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Abstract. SimStudent is a machine-learning agent that learns cognitive skills by demonstration. 

SimStudent was originally built as a building block for Cognitive Tutor Authoring Tools to help an author 

build a cognitive model without significant programming. In this paper, we evaluate a second use of 
SimStudent, viz., student modeling for Intelligent Tutoring Systems. The basic idea is to have SimStudent 

observe human students solving problems. It then creates a cognitive model that can replicate the 

students’ performance. If the model is accurate, it would predict the human students’ performance on 
novel problems. An evaluation study showed that when trained on 15 problems, SimStudent accurately 

predicted the human students’ correct behavior on the novel problems more than 80% of the time. 

However, the current implementation of SimStudent does not accurately predict when the human students 
make errors.  

Keywords. Cognitive modeling, programming by demonstration, inductive logic programming, 

Cognitive Tutor, intelligent authoring.  

1. Introduction 

SimStudent [1] was originally built as an intelligent building block for the Cognitive Tutor 

Authoring Tools (CTAT) [2]. In this authoring environment, an author can build a cognitive 

model that represents domain principles for a target task without significant AI-programming. 

Instead, the author is asked only to demonstrate the task, both correctly and incorrectly, using a 

tutor interface built with CTAT. SimStudent then learns how to perform the target task (or how 

to make a mistake) by generalizing the author’s demonstration. The fundamental technology 

used in SimStudent is programming by demonstration [3].  

Since SimStudent can generalize actions taken in the tutor interface, theoretically speaking, 

SimStudent should be able to model the domain principles that a human student acquired while 

solving problems with the Tutor. In other words, SimStudent can be used to dynamically 

generate a student model for an individual student using Cognitive Tutor. 

The ultimate goal of the current project is to evaluate whether SimStudent can be used for 

student modeling. A preliminary study showed that SimStudent can model human students’ 

correct behaviors [4]. On the other hand, modeling students’ erroneous behaviors is quite 

challenging, partly because the human students make non-systematic errors such as slips and 

random errors. Although building a descriptive model of student misconceptions (telling why a 

particular behavior was observed) might be challenging, building a predictive model of student 

performance (telling whether a student would perform a next step correctly or not) might be 

tractable. Such a predictive model might give us further insight into designing a descriptive 

model of the student’s knowledge, which represents the student’s misconceptions. As an initial 

step towards our ultimate goal, the current paper addresses two research questions: (1) Can 

SimStudent learn domain principles by observing an individual student’s performance? (2) Can 
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SimStudent predict an individual student’s behavior on novel problems with the domain 

principles learned from the individual student?  

2. Related Studies 

There have been a wide variety of machine-learning techniques studied so far for student 

modeling, including synthetic, analytic, and stochastic methods.  Ikeda et al [5] built an 

inductive logic learner in conjunction with a truth maintenance system to inductively construct a 

hypothetical student model. Baffes et al [6] applied a machine learning technique to modify a 

given set of domain principles to be consistent with the student’s incorrect behaviors.  Similarly, 

Langley et al [7] applied a theory-refinement technique to model an individual student’s 

behavior given a general model of the domain. MacLaren et al [8] applied a reinforcement 

learning method based on the ACT-R model [9] to model the process in which the students’ 

knowledge activation patterns are strengthened. There are more studies on applications of 

machine-learning for student modeling.  

The current study is about an application of a cutting-edge technology for student modeling. 

The proposed system is unique in two ways: (1) the fundamental framework used in SimStudent, 

inductive logic programming [10], is domain-general, and hence it is applicable to a wide range 

of domains; (2) SimStudent has a dual role in this context – to automatically model a domain 

principle used in a Cognitive Tutor, and to model a student’s performance while he/she is using 

the Cognitive Tutor. The former cognitive model enables the Cognitive Tutor to perform model-

tracing (see section 3.2), whereas the latter model allows the Cognitive Tutor to diagnose a 

student’s competency to, say, proactively select a problem on which the student is likely to 

make a mistake, which in turn triggers learning.  

3. Experimental Setting: Algebra I Cognitive Tutor 

For the current experiment, we used the Algebra I Tutor developed by Carnegie Learning 

Inc. The Algebra I Tutor is a Cognitive Tutor for high school algebra used in real classroom 

situations in more than about 2000 schools nationwide in the United States [11].  

