Phonological Memory and Vocabulary Learning in Children with Focal Lesions

Prahlad Gupta*
Brian MacWhinney†
Heidi Feldman‡
Kelley Sacco‡

*Department of Psychology
University of Iowa
Iowa City, Iowa 52242

†Department of Psychology
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

‡Department of Pediatrics
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

January 23, 2002

Address correspondence to:
Prahlad Gupta
Department of Psychology
University of Iowa
Iowa City, IA 52242
Phone: (319) 335-2908
Fax: (319) 335-0191
Email: prahlad-gupta@uiowa.edu

Running head: PHONOLOGICAL MEMORY AND VOCABULARY LEARNING
Abstract

Eleven children with early focal lesions were compared with 70 age-matched controls to assess their performance in repeating nonwords, in learning new words, and in immediate serial recall, a triad of abilities that are believed to share some aspects of underlying processing (e.g., Baddeley, Gathercole, & Papagno, 1998). Results for the experimental group were also compared with other assessments previously reported for the same children by MacWhinney, Feldman, Sacco, and Valdés-Pérez (2000). The children with brain injury showed substantial impairment relative to controls in the experimental tasks, in contrast with relatively unimpaired performance on measures of vocabulary and nonverbal intelligence. The relationships between word learning, nonword repetition, and immediate serial recall were similar to those observed in several other populations. These results confirm previous reports that there are persistent processing impairments following early brain injury, despite developmental plasticity. They also suggest that word learning, nonword repetition, and immediate serial recall may be relatively demanding tasks, and that their relationship is a fundamental aspect of the cognitive system.
Phonological Memory and Vocabulary Learning in Children with Focal Lesions

Learning the vocabulary of a native language is one of the most important developmental processes a child needs to undergo. A variety of evidence now suggests that human vocabulary acquisition processes and aspects of human verbal short-term memory may be related. In children, reliable correlations have been obtained between digit span, nonword repetition ability, and vocabulary achievement, even when other possible factors such as age and nonverbal intelligence have been factored out (e.g., Gathercole & Baddeley, 1989; Gathercole, Willis, Emslie, & Baddeley, 1992). Nonword repetition ability has been shown to be an excellent predictor of language learning ability in children learning English as a second language (Service, 1992; Service & Kohonen, 1995), and is also associated with more rapid learning of the phonology of new words by children in experimental tasks (Gathercole & Baddeley, 1990b; Gathercole, Hitch, Service, & Martin, 1997; Michas & Henry, 1994). In addition, similar relationships between these abilities appear to hold in adults (Gupta, 2001; Papagno, Valentine, & Baddeley, 1991; Papagno & Vallar, 1992). Thus there is now a considerable body of evidence to suggest that word learning, immediate serial recall, and nonword repetition are a related triad of abilities (Baddeley et al., 1998; Gathercole & Baddeley, 1993). An emerging view of this relationship is that immediate serial recall and nonword repetition are both tasks that draw on the mechanisms of verbal short-term memory fairly directly, and that the learning of new words is also in some way supported by verbal short-term memory (e.g., Baddeley et al., 1998; Brown & Hulme, 1996; Gathercole, Service, Hitch, Adams, & Martin, 1999; see also Gupta (1996; Gupta & MacWhinney, 1997) for a related but somewhat different view).

The studies cited above provide evidence about the relationship between these abilities in normally developing children and in normal adults. It has also been found that impairment of these abilities co-occurs in children diagnosed as having specific language impairment (SLI) not attributable to neurological deficit (Gathercole & Baddeley, 1990a). It also appears that there is a population of neuropsychologically impaired patients in whom language function is largely preserved, but who exhibit selective deficits in immediate serial recall and in nonword repetition and word learning ability (Baddeley, 1993; Baddeley, Papagno, & Vallar, 1988). Additionally, the co-occurrence of linguistic and verbal short-term memory deficits in adult aphasics has been noted by a number of investigators (e.g., Saffran, 1990; Shallice, 1988). The relationships between verbal short-term memory abilities and the linguistic processing of novel phonological forms thus appear to be a fundamental aspect of the human cognitive architecture, holding up as they do even under conditions of delayed linguistic development in children, and under neurological insult in adults.

