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Abstract

This paper discusses numerical issues in Differential-Algebraic Equa-
tion (DAE) optimization concerning the stability and accuracy of the
discretized Nonlinear Programming Problems (NIP). First, a brief de-
scription of the solution strategy based on reduced-Hessian Successive
Quadratic Programming (rSQP) is described, focusing on the decom-
position step of the DAE constraints. Next, some difficulties associated
with unstable DAE problem formulations are exposed via examples. A
new procedure for detecting ill-conditioning and problem reformulation
is then presented. Furthermore, some properties of this procedure as
well as its limitations are also discussed. Numerical examples are pro-
vided, including a flowsheet optimization problem with an unstable
reactor.

1 Introduction
The optimization of a Differential-Algebraic equation (DAE) system has en-
joyed a dramatic increase in research activities, largely due to its diverse
applications. A wide range of chemical engineering problems naturally be-
long to this class, for example batch processes, various types of control
problems, and flowsheet optimization, particularly with reactors and other
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non-perfect mixing unit operations. These problems pose an interesting
challenge because the solution procedure involves several disciplines, i.e.,
operation research, control, numerical analysis, and linear algebra, to ad-
dress these problems. As the understanding in these disciplines improves,
we now have tools to produce a general solution framework.

In this article, we consider the problem (DAE1)

min <p(z(tf)Mtf)Mtf),tf,p) (1)
(ft)«(t)t/P

s.t: F(z(t),z(t),y(t)Mt),t,P)=O (2)
G(z(t),y(t)Mtht,p)<0 (3)

O#W*.)»»(*#).«(*t),*j,p).<0 (4)

where <p is a scalar objective function,
F are differential-algebraic equation constraints expressed in

an implicit form,
tf is final time,
G are algebraic inequality constraints,
GB are point condition constraints (e.g., initial or final conditions)

at times t8 including tj,
z, y are state profile vectors,
u are control profile vectors, and
p is time-independent parameter vector.

Typically, these problems are solved by transforming them into non-
linear programming (NLP) problems. Then the solutions are sought by
either feasible or infeasible path strategies. Detailed discussion can be found
in [14] and [15]. In both approaches, the solution profiles are determined by
optimization routines which simultaneously satisfy the DAE constraints. In
general, this process can be done as a direct integration of the DAE as in the
feasible path approach or by including the discretized DAE as constraints
in the NLP in the infeasible path approach.

However, these approaches have an implicit assumption that the DAE
formulation is stable or well-conditioned; however, many of the applications
can have potentially unstable modes. For instance, the determination of
the control actions in model predictive control schemes usually involve pre-
diction steps and optimization steps that are not always guaranteed to be
stable. Consequently, the goal of this paper is to examine the numerical
aspects and to present a modification that can be made to alleviate or im-
prove the conditioning of unstable problems by manipulating the boundary



conditions in the decomposition step. This also raises the possibility of a
unified framework for both stable and unstable problems.

2 DAE Optimization

In this section we review some concepts of Successive Quadratic Program-
ming (SQP). To use the optimization tools, the continuous time problem
(DAE1) first has to be converted into an NLP. The standard technique pro-
ceeds by approximating the profiles by a family of polynomials on finite
elements. Therefore the variables in NLP also include all of the coefficients
of these polynomials (see [14] for review), while the DAE constraints are
replaced by collocation equations. In this work we assume that the sizes
of the finite elements are pre-determined and the approximation based on
these elements will result in an accurate representation of the problem. The
treatment of the relaxation of the assumption can be found in [14]. With
this transformation, we have the following problem statement (NLP1):

s. t. : Discretized DAE model:

Gizi.ii.yij.Uij.p) < 0

for t = 1 , . . . , ne; j = 1 , . . . , ncol

point conditions at t^:

GkizuZi.yij.Uij.p) < 0

for k = l , . . . , n s

bounds:

zL<Zii<zu

vL<yij<yu

PL<P<PU

t*1 <tf<tu



where ncol is the number of collocation points,
ne is the number of elements, and
ns is the number of point conditions.

In general, problems in chemical engineering are stated with a set of initial
conditions. This is due to the fact that the initial conditions of the system
are usually known as opposed to the final conditions. This is true in the
cases of control problems and design problems. In this paper, we will assume
the following problem structure (NLP2) without loss of generality.

.min

s. t. : Discretized DAE model:

for i = 1 , . . . , ne; j = 1 , . . . , ncol

initial conditions:

z(0) = zo

bounds:

zL<za<zv

VL<Vij<VU

uL < tHj < uu

PL<P<PU

for i = l , , . . , ne; j = 1 , . . . , ncol

2.1 Successive Quadratic Programming ( S Q P )

In [14], we discussed an extension to the infeasible path approach by com-
bining the idea of both feasible and infeasible path approaches. This strat-
egy has been shown to be efficient for the problems with special structure
in the constraint Jacobian. By using existing solvers that take advantage
of these structures, the reduced-Hessian SQP (rSQP) not only decreases
the computational effort and storage but also makes the solution procedure
more robust. This robustness is due to the fact that the factorizations are



done locally. Therefore, ill-conditioning in any part of the problem can be
immediately located and appropriate modifications can then be made.

