
Carnegie Mellon University
Research Showcase @ CMU
Department of Electrical and Computer
Engineering Carnegie Institute of Technology

1994

Requirements analysis for information web
(IWEB) : an issue-based, information modeling
and management environment for software
engineering
Robert Coyne
Carnegie Mellon University

Carnegie Mellon University.Engineering Design Research Center.

Follow this and additional works at: http://repository.cmu.edu/ece

This Technical Report is brought to you for free and open access by the Carnegie Institute of Technology at Research Showcase @ CMU. It has been
accepted for inclusion in Department of Electrical and Computer Engineering by an authorized administrator of Research Showcase @ CMU. For
more information, please contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fece%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/cit?utm_source=repository.cmu.edu%2Fece%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/ece?utm_source=repository.cmu.edu%2Fece%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Requirements Analysis for Information Web (IWEB): An
Issue-based, Information Modeling and Management

Environment for Software Engineering

Robert Coyne, Allen Dutoit, James Uzmack, Kevin OToole

EDRC 05-87-94

Requirements Analysis for Information Web (IWEB):1

An Issue-based, Information Modeling and Management

Environment for Software Engineering

Prepared by the IWEB/n-dim Use Case team:
Robert Coyne, Allen Dutoit, Jim Uzmack and Kevin O'Toole

Contributions By:
Bernd Bruegge, Ira Monarch, David Rothenberger and the n-dim Group2

Contact:
dutoit @ edrc. emu. edu

Abstract

The IWEB project is focused on creating an improved information management environment for
team-based software engineering. This includes support for information structuring and
communication during a project as well as maintenance and (re)use of project histories across
projects. With this in mind, we are experimenting primarily within the context of the project based
software engineering courses 15-413 (the basic course offered each Fall semester) and 15-499
(the advanced course offered each Spring) in the School of Computer Science at Carnegie Mellon
University. These courses reflect much that is typical of the "state of the art" and outstanding
issues in the current practice of software engineering. They are large (60 students, teaching
assistants and instructors in F '93), require the delivery of a running prototype to a real client, and
generally attempt to provide, as realistic as possible, software engineering experience to the
participants.

This document summarizes the requirements for IWEB based on general case studies of
engineering work conducted at the EDRC (and elsewhere) and integrates the experience of the
authors as students, teaching assistants and instructors in the courses. We accumulated insights
and studied information problems and communication breakdowns from three different
perspectives: direct observation, student surveys, and quantitative analysis of project
communication records and documents. IWEB incorporates ideas from previous issue-based
support systems, such as gIBIS (graphical issue-based information system), and intends to build
on top of a more general information modeling perspective by adapting a prototype of the w-dim
(n-dimensional Information modeling) environment. To capture the functional requirements for
IWEB we employ a development method structured around the viewpoint of prospective users of
the system (actors) and that produces descriptions of all of the transactions these actors will
engage in with the system as use cases. Though we are focusing on software engineering for the
initial prototype of IWEB, we expect that it will have broader application within any team-based
or collaborative work context.

1 This work has been supported in part by the Engineering Design Research Center, a NSF Engineering Research Center.
2 Robert Coyne, Doug Cunningham, Joe Davis, Allen Dutoit, Eric Gardner, Suresh Konda, Sean Levy, Ira Monarch.

Robert Patrick. Yoram Reich. Eswaran Subrahmanian, Mark Thomas, James Uzmack, and Arthur Westerberg.

1 Introduction 1

2 Development Process 4
2.1 Motivation 4

2.2 Development Phases and Methods 4

3 Requirements Elicitation 7
3.1 15-413 Background 7

3.2 Direct Observations 9

3.3 Student Observations 10

3.4 Quantitative Analysis 11
3.4.1 Global Traffic 11
3.4.2 Intra-team Communication 12
3.4.3 Inter-team Communication 14

3.5 Scenarios 15

3.6 Problem Statement 16

4 Relevant Work 19
4.1 Case Studies of Engineering and Software Design Work 19

4.2 Information Management Requirements for Software Engineering 20

4 J gIBIS 22

4.4 n-Dimensional Information Modeling (n-dim) 23
4.4.1 Current Information Modeling and Management Technologies 24
4.4.2 Information Modeling in n-dim 25
4.4.3 Current Status 28