Little is known, however, about the impact of early neurological injury on the development of these abilities. Previous studies of the development of language in children with early focal lesions suggest that there is a generally favorable prognosis for language acquisition that is nevertheless accompanied by selective deficits or delays, especially in the more complex aspects of language processing (e.g., Aram, Ekelman, Rose, & Whitaker, 1985; Aram, Ekelman, & Whitaker, 1986; Lenneberg, 1967; MacWhinney et al., 2000; Marchman, Miller, & Bates, 1991; Thal, Marchman, Stiles, Trauner, Nass, & Bates, 1991). No previous studies have specifically examined the impact of early lesions on vocabulary learning, nonword repetition, and immediate serial recall. Thus on the one hand, we might expect the plasticity of the developing brain to compensate for the insult, leaving little deficit in these abilities; on the other hand, perhaps these abilities would be among those manifesting delay and/or impairment.
The importance of this question lies in its implications for the nature of the processing that underlies these abilities. If these abilities are not significantly impacted by early injury, this would suggest that they are relatively easy tasks and/or that the functionality of the underlying mechanisms is relatively amenable to reorganization through developmental plasticity. If these abilities are significantly impacted by early injury, this would suggest that they are relatively demanding tasks and/or that the underlying processing functionality is not easily achieved through neural reorganization. Additionally, if the relationship between these abilities is indeed a fundamental aspect of cognition, then even following early injury, we would expect these relationships to be similar to those observed in the variety of populations cited above. Such a finding would have two possible interpretations. First, that the abilities are subserved by brain areas that are uniformly spared or damaged by lesions. Second, that they are logically and ecologically dependent: if an area were damaged that impacted one of these abilities, reorganization would occupy new territory for that ability and drag the other two with it. On the other hand, a finding that the relationships between these abilities do not hold following early brain injury would suggest that these abilities might have reorganized in ways that no longer shared processing components in the same manner, suggesting that their relationship might not be such a fundamental aspect of cognitive architecture.

The present work sought to shed light on these questions by administering tests of vocabulary learning, nonword repetition, and immediate serial recall to two groups of children aged 5 through 10. One group of 11 children had suffered perinatal brain injury that resulted in focal lesions; all but two of the lesions were to the left hemisphere. The second group consisted of age-matched controls. The experimental group of children were part of a large-scale investigation, other aspects of which were reported in MacWhinney et al. (2000). It was therefore possible to compare results from the present investigations with a broader profile of results that has been established for the same children.

Method

Participants

Experimental group. The participants were 11 children ages 5 through 10, who were recruited through referrals from local hospitals, rehabilitation centers, and previous research studies. All except one of this group (JL) also participated in the studies described in MacWhinney et al. (2000). Neurological information was available in the form of MRI scans for all children; neurological profiles are summarized in Table 1. Further information about the MRI scans, neurological profiles, and demographic characteristics is provided in MacWhinney et al. (2000).

Control group. Seventy children ranging in ages from 5 through 10 years were recruited to serve as controls. 10 of the children were aged 5, 11 were aged 6, 14 were aged 7, 13 were aged 8, 12 were aged 9, and 10 were aged 10. All of the control children were functioning at grade level. They were recruited from parochial and private schools in the greater Pittsburgh area, as well as from advertisements. They were tested either at their schools or in the Department of Psychology at Carnegie Mellon University. Parental consent was obtained for all participants.
<table>
<thead>
<tr>
<th>CODE</th>
<th>AGE</th>
<th>DESCRIPTION OF LESION</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEW</td>
<td>5</td>
<td>Tissue loss along the left central sulcus involving the posterior left frontal cortex and anterior left parietal area.</td>
</tr>
<tr>
<td>ELS</td>
<td>6</td>
<td>Small lesion in the left parietal white matter.</td>
</tr>
<tr>
<td>JL</td>
<td>6</td>
<td>Right hemiparesis, with damage to left frontal cortical tissue.</td>
</tr>
<tr>
<td>JOR</td>
<td>6</td>
<td>Damage to left dorsolateral prefrontal cortex and nearby areas, including Broca’s area; enlarged left ventricle.</td>
</tr>
<tr>
<td>DUP</td>
<td>7</td>
<td>Enlargement of both lateral ventricles, L > R. Reduction in white matter in left periventricular region, in the areas anterior and posterior to the ventricle.</td>
</tr>
<tr>
<td>RYB</td>
<td>7</td>
<td>Left lateral inferior frontal loss, affecting Broca’s area and dorsolateral prefrontal cortex; enlargement of left lateral ventricle, probable compensation for volume loss.</td>
</tr>
<tr>
<td>MAM</td>
<td>7</td>
<td>Enlargement of left ventricle centrally with thinning of left white matter (corona radiata, centrum semiovale, corpus callosum.</td>
</tr>
<tr>
<td>DAC</td>
<td>8</td>
<td>Enlargement of the left lateral ventricle engulfing most of parietal and much of occipital lobe. A thin parietal mantle remains, along with a somewhat larger occipital mantle. Some enlargement of right lateral ventricle.</td>
</tr>
<tr>
<td>KAM</td>
<td>10</td>
<td>Left lateral/posterior/inferior frontal loss, adjacent to insula, sparing motor strip; left lateral/anterior parietal loss and some loss of the left insula.</td>
</tr>
<tr>
<td>DES</td>
<td>10</td>
<td>Enlargement of the left ventricle. White matter loss underneath the entire left cortex, with some retrograde white matter loss.</td>
</tr>
<tr>
<td>TID</td>
<td>10</td>
<td>Enlargement of the left lateral ventricle into posterior cortical areas.</td>
</tr>
</tbody>
</table>

Table 1: Neurological profiles of children in the experimental group, as reported in MacWhinney et al. (2000), except for JL.