Without loss of generality, we can further simplify the problem:

min f(x) (5)

s.t. c(s)=0 (6)
xe[xL,xu) (7)

where the inequalities are converted to equalities, with bounded slack vari-
ables. Now the quadratic programming subproblem (QP1) corresponding
to the above problem:

min V*{xk)Td + l/2<FBkd (8)

s.t. c(xk) + Vc{xk)Td = 0 (9)
de[xL-xk,xu-xk) (10)

x = [ z, i , y, u, p, tf ]
T (11)

With the maturity of sparse matrix solvers, a valid argument can be
made for solving QP1 (8-11) with a full space method instead of a reduced
space method. However we are convinced that the both approaches com-
plement one another. An important advantage of the full-space approach
is that it may require less data storage than reduced-dimension problems.
Also, the full space technique works well with problems whose stability is not
a major concern. On the other hand, the decomposition approach provides
us with more information and tools that allow us to address the stability
characteristics of the underlying problem. First, with the detect ion. we can
identify the unstable component(s) in the DAE. For an unstable problem, the
corresponding reduced-space QP can be ill-conditioned. As a result, a more
stable factorization procedure then can be applied only to the reduced-space
QP, once the detection identifies the instability. Finally, the decomposition
also leads to a systematic procedure for problem formulation and identifica-
tion of local singularity. In this paper, we deal mainly with ill-conditioned
problems and our approach will be based on the reduced-space method.

2.2 Reduced Hessian SQP

The procedure begins with the partition of variables into dependent (y) and
independent variables (z). The basis matrices for both spaces are obtained



using a coordinate basis to preserve the sparsity pattern of the Jacobian.
The independent variable space occupies the null space of the constraint
Jacobian (VcT) and the dependent variable ispace involves the corresponding
range space. Then the search direction can be presented as:

k (12)

where matrix Z has to satisfy:

V<?Z = [ Vyc
T Vz<? )Z = 0. (13)

We then choose

z = I " •H I
with the range space direction (Ypy) obtained by :

(VcTY)py = -c(xfc) (15)

and the following reduced QP subproblem (QP2) for the null space direction:

nun V*(x*)rp + l/2pl(ZTBZ)p2 + l/2(ZTBYpy)
T

Pz (16)

s.t. xk + Ypy + Zp2 € [xL, xu] (17)

Since (QP2) has many inequality constraints, most of which are inactive, a
dual-space solution procedure seems to be more effective compared to the
primal-space procedure. In this study, we employ the QPKWIK routine [12]
which is based on the dual-space approach. Moreover, the computational
expense of QPKWIK usually varies only quadratically with respect to the
number of independent variables.

In the next section, we will examine the calculation of the dependent
variable contribution as well as its numerical characteristics. These analy-
ses will be helpful to understand the issues involved because it reflects the
underlying behavior and possibly numerical instability.

2.3 Y space move calculation

In this section, we explore the Y space move and consider the reason why it
needs attention and formal examination. As discussed above, the determi-
nation of this move is equivalent to the Newton step to solve the constraints,
in this case, the discretized DAE system.
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To approximate the DAE system, we apply collocation on finite elements.
Alternately, we can apply a multiple shooting approach to the DAE systems.
Both approaches have similar structure and can easily be modified to ac-
commodate a parallel computation architecture [16]. The shooting points in
our procedure are finite element locations and this can also be shown to be
identical to the finite difference integration scheme. By applying those algo-
rithms, we obtain the following recursive linear system (18), which connects
these individual elements, in the space of state variables at the beginning of
the elements. Here we assume, without loss of generality, that the boundary
conditions are in the format of separate two-point boundary conditions (see
[2]). Note that the algebraic equations in the system are projected out, in
other words, the index of the DAE system should be less than two (for de-
tails on the procedure see [6]). We also assume that the given side conditions
are consistent (for details see [11]).

Ba
Si -I

- /

sk -I
Bb

AS3

da

dpnc

(18)

where Ba

Bb

is the Jacobian of the initial conditions,
is the Jacobian of the end conditions,
are the dependent variable moves, or Newton steps.
at the beginning of element t,

Asnc+i are the dependent variables moves, or Newton steps,
at the end of time horizon,
is the constraint violation in element s,
is the constraint violation in the initial conditions.
is the constraint violation in the end conditions,
is the matrix resulting from multiple shooting in clement i.

p

da

db

Si

The solution of system (18) then will be added to the independent variable
move (Zpz) to form the overall search direction. Because the number of
dependent variables is normally larger than that of independent variables,
this factorization is usually the bottleneck of the algorithm. As a result,
the success or failure of the algorithm relies heavily on the efficiency and
robustness of the decomposition.



Our first task is then to investigate if the particular problem is well-
conditioned. The robustness or stability of the linear system is measured by
the condition number. If the condition number is large, the matrix is said to
be an ill-conditioned matrix. In other words, any small perturbation of the
right hand side (rhs.) or in the matrix itself will lead to a large change in the
solution. For linear systems, we can naturally group problems into either
well-conditioned or ill-conditioned problems. For well-conditioned problems,
several algorithms have been developed and efficiently implemented. For
example, Wright [16] described a general algorithm for a parallel computing
architecture using cyclic reduction. On the other hand, modification will
have to be made to be able to use the existing computational tools for the
unstable cases. This will be the main focus of the rest of the paper.

As expected, system (18) and the original DAE system are closely re-
lated, and the conditioning of the linear system depends not only on the
discretization scheme used but also on the conditioning of the original DAE.
For review of the conditioning of continuous DAE's , see Chapter 3 in [2].
If the original problem formulation is ill-conditioned, this linear system will
also be ill-conditioned and this cannot be overcome by just applying new
discretization schemes. To illustrate this concept, consider an initial value
formulation given as:

Si - /
S2 -

Sk -

AS2

(19)

with the following system [5} that will be used to develop our algorithm in
the article:

(20)

(21)

with:

g{t) = (22)



This system yields a general analytical solution:

sin{nt) + c\ exp(—rt) + 02 exp(rt)
ir cos(*rt) - c\ exp(-rt) + c* exp(rt)

(23)

The constants (ci, c2) are determined by the side conditions. The eigenvalues
(poles) of this problem are r, - r , and that makes the problem unstable and
ill-conditioned regardless of the values of ci ,c2 and function g(t). When
we calculate the condition number of the resulting matrix (19), it increases
exponentially with respect to number of finite elements and r as shown in
Figure 1. Since the terms Si are identical to eA6t, where A is the matrix in
(20) and St is the step size, and since one of the eigenvalues of the problem
is positive, the error in the problem will be amplified by e*61 at every time
step in the forward direction, regardless of the non-homogeneous rhs function
g(t) and the final results. If Gaussian elimination is applied with block row
partial pivoting, the pivoting elements will only be the submatrix on the
diagonal. As a result, the factorization routine will decompose* this matrix
without any warning of ill-conditioning. With the initial value problem
formulation, this factorization is analogous to the forward integration and
this results in a growth of errors.

a—a

Figure 1: Condition number of the example.