We used tutor-interaction logs representing interactions between the Cognitive Tutor and 

individual human students. The current data were collected from a study conducted in an urban 

high school in Pittsburgh. There were 81 students involved in the study. There were 15 sections 

taught by the tutor, which covered most of the skills necessary to solve linear equations. In the 

current study, we focus on the log data for the first eight sections. The equations in those 

sections only contain a single unknown and have the form A+B=C+D where each of A, B, C, 

and D is either a constant or an unknown term in the form of Nx with a constant number N.  

3.1. Tutoring interaction  

The unit of analysis in the current paper is a single problem-solving step performed by the 

human students using the Cognitive Tutor interface. A problem-solving step is slightly different 

from an equation-transformation step, which corresponds to an action that transforms one 

equation into another complete equation when solving an equation with paper and pencil.  

There are two types of problem-solving steps: (1) an action step is to select an algebraic 

operation to transform an equation into another (e.g., to declare that I will “add 3x to both sides” 

of the equation), and (2) a type-in step is to do a real arithmetic calculation (e.g., “to enter -4” as 

a result of adding 3x to -4-3x). By performing these problem-solving steps, a given equation is 

transformed as follows: a student first selects an action and then applies it to both sides of the 

equation. For example, for the equation shown in Figure 1 (a), the student selected “Add to both 

sides” from the pull down menu (b), which in turn prompts the student to specify a value to 

add (c). This completes the first problem-solving step, which is an action step. The student then 

enters the left- and right-hand sides of the new equation separately, in two type-in steps. Figure 

1 (d) shows the moment when the student has just typed in the left-hand side.  



  
 (a) A given equation (b) Selecting an action 

  
 (c) Entering a value to be added (d) Typing-in a left-hand side 

Figure 1: Screen shot for the Algebra I Tutor.   

In summary, three problem-solving steps correspond to a single equation-transformation 

step, which transforms one equation into another. Sometimes, however, the tutor carries out the 

type-in steps for the student, especially when new skills are introduced.  

When a student makes an error, the tutor provides feedback. The student can also ask for a 

hint (by pressing the “[?]” button on the left side of the tutor window) when he/she gets stuck.  

Every time a student performs a step, the tutor logs it. In this study, we are particularly 

interested in the following log information: (1) The place where the step was made, called 

Selection. This corresponds to an element on the graphical user interface, e.g., the left-hand side 

of an equation, or a pull-down menu on the menu bar. (2) The name of the skill used, called 

Action, which is either the name of the algebraic operation selected from the menu for an action 

step, or the symbol “type-in” for a type-in step. (3) The value entered, called Input. For example, 

the value specified (12.29 in Figure 1 (c)) to be added to both sides for the “add” action step 

mentioned above, or the left- and right-hand side entered for the type-in steps. (4) The 

correctness of the step, which is either “correct”, “error”, or “hint” (when the student asked for a 

hint).  

Using the first three pieces of information mentioned above, a problem-solving step is 

represented with a tuple <Selection, Action, Input>. The tuple plays an important role for 

SimStudent’s learning, as described in section 4.2.  

3.2. Cognitive model and model-tracing 

As mentioned above, the tutor provides immediate feedback on the steps. This is possible 

because the tutor has a cognitive model, represented as a set of production rules that are 

sufficient to perform the target task. A cognitive model can include both correct and incorrect 

(called “buggy”) production rules. When a step is performed by a student, the tutor attempts to 

find a production rule that matches the step. This technique is called model-tracing.  

4. The Architecture of SimStudent 

This section is a brief overview of SimStudent. We first explain how SimStudent learns 

cognitive skills from demonstrations. The double meaning of “demonstration” in the current 

context is then explained – a demonstration by an author who is building a Cognitive Tutor, and 



a “demonstration” in the tutor-interaction log representing a real student’s performance. Due to 

the space limitation, we only provide a brief overview. See Matsuda et al [1] for more details.  

4.1. Modeling student-tutor interaction in the Algebra I Tutor 

SimStudent learns a single production rule for each problem-solving step demonstrated. In 

the most general case, when demonstrating a step, the demonstrator must specify two additional 

things: (1) a skill name, and (2) a focus of attention.  In the study using Algebra I Tutor log, 

however, both of these could be derived without explicit specification as explained below. 

The skill name must be consistent across problems throughout the demonstration. In the 

Algebra I Tutor, the skill name for an action step is an abbreviation of the action name shown in 

the tutor interface. For example, in the step shown in Figure 1 (a-c), the skill name to select 

“Add 12.29 to both sides” is called “add.” The skill name for a type-in step consists of the skill 

name of the corresponding action step and “-typein.” So, for example, the skill name for the 

type-in step shown in Figure 1 (d) is called “add-typein.”  