Experimental measures

Immediate serial recall. One token of each of the digits one through nine spoken by a female native speaker of American English was recorded as digitized sound on an Apple PowerMacintosh computer. Random sequences of these tokens were generated, varying in length from two digits to eleven digits. Each digit sequence was presented auditorily under computer control. One trial consisted of presentation of one sequence of a particular length. For example, one trial at list length four consisted of auditory presentation of a sequence of four digits such as three, eight, two, five.

There were 5 trials at each list length. Presentation of lists started with sequences of two digits. Participants were seated facing the screen. After presentation of each digit sequence, a rectangular answer box appeared on the screen, with a question mark in it. Participants were instructed to repeat the sequence orally as soon as the answer box appeared on the screen. The participant’s response was typed in by the experimenter, and appeared in the answer box on the screen. The experimenter completed entering the response by pressing the carriage return key on the computer keyboard, which initiated auditory presentation of the next digit sequence. If a participant recalled in correct serial order three or more of the five sequences at a particular list length, the next higher list length was introduced. The longest list length for which a participant correctly recalled three or more sequences was taken as the measure of that participant’s digit span.
Nonword repetition. We used 2-syllable, 3-syllable, and 4-syllables word forms taken from the Childrens’ Test of Nonword Repetition (CNRep; Gathercole, Willis, Baddeley, & Emslie, 1994). This test was devised specifically for use with children, and formed the basis of the studies that first reported correlations between memory span, nonword repetition, and vocabulary ability in children (e.g., Gathercole & Baddeley, 1989; Gathercole, Willis, Emslie, & Baddeley, 1991b). However, we decided not to use the 5-syllable word forms in the CNRep, in view of the anomalous results reported at this nonword length (Gathercole et al., 1994). The nonwords in our adaptation of the CNRep were recorded as digitized sound on an Apple PowerMacintosh computer by a female native speaker of American English. Stimuli were presented by computer, and all participants listened to the stimuli on headphones. Each nonword was spoken twice, and participants were instructed to repeat every nonword stimulus after hearing it the second time. The experimenter rated each repetition as correct or incorrect.

Word learning. To obtain a measure of word learning ability, we presented participants with nonword-picture pairs. This was followed by cued recall, in which the picture served as the cue, and participants were asked to recall the nonword with which the picture had been paired during presentation. This was meant to approximate the task of word learning, in which the representation for a novel word form must be created and bound to a semantics or other contextual representation.

Participants were presented with nonwords auditorily. Presentation of each nonword was accompanied by the picture of an unfamiliar object. There were nine nonword-picture pairs. The nine nonwords consisted of three 2-syllable word forms, three 3-syllable word forms, and three 4-syllable word forms. Presentation was blocked in groups of three, so that participants would not have to learn all nine pairs in one trial. Stimulus pairs were chosen to minimize stimulus similarity for the stimuli at any given word length. However, it was difficult to ensure that all nine pairs were completely distinct from each other. For this reason, the blocking variable chosen was word length: within a block, stimulus pairs would be distinct and therefore non-confusable.

The nonword-picture pairs used are shown in Figure 1. Each nonword was recorded as digitized sound on an Apple PowerMacintosh computer by a female native speaker of American English. All participants listened to the stimuli on headphones, with a uniform playback volume for all participants. The pictures were all of real but unfamiliar objects which participants were unlikely to know or have a name for. Unfamiliarity of the pictured objects was confirmed by informal pilot testing prior to the actual experiment.

The procedure for presentation was as follows. Each nonword-picture pair was presented under computer control. Each nonword was repeated twice. Participants were told that the word forms they heard were the “names” of the pictured objects, and that they were to learn these names. The picture appeared on the computer screen synchronously with onset of the first repetition of the nonword. The second repetition of the nonword occurred 1800 ms. after onset of the first repetition. A fixation cross replaced the picture 1500 ms. after onset of the second repetition of the nonword. Thus the picture was displayed on the screen for 3300 ms., during which the nonword was presented twice, auditorily. Participants were instructed to repeat the word form they had just heard, as soon as the fixation cross appeared on the screen. The fixation cross stayed on the screen for 1500 msec, at the end of which presentation of the next nonword-picture pair began. To make the task less difficult, especially for the child population, it was decided to present the nine pairs in blocks of three. It was also decided to present the shortest nonwords first, so that participants could begin the task with the easier 2-syllable words; this seemed particularly important for the
Figure 1: Nonword-picture pairs used in word learning task.

child population. For both of these reasons, presentation of the nonword-picture pairs was blocked by nonword length. Thus there were three nonword-picture pairs at each length (2-syllable, 3-syllable, 4-syllable), and all the pairs of a particular length were presented in one block. This procedure had the further advantage of preventing participants from using nonword length as a recall aid. Presentation order of pairs within each block was random without replacement.