Consequently, the Y space move is corrupted and this leads to an un-
reliable search direction. This phenomenon is not restricted to initial value
problems. As described in [2], for well-posed problems, the initial condi-
tions need to control the decreasing modes, while the end conditions need

9



to control the increasing modes, in order to get a stable decomposition.
Consider now a parameter estimation problem based on this dynamic

8jrstem where we estimate the parameter p = ir given 30 measured data
with T = 60. The detailed IVP formulation is given in (24-28). With the
side conditions, the analytical solution of this problem is given by cj, ci — 0

(24)

(25)

(26)

(27)

(28)

s.t. : £\ ss — (r2 +p 2 ) si

z2 = z\

*i(0)-0 ; Z*(0)=

-10 < zuz2 < 10

As seen in Figure 2, the optimization fails to converge even when the pa-
rameter and profiles are initialized to the analytical solution, correct up to
9 digits. This is due to an unbounded growth of the round-off error in the
unstable forward mode. However, if we reformulate the problem a.s a bound-

\

1 1

Y ^

1 1

- 3

- 2

- 1

- 0

--2

--3

0 0.2 0.4 0.6 0.8 1

Time

Figure 2: Result profile for (IVP).

ary value problem with (29) instead of (27), the condition nmnbors of the
constraint matrix change dramatically. The condition number of the con-
straint Jacobian remains almost constant for increasing time intervals (see
Figure 1) and varies linearly with respect to r.

Baz(0) = z2(0) =

(29)

10



If we construct the previous example using the boundary condition in (29),
the problem (BVP) is given as:

a.t.: i\ = T2*2 - (T2 + p2) sin(pt)
(30)
(31)
(32)
(33)
(34)

Note that both (IVP) and (BVP) have the same analytical solution. The
(BVP) problem converges to the optimal solution and the result is given in
Figure 3 as a result of a well-conditioned constraint matrix.

3-

2 -

1 -

0 -

- 1 -

-2-

-3-

\

^ ^

i i

y,

Y2

. ^

\ ••%
\

\

1 I

0 0.2 0.4 0.6 0.8 1

Time

Figure 3: Result profile for (BVP).

As seen, poor performance of optimization is a direct result of the prob-
lem formulation. In this section we demonstrated that the problem formu-
lation, specifically the boundary conditions, does have a strong impact on
the ability to solve (DAE1). Briefly stated, compatible side conditions must
be specified such that the corresponding mode is not an increasing mode
starting from these conditions. However, for nonlinear problems, we do not
know this a priori and it can also change during the optimization process
due to changes in parameters and control profiles.

This is also important in the context of general model predictive control,
which requires an open loop behavior of the models with initial conditions.
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In absence of a stabilizing input, these models can also exhibit unstable
behavior. This instability can also occur during the solution procedure of the
control determination. Hence, to be able to address dynamic optimization
systematically, it is vital that the algorithm must handle both stable and
unstable problems in a uniform and consistent fashion.

In the next section we discuss the detection of unstable modes and the
substitution of compatible boundary conditions to stabilize them. These
boundary conditions are imposed as optimization variables and allow a sta-
ble decomposition of the dependent variables (Y space move).

3 Problem Detection

In order to detect potentially unstable problem behavior, there are several
alternative procedures that can be selected, ranging from calculation of the
condition number of the problem directly, calculation of the growth of the
condition number with respect to a sequential decomposition, or calculat-
ing the fundamental modes of the problem explicitly. Howrvor. because
the procedure has to be done at every intermediate step during the opti-
mization process, we need to develop a procedure that requin s much lass
computational effort.

As seen in the previous example, the condition of the problem can be
characterized as sensitivities of the final profiles to given si do conditions.
A direct application of this observation is then to detect the growth in the
sensitivities of the profiles with respect to the side conditions. An obvious
alternative is simply to trace all the sensitivities of the profiles with respect
to the boundary conditions. This task can be accomplished by replacing
the rhs of the factorized matrix of the first and the last blocks with identity
matrices for both the initial and boundary conditions. For a stable* problem,
the sensitivities must be small with respect to the boundary conditions.

Ba
Si - J

s2 -
ds2/dBa

dsx/dBb

ds2/dBb

dsz/dBf, =

• 1

0
0

0

0"
0
0

/ •

(35)

Recall the example given earlier, the sensitivities of the IVP formulation
are extremely large (> 1010 or cT). As a result, the formulation cannot be
used in the optimization. In contrast, an appropriate BVP decomposition

12



yields the sensitivities that decrease as the number of elements is increased
and the biggest component is reasonably small.

The computational expense of this procedure is reasonably small because
the matrix has already been decomposed; therefore, it is equivalent to adding
multiple rhs. Because there is no need to enforce continuity of the algebraic
profiles, the procedure is applied to only the differential part. In short, this
procedure is recommended for first iteration or after any iteration with large
step in parameters and control variables. In the next section we will discuss
some of the heuristic alternatives that are less expensive. They can provide
a useful option for iterations where we have gained fairly good knowledge
about the problem.

3.1 P r o b l e m Screening

To further reduce the computational time, a preliminary heuristic screening
of the matrix can be done by considering only the first block or a single
series of blocks using the following assumption:

• The ODE has an exponential dichotomy, with / decreasing fundamen-
tal modes. At each stage i of the elimination algorithm exactly n - I
rows are exchanged by row pivoting, between the t-th block row and
the (t + l)-th block row. Moreover, the collection of n - / rows that
is swapped out of the first block row is passed down, intact, through
block row i = 2 ,3 , . . . ,ne [16].