4.5 How IWEB Incorporates These Streams 28

5 IWEB Concepts 31
5.1 Information modeling and n-dim Concepts 32

5.1.1 n-dim 32
5.1.2 n-dim Object 32
5.1.3 Flat Information Space 32
5.1.4 n-dim Controlled Object 32

5.1.5 rt-dim Non-Controlled Object 33

5.1.6 Model 33
5.1.7 Reference 33-
5.1.8 Link 33
5.1.9 Structured Model 34,
5.1.10 Atom 34
5.1.11 Owner 34
5.1.12 Access 34
5.1.13 Sharing Status 34
5.1.14 Private 34
5.1.15 Public 34
5.1.16 Published 34
5.1.17 Legality State 35
5.1.18 Legal 35
5.1.19 Under-Construction 35
5.1.20 Operations 35
5.1.21 Modeling Language 35
5.1.22 Pedigree Model 35
5.1.23 Person Model 35

5.2 IWEB Terms and Concepts 36
5.2.1 IWEB Object 36
5.2.2 Issue Forest 36
5.2.3 Root Issue Forest 37
5.2.4 Issue Forest Node 37
5.2.5 Issue Node 37
5.2.6 Proposal Node 37
5.2.7 Argument Node 37
5.2.8 Resolution Node 38
5.2.9 Generic Node 38
5.2.10 Issue Forest Link 38
5.2.11 Sub-Issue-of Link 38
5.2.12 Abstracts Link 38
5.2.13 Responds-to Link 39
5.2.14 Argues-for Link 39
5.2.15 Argues-against Link 39
5.2.16 Based-on Link 39
5.2.17 Resolves Link 39
5.2.18 Reference Link 39
5.2.19 Root Issue Node 41
5.2.20 Executive Summary 41

\

5.2.21 Can-be-resolved-by List 41
5.2.22 Issue Forest Access 41
5.2.23 Node-and-Link Subassembly 41
5.2.24 Resolved Issue 41
5.2.25 What's New Model 42
5.2.26 Notification Box 42
5.2.27 Notice 43
5.2.28 View Access 43
5.2.29 Drop Access 43
5.2.30 Notification Box Distribution List 43
5.2.31 Update of a What's New Model or a Notification Box 43
5.232 Issue Forest Directory 43
5.2.33 What's New History 44
5.2.34 Notification Box History 44
5.2.35 Notification Box Closed View 44
5.2.36 Notification Box Opened View 44
5.237 User. 44
5.2.38 Contact 44
5.2.39 Schedule 45
5.2.40 Roles 45
5.2.41 Team 45
5.2.42 Members 45
5.2.43 Ad Hoc Group 45
5.2.44 Organization 46
5.2.45 Project 46
5.2.46 Task 46

5.3 Software Project Course 46
5.3.1 General Issue Forest 46
5.3.2 Management Issue Forest 46
5.3.3 Client Issue Forest 47
5.3.4 Project Course Notification Boxes 47

6 Overview of Actors 48
6.1 IWEB Actors 48

6.1.1 n-dim User 49
6.1.2 IWEB User 49
6.1.3 Author 49
6.1.4 Issue Forest Manager 49
6.1.5 IWEB Manager 49

HI

6.1.6 Issue Forest Liaison 49
6.1.7 Project Manager 50
6.1.8 System Administrator 50

6.2 Mapping between IWEB actors and
the software engineering course roles 50

6.2.1 Client 50
6.2.2 Developer 50
6.2.3 Team Information Manager 50
6.2.4 Client Liaison 50
6.2.5 Instructor 51
6.2.6 Project Information Manager 51
6.2.7 Experimenter 51

7 IWEB Use Cases 52
7.1 Use Cases for IWEB User 52

Session Use Cases 52
7.1.1 Open IWEB 52
7.1.2 Close IWEB 53

Issue Forest Viewing Use Cases 53
7.1.3 View Issue Forest Directory 53
7.1.4 View Issue Forest 54
7.1.5 View Issue Forest Access List 54
7.1.6 View Issue Forest Node 54
7.1.7 Search Issue Forest 54
7.1.8 Layout Issue Forest Display 55