The focus of attention is the set of elements on the tutor interface used to determine what 

action is to be taken. For example, the problem-solving step shown in Figure 1 (b) – “add 12.29 

to both sides” – requires two elements, “5.37” and “-12.29+5.53y” as the focus of attention. 

There is, however, an issue in getting the focus of attention when SimStudent is used to model 

real students’ performance – the real students do not indicate their focus of attention. We have 

assumed that both the left-hand side and right-hand side are used as the focus of attention for the 

action steps. For the type-in steps, we presume that the skill name and the expression 

immediately above the expression to be typed-in are the focus of attention. So, for example, for 

the type-in step shown in Figure 1 (d), where “5.37+12.29” was typed-in, the skill name “Add 

12.29 to both sides” and the expression “5.37” are used as the focus of attention. 

4.2. Learning algorithm 

Production rules learned by SimStudent are written in the Jess production rule description 

language [12]. A production rule consists of three major parts: what, when, and how.  The what-

part specifies which elements of the tutor interface are involved in the production rule.  The 

when-part shows what feature conditions must hold among the elements in the what-part for a 

production rule to be fired. The how-part specifies what computation should be done with the 

what-part to generate a correct “Input” (described in section 3.1).  

SimStudent utilizes three different learning algorithms to learn these three parts separately. 

The what-part is learned as a straightforward generalization of the focus of attention. Each 

element in the focus of attention can be identified uniquely in terms of its location on the tutor 

interface. Constraints on the location are generalized from the most specific description using 

absolute positions (e.g., the 2nd and the 3rd cells) to the most general description that represents 

arbitrary elements (e.g., any two cells). A moderate generalization uses relative locations (e.g., 

two consecutive cells).  

SimStudent uses FOIL [13] to learn the when-part. The target concept is the “applicability” 

of a particular skill given a focus of attention. When a step for a particular skill S is 

demonstrated, the instance of demonstration serves as a positive example for the skill S and a 

negative example for all other skills. We provide FOIL with a set of feature predicates as the 

background knowledge with which to compose hypotheses for the target concept. Some 

examples of such feature predicates are isPolynomial(_), isNumeratorOf(_,_), 

isConstant( _ ). Once a hypothesis is found for the target concept, the body of the hypothesis 

becomes the what-part on the left-hand side of the production rule. For example, suppose that 

FOIL found a hypothesis S(A, B) :- isPolynomial(A), isConstant(B) for the applicability 

of the skill S. The left-hand feature condition for this production rule says that “the value 

specified in the first focus of attention must be polynomial and the second value must be a 

constant.” 

SimStudent uses iterative-deepening depth-first search to learn an operator sequence for the 

right-hand side of the production rules. When a new instance of a particular skill is 



demonstrated, SimStudent searches for the shortest operator sequence that derives the 

demonstrated action (i.e., the “Input”) from the focus of attention for all instances demonstrated 

thus far. The operators are provided as background knowledge. 

5. Modeling Real Students 

How well does SimStudent predict real students’ performance? How often does SimStudent 

make incorrect predictions, whether reporting a correct step as incorrect or an incorrect step as 

correct? To answer these questions, we analyzed SimStudent’s fidelity at predicting human 

students’ performance. We are interested not only in how well SimStudent predicts real 

students’ correct steps, but also – or even more, for educational purposes – in how well it 

predicts incorrect steps. 

5.1. Data: Tutor-interaction log  

The students’ learning log data were converted into problem files. Each problem file 

contains the sequence of problem-solving steps made by a single real student for a single 

equation problem. There are three types of steps: correct, buggy, and error. The correct steps 

are those that were model-traced with a correct production rule by the Carnegie Learning Tutor. 

The buggy steps are those that were model-traced with a buggy production rule. The error steps 

were not model-traced either with a correct or a buggy production rule.  

There were 1897 problems solved by 81 individual human students. There were a total of 

32709 problem-solving steps. These steps contain 21794 (66.7%) correct steps, 2336 (7.1%) 

buggy steps, 4567 (14.0%) error steps, and 4012 (12.3%) hint seeking steps
2
. Since the Algebra 

I Tutor already has a wide variety of buggy rules based on empirical studies, the buggy steps 

likely capture a fair proportion of the incorrect steps that the human students are likely to make. 