With this assumption, we assume that the fundamental modes of the
problem do not change along the time horizon and the same pivoting se-
quences are used for each block in the problem. Using this assumption, we
can consider only one block, or a set of blocks per iteration. Furthermore,
the increasing modes in the problem will be seen in terms of the growth
in the solution, in other words, some of the components are amplified from
block to block. As a result, the main idea of the screening scheme is to
recognize this growth. In particular, if the sensitivities of components with
respect to the previous parts are greater than 1, the problem has unstable
modes.

The implication of the assumption is that the behaviors of the profiles re-
main the same throughout the horizon. Any increasing mode in the problem
can be detected by only considering the first block or a fixed set of blocks.
If all the sensitivities of the variables with respect to the side conditions

13



(both initial and end conditions) remain reasonably small, the problem is
well-conditioned.

Apart from the sensitivity approach, another alternative which can be
employed for linear-time-invariant (LTI) systems is to determine the singular
values of the transition matrix by consider the following solution to the
dynamic system.

+ Gi, or (36)
t8i + Gi (37)

where $ is the transition matrix,
G{ is the inhomogeneous part involving controls, parameters

and forcing functions.

Here, the singular value decomposition (SVD) of $ is

* = UTTV (38)

where (7, V are orthogonal matrices,
E isadiag(<7i,<72,...,(7n)
a are the singular values of $ with

Note that the singular values are simply the eigenvalues (A) of (<f>T$)]/2.
Therefore, an LTI problem, or for slowly varying LTV systems [8], with
decreasing modes will have a,'s which are less than one. In the same fashion.
the singular values that are larger than one correspond to the increasing
modes in the problem. However, this approach still depends on where to
draw the line between increasing and decreasing modes as in the sensitivity
approach. Moreover, the approach can be used only to find the number
of increasing and decreasing modes and then we can compare it with the
given side conditions. It is not able to inform us whether the problem
is well-conditioned with a particular boundary structure. Another serious
drawback of this procedure is that it is expensive due to the cost of SVD.
On the other hand, the sensitivity procedure uses the already-factorized
matrix with different right hand sides. Moreover, if A is strictly diagonally
dominant, for an LTI or LTV system, the modes in the problem coincide
with the state variables [2]. Consequently, the problem reformulation is also
easy and we will discuss about this issue in the next section.

14



To demonstrate the procedures with both ideas, recall the example given
earlier (21). The resulting L, from LU decomposition, factor from the 1VP
formulation with r = 60 is:

1
0

-4.07
-236

0
1

-.065
-4.07

0
0
1
0

0"
0
0
1 •J

1
0
0
0

0"
1
0
0

(40)

In this example, the U matrix is identity. From the system above, for
instance, cki,2/<ki,i is ~ 4. As a result, the error from the factorization
can potentially increase by a factor of 4 as the number of blocks or dements
increases. As in the example, with 30 elements the error will grow to 4M)

at the end of the last element while the correct profile is cos(x). On the
other hand, similar analysis can be done with the boundary value version
of the problem (29). The corresponding amplifying factor, as expected, is
< 1, and the error will damp out along the profiles. Because this problem is
an initial value problem, the procedure is completed. However, if problems
also contain end conditions, then the same sensitivity procedure will have
to be done for them.

Similar analysis can also be done using the SVD procedure. In this prob-
lem, the singular values of the transition matrix are 236 and .0052. Hence
this problem contains both increasing and decreasing modes as indicated by
the value of the singular values. As a result, this problem needs both initial
and end conditions. In the next section we will discuss how to determine
the new set of boundary conditions

First, we note that these procedures are valid for linear and nonlinear
systems that satisfy the assumption of time invariant dichotomy. This as-
sumption holds for many BVP's in process engineering and is satisfied by
all the examples in this work. Furthermore, this procedure can be omitted
if the behavior of the system does not change from iteration to iteration.
Finally, the tolerance of the,test for ill-conditioning plays an important role
whether to stop using the LU factors. A general observation can be made
that the tolerance is based also on the number of blocks in the problem. Re-
call that the amplification of the error also depends on the number of finite
elements. As a result, for a long horizon problem this amplification should
be small. From our experiments, for a problem with 30 finite elements, this
acceptable growth factor should be less than 1.5 in each element.

15



4 Problem Reformulation
In the previous section, we investigated the procedure to determine if the
problem formulation has to be altered. The proposed algorithm assumes
that the problem can be reformulated stably using separated and uncoupled
boundary conditions.

The main focus of this section is to stably invert the Jacobian of the
discretized DAE which is the same as the matrix in (35) Our algorithm starts
by performing Gaussian elimination with total pivoting on the submatrix S\
(nxn), and this step stops when the next available pivot elements are small.
Let r be the niunber of Gaussian pivoting steps taken, then initial conditions
are added for the remaining n — r columns as identity matrix. Then the
elimination process is done for the next block sequentially by adding the
unused rows (n — r) from the previous block. The factorization of the rest
of the problem is done via row partial pivoting to preserve the structure of
the problem. The final step of the procedure is then to add end conditions
to the last block. For the last block (n — r rows), the elimination is done via
total pivoting similar to the first block, the end conditions are then added
as an identity (rxr) matrix.