Cued recall followed presentation of the three stimulus pairs in each block. Participants were presented with pictures from the immediately preceding nonword-picture pairs, and were instructed to respond by saying the “name” of the pictured object out loud. Pictures were selected randomly without replacement, from the set of three pairs in each block. Each picture cue was displayed for 1500 ms., during which the participant was supposed to name it. The screen was masked for 1000 ms. before presentation of the next picture cue. Presentation of pictures was controlled by the computer.

This procedure was repeated five times for each block of nonword-picture pairs. When the five cycles for one block of three nonword-picture pairs were complete, the next block of pairs was introduced.
Standardized tests

As described in MacWhinney et al. (2000), a number of standardized measures were administered to each experimental participant. 1. The Leiter International Performance Scale (Leiter, 1979) is an untimed test that provides a culture-free, non-verbal means of assessing general intelligence based on primarily abstract concepts. This test has a norm of 100 and a standard deviation of 15. 2. The Peabody Picture Vocabulary Test-Revised (PPVT-R; Dunn & Dunn, 1981) is an untimed test of receptive vocabulary that measures a participant’s hearing vocabulary for Standard American English. The test has a mean of 100 and a standard deviation of 15. 3. The Clinical Evaluation of Language Fundamentals-Revised (CELF-R; Semel, Wiig, & Secord, 1987) is a standardized measure of language functioning that diagnoses language skill deficits in school-aged children, and consists of several subtests, for each of which norms are provided. Each subtest has a mean of 10 and standard deviation of 3. The CELF-RS (Recalling Sentences) is an expressive test that assesses the ability to recall and reproduce sentence surface structure of varying length and syntactic complexity. The CELF-FS (Formulating Sentences) is an expressive test that assesses the ability to formulate simple, compound, and complex sentences from words provided by the examiner. The CELF-OD (Oral Directions) is a receptive test that assesses the ability to interpret, recall and execute of oral directions of increasing length and complexity.

Results and Discussion

Scores on the three experimental tasks are shown in Table 2. The upper panel of the table shows performance on word learning. Each experimental group participant’s raw score is shown, as well as the standardized score (z-score) with respect to the relevant age-matched control group. The middle panel shows the same information for the nonword repetition task, and the bottom panel provides this information for immediate serial recall.

The standardized scores show, for each measure, how many standard deviations from the age-matched control group mean each experimental group participant’s performance lies. Each participant’s performance on each test was evaluated in two ways. First, we examined whether the subject’s z-score fell within ±1.645 of the control group mean. This corresponds to a 90% confidence interval around the control group mean; we used this (rather than a 95% interval) because we wished to identify those scores that fell in the lowest 5% of the distribution defined by control group performance. Second, we examined whether the participant’s score fell within the actual range of scores obtained for the control subjects. Performance was considered to be unimpaired on a particular test if it met either of these criteria. Scores that failed both of these criteria were considered to be in the impaired range, and are marked with an asterisk in the Table.

As can be seen, the experimental group’s performance exhibits impairment on several of the measures: of the 33 scores (comprised of 11 participants’ scores on each of three measures), 19 fall within the impaired range. Of these, six are in word learning, seven are in nonword repetition, and six are in immediate serial recall. This provides preliminary indication that neurological insults in children do lead to deficits in performance on word learning, nonword repetition, and immediate serial recall, as they do in adults.

