Recall, because

SimStudent ought to model not

only the real student’s successful

performance, but also errors.

Figure 3 shows the result of the

analysis of predicting real students’

performance. As in Figure 2, the x-

axis again shows the number of

opportunities to learn a skill. The y-

axis shows the average for each

measure aggregated across all

students and skills. As conjectured

from the result of the previous

section, the Recall increased as

SimStudent was trained on more

steps – showing the ability for

SimStudent to learn rules that

perform steps in which the real

students succeeded.

That the Precision stayed high regardless of the number of training examples is rather

surprising. It turned out, however, that the real students in the current particular log data made

only a very few error steps – only 15% of the steps in the test problems were error steps and the

ratio of error steps was stable across the different frequencies
4
.

Finally, and most importantly, the E[rror]-precision increased slightly, but overall it stayed

low. This means that SimStudent did not accurately predict real students’ error steps. To our

surprise, the E[rror]-recall decreased as learning progressed. This indicates that as learning

progressed, SimStudent tended to learn more production rules that correctly performed those

steps that were performed incorrectly by human students. In other words, the current

implementation of SimStudent is not correctly predicting human students’ erroneous

performance.

5.3.3. Analysis of errors of commission

One of the key concerns in the previous analysis is whether and how often SimStudent

learned overly general rules. To address this issue, we asked SimStudent to show next steps that

can be achieved for each of the steps in the test problems, and assess the correctness for each of

these steps. Such evaluation is quite costly, because it requires an oracle for the judgment. We

have not implemented the oracle for the analysis just yet. Instead, we have manually gauged the

correctness of the rule firing by inspecting the conflict set of the production rules each time a

step is about to be performed by SimStudent.

We have randomly selected three real students

from the log data for this analysis. There were a

total of 102 steps in 15 test problems where 6

skills (add, divide, subtract, add-typein, divide-

typein, and subtract-typein) were tested.

Table 1 shows the total number of rules

appearing in the conflict set during the test. True

Firing shows the number of production rules

that, if applied, generate a correct step. False

firing shows the number of production rules that,

if applied, generate an incorrect step. On average,

4
 This does not mean that the real students did not learn. Indeed, the number of error steps

decreased, but the ratio of error steps to the correct steps stayed the same – there was always

about a 15% chance that the real students made an error step in this particular data set.

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Precision Recall Accuracy E-Precision E-Recall

Figure 3: An analysis of predicting real students’ performance. The X-

axis shows the frequency of learning. The Y-axis shows the average of

each measurement aggregated across all students and all skills.

 Rule firing

True Firing False Firing

add 146 22

add-typein 15 47

subtract 145 16

subtract-typein 13 15

divide 19 35

divide-typein 14 9

Total 352 144

Table 1: Total number of rules in the conflict set for

each of the skills. The False Firing shows the

number of incorrect rule applications – i.e., if applied,
the production rule generated an incorrect step.

there were one or two overly general rules, for each of the steps in the test problem, that lead to

a wrong step. More surprisingly there were very many opportunities for “add” and “subtract”

rules to be applied correctly. This observation agrees with the high precision mentioned above.

It also explains why the E[rror]-recall rapidly decreased as the learning progressed –

SimStudent quickly learned those rules, which resulted in covering more steps that the real

students failed to perform correctly.

6. Conclusion

Using a genuine tutor-interaction log as “demonstrations” of real students performing their

skills, SimStudent did learn to generate a student model that can predict more than 80% of the

correct steps performed by real students.

However, it turned out that SimStudent does not accurately predict real students’ incorrect

steps. Predictions are produced by a student model that is overly general hence, by definition,

covered more steps than it ought to cover – SimStudent correctly performed steps that were not

performed correctly by real students (low E[rror]-precision). Also, SimStudent learned rules

that correctly perform steps, but in a different way than the ones performed by the real students.

Can we use SimStudent as a pedagogical component for an intelligent tutoring system?

Currently, the answer leans toward the negative. We are still exploring the issues. One problem

may be an incorrect model of students’ prior skills. The solution may require different learning

methods; the current SimStudent is designed for fast construction of cognitive models using

programming by demonstration, not for student modeling.

References

1. Matsuda, N., W.W. Cohen, and K.R. Koedinger, Applying Programming by Demonstration in an

Intelligent Authoring Tool for Cognitive Tutors, in AAAI Workshop on Human Comprehensible

Machine Learning (Technical Report WS-05-04). 2005, AAAI association: Menlo Park, CA. p. 1-8.

2. Koedinger, K.R., V.A.W.M.M. Aleven, and N. Heffernan, Toward a Rapid Development Environment

for Cognitive Tutors, in Proceedings of the International Conference on Artificial Intelligence in

Education, U. Hoppe, F. Verdejo, and J. Kay, Editors. 2003, IOS Press: Amsterdam. p. 455-457.

3. Cypher, A., ed. Watch what I do: Programming by Demonstration. 1993, MIT Press: Cambridge, MA.

4. Matsuda, N., et al., Evaluating a Simulated Student using Real Students Data for Training and Testing,

in Proceedings of the International Conference on User Modeling. 2007; in press.

5. Ikeda, M. and R. Mizoguchi, FITS: a framework for ITS - a computational model of tutoring.

International Journal of Artificial Intelligence in Education, 1994. 5: p. 319-348.

6. Baffes, P. and R. Mooney, Refinement-Based Student Modeling and Automated Bug Library

Construction. Journal of Artificial Intelligence in Education, 1996. 7(1): p. 75-116.

7. Langley, P. and S. Ohlsson, Automated cognitive modeling, in Proceedings of the Fourth National

Conference on Artificial Intelligence. 1984, AAAI: Melon Park, CA. p. 193-197.

8. MacLaren, B. and K.R. Koedinger, When and why does mastery learning work: Instructional

experiments with ACT-R "SimStudents". in Proceedings of the 6th International Conference on

Intelligent Tutoring Systems, S.A. Cerri, G. Gouarderes, and F. Paraguacu, Editors. 2002, Springer-

Verlag: Berlin. p. 355-366.

9. Anderson, J.R., Rules of the mind. 1993, Hillsdale, NJ: Erlbaum.

10. Muggleton, S. and C. Feng, Efficient Induction Of Logic Programs, in Inductive Logic Programming,

S. Muggleton, Editor. 1992, Academic Press: London, UK. p. 281-298.

11. Koedinger, K.R. and A. Corbett, Cognitive Tutors: Technology Bringing Learning Sciences to the

Classroom, in The Cambridge Handbook of the Learning Sciences, R.K. Sawyer, Editor. 2006,

Cambridge University Press: New York, NY. p. 61-78.

12. Friedman-Hill, E., Jess in Action: Java Rule-based Systems. 2003, Greenwich, CT: Manning.

13. Quinlan, J.R., Learning Logical Definitions from Relations. Machine Learning, 1990. 5(3): p. 239-266.

	Carnegie Mellon University
	Research Showcase @ CMU
	7-2007

	Predicting Students’ Performance with SimStudent: Learning Cognitive Skills from Observation
	Noboru Matsuda
	William W. Cohen
	Jonathan Sewall
	Gustavo Lacerda
	Kenneth R. Koedinger

	Microsoft Word - Matsuda07b-AIED-published.doc