"What's New" Use Cases 56
7.1.9 Open What's New 56
7.1.10 Update What's New 56
7.1.11 Filter What's New 57
7.1.12 View What's New History 57

Notification Boxes Use Cases 58
7.1.13 View Notification Box Directory 58
7.1.14 Open Notification Box 58
7.1.15 Update Notification Box View 58
7.1.16 View Notice 59
7.1.17 Filter Notification Box View 59
7.1.18 View Notification Box History 59
7.1.19 View Notification Box Distribution List 60

IV

7.1.20 View Notification Box Usage List 60

User Model Use Cases 61
7.1.21 View User Model 61
7.1.22 Edit Schedule 61
7.1.23 Edit Contact Information 61
7.1.24 Edit Roles 61
7.1.25 Edit Tasks 61

Organizational Model Use Cases 61
7.1.26 View Organizational Model 61

7.2 Use Cases for Author 62

Edit Issue Forest Use Cases 62
7.2.1 Add Issue Forest Node 62

Edit Issue Forest Coupled Node-Link Use Cases 63
7.2.2 Create Issue Node 63
7.2.3 Create Proposal Node 63
7.2.4 Create Resolution Node 64
7.2.5 Create Argument Node 64
7.2.6 Create Generic Node 65
7.2.7 Create Sub-Issue-Of Link 65
7.2.8 Create Abstracts Link 66
7.2.9 Create Responds-to Link 66
7.2.10 Create Argue Link 66
7.2.11 Create Resolves Link 66
7.2.12 Create Based-on Link 67
7.2.13 Create Reference Link 67

Notification Boxes Use Cases 68
7.2.14 Notify via Notification Box 68

7.3 Use Cases for Issue Forest Manager 68
73.1 Create Issue Forest 68
7.3.2 Add Issue Forest Access for User 69
7.3.3 Remove Issue Forest Access 69
7.3.4 Move Issue Forest Nodes To Issue Forest 69
7.3.5 Create Notification Box 69
7.3.6 Edit Notification Box Distribution List 70

7.4 Use Cases for IWEB Manager 70
7.4.1 Create Root Issue Forest 70
7.4.2 Add Root Issue Forest Access for User 70
7.4.3 Remove Root Issue Forest Access 71

7.4.4 Create Root Notification Box 71

7.5 Use Cases for Issue Forest Liaison 71

Dual Issue Forest Manipulation Use Cases 71 *
7.5.1 Cross Post 71
7.5.2 Forward Node 71 •.

7.6 Use Cases for Project Manager 72

Edit Organizational Model Use Cases 72
7.6.1 Create Role 72
7.6.2 Remove Role 73
7.6.3 Assign Role to User 73
7.6.4 Relieve User from Role 73
7.6.5 Create Team 73
7.6.6 Remove Team 73
7.6.7 Add Member To Team 73
7.6.8 Remove Member From Team 73
7.6.9 Create Task 73
7.6.10 Assign Task To Team Or User 73
7.6.11 Relieve Team Or User From Task 73
7.6.12 Add Issue Forest To Team 74
7.6.13 Remove Issue Forest From Team 74

7.7 Use Cases for System Administrator 74

Edit User Configuration Use Cases 74
7.7.1 Add User 74
7.7.2 Remove User 74

Data Management Use Cases 75
7.7.3 Archive Information 75
7.7.4 Repair Database 75
7.7.5 Start Database Server 75

7.8 Use Cases for IWEB System 75
7.8.1 Create Notification Box Automatically 75 "

8 Visual Presentation of the Use Cases 76
8.1 Conceptual Sketches 76

8.1.1 General Vision for a screen in IWEB 76
8.1.2 Issue Forest Windows 77
8.1.3 Entry Port 78
8.1.4 What's New 79

V!