Figure 2 plots these results and displays regression lines fitted to the control and experimental groups for each measure. For word learning, we see that the performance of the experimental group is substantially lower than that of the control group at all ages. However, scores improve
<table>
<thead>
<tr>
<th>Participant</th>
<th>Age</th>
<th>Control Group</th>
<th>Participant</th>
<th>Age</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Raw Score</td>
<td>z Score</td>
</tr>
<tr>
<td>Word Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEW</td>
<td>5</td>
<td>9.600</td>
<td>7.947</td>
<td>5.000</td>
<td>-0.579</td>
</tr>
<tr>
<td>JL</td>
<td>6</td>
<td>20.273</td>
<td>8.101</td>
<td>4.000</td>
<td>*-2.009</td>
</tr>
<tr>
<td>DUP</td>
<td>7</td>
<td>15.500</td>
<td>3.798</td>
<td>8.000</td>
<td>*-1.975</td>
</tr>
<tr>
<td>MAM</td>
<td>7</td>
<td>15.500</td>
<td>3.798</td>
<td>8.000</td>
<td>*-1.975</td>
</tr>
<tr>
<td>KAM</td>
<td>9</td>
<td>18.333</td>
<td>7.190</td>
<td>13.000</td>
<td>-0.742</td>
</tr>
<tr>
<td>TID</td>
<td>10</td>
<td>21.300</td>
<td>5.165</td>
<td>17.000</td>
<td>-0.833</td>
</tr>
<tr>
<td>Nonword Repetition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEW</td>
<td>5</td>
<td>19.444</td>
<td>4.558</td>
<td>10.000</td>
<td>*-2.072</td>
</tr>
<tr>
<td>DUP</td>
<td>7</td>
<td>21.643</td>
<td>1.823</td>
<td>19.000</td>
<td>-1.450</td>
</tr>
<tr>
<td>MAM</td>
<td>7</td>
<td>21.643</td>
<td>1.823</td>
<td>18.000</td>
<td>*-1.998</td>
</tr>
<tr>
<td>KAM</td>
<td>9</td>
<td>22.417</td>
<td>2.021</td>
<td>20.000</td>
<td>-1.196</td>
</tr>
<tr>
<td>TID</td>
<td>10</td>
<td>24.000</td>
<td>2.261</td>
<td>26.000</td>
<td>0.885</td>
</tr>
<tr>
<td>Immediate Serial Recall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEW</td>
<td>5</td>
<td>3.300</td>
<td>0.949</td>
<td>2.000</td>
<td>-1.370</td>
</tr>
<tr>
<td>JL</td>
<td>6</td>
<td>4.182</td>
<td>0.405</td>
<td>2.000</td>
<td>*-5.394</td>
</tr>
<tr>
<td>DUP</td>
<td>7</td>
<td>4.357</td>
<td>0.633</td>
<td>3.000</td>
<td>*-2.143</td>
</tr>
<tr>
<td>MAM</td>
<td>7</td>
<td>4.357</td>
<td>0.633</td>
<td>4.000</td>
<td>-0.564</td>
</tr>
<tr>
<td>KAM</td>
<td>9</td>
<td>4.917</td>
<td>0.669</td>
<td>4.000</td>
<td>-1.371</td>
</tr>
<tr>
<td>TID</td>
<td>10</td>
<td>5.600</td>
<td>0.699</td>
<td>5.000</td>
<td>-0.858</td>
</tr>
</tbody>
</table>

Table 2: Performance on experimental measures: Word Learning, Nonword Repetition, and Immediate Serial Recall
with age in both groups. The overall trend with age is very similar for the two groups, with essentially parallel regression lines. Thus the experimental group’s relative impairment in word learning appears to persist over this age range, and does not show improvement with respect to controls.

In nonword repetition, the experimental group’s scores are substantially lower than the control group’s at the younger ages, but show a much steeper improvement than those of the control group, catching up with control group performance at the older ages. The experimental group’s impairment in nonword repetition thus appears to remit over this age range, as a result of markedly greater improvement in this ability than occurs in controls. This is also apparent from the regression lines, which converge at about age 10.

For immediate serial recall, the picture is very similar to that for word learning. The performance of the experimental group is substantially lower than that of the control group at all ages; scores improve with age in both groups, and the overall trend with age is very similar for the two groups, with almost parallel regression lines. Thus, as in word learning, the experimental group’s impairment in immediate serial recall appears to persist over this age range, not showing improvement relative to controls. The results for immediate serial recall mirror those reported by MacWhinney et al. (2000) using a slightly different test of immediate serial recall.

Thus the results suggest a fairly pervasive impairment in the experimental group’s performance on word learning, nonword repetition, and immediate serial recall, although the impairment in nonword repetition remits by the end of the age range we examined. But do these results truly reflect impairment in the measures examined? Or are they rather merely a reflection of some generalized impairment in cognitive function? Further understanding of the present results can be obtained by comparing them with results reported by MacWhinney et al. (2000). That study obtained measures from the same experimental group on the standardized tests described earlier (Leiter, PPVT-R, and CELF), as well as on a number of reaction-time tasks designed specifically to test basic online skills relevant to language processing.

The upper panel of Table 3 summarizes performance on the experimental measures in the present study, reproducing the z-scores from Table 2 in a format that facilitates identification of each child’s profile of impairment. It is worth noting the wide prevalence of impairment on the experimental measures: 9 of 11 children were impaired on at least one of the measures, KAM and TID being the only exceptions. The lower panel shows performance on each of the standardized measures administered by MacWhinney et al. (2000), except for one child (JL), for whom these data were not available. To facilitate comparison with the experimental tasks, scores on each of the standardized tests have been converted to z-scores using the mean and standard deviation published for each standardized measure. As with the experimental measures, scores that fell in the lowest 5% (i.e., z-scores of lower than −1.645) were considered to be in the impaired range, and are indicated with an asterisk.

