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Abstract

An interesting problem in chemical reactor theory is finding bounds or targets on a given performance index in a
reacting system. Moreover, performance of the reactor subsystem has a key impact on the design of other
processing subsystems. It determines the recycle structure of the process, the separation sequence and has a
strong influence on the energy and environmental considerations. However, this area of process synthesis has
seen relatively little development when compared to heat integration and separation synthesis. As with the
design of heat exchanger networks, this approach has evolved into the (discrete and continuous) optimization of
network superstructures as well as the performance targeting of the optimal network prior to its construction.
In this study we review both methods for reactor network synthesis but concentrate on advances with the latter
approach.

The targeting approach is based on geometric interpretations of reaction and mixing. It uses a constructive
approach to find the attainable region; that is, it effectively captures all possible reactor structures and finds the
bounds on the performance of a reacting system. The approach also generates reactor structures which are
candidates for the optimal system. It is however severely limited by the dimensionality of the problem and in
practice only 2 and 3 dimensional problems have been solved. Nevertheless, insights gained from this geometric
approach have led to an understanding of more general properties of optimal reactor structures. In particular the
reactors that make up optimal structures are parallel - series systems of plug flow reactors, CSTR's and
differential side stream reactors. Furthermore, the number of parallel structures is related to the dimensionality
of the problem. In addition, these properties can be embedded within optimization formulations in order to deal
with more complex problems. In particular, we describe several formulations that incorporate simpler properties
derived from attainable region concepts. At this point, this approach is not as rigorous as the geometric
approach but readily extendable to more complex reaction systems. In addition, it can be integrated with other
process subsystems and allows for simultaneous approaches for heat integration, separation structures and
reactor network design. In this way, trade-offs resulting from different parts of the process are properly taken
into account in the optimization.

All of these concepts will be illustrated with numerous examples. Finally, future work will concentrate on the
extension of geometric concepts to more general reactor systems as well as to separation systems. These will
also lead to more compact optimization formulations and the consideration of larger and more complex process
problems.

requirements and byproducts) has a direct impact on the
synthesis of all of the other subsystems.

1. Introduction T h e r e ^ a n u m b e r of r e a s o n s t h a t explain the lack of

Over the last thirty years the field of process synthesis powerful tools for reactor networks. First, reactor design
has matured into an established research area. Significant has a strong experimental component that is driven by the
progress has been made particularly in the synthesis of exploitation of new chemistries. As discussed in the
homogeneous systems related to energy and separation. On previous paper (Mavrovouniotis and Bonvin, 1994) the
the other hand, the synthesis of reactor systems has not exploration of new reaction paths is often the key to
developed to the same degree, despite the fact that the advancing the competitiveness of a process. However,
reaction subsystem is the central focus of most chemical given the competitive nature of the process industries, the
processes and its performance (yield, selectivity, energy primary goal of an experimental program is frequently not

to obtain a detailed kinetic model, but rather to provide the



data necessary to design a scaled-up reactor. Consequently,
the lack of a quantitative predictive model makes the
derivation of systematic synthesis tools difficult.

The objective of reactor network synthesis is therefore
to provide a scoping tool to aid in the design and scale-up
of the reaction subsystem. This approach requires a
predictive model, though not necessarily a mechanistic
one. Moreover, this approach must incorporate the
interactions of other process subsystems in order to exploit
the synergy of a process effectively. However, even with a
predictive kinetic model, the synthesis of reactor networks
becomes difficult. First, there are numerous trade-offs to be
made due to competing reaction and transport mechanisms.
The choice of flow and mixing patterns as well as the
addition and removal of heat at appropriate points is often
impossible to evaluate entirely in an experimental
program. Much more can be done with a predictive model,
but even here these phenomena can lead to very difficult
modeling and optimization problem formulations.
Consequently, some idealization of the process is required.

Perhaps the most common idealizations of reactor
networks occur in the choice of simple reactor types, plug
flow reactors (PFRs), continuous stirred tank reactors
(CSTRs), recycle reactors (RRs), etc. that are common to
undergraduate textbooks (e.g., Levenspiel, 1962; Fogler,
1992). Here several well-known rules have been derived
based on geometric and monotonicity concepts which
apply to simple reaction systems (single reactions,
series/parallel reactions, simple endothermic and
exothermic reactions). However, while these concepts are
expecially useful for single reactions they often cannot be
generalized, or lead to conflicting advice when extended to
more general systems.

A straightforward extension of this approach is to
postulate a network of idealized reactors and perform a
structural optimization on this enlarged network or
"superstructure." This concept was investigated by Horn
and Tsai (1967), Jackson (1968) and Ravimohan (1971)
through the application of optimal control policies. Chitra
and Govind (1985) exploited the extreme limits of recycle
reactors and optimized serial structures of these reactors.
The optimal control approach was again revisited by
Achenie and Biegler (1986,1990) by treating a network of
axial dispersion reactors. The same authors also explored a
serial network of recycle reactors with bypass. A more
general approach to the optimization of reactor
superstructures was taken by Kokossis and Floudas (1990,
1991,1993). Here the problem was formulated as a mixed
integer nonlinear programming problem (MINLP) and a
very rich superstructure of CSTRs and PFRs (actually
serially linked CSTRs) was postulated and the formulation
was solved with generalized Benders decomposition. These
authors also extended the formulation to include
nonisothermal systems, interactions with separation
systems and the consideration of stability in the
synthesized reactor network.

While the superstructure approach can lead to an
effective synthesis strategy, there are a number of

drawbacks. First, because of the nonlinear nature of
reaction processes, it is difficult to determine when a given
superstructure is "rich enough" to deal with general
reaction systems. Second, the resulting problem
formulation contains many nonconvexities with the
possibility of numerous local optima. As a result, global
optimization tools, still under development, need to be
applied here. Finally, the optimal network frequently has a
nonunique structure; i.e., several networks can have the
same yield or selectivity characteristics. As a result, an
alternate approach of bounding or targeting in the
concentration space is extremely useful. Reactor targeting
has an intuitive analog with targets employed in heat
exchanger networks (HENs). In both cases, strong bounds
on network performance can be derived (in terms of
concentrations for reactor networks and energy
consumption for heat exchanger networks) without the
explicit construction of a network. Generally the targeting
information gives useful insights about the global solution
(although not complete information) and is much easier to
obtain.

A powerful concept for reactor network targeting is
that of an attainable region (AR). The notion of an
attainable region stems from Horn (1964) who noted that
once an AR is identified in concentration space for a
particular reaction system, the task of finding an optimal
reactor network is greatly simplified. In particular, by
exploiting geometric properties of attainble regions, a
constructive approach is developed to find a region that is
closed to the operations of mixing and reaction. As a
result, the performance of a reactor network can be targeted
and the network itself can be derived from boundaries of the
attainable region.