8.2 IWEB Screen Dumps 81
8.2.1 Overview 81
8.2.2 Project Model 82
8.2.3 Team Model 83
8.2.4 Issue Forest Viewer 84
8.2.5 Notification Box Viewer 85

9 Non-Functional Requirements 86
9.1 Student Acceptance 86

9.2 Organizational Assumptions 86

10 Future Plans 87
10.1 Test Case 87

10.2 Proposed Experiments 87

10.3 Metrics Collection and Postmortem Evaluation 87

11 References

12 Appendix 90
12.1 Conventions 90

12.2 General tasks 90

12.3 Requirement tasks 91

12.4 Organizational Tasks 93

12.5 itIWEB template 94

VII

1 Introduction
The goal of the Information Web i IWEB) project is to develop an information modeling

and management tool specifically designed to meet the needs of software engineers working
in a group environment on large projects. This includes support for information structuring
and communication during a project as well as maintenance and (re)use of project histories
within and across projects.

As more people work on a project, the requirements placed on the communication
infrastructure which supports their work grows rapidly. The more people working on a
project, the more difficult it is to maintain a shared understanding of a project's goals, status,
design, and implementation. Simply keeping track of responsibilities and deadlines can
become very cumbersome. This problem is heightened in a part-time and /or distributed
development environment where both the managers and the developers involved in a project
often have many other projects or unrelated activities for which they are responsible.

Current environments available to support collaborative software design and
implementation are insufficient for the task at hand. Typically, for each project developers
cobble together an ad hoc combination of communication means such as e-mail, electronic
bulletin boards, word processing and document preparation tools and a set of disjointed
CASE tools which they use to support their work and communications. The teams must spend
time learning how to use these tools as well as putting in extra effort to make the tools interact
in even the most rudimentary of ways. The IWEB project proposes to develop an integrated
information support environment which allows developers to communicate and track
progress through a single software system. IWEB would also provide a single control point
for interacting with other external software tools. It is hoped that by providing a single,
integrated information repository developers working on a software project would be able to
spend less time trying to learn tools and find information, and more time using the tools and
manipulating information.

With these requirements in mind, we are experimenting primarily within the context of
the project based software engineering courses in the School of Computer Science at
Carnegie Mellon University (15-413, the basic course offered each Fall semester, and 15-
499, the advanced course offered each Spring). These courses reflect much that is typical of
the "state of the art" and outstanding issues in the current practice of software engineering.
They are large (60 students, teaching assistants and instructors in Fall 493), require the
delivery of a running prototype to a real client, and generally attempt to provide, as realistic
as possible, software engineering experience to the participants.

This document summarizes "work-in-progress" toward establishing the requirements
for IWEB based on general case studies of engineering and software design work conducted
at the EDRC (and elsewhere) and integrates the experience of the authors as students,
teaching assistants and instructors in the courses. We accumulated insights and studied
information problems and communication breakdowns from three different perspectives:
direct observation, student surveys, and quantitative analysis of project communication
records and documents. IWEB incorporates ideas from previous issue-based support
systems, such as gIBIS (graphical issue-based information system), and intends to build on
top of a more general information modeling perspective by adapting a prototype of the n-dim
(iwlimensionai information modeling) environment. To capture the functional requirements

for IWEB we employ a development method structured around the viewpoint of prospective
users of the system (actors) and that produces descriptions of all of the transactions these
actors will engage in with the system as use cases. Though we are focusing on software
engineering for the initial prototype of IWEB, we expect that it will have broader application
within other team-based or collaborative work contexts.

The rest of this document is structured as follows (see Figure 1.):

1. Introduction

Background

2. Development Process
3. Requirements Elicitation
4. Relevant Work

Functional Requirements

5. IWEB Concepts
6. Actors
7. Use Cases

Non-functional Requirements

8. Interface Design
9. Other New Functional Requirement

10. Conclusion

Supporting Material

11. References
12. Appendix

Figure 1. Document structure

Section 2 outlines our development process and the central activities for the
requirements phase of development: requirements elicitation and requirements analysis in the
form of defining important concepts, actors and use cases for IWEB.

Section 3 summarizes both the qualitative and quantitative aspects of the requirements
elicitation process in which we have thus far engaged.