Furthermore, we have found (by manually verifying data) that most of the error  steps are likely 

to be due to slips and random errors in using the tutor interface, which makes the error steps 

most challenging to be modeled. Thus, we only used correct and buggy steps for the current 

evaluation.  

5.2. Method: Validation 

For each individual human student, we have taken the first 15 problems for training and the 

following five problems for testing. Using these problems, the validation was conducted for 

each individual human student separately as follows: 

 
For each of the 15 training problems 

Train SimStudent on the correct and buggy steps  /* learning */ 
For each of the five test problems 

Attempt to perform the correct steps  /* validation */ 

 
Production rules had been updated each time a five-problem validation test was taken place. 

Notice that only the steps correctly performed by the real student were used for validation. This 

is because we are evaluating whether SimStudent could correctly predict if a real student would 

successfully perform a step or not. A student’s performance on a step is coded as “success” if 

the first attempt at the step is correct; otherwise it is coded as “error.” The Cognitive Tutor 

forced real students to perform each step repeatedly until correct in order to proceed to the next 

step. Therefore, a chain of correct steps in a log for a single represents an entire solution for the 

problem. Hence, for our purpose, it is sufficient to have SimStudent perform only those solution 

steps: if SimStudent cannot correctly perform a step, it is a prediction that the real student would 

also fail to perform that step correctly on the first attempt.  
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 Asking for a hint is logged as a problem-solving step. As mentioned in section 5.3.2, whenever 

a real student asked for a hint on a step, the student’s attempt was coded as “error.”  



5.3. Result: Analysis of prediction 

59 students solved at least 20 problems. On average, there were a total of 116.8 correct and 

buggy steps in the 15 training problems, and 55.6 correct steps in the five test problems.  

There were 10 different skills in the log data.  One skill appeared in the training problems 

very rarely (27 times total across the 59 students) and hence was excluded from the analysis. 

The remaining nine skills included five skills for the action steps (add, subtract, multiply, divide, 

and clt, which is to “combine like terms”) and four skills for the type-in steps (add-typein, 

subtract-typein, multiply-typein, and divide-typein).  

We first show the overall performance of problem-solving attempts and then discuss the 

analysis of predicting real students’ performance.  

5.3.1. Learning curve – how well did SimStudent learn cognitive skills? 

Figure 2 shows the average ratio of successful attempts at performing steps in the test 

problems, aggregated across all skills and students. The x-axis shows the number of 

opportunities that SimStudent had had to learn the particular skills whose performance is shown 

on the y axis at that point. 

The average ratio of successful 

attempts increased as the 

opportunities of learning increased. 

After training for 16 times, more 

than 80% of the steps in the test 

problems were performed correctly. 

This result shows that 

SimStudent did actually learn 

cognitive skills from the tutor-

interaction log of the real students. 

Below, we will explore two further 

issues: How many correct steps in 

the test problems were predicted as 

correct?  Did SimStudent learn 

overly general rules that had a 

tendency to perform steps 

incorrectly?  

5.3.2. Analysis of errors in predicting real students performance 

The primary purpose of this study is to predict real students’ performance. Hence 

SimStudent should not only perform correctly on the steps in which the real students performed 

correctly but also fail to perform steps in which the real students failed. Thus, a better analysis is 

to count the number of matches between the real students’ and SimStudent’s performance on 

the test problems.  

We define the result of a prediction as follows: first, the result of performing a step is a 

success if there is a production rule fired that reproduces the step correctly; and an error 

otherwise. The real student’s step is a success if he/she performed the step correctly at the first 

attempt; and an error otherwise
3
. We then define a prediction to be (1) true positive (TP), if 

both SimStudent and the human student’s performance were a success, (2) false positive (FP), if 

the SimStudent’s attempt was a success while the student’s performance was an error,  (3) false 

negative (FN), if the result of the SimStudent’s attempt was an error, but the student’s 

performance was a success, and (4) true negative (TN), if both the result of the SimStudent’s 

and the student’s performance were an error. We define the following measures: Accuracy = 

(TP+TN)/(TP+FN+FP+TN), Precision = TP/(TP+FP), Recall = TP/(TP+FN), E[rror]-Precision 

= TN/(TN+FN), E[rror]-Recall = TN/(TN+FP). In this study, we are particularly interested in 

                                                           
3
 This includes cases where the student requested a “hint” on the step. 

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Average of Success

 
Figure 2: Learning curve showing average ratio of successful 

problem-solving attempts aggregated across all skills and all students.  