This paper reports on the success of AR approaches
for reactor network synthesis and develops a number of
extensions to this approach. In the next section, geometric
concepts for attainable regions are reviewed and a
constructive approach for its approach is outlined.
Moreover, while the constructive approach is most easily
illustrated in two or three dimensions, general properties
for any number of dimensions will be summarized. Section
three extends these concepts to deal with more complex
geometric aspects in AR approach. Of particular interest
here are the incorporation of additional rate processes due to
catalyst mixing and separation. In the fourth section
optimization formulations will also be explored that build
on the concepts of attainable regions. Here we will see that
while these are not as rigorous as the geometric concepts,
they allow us to "see" in higher dimensions in order to
expand an attainable region. The fifth section further
explores reactor network synthesis through the integration
of the reaction subsystem to the rest of the process. Here
optimization formulations are particularly useful to model
the interactions between the reaction, energy and separation
subsystems. Finally, section six summarizes and concludes
the paper.



2. Geometric Concepts of Attainable Regions
for Reaction and Mixing

Definition and Geometric Properties of the Attainable
Region

For a given system of reactions with given kinetics
and given feed(s), the attainable region A for reaction and
mixing is defined as the set of all possible outcomes from
all physically realizable steady state reactors in which the
only processes occurring are reaction and mixing.

Consider a homogeneous, isothermal, constant density
system with species i = 1, .., n participating in the
reactions and where the objective function that we wish to
optimize is only a function of output concentrations of the
various species Q. The AR will lie in the space C = [C\,
C2, ...» Cn} and we define the reaction vector R(C) =
(ri(C), r2(C),..., rn(C)}, where the rate of formation of a
species j, rj, is defined in terms of the concentrations of the
various species Q, i.e. rj(C).

Now consider the geometric interpretation of the two
processes, namely reaction and mixing that we are
considering. If we have a mixture of composition C and
we allow a differential amount of reaction, then the change
in composition dC will be in the direction of R(Q i.e.1

dC = R(C) dx where dx > 0 (1)

If we have a mixture of composition C and mix with
material of composition C*\ then the composition of the
resulting mixture C* lies on the line between C and C^
i.e.

C* = a C + (1-a) C° where 0 < a < 1 (2)

Let us look first at the geometry of two ideal reactors: the
PFR and CSTR, where Cfeed *s the feed concentration and
x the residence time of the reactor. The PFR is described
by:

dC/dx = R(C) where C = Cfeed at x=0 (3)

which describes a trajectory in the space with the reaction
vector R(C) tangent everywhere along the curve. The
CSTR is described by:

Cfeed-C = - (4)

which has the property that the reaction vector R(C) is
linear with the mixing vector (Cfeed - Q and the two
vectors point in opposite directions along the CSTR locus.
Another reactor that will be of interest in the subsequent
discussion is the differential sidestream reactor (DSR). In
this reactor we have plug flow of material along the reactor

with addition of sidestream of composition c99 The DSR
is described by:

dC/dx = R(C) + a(C) (C° - C) where a(C) > 0 (5)

Thus the change in composition at any point along
the DSR must lie between the reaction vector R(C) and the
mixing vector (C° - C). Note that the limiting behavior
of the DSR is either a PFR (a=0) or a CSTR (dC/dx=0).
These are just a few examples of how we can describe a
reactor in terms of the reaction and mixing occurring in the
reactor and from this devise a geometric interpretation of
the reactor. By considering the individual processes of
reaction and mixing, we can show that A must satisfy the
following necessary conditions:

1. All reaction vectors R on the boundary of A,
dA, must be tangent, point inwards or zero.
This follows from the PFR equation, because
if, at some point on 3A, the reaction vector
pointed outwards, then by reaction we could
extend the region.

2 A must be convex. This follows if we had a
concavity in A, we could fill in the concavity
by mixing.

3. No reaction vector R in the complement of A
can point backwards into A. This follows
because if, at some point Ci in the
complement of A, the vector R(Ci) could be
extrapolated backwards into A, then a CSTR
operating with a feed in A could achieve Ci.

A region that satisfies these necessary conditions is a
candidate for the attainable region. Unfortunately we do
not yet have a sufficiency condition for A; however a
region that satisfies the necessary conditions is closed with
respect to differential reaction and mixing, PFRs, CSTRs
and DSRs.

One can construct A in a subset C of the full
concentration space when the objective function, bound or
target depends only on the concentration of the species
defining C and when the rates of formation of the species
defining C* also only depend on C*. The space can also be
extended to incorporate variables other than concentration
variables provided the new variables obey linear mixing
laws, and can be incorporated in the definition of R.
Examples of such variables are residence time in constant
density systems and specific enthalpy. We can also extend
this approach to non-constant density systems by using
mass concentration variables as discussed by Hildebrandt
et. al. (1990).

Once we have found A, an optimization problem can
be solved relatively easily by searching over A to find
where the objective function is optimized. The optimum
can either lie on dA or in the interior of A. If the
optimum lies in the interior of A, we can achieve this
point in infinitely many different ways and in particular by
mixing between appropriate points on 3A. We first look



at the geometric properties of 3 A and how we can interpret
these properties in terms of the combination reaction and
mixing occurring in dA. By understanding the geometry,
we will be able to translate this combination of reaction
and mixing to determine the reactor structures that make up
3A.

The Geometry of the Boundary of Attainable Region

Results of the AR concepts are summarized below for
9tn. These are developed and proved in Feinberg and
Hildebrandt (1994). Firstly, 3A is the union of straight
lines and surfaces along which R is tangent. We interpret
the surfaces as the union of PFR trajectories. This tells
us that the structure of the boundary is rather simple and
that the complexity of the reactors that make up the
boundary is in fact fairly limited. If the objective function
is optimized on a curved section of dA the optimal reactor
structure that would produce this material will have a PFR
as the last unit in the structure.

We next look at how the straight lines intersect the
surfaces made up of PFR trajectories; we will refer to these
intersections as connectors. When there is no unique
tangent support hyperplane along the connector (i.e. PFR
trajectories and straight lines do not intersect smoothly),
the connector is itself a surface along which R is tangent
and is thus a union of PFR trajectories.

If the PFR trajectories and the straight line sections do
intersect smoothly, the tangent support hyperplane is
uniquely defined along the connector and the mixing
vectors and reaction vectors lie in the support hyperplane.
We are really only interested in when the connector
corresponds to feed points to the PFR trajectories, which
will occur if the reaction vectors point away from the
connector. This geometry implies that the connector is the
union of CSTR operating points and DSR trajectories. We
now look at the construction of A and at what these results
imply in 2 and 3 dimensional space.

General results in Sft̂ .