Section 4 reviews relevant work that IWEB is most directly motivated by and/or
depends on. It describes common problems in information management for collaborative
work in general and software design in particular; it then discusses current and envisioned
information technologies that offer potential for improved support and gives an overview of
gIBIS, an issue-based support system, and n-dim, a general information modeling approach
and environment, two main contributors to the IWEB concept. The chapter concludes with a
summary of how IWEB is envisioned to incorporate and integrate key ideas from both of
these areas in order to combine dynamic issue-based communication, negotiation, structuring
and notification on a project with the ability to interlink heterogeneous information both
within and across projects in a comprehensive navigable web.

Section 5 lists terms and defines their meaning and interrelationships in describing the
important concepts underlying IWEB, starting with the central terms and concepts from
M-dim. We use these as a glossary of terms and a basic vocabulary for all the subsequent
sections of the document.

Section 6 gives an overview of the Actors that we have modeled as prospective users of
IWEB. Actors model everything external that communicates with the system, including
human users and other systems. We show the relationship between IWEB actors and /z-dim
and illustrate the mapping between IWEB actors and the typical roles for developers in our
software engineering course projects.

Section 7 is a comprehensive description of all of the use cases of IWEB (that we have
thus far modeled; we fully expect that there will be additions and modifications in subsequent
development). A use case is a complete course of events in the system from the user's
perspective. For each actor defined in Chapter 6, a set of use cases describe the associated
functionality available to that actor. The use case descriptions, through multiple references,
also make heavy use of the terms and concepts defined in Chapter 5. An understanding and
development of IWEB requires a parallel and iterative reading and understanding of the
Actors, Use Cases and Concepts.

Section 8 presents interface ideas and sketches for using IWEB and executing each of
the use cases. Interface details are not included in the use case description in order to avoid
premature commitment to a specific implementation and so that the flow of events in the use
case is stated at a level of abstraction where it need not change with every modification in the
interface. This approach supports a process where alternative interfaces can be explored and
evaluated for each use case while the use case descriptions themselves stabilize. We have not
progressed far yet but this chapter will eventually contain a section for the "visual
presentation of each use case" and will become the basis for a first order user's manual.

In the rest of the document we give a very brief overview of non-functional
requirements (Section 9) that we know must be met in a useful and usable support
environment such as IWEB, an outline of future plans (Section 10) with respect to proposed
experiments and evaluations of IWEB, references cited (Section 11), and finally an appendix
(Section 12) with scenarios envisioning the use of IWEB within a software engineering
project course.

2 Development Process
We are employing a structured, user-centered development method whose requirements

analysis phase produces a functional specification of the proposed system as "use cases".
Here, we discuss our motivation for doing so and describe the phases of the method.

2.1 Motivation

The scope and functionality of the IWEB system are conceived with broad capabilities.
But our resources are limited. Thus, the development process will be extended in time, and it
will involve various researchers and programmers, who, at any given time, will be able to
concentrate on only a small portion of the system. It is therefore crucial that these distributed
efforts be compatible with each other and allow future extensions and modifications without
compromising the stability of the overall system. We therefore decided to start work on
IWEB with a broadly conceived specification of its functionalities, which can then be broken
down into subtasks and handled by small development teams, each of which understands its
role in the overall effort and the interaction of the piece of software on which it concentrates
with the other (existing or envisioned) pieces. These specifications provide also a means of
communication with our clients and sponsors and form an important portion of the system
documentation.

To assure the desired functionality through the later development phases, it is desirable
to continue with this effort into the following development stages. We intend to do this to the
extent allowed by the resources available to us. That is, we intend to employ software
engineering techniques in the development of IWEB whenever possible. The methods
employed by us are introduced in the following section.

2.2 Development Phases and Methods

Given the scope and the originality of the problem IWEB is attempting to address, we
use a variety of methods to collect and organize information to specify the problem, and to
synthesis and refine a solution. The development process leading to a complete definition of
IWEB includes the following phases:

• requirements elicitation during which we collect and analyze information about
the current state of the problem domain and outline broad classes of
functionality; the main outcome of the requirements elicitation phase is a
problem statement summarizing the issues discovered during this phase;

• requirements analysis during which we formalize and detail the classes of
functionality found during the previous phase; the main outcome of this phase
is a requirements analysis document, describing completely the system being
built;

• early user evaluation during which we prototype subsets of the functionality
defined previously and evaluate them; the main outcome of this phase is a
number of mock-ups and prototypes of IWEB, leading to refinements in the
problem statement and the requirements analysis document.