To illustrate the procedure, recall the system in (40).

f -4.07 -.065] fAU
5 l = [ - 2 3 6 -4.07 J (41)

The first pivot element in this example is —236, and after the first step
the only available pivot element (in the "1,2" position) is .0052 which <^
1. At this point, the number of the elimination step on Si is r (1). To
proceed to the next column, the pivoting elements required are added as
initial conditions n — r (2-1), z% in this example. The same procedure is
also performed for the last block to obtain the necessary end condition(s).
When we apply the procedure to the example, it turns out that we need to
add a side condition (45) to the BVP problem and enforce the constraint on
z\(0) in the optimization problem. The formulation after the modification
is given as

R = £&i(*m(0 - z(t))2 (42)
s.t.: z\ = T2Z2 -(T2+jfi) sin(pt) (43)

z2 - *i (44)

7r;z1(l)=C (45)

16



(46)
(47)

The constraints to be decomposed are (43-45), and the extra constraint (46)
is added to the optimization problem. The boundary conditions generated
by the procedure are structured so that they can be examined separately.
Furthermore, Wright [16] proved stability for a similar decomposition for
parallel computation for a two-point boundary value problem that can eas-
ily be modified for our procedure. This reformulation results in accurate
function and gradient evaluations. Moreover, for a linear system the bound-
ary conditions derived using this procedure can easily be verified with the
following property [2].

Property 1 For LTI systems, a set of separate boundary conditions leads
to well-conditioned decomposition iff the matrices BaWa, and BtW^ are not
singular.

where Wa, Wt are the eigenvectors of A for the decreasing and increasing
modes respectively. Because the modes and the eigenvectors of LTI remain
the same throughout the horizon, the above statement is not only necessary
but also sufficient. A proof can be found in the Appendix. This necessary
and sufficient condition comes directly from the fact that the decoupling is
exact and we can solve the decreasing and increasing parts separately. For
detailed analyses on general cases, see [2]. The property above also applies
to a system that is strictly diagonally dominant uniformly. In this case each
mode is restricted to only one profile. As a result, the dichotomy is obvious
and the reformulation step yields the desired side conditions.

Another important characteristic of the problem is that the compati-
ble sets of boundary conditions may not be unique. As mentioned earlier,
the necessary condition requires that these conditions are compatible with
the proper eigenvectors of the problem. Recall the previous example, the
eigenvectors of the problem are:

Til l
(48)

The eigenvalues of this problem are 60, —60 (with r = 60), consequently, the
eigenvector for the decreasing and increasing modes are [1,1]T and [—1,1]
respectively. With the new boundary conditions (45):

] T (49)
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* o
= [1
# 0

(50)

Consider now the structure of the constraints with the conventional IVP
formulation. First of all, the IVP structure with increasing modes will lead to
an exponential increase of the error as seen in the previous section. However,
with the reformulation, the pivot sequence in the LU factorization leads
to a more stable decomposition. For example, in the case where we have
dichotomy in the state variables and the structure is given by:

Si -I

S3 -I
(51)

which is permuted to:

E C If 0
B A 0 Ib

E C 1/
B A 0Ih

E C If
B A 0

(52)

where E is a submatrix with small components,
A is a submatrix that can be factored stably

(via total pivoting), and
B, C are off-diagonal non pivot matrix elements.

Then the pivot elements are always from A and // and they are the largest
elements in the matrix. By setting Ba to // and Bb to Ib, we have therefore
found a stable pivot sequence from the structure of S\. However, the par-
tition in (52) is only one case and other pivoting cases can arise, which are
still preferable to the IVP form. These are discussed in Appendix B.

4.1 Enforcement of the Remain ing Initial Condi t ions

After the detection and the reformulation of the constraints, the rest of the
initial conditions that are not involved in the calculation of py are moved
to the QP. This procedure also enables us to address classes of problems
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in model predictive control that are infeasible or unbounded as we cannot
enforce the required inequality constraints. To solve the problem, we need
to further alter the structure of the problem. Instead of implementing (46)
as a hard constraint, one can augment it to the objective function as penalty
term. With this transformation, if the problem cannot be satisfied, it will
result in offset in the side condition (46) in order to yield a feasible solution.
This strategy is motivated by the work of Oliveira and Biegler [10] in the
context of model predictive control.

They suggest the used of quadratic(/2) and exact (l\) penalty functions
with penalty parameter p. This quadratic strategy is known to be equivalent
to the original hard constraint problem when the penalty parameter p —• oo
In contrast, the exact penalty formulation only needs p to be greater than the
Lagrange multipliers of the original constraints. By using the exact penalty
function, p remains bounded to maintain feasibility (unlike the quadratic
penalty). As discussed in [10], the penalty parameter (p) has only to satisfy:

P>Moo (53)

Where v is the vector of Lagrange multipliers of the original problem.
To illustrate the result of the procedure, we recall the general problem

(NLP2). For the problem with unbounded components, the reformulation
procedure will generate a new set of boundary conditions to meet the sta-
bility and boundedness of all profiles. As a result, the revised problem
statement can be given as (with l\ penalty):

min *(z», i>, y#f m^p) + p{tt + €tt) (54)

s. t. : Discretized DAE model:

to be decomposed for Y space move (55)

+ ei-tu (56)

bounds:

^<Zij<zU (57)
VL < Vij < yU (58)
uL<iitf<u l f (59)

P^<P<PU (60)
0 (61)
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far i = 1 , . . . ,ne; j = 1 , . . . ,nccl

where the components (a, 6) are determined in the reformulation step. In
addition, this procedure can also be applied when the underlying problem,
with given structure of side conditions, grows exponentially. This can also
occur if we have side conditions which lead to unbounded solution. For
example, we consider the example again, but this time with initial conditions
that lead to an unbounded solution.

Baz(0):zi(0) = .1, (62)

The analytical solution of the problem with (62) is given by (23), and, ci, c2

are not equal to zero. Hence the profiles will grow exponentially and violate
bounds on the state variables. The problem then becomes infeasible because
the profiles increase exponentially and the side condition (46) cannot be
satisfied.

Consider the example (30-34) again. With incorrect side conditions,
the problem has an unbounded solution. We then incorporate some or all
infeasible side conditions (46) into the objective function either as quadratic
penalty or an exact penalty term.