What is apparent is that the childrens’ nonverbal intelligence and vocabulary (as measured by the Leiter and PPVT-R respectively) are solidly within the normal range, with only one score on each measure falling in the impaired range, and with the mean z-scores being −.113 for the Leiter, and −.447 for the PPVT-R. This is a finding that MacWhinney et al. (2000) also noted for the larger group of 20 children. Thus the finding of substantial impairment on the present experimental tests of word learning, nonword repetition, and immediate serial recall is not simply a manifestation of generalized cognitive impairment; nor is it even a manifestation simply of generalized linguistic impairment, as gauged by the childrens’ vocabularies.
Figure 2: Regression lines for word learning (WL), nonword repetition (NWR), and immediate serial recall (ISR), for experimental and control groups.
Table 3: Experimental group. Comparison of \(z \)-scores in performance on experimental tasks in the present study with \(z \)-scores in performance on a variety of standardized tests. Scores on the standardized tests were previously reported in MacWhinney et al. (2000), except for one child (JL), for whom these data were not available.

MacWhinney et al. (2000) further noted that, in contrast to nearly normal performance on the Leiter and PPVT-R, the 20 experimental participants performed more poorly on the language processing tasks of the CELF. This trend can also be seen in the results for the present set of 10 children: the mean \(z \)-scores are \(-.800\), \(-1.100\), and \(-1.233\) for the CELF-RS, CELF-OD, and CELF-FS respectively. MacWhinney et al. (2000) also reported that the children with focal lesions were markedly slower than their respective control groups on the various reaction-time tasks. However, as the control group in the present study was different, and the reaction-time measures were not administered to them, no comparison can be made between the present experimental and control groups with regard to these measures.

MacWhinney et al. (2000) suggested that the CELF language processing tasks required more complex online processing than the Leiter and PPVT-R, with the CELF-OD requiring a child to store, elaborate, and execute a complex plan to follow oral directions, and the CELF-FS requiring the child to apply syntactic, semantic, and pragmatic abilities to compose a complex sentence structure based on the words provided. They suggested that the reaction-time tasks were also such as to reveal underlying processing deficits. To summarize their view, the performance of the experimental group as a whole reflects adequate language function and adequate overall cognitive function, but underlying processing deficits exist nevertheless, and are revealed by tasks that are more demanding. Task demands may arise from the complexity of the task, or from it being being more constrained in its response requirements. The CELF tasks would be an example of both of these types of task demand: for instance, the CELF-OD is more complex than the Leiter or PPVT; it is also more constrained, requiring a very specific plan to be executed, whereas the Leiter allows greater flexibility in how the items are responded to. Task demand may also arise in the requirement for speeded processing, as in the reaction-time tasks. We could further imagine that part of what constitutes “complexity” may be a requirement to engage verbal short-term memory (see the description of the CELF tasks above). Set against this background, the present results suggest that word learning, nonword repetition, and immediate serial recall are relatively demanding tasks, eliciting performance that is substantially weaker than performance on the measures of general nonverbal intelligence and of vocabulary, and that is weaker even than performance on the subtasks of the CELF, as may be verified from examination of the mean \(z \)-scores in Table 3.

Overall, our results thus far answer the first question we wished to address, indicating that word learning, nonword repetition, and immediate serial recall do exhibit substantial impairment...
in children with early focal lesions, and that this impairment is not merely secondary to generalized cognitive impairment or to generalized linguistic impairment. They also provide insight into the nature of these abilities, suggesting that the underlying processing mechanisms may be relatively complex or demanding.

This leads to the second question we wished to address: is the relationship between word learning, nonword repetition, and immediate serial recall similar to that observed in normally developing children, which is also observed in children with specific language impairment, and in normal and neurologically impaired adults? To examine this issue, we determined correlations between these abilities in the experimental and control groups, and compared these with correlations that have previously been reported for normally developing children. Table 4 shows the patterns of correlation, both simple and partial, between these abilities in the experimental and control groups, and also summarizes developmental results for normally developing children (e.g., Gathercole et al., 1994).

Let us first consider correlations in the control group. The simple correlations were somewhat higher than those reported by Gathercole et al. (1994). Correlations were therefore examined with age partialled out. These partialled correlations were lower than the simple correlations, but remained significant, and were for the most part similar to those reported in the literature. It should be noted that the partial correlations previously reported factored out age and nonverbal intelligence, whereas the partial correlations we report for our control group were after factoring out only age, as no measure of nonverbal intelligence was administered to this group. This may be one reason why the partial correlations remained somewhat higher than those previously reported.