Although these three phases are initiated sequentially, they continue and coexist for the
duration of the project. The development process we are following is iterative in nature, i.e.

results from later phases may lead to refinements and correction of documents produced in
earlier phases.

Requirements elicitation includes studying the problem domain and outlining new
classes of needed functionality. We approached this problem from a specific point of view:
although we are interested in communication support and information modeling in software
engineering in general, we initially studied the narrower problem of providing an
infrastructure for the software engineering course we teach to senior undergraduates in
computer science (15-413). We argue that we cannot develop a general solution for software
engineering before we acquire the understanding of a specific instance of the problem. To this
end, we collected and studied data from the Fall '93 software engineering course. We studied
communication breakdowns from three perspectives:

1. We observed the students' work progress and problems during the semester
from a manager's perspective. Observations of the instructors and the teaching
assistants were collected in a series of papers [1][2][9]. These observations are
summarized in Section 3.2.

2. At the end of the semester, students were surveyed (specifically about
information management, communication and process issues). A summary of
the survey is provided in Section 3.3.

3. Metrics on bboard communication and documents were evaluated (Section 3.4).

At the same time, the instructors and a subset of the teaching assistants of the Fall '93
course met on a weekly basis to brainstorm on the infrastructure requirements. A scenario-
based method was used: members of the requirements group wrote scenarios for common
tasks performed by the students during the course. Scenarios were written to describe both
tasks as they were performed during the Fall '93 course ("the old way") and the same tasks
as they would be performed using IWEB ("the newer way"). These scenarios envision IWEB
as first order simulations of its "use" where we project ourselves as "end users" (based on our
knowledge of them and the situations they find themselves in) in order to "walk-through"
potential interactions with the system. This gives us a type of feedback on what is needed in
the system. We can then proceed to "higher order" simulations in which use cases, mock-ups
and actual prototypes (like using the existing Ai-dim) are all tools that can be used in some
appropriate order. Examples of scenarios are provided in Section 3.5 and in an Appendix in
Section 12.

Requirement analysis includes the formalization and the detailing of the classes of
functionality discovered during requirements elicitation. We approached this phase using the
OOSE[15] method. This approach asserts that the most essential property of a system is a
stable structure (architecture) during its lifetime. It asserts furthermore that the best way to
insure this is to model the system functionality on the basis of the organization in which it
will be used and its users, and to expect change - by viewing new system development as only
a special case of further system evolution, development, and maintenance.

OOSE belongs to a growing number of methods that consider behavior modeling, or a
high-level description of the system's functionality from the point of view of its users, as
central to driving system development. In OOSE, this behavioral description is based on
actors and use cases. These concepts are a simple aid in defining what exists outside the
system - the actors - and what should be performed by the system - the use cases. In

developing a system in this way, the whoie system architecture will be controlled from what
the users wish to do with the system. The use of object-oriented methods to model systems
ensures also that there will be traceability through all models from requirements to code and
maintenance. In combination with the u^ e case approach, this enables us to modify the system
through changing and newly emerging 1 ...uirements. Use cases for IWEB are described in
Section 7.

Actors model prospective users - everything external that is to communicate with the
system, including other systems. Actors represent a certain role, or class description of
behavior, rather than an actual person who uses the system. They are the main tool for finding
use cases, and together actors and use cases define the complete functionality of the system.
Each use case is a complete course of events in the system from the user's perspective. Use
cases are the central thread running through the whole of OOSE. Actors for IWEB are
described in Section 6.

In addition to developing descriptions of actors and use cases for IWEB, we collected
the main terms and concepts needed for understanding those descriptions in a glossary (see
Section 5). The terms and concepts will then be used as a starting point for identifying objects
and their associations.

The use cases and the actors form the requirements model, which aims at delimiting the
system and defining what functionality the system should offer in terms of actors and use
cases. It serves as a means of communication between the developers and orderer of the
system. It thus forms the developers view of what the customer wants and should be readable
for non-OOSE practitioners.