Note that the decomposition in the calculation for py (see (12)) is the
system (64-66).

minp R = £iLi(«m(O - z{i))2 + p"Zi«» (63)
a.t.: zi = r2z2 - (T 2 + p2) sin(pt) (64)

J2?2 == Z\ ( 6 5 )

zi(O)-.l = cj-€u (67)

ti > 0 (68)

-10< zi,S2 < 10 (69)

The profiles for the penalty formulation in this study with p = 50 are
bounded with an offset in the initial condition of z\ as expected. With this
formulation we are therefore assured that the NLP converges to a bounded
solution.

We conclude this section with some remarks. Firstly, as stated in the as-
sumption, we assume that the pivoting sequences in all blocks are the same.
However, for some instances, the pivoting sequence during the factorization
can change. From our experience if we formulate the problem so that the
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number of initial conditions is equal to the decreasing modes, the sequence
usually drifts towards a compatible set. Secondly, the reformulation proce-
dure is to ensure that the function and gradient evaluation as well as the
calculation of Y space move are accurate. Since ( has very little effect in the
projected constraint (67), this can cause ill-conditioning in the QP and can
also lead to a large Z space move. For example, since the side conditions
(67) in the QP are not satisfied, the search direction will adjust the stabi-
lizing variables to assure feasibility. However, because the gradients with
respect to the side conditions in the decomposition step are small, this can
yield a large move in the stabilizing variables. Hence the QP (16-17) must
be solved more accurately. Fortunately, effect of controls and parameters
often stabilize the QP and we also employ a robust QP factorization.

5 General Algorithm

Armed with the problem detection and corresponding modification scheme
from previous sections, we can now outline the main algorithm for the gen-
eral dynamic optimization problem.
Step 1: Preprocessing

• Choose convergence tolerances for the problems.

• Choose a starting point.

• Set up positive-definite matrices for problem Hessians, possibly an
identity matrix.

Step 2: Decomposition

• Determine the LU factor for the collocation equation system using a
Newton-based solver. In this work we employ the COLDAE routine
[4], which can be obtained from NETLIB (netlib@ornl.gov).

• Determine if the LU factor is stable by applying the procedure in
section 3.

• If the problem is unstable, reformulate the problem using the proce-
dure in section 4. Also reset the Hessian to identity matrix or add
row(s) and column(s) for the stabilizing variable(s) with positive di-
agonal component (s).
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Step 3: Optimization

• Solve the reduced QP subproblem (QP1) to get search direction d

• If the convergence tolerance is reached, stop.

• Calculate the penalty parameter for the collocation equation using the
multiplier-free approach (see [13] for details).

Step 4: Line search

• Perform a line search using the watchdog technique [7] that requires a
reduction in the penalty function every t iterations. The function and
gradient evaluations are done using Step 2.

• Update the reduced Hessian using the BFGS formula. Goto Step 3.

6 Examples
The algorithm has been implemented on a DECstation 5000, and all the
CPU times reported are in seconds. The tolerance for optimality in all
examples is 10"~7. To illustrate the algorithm, we consider the following
examples.

6.1 Example 1

To illustrate the procedure, we will start with a small parameter estimation
problem. This example is modified from [9]. The problem contains 2 differ-
ential conditions with 2 initial conditions. The number and the locations of
finite elements and sampling data points coincide and are uniform with the
final time at n.

With the following initial conditions:

*i(0) = 1 (71)
z2(0) = 1 (72)

where f(t) is chosen such that the solution is z(t) = [exp(<),exp(t)]r. As
seen in the fundamental matrix (73), the problem has two modes with one
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Tfeble 1: Computational statistics for Example 1.

Number of
iterations

6
7
7

CPU time
(s)
2.9
3.0
3.0

a

0.00
0.05
0.10

Obj
(residual)

0.
0.150
0.602

increasing and one decreasing. If the problem is set up as initial value
problem, it will result in an ill-conditioned constraint matrix. However,
our detection procedure is able to spot the problem, and subsequently the
problem is automatically reformulated and solved.

= sint —cost
cost sint

(73)

The side conditions generated are z\(0) = 1 and 2 (̂0) = £. We report the
results on three cases (three different sets of data) in Table 1.

6.2 Example 2

This example is modified from [16]. This problem consists of five differen-
tial equations, and the objective of the example is to estimate the param-
eter (t/>j = 1000) given 30 measure data sets corrupted with random noise
(N(0,a)) of zuz2.

z =

where we define:

and A as

Z

Z

(74)

(75)

coe2u>i£
0

0isin2u;it
0
0

0 u
—02 C06 2u)?t

0
"™"d̂ 2 ™f" tr^2 S i n 2 k J o t

0

i +0isin2u>it
0

0icos2u>it
0
0

0
W2 + V>2sin2c

0
02 COS 2u>2<

0

0 '
oit 0

0
0

03

(76)
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With the following initial conditions:

«(0) = [1,1,1,1,1]T (77)

The nonhomogeneous part f(t) [16] is chosen so that the analytical solution

is:

[et,e\et,e\et]T (78)

The fundamental matrix of the problem is given in (81). As seen, the fun-
damental modes, increasing and decreasing modes, must vanish in order to
get (78). As a result, the problem is ill-conditioned and cannot be solved
with the original formulation. The detection step reveals that the problem is
unstable, and stabilizing variables are added as well as end conditions sim-
ilar to (42-47). Prom the analysis, we found that there are two decreasing
modes and three increasing modes in the fundamental solution. With the
stabilizing procedure, the boundary conditions in the decomposition are:

zz(0) = 1
*4(0) = 1

(79)

As a result, the constraints to be added to the QP are:

= 1

= 1

= 1 (80)

Table 2 shows the computational time and iterations required to obtain the
solution to this problem with the reformulation.

cos u) \t 0 sin u; it 0 0
0 cosu^t 0 sina^t 0

— sinu>it 0 cos a; it 0 0
0 -sina>2t 0 cosu^t 0
0 0 0 0 1

(81)

where e* =
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Table 2: Computational statistics for Example 2.