In 9t 2f J)A JS th e Union of straight lines, PFR
trajectories and equilibrium and feed points. Consider the
sections of 3 A made up of alternating PFR trajectories and
straight lines. When one end of a straight line is a feed
point to a PFR, this point, a connector, is achieved by a
CSTR with its feed point being the other end of the
straight line. Thus in SR ,̂ the reactors that lie in 3 A
consist of alternating PFRs and CSTRs in series - parallel
arrangements. We need at most 2 parallel structures to
achieve any point in the boundary of the AR and at most 3
parallel structures to achieve any point in the interior of
the region. No DSR is found to lie in the boundary of the
AR in 2-dimensional examples. The construction of the
AR is particularly easy in 2-dimensional space and a
general construction algorithm can be given.

1. Start from the feed point and work toward
equilibrium or endpoint by drawing a PFR
from the feed point

2. If there is a concavity in the PFR trajectory,
then straight lines would be drawn to fill in
the concavities and find the convex hull of the
PFR trajectory. If there is no concavity then
we have found a candidate for dA and stop.

3. Else, we check along the straight line sections
of the convex hull to see if reaction vectors
point outwards. If no reaction vectors point
outwards then we have a candidate for dA and
stop.

4. Else, there exists a CSTR locus, starting from
the PFR trajectory, that intersects the straight
line at the point where the reaction vector
becomes tangent. We then draw in the CSTR
locus, with feed on the PFR trajectory, that
extends the region the most. (Be sure to
include all solutions (branches) if the CSTR
can exhibit multiple steady states.) We next
find the convex hull of the new extended
region by filling in concavities in the CSTR
locus. (The straight line that fills in the
concavity from the feed point on the CSTR
locus should not have reaction vectors
pointing outwards if we have chosen die feed
point to the CSTR correctly.)

5. Next, draw in a PFR trajectory from the end
of the straight line filling in the CSTR
concavity. If the trajectory is convex, then we
have a candidate for 3A. Otherwise, repeat
from step 3 until ail the concavities are filled
in and have reached the equilibrium point

Note that this algorithm can also be applied to higher
dimensional problems that can be projected into a two
dimensional space. For example, Omtveit and Lien (1993)
applied the principle of reaction invariants (Fjeld et al,
1974) to reduce the size of a steam reforming problem to
two dimensions and then construct the AR.

We illustrate this approach by means of an example
based on van de Vusse kinetics.

klf
A » B Cand 2A (6)

The reactions are elementary and the rate constraints are as
follows: klf = 0.01, klr = 5, k2 = 10 and *3 = 100- We
assume that the feed is pure A where C^ = 1 and we define

C = ( C A , C R ) where R = (-O.OICA + 5 C B - IOOCA2 ,

O.OICA - 5 C B - IOCB). Applying the above procedure,
both A as well as the reactors that make up dA are shown
in Figure 1. We can see that although we have 4 different
reactor structures lying in dA, the individual structures are
simple combinations of CSTRs and PFRs. An advantage
of the constructive approach is that we can give geometric



conditions for the critical operating points in the boundary,
in this case points F and H. Point F is defined where the
reaction vector, the tangent vector to the CSTR locus with
feed A and the line AF are all collinear. Point H is defined
as the point where the reaction vector on the PFR
trajectory with feed F is collinear with the line from the
origin.

Once we have determined A, we are in a position to
solve any optimization problem where the objective
function is a function of the concentration of A and B
only. Thus for example if we wanted to maximize the
concentration of B at some specified conversion of A, we
could read the answer off from Figure 1 and we could also
determine the optimal reactor structure as well as the
operating conditions of the various reactors in the
structure.

General results in 9j3

The reactors that lie in dA in 9& are a series-parallel
arrangement of PFRs, CSTRs and DSRs. At most 3
parallel structures are needed to produce a point that lies in
dA while at most 4 parallel structures are required to
achieve a point in the interior of A. The most common
side stream addition arrangement in the DSR will be the
addition of either an equilibrium or feed point. The DSR
that lies in the boundary of the AR also lies in the surface
described by:

R(C) x dR(C) = 0 (7)

This property stems from a lengthy derivation of the
connector relations and states that, at the connector, the
change in the reaction vector projected along the mixing
vector must lie in the plane spanned by the reaction and
mixing vectors. Furthermore, from (7) we determine the
sidestream addition policy so as to keep the DSR in the
above surface. Thus a can be determined by:

d(|>/dT = V(|>(C)-dC/dT = V<|>(C)-(R(C) + oc(C°-C)) = 0 (8)

At present we have only a trial and error construction
method for 3-dimensional examples, but we do know that
if we propose a region, we can test whether the region
satisfies the necessary conditions.

An illustration of a typical 3-dimensional attainable
region that can be found from constructing the AR
geometrically is the following. Consider an exothermic,
reversible reaction: A » B, where rA = 5x10^ X exp(-4

OOO/T) + 5xlO8(l-X)exp(-8OOO/T),X = CA/C5,, C% is
the feed concentration of A (pure A) and T is temperature.
Let us look at the problem of finding the minimum
volume of reactor for a given conversion of A. We have a
feed of pure A at a temperature of 300 K and in addition to
reaction and mixing, we are allowed to preheat the feed or a
portion of the feed up to 400K. We can choose how much
of the feed to preheat and its preheat temperature. We

assume constant density, constant heat capacity with ideal
mixing. The energy balance for an adiabatic reaction is: T
= Tb + Tad(l-X)y where T is the temperature in K, Tad is
the adiabatic temperature rise (200 K) and T5 is the basis
temperature if the mixture were adiabatically reacted to
form pure A. The AR can be constructed in SR^ where C
= { C A » T, X) and x is the residence time. These variables
(because of the assumptions used) follow linear mixing
laws. We can also define a reaction vector R = {rA, -TadrA»
1}, Note that the new variables T and x follow mixing
laws and can be incorporated in R for the construction of
A. The region for this example was constructed in Glasser
et ai (1992) and is shown in Figure 2. The reactor
structures that make up the boundary of the region are also
shown on the figure. The DSR lies in the surface defined
by <KQ which simplifies in this case to:

3rA/3X(X-l) + drpJ^T (T-300) = 0 (9)

Again notice from Figure 2 that there are a great number of
different optimal reactor structures that form dA but all of
these structures are very simple series-parallel
combinations of the 3 basic reactor units.

We have constructed A for various 2 and 3
dimensional examples. We do not yet know, however,
how to construct the region in higher dimensional spaces.
The above results, on the other hand, have important
implications as to the types of reactor structures that
should be considered in optimization or targeting
approaches in higher dimensions

The reactor structures that need to be considered are
only series -parallel arrangements of PFRs, CSTRs and
DSRs. This means that we need not consider recycle
reactors and other complex types of reactors and we can
thus discard a very large number of possible structures
immediately. We also do not need to include recycle
within the structure itself, which also adds considerably to
the simplicity of the structure.