Turning to correlations for the experimental group, it can be seen that the simple correlations are highly significant; however, they are very much higher than in either the present control group or the reported developmental results. To further examine these results, we partialled out age and nonverbal intelligence (as measured by the Leiter), thus making the partial correlations compa-

<table>
<thead>
<tr>
<th>Correlation between</th>
<th>Gathercole et al.</th>
<th>Present experiment (5-10 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 yrs</td>
<td>5 yrs</td>
</tr>
<tr>
<td>Span & CNRep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple correlation</td>
<td>0.524†</td>
<td>0.667†</td>
</tr>
<tr>
<td>age partialled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>age, nonverbal partialled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Span & Vocab</td>
<td>0.284†</td>
<td>0.376†</td>
</tr>
<tr>
<td>simple correlation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>age partialled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>age, nonverbal partialled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vocab & CNRep</td>
<td>0.413†</td>
<td>0.419†</td>
</tr>
<tr>
<td>simple correlation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>age partialled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>age, nonverbal partialled</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Correlations between nonword repetition, word learning, and digit span: Comparison of present results with developmental data from Gathercole et al. (1992, for ages 4 through 8), and Gathercole et al. (1999, for age 13).
rable with those previously reported. (For comparison with the control group, each correlation is also shown with only age partialled out). As shown, the partial correlations between digit span and nonword repetition, and between digit span and word learning remained significant even with both age and nonverbal intelligence partialled. However, the partial correlation between word learning and nonword repetition was marginally non-significant \((p = 0.067)\), a result that is consistent with results reported for 8-year-olds (as shown in the Table), and with findings in normal adult populations (Gupta, 2001). The partial correlations remained of greater magnitude than those previously reported.

It is important to keep in mind, however, that it is not the magnitudes of correlations in themselves that should be of primary interest, but rather the overall pattern of correlations between the measures. This is because there are a number of differences in the way that the various measures were determined in previous studies as compared with the present study. First, the previously reported developmental studies reported vocabulary measures, whereas the present results incorporate a measure of word learning performance. (It should be noted, however, that Gathercole et al. (1997) examined relationships between digit span, nonword repetition, and performance in a simulated word learning task with 5-year-olds, and found patterns of correlation similar to the developmental results summarized above). Second, the measures of nonword repetition were different, being based on the CNRep for the children aged 4, 5, and 8 years (Gathercole, Willis, & Baddeley, 1991a; Gathercole et al., 1992; Gathercole et al., 1994), and in the present study, being based on repetition of pairs of nonwords for the 13-year-olds (Gathercole et al., 1999). These various differences indicate that we should not expect to find identical correlations; the more significant finding is that the pattern of simple and partial correlations between the three measures is similar to that obtained in normal development. Correlations in the control group are mostly within the range of developmental correlations that have previously been reported; and correlations in the experimental group remain significant even when age and nonverbal intelligence are partialled out, as they do in normally developing children.

Overall, therefore, the present results address the second question we raised: it appears that despite the brain injuries suffered by the experimental group, the pattern of relationships between word learning, nonword repetition, and immediate serial recall are maintained, and are similar to those that have been reported in other populations.

General Discussion

The studies described here provide new information, both about the impact of early brain injury on word learning, nonword repetition, and immediate serial recall, and about the pattern of preservation and impairment of behavioral abilities in children following early brain injury.

Regarding the investigation of word learning, nonword repetition, and immediate serial recall, the first question we addressed was whether these abilities are significantly impacted by early injury. The results indicate that these abilities do exhibit substantial impairment in children with early focal lesions, and that this impairment is not merely secondary to generalized cognitive impairment or to generalized linguistic impairment. They also provide insight into the nature of these abilities, suggesting that the underlying processing mechanisms may be relatively complex. Furthermore, the finding of impairment across a wide variety of lesions suggests that this triad of abilities places demands on a distributed neural system that is likely to be impacted by almost any cortical injury.
The second question we addressed was whether the relationships between these abilities would be similar to those observed in a variety of other populations, including normally developing children, children with specific language impairment, normal adults, and adults with neurological injury. The results suggest that the relationships between digit span, nonword repetition, and word learning are similar to those observed in the other populations, even under conditions of early brain injury. We noted in the introduction that such a finding might indicate either that the brain regions underlying these abilities had been uniformly damaged by lesions, or that these abilities are logically and ecologically dependent, a possibility that is entirely consistent with current thinking about the phonological loop (e.g., Baddeley et al., 1998). Given that the lesions in the present experimental group were widely varied, it seems very unlikely that the brain areas subserving immediate serial recall, nonword repetition, and word learning were uniformly impaired across the group. We therefore suggest that the results are best interpreted as indicating that this triad of abilities is logically and ecologically interdependent, and thus as providing further evidence that the relationship between these abilities is indeed a fundamental aspect of cognition.