Number of
iterations

13
14
14

CPU time

9.0
9.1
9.2

a

0.00
0.05
0.10

Obj
(residual)

0.
0.32
1.28

6.3 Example 3

Consider a plug flow reactor (PFR) of length L with diffusion in the direction
of the flow, ftg?iiTnii^g no radial mixing. The reactor is depicted in Figure 4.
The series reactions in this problem are two first order irreversible! chemical
reactions from reactant A to intermediate B and finally to product C. The
reaction rate constants^, fcg) are to be determined by 30 measured data
sets of the concentrations of the product along the length. The dynamics

B

Figure 4: PFR reactor in Example 3.

of this system is governed by a second order differential equation (82-83),
the side stream in this example is given such that the concentration profiles
are constant.

(82)

with initial conditions:
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dyA/dx = dyM/dx + e2

VB(O) = VB0 + C3
dysjdx = dyBo/dx + eA (83)

where Z? is the diffusivity constant,
yo is the given initial concentration of i,
I/io are the correct initial conditions of t,
e is the error introduced in the initial conditions,
u is the bulk flowrate,
k{ is the rate of reaction,
f(x) is the expression for side streams.

The general solution of this problem contains two increasing fundamental
modes and two decreasing modes for h/D > u/D, namely exp (±xk/D).
Hence, the problem has unstable modes and when we solve this problem
as an IVP, the optimization routine fails to converge. When we apply our
algorithm, the matrix is indeed ill-conditioned. However, even when the
stabilizing variables are added, the problem is still infeasible. This suggests
to us that the side conditions given are unstable and the problem is then
modified using l\ penalty (84).

i«i (84)

s.t.: Eq.82 (85)
VA(0)=VA + ei-e2; dzA{l)/dx = ti (86)

VB(0) = VBO + €3 - e4 ; dzB(l)/dx = & (87)
dyA(0)/dx = dyA0/dx + c5 - ce (88)
dyB{0)/dx = dyB0/dx + c7 - «8 (89),

« i>0 (90)
- 1 0 < z x , « B < 1 0 (91)

Again, the stabilizing variables (£) are added to the formulation and the
decomposition is done with the linearized from (82),(86) and (87). The
computational results are shown in Table 3. The solutions have offset in the
initial conditions in all cases. However, if the accurate initial conditions are
given (ej = 0), then there is no offset in the initial conditions.
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Table 3: Computational statistics for Example 3.

Number of
iterations

7
7
7

CPU time
(8)
3.9
3.9
3.9

a

0.00
0.05
0.10

7 Application in Flowsheet Optimization

We have seen from the previous discussion that by using the above algorithm,
optimization problems with DAE constraints can be stably and systemat-
ically addressed. In this section, we will incorporate it into the context of
flowsheet optimization. We will briefly describe the framework based on the
concept of tailoring the optimization to exploit the problem structure and
make use of existing model solvers.

It is well known that the computational expense of the problem is domi-
nated by the time required to generate and factorize the flowsheet equations.
Furthermore, the total number of variables is usually large, however, the ma-
jority of them are dependent. Moreover, these variables can be decomposed
outside the optimization via the flowsheet constraints. By taking into ac-
count these two observations, we consider the use of rSQP. A depiction of the
approach is given in Figure 5. Some significant advantages of the approach
from a practical point of view are that:

• Model sparsity and structure of the unit systems are completely pre-
served.

• Complicated units tend to be very demanding in terms of initialization
and formulation. By using existing model subroutines, they provide a
well-tested procedure and they also take into account model structure.
This will lead to robust process modeling.

• The flexibility of reformulation and problem construction can he achieved
in a straightforward fashion.

• The procedure retains the one-step superlinear convergence properties
as in equation-based optimization.
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Figure 5: Reduced Hessian SQP algorithm.

The rSQP approach can be described as an iterative refinement of the oper-
ating condition variables (xk) by taking a step a* along the search direction
dk, until the optimal solution is reached. The step size is determined such
that a merit function (exact penalty function in this work) is sufficiently
reduced. The search direction d* is the solution to the rSQP. It should be
noted that these unit model solvers in the procedure are general, and the
modifications to be made to these routines are minimal.

7.1 Result for Flowsheet optimization with unstable reactor

The approach described above is tested with the optimization problem of the
flowsheet in Figure 6. The objective function of the problem is to maximize
the product production, given a fixed amount of reactant. The problem is
also subject to bounds on operating conditions. This process is based on
the Hydrodealkylation process. The reactor part is replaced by the PFR
reactor described in Example 3 without the side streams (92-93). The final
model consists of more than 350 variables with detailed models for both the
reactor and the distillation parts. As seen in the previous example, this
reactor cannot be solved as an IVP reactor because it contains increasing
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modes. Unless it is reformulated properly, the flowsheet problem cannot be
solved with either sequential or simultaneous approaches.

<PyA dyA

" kAVA =

(92)

with initial conditions:

VA(0) = VAO
dyA/dx = dyAo/dx

VB(0) = VBO
(93)

To generate the Jacobian and to determine the Newton step for the reactor,

d
Hydrogen

Feed

Toluene
Feed

Figure 6: Flowsheet of the process.

we employ decomposition described in Section 3 and Section 4. The distilla-
tion equations are derived and then factorized with the Naphthali-Sandhohn
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100

50

H Tailored

D Sequential

1 2 3 4 5

Figure 7: Computational time for the flowsheet optimization example.

model, UNIDIST, which is part of the SEPSIM process simulator [1]. The
optimal solutions are obtained using both the tailored approach and the
sequential modular approach for various cases. The numerical statistics arc
reported in Figure 7. In the figure, Case 1 and Case 2 correspond to the
case that only the toluene column and benzene column are modeled as tray
by tray calculation, respectively. In case 3, both units are addressed as tray
by tray models. In case 4, only the reactor is modeled with collocation
model and both distillation columns are sharp split separators. In case 5,
the reactor and the toluene column have detailed models.