Generally, the maximum number of parallel branches
needed in the structure is related to the dimensionality of
the problem. A point in the interior of A can be achieved
by infinitely many different reactor structures; we can
however achieve the point by mixing between (n+1) points
on dA (as is consistent with our two and three dimensional
observations). This means we can achieve any point by
mixing the output of at most (n+1) parallel optimal
structures where each parallel structure consists only of
PFRs, CSTRs and DSRs. Moreover, the equilibrium
points, corresponding to dC/dx = 0, of DSR trajectories are
CSTR operating points. Thus, by using only CSTRs and
PFRs once can expect to achieve a reasonable
approximation of A. This again reduces the complexity of
the reactor superstructure that we need to consider for a
particular problem.



3. Multirate Processes and Geometric Concepts

We can extend the concept of the AR for reaction and
mixing to include more processes. The processes we can
include must be described by the vector field, P(C), in the
space of the variables C. The field P(C) must be such that
if we have a mixture of composition C and we allow the
process to occur differentially, then the change in
composition dC is in the direction of P(C) i.e., dC = P(C)
dx, where dx > 0. Examples of such processes are
separation by boiling and condensing, heating, cooling and
allowing more than one reaction processes such as when
there is a choice of catalyst. An outline of these ideas is
presented in Godorr etal. (1994).

For simplicity in the following discussion we will
regard mixing as a vector process described by Pi = (C-
C^), where both C and C*e A. The set of processes that
are allowed are thus mixing Pi , reaction P2 = R, and
processes P3, P4 ..., Pm . We can incorporate all of these
processes into P = {Pj} where i=l,..,m. Geometrically we
can say that at every point C in the space, there is a set of
vectors defined such that the vectors point in the directions
of change in C that can be achieved locally by allowing the
individual processes Pi to occur differentially.

For a system of reactions with given kinetics and
feeds, the AR is defined as the set of all possible outcomes
from all physically realizable steady state systems in which
only the processes defined in P are occurring. Thus, the
necessary conditions and results given for reaction and
mixing can be extended to incorporate the processes P.
Firstly, along dA the components of P must not point
outwards, that is they must be tangent, point inwards or
zero. (This also implies that if Pi 6 P, then A must be
convex if Pi is not to point outwards over dA). Other
necessary conditions could be added including those that
cover processes which could have multiple steady states.

Furthermore, we can make the following assertions
about the properties of dA. For example, dA would be
the union of trajectories tangent to single vector processes
Pj. The equipment needed to achieve a point on a
trajectory of dA will have a unit in which only a single
process is occurring as the last unit in the structure. Thus
the equipment could have a section which can be heating
only, reaction only or boiling only before the material
exits the equipment

Where do these trajectories originate from? Consider A
in 9tn where we have k(n-l)-dimensional hypersurfaces Sk
that lie in dA, where k < m and which intersect. Let the
surfaces be such that each surface Si, i=l,...,k, is tangent
to one of the elements of P and that all the other elements
of P point into A. Furthermore, let each surface Sj be
tangent to a different element of P. For simplicity let us
assume that surface Si is tangent to Pj. Surface S[ can
thus be regarded as the union of trajectories which are
tangent Pi.

Consider now that k=2 and suppose that Si andS2
intersect smoothly and, furthermore, that Pi and P2 point
away from the intersection. The intersection will be an (n-
2)-dimensional hypersurface in dA and we can again call
the intersection a connector. The support hyperplane to
this connector will be tangent to both Pi and P2. It
follows that this connector is the union of trajectories
described by a differential equation which is a linear
combination of Pi and P2- When k=3 and Si,S2 and S3
intersect smoothly, this connector/intersection will be an
(n-3)-dimensional hypersurface in dA, and Pi, P2 and P3
will be tangent to the support hyperplane along the
connector. If we consider only connectors that are feed
points to the trajectories, i.e. connectors where Pi, P2 and
P3 point away from the connector, then this connector is
the union of trajectories which correspond to a
process/operation defined by a differential vector equation
which is a linear combination of Pi, P2 and P3.

We can further generalize these ideas. Firstly, n
processes will operate simultaneously at isolated points in
d A . Similarly, (n-1) processes will operate
simultaneously along a 1-dimensional curve in the
boundary of dA. In general, (n-m) processes will operate
simultaneously along an (m)-dimensional hypersurface in
dA, where 0<m<n. We should then be able to translate
this geometry into equipment or a unit process. Notice
that the processes making up dA will again come out of
the construction of A and do not have to be specified.

These results, together with the previous results
regarding the number of parallel structures needed, can be
used to propose a suitable candidate for the targeting
approach. We could propose that the optimal structure
would be series-parallel arrangements of units described by
differential equations that are linear combinations of the
individual elements of P. We should be able to relate these
structures to unit operations or process equipment. If we
allow mixing, condensing and boiling, the type of
equipment that should be used will come out of the
construction and it may turn out, for example, that
distillation columns are not optimal and some other
combination of flashes and mixing is better. (However, if
the distillation column is described by a differential
equation, as in van Dongen and Doherty (1985), then the
resulting equation is a linear combination of a mixing
vector and a vector describing boiling and thus can be a
trajectory in dA.)
These results reduce the complexity of the required
structure as well as the types of units that need to be
considered in a proposed structure. A limitation of the
approach is that it currently works only for single input
single output problems, and many practical problems, for
example, separation have multiple outputs. We are
currently looking the implications of multiple outputs on
the geometry. Moreover, the constructive approach to
finding A in these types of problems is also limited by
constructions in 9?^ an(j <R3 However, it is of interest to
look at a few of these examples to illustrate the ideas and
the implications of the geometry.



Reaction and Mixing with Catalyst Profile Optimization

The following problem has been looked at by various
researchers. Suppose we are given two different catalysts
that catalyze different sets of reactions. We wish to choose
the reactor as well as the catalyst profile in the reactor in
order to minimize the total catalyst volume used to produce
some specified product. Given the following kinetics,
catalyst 1 catalyzes the following two reactions:

Reaction 1: A<=>B where TAI =

Reaction 2: A+C«B+C where TA2

and catalyst 2 catalyzes two different reactions:

Reaction 3: A<=>C where rA4 =

(-k5CA+k6CC)/(l+kpCi)

Reaction 4: A+B»C+B where rA4 =

We are given that the feed is pure A ( C A = 1 ) a n c * w e

are allowed to use 3 processes: reaction with catalyst 1
which we will describe by reaction vector R\9 reaction
with catalyst 2 which we will describe by reaction vector
R2 and mixing. The reaction constants are ki=k5=2,
k2=k6=l, k3=k7=60, k4=ks=10 and kp=20. We can
construct A in 91 ̂  S p a c e where C = ( C B , C C , X). The
reaction vectors are thus given by Ri = (rAl+i*A2Al) and
R2 = (0*i*A3+rA4»l)- We can thus see that Ri is parallel
to the CB axis and R2 is parallel to the Cc axis. The
solution to this problem is given in Godorr et. al. (1994)
and the results for this example are shown in Figure 3.
The projection of A onto C B - C C space together with the
various optimal reactor structures are given in Figure 3.
Note that LSRQC is the equilibrium for the system while
O is the feed point.