However, a caution is in order regarding inferences about the processing basis of this relationship. It is important to keep in mind that the mechanisms of verbal short-term memory do not operate independently of linguistic representations or the lexical system. A variety of evidence now indicates, for instance, that long-term linguistic knowledge significantly impacts performance in immediate serial recall as well as in nonword repetition (e.g. Gathercole, 1995; Hulme, Maughan, & Brown, 1991). Gupta (1995, 1996; Gupta & MacWhinney, 1997) developed a computational model of verbal short-term memory and lexical processing that offers an account of how performance of verbal short-term memory tasks such as immediate serial recall involves lexical processing mechanisms. This work incorporates a simple model of lexical processing, and a sequence memory that encodes the serial order of word forms as they are presented to the lexical system. The sequence memory is a specialized short-term store, corresponding roughly to the working memory model’s phonological store, but with the important difference that it does not consist of slots into which items are entered; rather, it takes snapshots of the activation of linguistic representations as they occur in sequence in the lexical system (Gupta, 1995; Gupta & MacWhinney, 1997). This model offers an account of word learning, nonword repetition, and immediate serial recall, providing a concretization of the notion that verbal short-term memory is intrinsically linked to lexical processing mechanisms. Additionally, the model suggests that all three abilities depend crucially on the strength of long-term phonological knowledge in the lexical system. Thus the mechanisms of verbal short-term memory may themselves draw on aspect of the linguistic system, rather than consisting of a slot-like isolated verbal short-term memory buffer stores or temporarily maintains traces derived from a completely separate lexical system. A similar point has been made by Gathercole et al. (1997), who noted that the “phonological store” on which immediate serial recall, nonword repetition, and word learning rely is perhaps better conceived of as a system whose performance depends on both a specialized short-term sequence memory and the activation of representations in the lexical system. And as noted above, the present finding of impairment in these abilities across a wide variety of lesions also suggests a distributed neural system. Thus, although the present results provide new evidence for the fundamental nature of relationships between word learning, nonword repetition, and immediate serial recall, they do not provide evidence regarding the details of the processing mechanisms underlying those relationships.

Finally, the present study provides new information about the prognosis for development fol-
lowing early brain injury. The overall pattern of impairment in word learning, nonword repetition, and immediate serial recall confirms suggestions from previous studies that despite developmental plasticity, there are processing deficits following early brain injury. What is encouraging, however, is the success that these children achieve in acquiring a thoroughly adequate functional use of language, as MacWhinney et al. (2000) also noted. One seeming paradox is the experimental group’s lack of impairment on the vocabulary measure, given their impairment in learning new words. One possible explanation of this is that the word learning task that was administered taps into the core cognitive processes of word learning; however, as noted by MacWhinney et al. (2000), word learning is highly overdetermined, for instance, by well-structured parental input, good educational support, and nurturant family environments, and it is reasonable to suppose that the present experimental group benefits from some of these, so as to achieve normal control of language when measured in overall functional terms such as vocabulary level. In this connection, the finding of remission of deficits in nonword repetition is encouraging, suggesting that the prognosis even for online processing may be favorable. It would be valuable to obtain information about the time course of such abilities beyond the age range we examined, into the teenage years.

More speculatively, the present results may also offer some insight into patterns of cognitive impairment following brain injury more generally, and even regarding developmental language disorders. In the case of early lesions, there is a real possibility for remission of deficits as a result of developmental neural plasticity. It is therefore reasonable to conclude that those abilities that remain relatively more impaired are the ones that are either more demanding, or less amenable to neural reorganization, or both. To the extent that the present results indicate that word learning, nonword repetition, and immediate serial recall are relatively demanding tasks, as we have suggested, they may offer insight into the frequent cooccurrence of impairments in verbal short-term memory and in processing novel phonological material, in adult aphasic populations as well as in children with specific language impairment. Such impairments may reflect the breakdown of more demanding cognitive tasks under conditions of impairment to the underlying processing abilities, and indeed, this view has been advanced both in the case of aphasia (e.g., Martin, Saffran, & Dell, 1996), and in the case of specific language impairment (e.g., Merzenich, Jenkins, Johnston, Schreiner, Miller, & Tallal, 1996; Tallal, Miller, Bedi, Byma, Wang, Nagarajan, & others, 1996), where this view has led to the development of apparently successful treatments. If this is the case, then further investigation of these issues might have a bearing on programs of remediation following brain injury.

Acknowledgements

The authors thank all the children who participated in the present studies, as well as their families and schools. Thanks are also due to Phil Oye and Holly Trask for assistance in preparation and administration of experiments. This research was supported in part by Social and Behavioral Sciences Research Grant No. 12-FY95-0418 from the March of Dimes Birth Defects Foundation to PG, BM, and HF.
References