Table 4: Computational statistics for flowsheet example.

Case

1
2
3
4
5

No. of SQP iterations
Tailored

7
14
12
8
26

Sequential
9
21
12
8

21

CPU time
Tailored

1.9
5.1
7.8
2.8
24

Sequential
10

29.3
62.2
5.5
85
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As a result of simultaneous convergence, the tailored approach performs
better in terms of computational time. The performance differences between
them seem to be more distinct with more complex problems, at least for this
example.

To conclude this section, we would like to point out that the differences
and similarity of the tailored and equation-based approaches. Since both
approaches are based on an infeasible path strategy, the convergence char-
acteristics are similar. Moreover, Schxnid and Biegler [12] compared both
approaches and confirmed that conclusion. However, since the formulation
of the problem in the tailored approach is done through the use of existing
unit solvers with specialized procedures for each unit model, it not only sim-
plifies the problem setup and can also yield a more robust formulation. As a
result, it reduces the effort needed in problem formulation and initialization
that cannot be quantified simply as CPU time. Also with the modularity of
the unit preserved, the tailored and sequential modular approaches can be
programmed to detect the ill-conditioning in the units and adjustment can
then be made. Furthermore, the pivot sequences in the tailored approach
are done by taking into account the structure of the units in contrast to a
general purpose pivoting strategy in the equation-based approach.

As is well known, the trend in process engineering is toward more realistic
models and real-time optimization. This will lead to a large demand in terms
of computational capability as well as in robust modeling. As a result.
we believe that the rSQP approach can be a useful tool that addresses
computational speed and meets the robustness requirement for large-scale
optimization.

8 Conclusions

This article first reveals the potentially unstable nature of the dynamic opti-
mization problem and the corresponding relationship to the resulting NLP.
The paper presents a new methodology for diagnosing this problem and.
through the use of problem reformulation step, yields a stable problem for-
mulation. These procedures are integrated into a reduced-Hessian SQP and
the collocation solver COLDAE. This framework provides a systematic way
to address problems without assuming that the problems are stable and can
be applied to various families of problems. A formulation similar to soft
and hard constraint enforcement can also be included to keep the solution
bounded.
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The algorithm proposed can be easily incorporated into a large scale
problem such as flowsheet optimization. Here a flowsheet optimization prob-
lem is considered via the tailored approach. It is shown in this work that
the tailored approach offers several significant advantages over conventional
strategies, namely sequential modular and equation-based approaches.

Appendix A: Proof for Property 1

Case 1: ODE and index 1 problems (LTI)

Consider an ODE of the form;

x = Mx + g(t) (94)

Note that the result below is general regardless of the inhomogeneous part.
Then let

M = WTAW (95)

Where A is diag(Ai, A2, • • •, An), with
Ax < .. < Aa < 0,
Aa+i < .. < An > 0,

W are the eigenvectors of Matrix A/, and
Wa are the eigenvectors of Matrix M corresponding to Ai, ..Ao, and
Wb are the eigenvectors of Matrix M corresponding to Ao+i, ..An,

Let s = Wxj then

s = As (96)

For index one problems, the algebraic variables are then computed from the
result of the differential variables x.

As a result, we can partition the problem into a decreasing part (Ai to
Ao) and an increasing part (Aa+i to An). Since this problem is LTI, the
fundamental solution S can be calculated stably. Clearly for this problem
to be well-conditioned, the boundary conditions of the problem have to
reflect this underlying structure. Let [B% B£]T] be the boundary conditions
derived from section 4. From [2], the condition number of the problem is
\S([B? : 0)TSa + [0 : * f f S*)"1!, where

Ba = [BaWa\BaWb] (97)
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Bb = [BbWa\BbWb] (98)
S(t) = diagle^i^e^e^+^-V,..^^1^) (99)

Sa = <fcaff[l,..4,e-^+V.,e-A«] (100)
..,e\l,..,l] (101)

Moreover, for problems with fast dynamics min|A| » 1, the condition
number is bounded iff BaWa and BbWb are both nonsingular. We can then
conclude directly from this result that the property 1 holds. D

Case 2: index two problems

The discussion in this part is based on the result in [3]. Consider the
following linear BVP.

z = Gnz + Gny (102)
G2ix = q (103)

Since this problem is index two, G21G12 is nonsingular. Moreover G12 has
full row rank. We can find an orthonormal matrix R such that

RG12 = 0 (104)

Multiply (102) by R,
Rz = RGnz (105)

and let
x = Rz (106)

Differentiating (106) and substituting matrix T where RT = /. The final
ODE of the problem can then be given as:

x = [(RGxi + R)T\x + inhompgeneous part. (107)

With the final ODE, we can then use the result in Case 1. D

Appendix B: some examples in the factorization step

In general, "the structure of constraints matrices can vary from the case
we present. Here, we assume that AyB,CjD are equal size. However, most
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cases can be decomposed into the following subproblems. A common struc-
ture that we often face is:

£ =

\E C 0 /
B A I 0

ECO
B A I

I
0

E C 0 I
B A I 0

(108)

The matrices A, B, C, E are the same as in (52). In the case where
zero, the growth of the sensitivity can be bounded by \(AE)ne\oo*

, C are
a addi-

tion, the row pivoting elements are restricted to a sequence of (I,A,E,I).
U B,C can serve as pivots and are of moderate size, the bounds are given
by mdx(\(AB"lE + CJ^IocK^^"1)™8^). In t h i s CBSe^ t h e sequence is
/, A, (J, B). In general, if the time scales of all profiles are in the same order
of magnitude, AE ~ O(l).
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