Connectors PN and PM correspond to DSRs and lie in the
2-dimensional surfaces defined by equation (7), where the R
refers to the relevant reaction vector. The mixing policy is
described by d<|>/dT = 0. Connector PR, on the other hand,
is a new kind of connector. The PFR with mixed catalyst
is described by:

dC/dx = (1-P) Ri(C) + p R2(C) where 0<P<l (10)

and the connector lies in the 2-dimensional surface defined
by:

<D(C)=Ri(C)x R2(Q-{dRi(C) R2(Q - dR2(C) Ri(C)}= 0
(11)

Finally p, the fraction of catalyst 2 along the PFR, must
be chosen to keep the mixed catalyst trajectory in the
surface described by O(C) = 0. Thus from dO/dx = 0:

VO(C)- dC/dx = V<D(C) -{(l-p)Ri(C) + p R2(C)} = 0 (12)

Lastly, all 3 connectors intersect at point P, which
corresponds to a point where all 3 processes occur
simultaneously. Thus we interpret this as a CSTR with
mixed catalyst. This example demonstrates all the types of
connectors that were described earlier in the discussion.

Reaction, Mixing and Separation by Evaporation

We also consider the contribution of boiling to our
multirate processes. If we have a liquid mixture with
species i=l,..,n, where the mole fraction of species i of Xi
we can describe the composition of the liquid by X = (Xi,
..., X n . i ) and assume that the liquid molar density is
constant. If we allow simple boiling (at constant pressure)
to occur such that the vapor removed is in equilibrium
with the liquid, we can describe the change in the
composition of the liquid by:

dX/dx = N(X-Y(X)) =NS (13)

where N is the molar rate of vapor removal per unit
volume, Y is the mole fraction vector describing the vapor
composition in equilibrium with the liquid of composition
X and x is a scalar parameter. We will refer to S = (X-
Y(X)) as the separation vector. We can also define a
reaction vector R(X) at every point in X.

Consider now an example in 9?^, where we have
A » B » C and X = ( X A , X B ) . Let us suppose that the
reactions are first order and that R = (-kifXA+kirXB.
kifXA-kirXB-k2fXB + k2rO-XA-XB)). We wish to find
the maximum mole fraction of B that can be obtained for
some specified mole fraction of A using reaction, mixing
and separation by boiling only. Note that we are assuming
that the vapor that is boiled off is "lost" and that it is not
condensed and returned to the system. We have a feed of
pure A and we adjust the temperature of the mixture to
keep it as its bubble point assuming that the liquid and
vapor behave ideally i.e. YiP° = Xi p.VaP, where P° is the

total pressure (1 bar) and pVaP is the vapor pressure of
pure i. The temperature dependence of the vapor pressures
is given by a + b T (in °C), with a=0.4, 0.5 and 0.3 for
components A, B and C, respectively, and b = 0.005 for all
components. Thus S = ( X A - X A P X a p ( T ) / p 0 . X B -
X B P B a p ( T ) / p 0 ) and T is defined implicitly by:
S(Xi pVaP (T)/P°)= 1. We can find A for this problem and
we would expect that at most 2 processes operate
simultaneously at a point in dA and that nowhere in dA
can all 3 processes occur simultaneously. Thus we would
not expect to find, for example, a CSTR with



8

simultaneous reaction and boiling (3 processes occurring
simultaneously) or even a PFR trajectory with
simultaneous reaction and boiling in dA. If we have
simultaneous mixing and boiling occurring at a point (i.e.
a flash) we would find that the feed composition Xfee (j
would lie between X and Y on S. As the magnitude of S
is generally not large, this means that the flash will not
extend the region very much, if at all. We subsequently
would not expect the flash to play an important role in
extending dA.

The structures that make up dA arc in fact very simple
and are shown in Figure 4. A PFR trajectory from the feed
point operates between AB, the PFR trajectory is convex
and S points inwards along the trajectory. B corresponds
to reaction equilibrium. At B separation by boiling moves
us along BCD which is concave. We can fill in that
concavity by mixing B and D. Both R and S point
inwards along line BD and so we claim that this region is
fact A.

Note that one of the differences between this example
and all the previous ones is that it is not clear from the
construction how much material can be produced, as once
we allow boiling, the quantity of material varies depending
on how much vapor we have removed. Thus although all
compositions along line BD can be achieved, the points
along line BD correspond to different quantities of product.

Again, notice that in order to achieve a point on dA,
we at most need 2 parallel structures with mixing at the
outlet of the two structures. The dA is made up of curves
along which only single processes are occurring, in this
case reaction along AB and mixing along BD. In this
example we do not have any points in dA where two
processes operate simultaneously.

If we changed the vapor pressure relationships such
that A had the lowest boiling point of the three
components, then we would find that the whole mole
fraction space was achievable in the limit by separation
alone. Finally, it appears that we would have to look at
9*3 or higher to find interesting examples where reaction,
mixing and separation occurred simultaneously.

4. Optimization formulations for higher
dimensions

The previous two sections demonstrated the
effectiveness of geometric concepts and constructions to a
wide variety of synthesis problems. While geometric
concepts lead to powerful tools for visualizing and
constructing an AR in concentration space, obtaining this
region can be much more difficult in higher dimensions. In
this section, on the other hand, we explore an
optimization-based formulations for reactor network
targeting. This approach applies many of the concepts of
attainable regions from the previous section and poses
them as optimization problems. This allows the designer
to probe in higher dimensional spaces (in principle,
without limitation) without the need of visualization. As
developed so far, optimization-based formulations consist

of small nonlinear programming problems (NLPs) that
describe the performance of PFRs and CSTRs and lead to a
analogous approach for determining the attainable region.
This NLP approach has a number of advantages as well as
shortcomings.

In particular, it should be noted that NLP formulations
do not entirely replace insight gained from the construction
of an attainable region. With geometric constructions, one
obtains a family of reactors that is complete in
concentration space. The NLP approach rather finds the
family of reactors within an attainable region that improve
a given objective. Here one assumes that steady
improvement can be found for each NLP extension of the
attainable region. This is not always possible and, as a
result, the NLP-based procedure can terminate in
suboptimal networks. Moreover, the optimization-based
targeting approach has only been tackled with local
optimization methods, and solutions arc obtained without a
guarantee of a global optimum.