The x-axis shows the number of opportunities for learning a skill 



E-Precision and E-Recall, because 

SimStudent ought to model not 

only the real student’s successful 

performance, but also errors. 

Figure 3 shows the result of the 

analysis of predicting real students’ 

performance. As in Figure 2, the x-

axis again shows the number of 

opportunities to learn a skill. The y-

axis shows the average for each 

measure aggregated across all 

students and skills. As conjectured 

from the result of the previous 

section, the Recall increased as 

SimStudent was trained on more 

steps – showing the ability for 

SimStudent to learn rules that 

perform steps in which the real 

students succeeded.  

That the Precision stayed high regardless of the number of training examples is rather 

surprising. It turned out, however, that the real students in the current particular log data made 

only a very few error steps – only 15% of the steps in the test problems were error steps and the 

ratio of error steps was stable across the different frequencies
4
.  

Finally, and most importantly, the E[rror]-precision increased slightly, but overall it stayed 

low. This means that SimStudent did not accurately predict real students’ error steps. To our 

surprise, the E[rror]-recall decreased as learning progressed. This indicates that as learning 

progressed, SimStudent tended to learn more production rules that correctly performed those 

steps that were performed incorrectly by human students. In other words, the current 

implementation of SimStudent is not correctly predicting human students’ erroneous 

performance. 

5.3.3. Analysis of errors of commission 

One of the key concerns in the previous analysis is whether and how often SimStudent 

learned overly general rules. To address this issue, we asked SimStudent to show next steps that 

can be achieved for each of the steps in the test problems, and assess the correctness for each of 

these steps. Such evaluation is quite costly, because it requires an oracle for the judgment.  We 

have not implemented the oracle for the analysis just yet. Instead, we have manually gauged the 

correctness of the rule firing by inspecting the conflict set of the production rules each time a 

step is about to be performed by SimStudent. 

We have randomly selected three real students 

from the log data for this analysis. There were a 

total of 102 steps in 15 test problems where 6 

skills (add, divide, subtract, add-typein, divide-

typein, and subtract-typein) were tested.  

Table 1 shows the total number of rules 

appearing in the conflict set during the test. True 

Firing shows the number of production rules 

that, if applied, generate a correct step. False 

firing shows the number of production rules that, 

if applied, generate an incorrect step. On average, 
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 This does not mean that the real students did not learn.  Indeed, the number of error steps 

decreased, but the ratio of error steps to the correct steps stayed the same – there was always 

about a 15% chance that the real students made an error step in this particular data set.  
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Figure 3: An analysis of predicting real students’ performance. The X-

axis shows the frequency of learning. The Y-axis shows the average of 

each measurement aggregated across all students and all skills. 

 Rule firing  

True Firing False Firing 

add 146 22 

add-typein 15 47 

subtract 145 16 

subtract-typein 13 15 

divide 19 35 

divide-typein 14 9 

Total 352 144 

 
 

Table 1: Total number of rules in the conflict set for 

each of the skills.  The False Firing shows the 

number of incorrect rule applications – i.e., if applied, 
the production rule generated an incorrect step. 



there were one or two overly general rules, for each of the steps in the test problem, that lead to 

a wrong step. More surprisingly there were very many opportunities for “add” and “subtract” 

rules to be applied correctly. This observation agrees with the high precision mentioned above. 

It also explains why the E[rror]-recall rapidly decreased as the learning progressed – 

SimStudent quickly learned those rules, which resulted in covering more steps that the real 

students failed to perform correctly.  

6. Conclusion 

Using a genuine tutor-interaction log as “demonstrations” of real students performing their 

skills, SimStudent did learn to generate a student model that can predict more than 80% of the 

correct steps performed by real students.  

However, it turned out that SimStudent does not accurately predict real students’ incorrect 

steps. Predictions are produced by a student model that is overly general hence, by definition, 

covered more steps than it ought to cover – SimStudent correctly performed steps that were not 

performed correctly by real students (low E[rror]-precision).  Also, SimStudent learned rules 

that correctly perform steps, but in a different way than the ones performed by the real students.  

Can we use SimStudent as a pedagogical component for an intelligent tutoring system? 

Currently, the answer leans toward the negative. We are still exploring the issues. One problem 

may be an incorrect model of students’ prior skills. The solution may require different learning 

methods; the current SimStudent is designed for fast construction of cognitive models using 

programming by demonstration, not for student modeling.  
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