On the plus side, however, nonlinear programs can be
formulated for arbitrarily large problems without restriction
as to the features of the kinetics. As will be seen below,
these formulations are quite easy to solve even for
demanding kinetic problems. Moreover, while simple
constraints can be incorporated into geometric
constructions, the NLP approach offers greater flexibility
in posing and synthesizing constrained reactor networks.
This characteristic has its greatest advantage when
integrating the reactor network within other process
subsystems, as described in section S. This integration step
is done quite naturally with optimization based
formulations as links from other parts of the process are
treated directly through equality and inequality constraints.

The NLP-based targeting strategy is summarized in
Figure 5. Again, the basic properties of the attainable
region are exploited and a constructive approach is
developed in order to determine whether the best objective
in the attainable region (but not the entire region itself) has
been found. Here we modify the AR description slightly
and first consider ARs in segregated flow, rather than
simple PFRs. For isothermal problems, the segregated
flow or PFR profiles arc generated off-line by solving the
rate equations:

and form the data for the problem given below:

Max J(Xexit.x)
f(0

OO

Xexit = J f(0 X s e g (0 dt

(14)

J tf(t)dt = x J f(t)dt = 1
0 0

Here, f(t) and Xseg(t) correspond to the residence time
distribution and the dimensionless concentration vector



(e.g., C(t)/Cfeed)» respectively. It follows from section 2
that if the problem can be represented in two dimensions
and if the PFR profiles are convex, then solution of (14)
yields the optimal network and the attainable region is
given by at most two plug flow reactors. Moreover,
discretization of the integrals yields a simple linearly
constrained nonlinear program (NLP). In fact, when the
objective is yield or selectivity, (14) is easily solved as a
linear programming problem. Balakrishna and Biegler
(1992) also considered convex two dimensional projections
for multi-dimensional problems and derived more general
conditions under which PFR profiles remain sufficient for
constructing the attainable region.

If PFR trajectories are insufficient, however, the
attainable regions can be enhanced by NLP formulations
that describe CSTR or RR extensions. Strictly speaking,
any attainable region that is closed to CSTRs is also
closed to recycle reactors, and vice versa. An advantage to
the recycle reactor formulation is that it can model both
plug flow and CSTR extensions. From any point within
the segregated flow region, recycle reactors are sought to
improve the objective at points outside of the attainable
region, as shown in the formulation below:

Max J (Xexit)
fmodel(k)

( 1 5 )

dt

Xrr(t=0) ;
+ Xypdate

Re

Xupdate= J f(0 X s e g (0 dt
0

(or XUpdate= previous point if further reactor extensions),
oo

Xexit = J frr(O Xrr (t) dt
0

I f(t)dt = 1, J frr(O dt = 1

Problems (14) and (15) are used in the algorithm of
Figure 5. (15) is augmented by any additional extensions
and an optimal network is claimed when no further
improvement can be found by these formulations. As
mentioned above, an important limitation is that an
improvement in the objective is sought with every
extension to the attainable region. However, there are cases
where the attainable region can be extended without
improving the objective - and from these extensions further
improvements could still be found. This approach has been
applied by Balakrishna and Biegler (1992a) to several
isothermal examples, with as many as seven independent
reactions. Their results are at least as good as or better than
previous literature results.

Finally, the NLP formulation can be extended
naturally to systems with variable feeds compositions and
to nonisothermal systems with arbitrary temperature

profiles. To deal with unknown or variable feed
compositions, the formulation in (14) can be solved
recursively in an inner loop with PFR profiles generated
off-line for different feed conditions. This mimics the
geometric approach where different attainable regions are
constructed for a variety of feeds. However, a more direct
approach involves a simultaneous NLP formulation that
incorporates changes in segregated flow behavior, a
differential equation model, with changing initial
conditions. To reflect these in a nonlinear programming
formulation, the differential and integral equations need to
be discretized to algebraic equations. A natural way to do
this is through collocation on finite elements. As a result,
formulation (14) is transformed to:

Max (16)

h(Xseg(t = O), XeXH, y) = 0

Xexit = | f(0 Xseg (t) dt

J f(t) dtJtf(t)dt =

1 < xmax

and solved as a discretized NLP. To generate extensions to
the attainable region, the constraints related to recycle
reactor behavior in (IS) can be added as before and the
algorithm in Figure 5 can be executed in the same manner.
As will be seen in section 5, the simultaneous formulation
allows for a natural integration with other flowsheet
subsystems. In particular, trade-offs are established among
these subsystems in a direct manner.

To deal with nonisothermal systems, formulation (16)
can be extended to add decision variables which describe
optimal temperature profiles. In a similar manner as with
(15), recycle reactor and CSTR extensions can also be
added to expand the attainable region. Here each of the
reactor extensions is allowed different temperatures as well.
Finally, for purposes of heat transfer, and by extension,
energy integration with other process subsystems, an
effective means of controlling the temperature profile is
through cold-shot cooling with the feed. This introduces
only a slight modification of the nonisothermal
formulation. Instead of an initial scheme based on reaction
in segregated flow, the more general cross flow reactor
model can be introduced as shown in Figure 6.
Discretization of this model with the introduction of
sidestreams at discrete points leads to the following NLP
formulation:

Max J (X e x i t , t) (17)

oc(t),f(t),T(t),
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f - - R(T(t),X) + ^ f i ( X 0

X(0) = XQ

xexit =

oo

J f(t) dt

0

=

X(t) dt

OO

J a(t) dt =

J
0

J J [a(f)-f(f)]dfdt =x
0 0

Here, a(t) is the feed addition profile for the cross flow
model. Note that when f(t) becomes a Dirac delta function,
the cross flow model becomes the DSR model described in
the previous section with the sidestream set to the feed
composition. Consequently, the targeting model is
compatible with the geometric properties presented above.
Balakrishna and Biegler (1992b) discretized (17) using
collocation on finite elements and thus solved this problem
asanNLP.

Again, RR or CSTR extensions similar to (15), or
even further cross flow extensions can be applied to the
attainable region constructed from (17). However, in
contrast to the simplest approaches in (14) and (IS) which
often lead to LP formulations, (16) and (17) are more
likely to lead to local optima. Clearly, the use of global
optimization methods would be advantageous (see Floudas
and Grossmann, 1994) but even with the use of faster local
methods, good solutions to (17) can be obtained through
incremental solutions of simpler problems. For example,
solution of (17) with a fixed feed and temperature profile,
and no sidestreams amounts to solving (14). With that
solution, the feed compositions can be included as
decisions (if desired) as in (16). Later with the solution
from (16) or (14), temperature profiles can be varied and
finally sidestreams can be allowed. While this approach
does not guarantee global optimality, it builds on simple
problem formulations and efficient solution procedures. In
particular, more complex problem formulations are
introduced only as they are needed. Numerous
nonisothermal problems have been solved with this
approach (Balakrishna and Biegler, 1992b). In the next
section we will also see how this approach has advantages
with flowsheet and heat integration.

5. Integration with other process subsystems

Reactor networks are rarely designed in isolation, but
rather form an important part of an overall flowsheet.
Moreover, since feed preparation, product recovery and
recycle steps in a process are directly influenced by the
reactor network, the synergy among these subsystems is a
key factor in establishing an optimum process. Because of
reactant recycling, overall conversion to product is

influenced by selectivity to desired products rather than
reactor yield, as noted by Conti and Patterson (1985).
Douglas (1988) extends this notion of process synthesis by
establishing trade-offs among conversion of raw materials,
capital costs and operating costs. Here, although selectivity
maximimization leads to optimum overall conversion to
product, capital and operating costs affected by high
recycles can improve if reactor yield is maximized instead.
Hence, to balance these trade-offs, Douglas suggests a
reactor network that operates between maximum yield and
maximum selectivity.

A geometric approach to reactor/flowsheet integration
was developed by Omtveit and Lien (1994) where
separations and recycles were incorporated into the
construction of the attainable region. Here, geometric
constructions need to be performed ileratively as the reactor
feed is unknown in the optimum flowsheet Omtveit and
Lien (1994) therefore constructed a family of attainable
regions and used constraints due to reaction limitations to
represent this problem in only two dimensions. This
approach was demonstrated on the HDA process (Douglas,
1988) as well as methanol synthesis. In both problems
the optimal reactor turned out to be a plug flow reactor and
quantitative trade-offs were established between the purge
fraction, reactor yield and economic potential.

While the qualitative concepts mentioned above yield
useful insights for process integration, many quantitative
aspects along with discrete and continuous decisions still
have to be made. A natural way to account quantitatively
for process trade-offs and to represent the interactions of
process subsystems is to develop targeting models based
on NLP and MINLP formulations. Again, as with reactor
network targeting the goal of these formulations is to
predict process performance without explicitly developing
the network itself. Consequently, concepts of attainable
regions are extremely useful here and dimensionality
limitations can be overcome through the NLP
formulations presented above.

For example, with an isothermal network, Balakrishna
and Biegler (1992a) demonstrated the effectiveness of NLP
formulations for flowsheet integration on the Williams-
Otto (1960) process. Originally, the reactor was represented
as a stirred tank with an optimal return on investment of
about 130%. Application of (16) and (IS) shows that much
better performance can be obtained with a single plug flow
reactor and the return on investment more than doubles to
278%.

For nonisothermal reaction systems and flowsheet
integration, energy integration of the reactor network with
separation units and process streams is a key consideration.
Energy integration tools such as pinch technology have
been extremely effective in reducing process operating
costs, especially for existing processes, although often
only the "sequential" energy integration problem is
addressed. Here a heat exchanger network is targeted and
synthesized only after the process is "optimized." On the
other hand, numerous studies (Duran and Grossmann,
1986, Terrill and Douglas, 1987) have indicated the need
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for simultaneous heat integration and process optimization.
This is especially important in order to reflect the correct
"costs" of energy resulting for integration and therefore to
establish an accurate balance of the trade-offs between
energy, capital and raw material costs.

To include the integration of energy into the synthesis
of the reactor network a related simultaneous strategy can
also be developed. Here the nonisothermal NLP
formulation in (17) is adapted to deal with heat exchange
from other process streams. Within the discretized cross
flow reactor, temperature segments are identified as either
hot or cold streams (for exothermic or endothermic
reactions, respectively) and additional sources of heating or
cooling are included with the possibility of intermediate
feedstreams (as shown in Figure 7). With this framework
and the identification of hot and cold reactor streams, we
can now augment (17) with the Duran and Grossmann
formulation for heat integration. In this approach additional
constraints are constructed that reflect minimum utility
consumption as a function of the flowrates and
temperatures of the integrated system. Therefore, given a
set of hot and cold streams, the minimum heating utility
consumption is given by QH = max (zHP(y)), where, ZHP
is the difference between the heat sources and sinks above
the pinch point for pinch candidate p. For hot and cold
streams with inlet temperatures given by Thm and tcin;
and outlet temperatures Thout and tcout respectively, ZHP
(y) is given by,

zHp(y) = 2^ wc[max{0; tcout - TP + ATm)
-max{O;tc in-TP + ATm}])-

£hWh[max{0; Thin - TP} - max{0; Thout - TP}])

for p = 1, Np; where Np is the total number of heat
exchange streams. Here, TP corresponds to all the
candidate pinch points; these are given by the inlet
temperatures for ail hot streams and the inlet temperature
added to ATm for the cold streams. Wh and wc are the heat
Capacity flows for the hot and cold streams and the vector y
represents the set of all variables (temperatures, flowrates
and compositions) in the reactor and energy network. The
minimum cooling utility is given by a simple energy
balance as Qc = QH + ^(y)» where, Q(y) is the difference
in the heat content between the hot and the cold process
streams, given by:

Q(y) = Zh Wh(Th
in -Th°ut) - Ic w c(T c

o u t - Tc
in).

These relations can be incorporated with the flowsheet
model and the targeting formulation of (17) in order to
develop the following simultaneous formulation.

Max <t>((o,y,QH, Qc) - J (<a,y) - CHQH -

s. t ^ = R (T(t), X

X(0) = X0(co,y)
OO OO

Xexit = J f(0 X(t) dt, J f(t) dt = 1
0 0

oo oo t

Ja(t)dt = 1, J J [a(t>f(t')]dttdt = T

Q(t)/Qo= J [a(f) - f(t')l dt'
0

Wh = Cph(Thin) Fh> wc =

QC = QH - £ h W h [T h
i n * Th0UtD -

p e P
g(co,y) < 0

QH ^
h(co,y) 0

Here Fh and Fc are the flowrates for ail process and reactor
streams, co is the set of flowsheet parameters and QH and
QC represent hot and cold utility requirements. This
optimization problem is expressed in a general abstract
form, which is discretized in the same manner as (17). A
discrete representation of this reactor targeting model is
illustrated in Figure 7. In addition to discrete feed stream
additions, any temperature profile can be determined
through heating and cooling units at these points.
Moreover, heats of reaction are directly incorporated
through heat capacity flowrates of the reacting streams.
Here in a discretized reacting segment, if QR is the
exothermic (endothermic) heat of reaction to be removed
(added) in order to maintain an isothermal segment, the
equivalent Wh (wc) is equated to QR and we assume a 1 K
temperature difference for this reacting stream. Note that
in addition to the performance of the reactor network, other
process units and the energy network are captured in this
compact formulation. Once this problem is solved, a
formulation similar to (15) is employed to check for
improvements in the network by extending the attainable
region. Also, we note that no assumptions were made as to
the structure of the reactor or heat exchanger networks.

This approach was applied to moderately sized process
with van de Vusse kinetics, A --> B --> C, A -> D as
shown in Figure 8. In this case, the reaction is highly
exothermic and numerous opportunities exist for the
reactor to generate steam for the reboilers and thus reduce
the overall energy load. In addition, the process produces a
valuable main product (B) and potentially harmful
byproducts, C and D. Consequently, reactor selectivity is
a key component of this process in order to maximize the
process profit. In order to demonstrate the synergy of the
flowsheet subsystems we . present two cases for
comparison. In the first instance, the sequential case, a
reactor network is synthesized within a flowsheet and
energy integration is performed for this design. For the
second, simultaneous case, the energy target is determined
together with the reactor target.
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Interestingly, in both cases, a single plug flow reactor
is chosen with similar residence times and both reactors
have falling temperature profiles, with the simultaneous
profile about 10-20 K lower than for the sequential case.
Because the side reactions are more exothermic than the
main reaction (A --> B), the simultaneous result has a
much better selectivity and a higher overall conversion of
raw material A to product B (61.5% vs. 49.6%). As listed
below, the simultaneous case has a lower conversion per
pass (77% vs. 87%), a higher recycle rate and requires
about 20% less raw material for the process. This occurs
simply because cheaper energy costs due to heat integration
allow more emphasis to be placed on raw material
conversion in the optimization.

Sea'l Simult.
38.98
49.6
3.101
252.2
8.057
4.045
1.22

74.02
61.55
2.801
168.5
6.466
2.44
1.963

Overall Profit(K)5 $/yr)
Overall Conversion to B(%)
Hot Unidity Load (105 Btu/h)
Cold Utility Load (106 Btu/h)
Fresh Feed A (104 lb/h)
Byproducts C/D (104 lb/h)
Recycled A (104 lb/h)

A similar approach can also be adopted for the
integration of reaction and separation systems. In previous
studies, the separation sequence is considered to be a
downstream process to recycle reactants, remove unwanted
byproducts and purify the desired products. This approach
allows for an easy decomposition of subsystems and this
has been used to advantage in hierarchical decomposition
(Douglas, 1988) and in MINLP synthesis (Kokossis and
Floudas, 1991). In order to improve the synergy of these
subsystems, strategies need to be developed lhat
incorporate simultaneous reaction and separation. This
topic is currently the focus of considerable research activity
(Barbosa and Doherty, 1987, 1988; Omtveit and Lien,
1994; Balakrishan and Biegler, 1993). However, the
synthesis of reaction-separation systems is still in its
infancy. For instance, the targeting work described in
Balakrishna and Biegler (1993) represents an idealized
system that requires further development and
generalization. Nevertheless, this topic has been spurred by
significant industrial successes, where in lieu of clumsy
conventional flowsheets, complex reactions and separations
can be incorporated into a single reactor/separator (Agreda
etal., 1990).

Finally, as new processes are invented and existing
ones are revamped, the scope for minimizing waste and
hazardous by-products becomes an important consideration.
This aspect is directly focused on reactor performance. In
addition to choosing new chemistries and reaction paths,
insights gathered from attainable regions with knowledge
of side reactions is a key element for waste-minimizing
processes. As with any of the objectives used above for
process synthesis, the application of geometric targeting
approaches and the NLP extensions can be applied in a

straightforward manner to waste minimization. Here
constructive approaches can be applied to find an attainable
region alnd subsequently to determine reactor networks with
maximi m selectivity, or minimum waste with a specified
product yield. These results can then be embedded directly
into an AR or NLP approach as well. Here, a useful
decisioi -making tool, especially in dealing with uncertain
waste reatment costs, is the use of multicriterion
optimization and the generation of Pareto optimal or
noninferior surfaces. Note here that on the noninferior
curve, no objective can be improved without sacrifice to
the val les of the other objectives and trade-offs can be
establis led clearly. In dealing with process profit vs. waste

on, Lakshmanan and Biegler (1994) adapted thegeneral
NLP taigeting approaches described in the previous section
to deve op these surfaces as well.

7. Sunmary and Conclusions

In this study, we have reviewed reactor network
synthesis strategies based on attainable region concepts.
These concepts have rigorous geometric foundations which
can be used in complementary strategies; through direct
constriction of the attainable region (AR) or by
embedc ing AR concepts within optimization formulations.
At pres ait we can construct attainable regions for two and
three c imensional problems. This allows us to solve
bounds on reactor performance problems and then specify
the rea :tor network and operating parameters. These AR
approac hes can be extended to include other processes such
as heat exchange and separation. The theory behind the
attainat le region still needs to be developed but there are
many postulates that can be made by extension from
reactioi and mixing. These are outlined along with
exampl ̂ s to demonstrate the constructive approach.

Th j constructive approach has not been extended to
higher iimensional (> 3) problems as there are problems
with th i visualization of the region to higher dimensions.
Furthermore as the approach effectively finds all possible
outpuu from all possible reactor networks, and then
searches over this set of solutions for the optimal one, it is
not a f >asible approach in higher dimensional problems.
However, by understanding the geometry of individual
process es of reaction and mixing we are able to predict the
way in which individual processes make up the boundary
of the utainable region. This can then be interpreted in
terms of the types of reactors and ways in which the
reactor \ are interconnected. Hence we are able to make
some suggestions on how to synthesize a reactor
superst Picture rich enough to produce all possible output
material, and then build these suggestions into the
optimh ation formulations for reactor network targeting.

Optimization-based approaches, on the other hand,
have ot ler characteristics that must be carefully considered.
While geometric constructions yield a global picture of a
given r actor system, optimization formulations frequently
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rely on local tools. Clearly, the development of convex
problem representations (as in segregated flow) or the
application of global tools (Floudas and Grossmann, 1994)
is an important topic for future work. At present, the
application of small NLPs based on PFRs and CSTRs can
be used as an approximation of the construction process.
As a sequential approach, it ensures good, if not globally
optimal solutions for higher dimensional problems.

In addition, NLP formulations have advantages as they
can handle higher dimensional systems as well as problems
in which the objective functions have parameters which
cannot be incorporated in the constructive approach. Thus
for example, constraints can be placed on the structure
complexity and operating costs which cannot always be
incorporated into the AR approach. Moreover, these
formulations lead to straightforward integration of the
reactor synthesis problem with other process subsystems
in order to exploit their synergy. This was illustrated in a
small process example.

In summary, this paper has explored ways in which
the two approaches can be combined to exploit their
strengths and advantages in reactor network synthesis, and
ultimately for improved synthesis of process flowsheets.
What we are aiming at is a method in which we can define
the individual processes (i.e., reaction, mixing, separation,
etc.), the process equipment and the flowsheet can be
predicted, either by the construction approach currently
used or through further understanding of the geometric
properties, and subsequent optimization. Through this
approach we ultimately aim for a synthesis approach based
on the process phenomena and not on the traditional unit
operations. This will serve as a significant motivator for
novel future processes.
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