The terms and concepts description, later formalized and documented in an object
catalog form the analysis model This model structures the system independently of the actual
implementation environment. It is derived from the requirements model and forms the basis
of the system architecture.

Early user evaluation is necessary given that the problem we are solving is relatively
ill dchned. We plan to develop mock-ups and prototypes of IWEB for the purpose of
evaluation by ourselves and extern users. The results of the evaluations (not covered in this
document) will be used to refine the problem statement and the requirements analysis
document.

3 Requirements Elicitation
This section documents the IWEB requirements elicitation effort, during which we

collected and analyzed information about the current state of the problem domain, and
defined broad classes of functionality for IWEB. We chose the software engineering classes
taught to senior undergraduates at Carnegie Mellon University as the focus of our case study.

This section is organized as follows: Section 3.1 provides background on the
organization of the Fall k93 software engineering class; Section 3.2 summarizes our
observations; Section 3.3 summarizes feedback from a student survey that we conducted at
the end of the Fall '93 class; Section 3.4 is a qualitative analysis of the bboard traffic
generated during that class; Section 3.5 discusses scenarios that we constructed to describe
everyday tasks accomplished by the students during the class and to envision how they would
be accomplished with IWEB; and finally, Section 3.6 presents a problem statement for
IWEB, that summarizes the issues we describe in Sections 3.1 through 3.5.

3.1 15-413 Background

The SE courses in the School of Computer Science have been taught following the
same format since Fall 489. In an attempt to provide the students with a realistic software
engineering experience, the system the students (-50 in Fall, -20 in Spring) are asked to build
must solve an actual problem specified by a real client. At the end of the semester, the students
present a prototype system to the client during a client acceptance test which has a significant
impact on the students' grade.

In parallel to the development of the system, students are trained to use a specific
software engineering methodology (e.g. Fall '92 & Spring '93: OMT[26]; Fall '93 & Spring
'94: OOSE[15]), and are taught basic organizational skills (how to conduct a meeting, write
meeting agendas and minutes, assign roles and coordinate with other teams through liaisons).
A bboard per team is provided for the purpose of inter- and intra-team communication, and
method and documentation support tools are provided. In addition, some project wide
bboards for announcements by management and to facilitate project-wide discussion are also
provided.

The development process followed by the course starts with the instructors and
teaching assistants (hereafter referred to as "project management") pre-engineering a set of
requirements based on the client's input, and then generating an initial system decomposition.
The students are then responsible for detailing the requirements, designing, implementing
and testing the system. The project management initially provides the students with a
structured process including phases, deadlines and required deliverables. However, after the
course starts, there is little intervention from the project management as to the direction of
the design or the evolution of the process. Students are even encouraged to take initiatives
with respect to the artifact and the process perspectives.

Figure 1 is an illustration of a typical organization structure for the software
engineering course. The course students are initially divided into teams, usually one team per
subsystem. In addition to the subsystem teams, a user interface team and a documentation
team are formed. Each team also has additional project support tasks, such as selecting
revision control tools, user interface development environment, databases, etc. The

integration of the separate subsystems is usually managed by an integration team, or by one
of the subsystem teams which has strong dependencies to other subsystems.

Figure 1 Organizational Structure for 15-413 Fall '93

Team members are also assigned roles:
• the team leader or primary facilitator is assigned the task to organize meetings (write agendas)

and monitor the work of the team;
• the minute taker writes minutes for every scheduled meeting;
• the time keeper ensures that all the issues of the agenda were raised during the meeting;
• the UI liaison represents the team at the UI meetings;
• the liaison represents the team at the integration meetings.

The communication within and across teams occurs in a variety of modes. Each team
is required to meet on a weekly basis with an assigned TA1 to report on their status and make
plans for the following week. Each team is also allocated a bboard for intra- and inter-team
communication. Table 1 lists the typical content, the size of the targeted audience and the
latency of reply for each communication mode.

Table 1 Communication Modes

Mode

Zephyra

Context

Low level detailed issue requiring
immediate attention.

Audience
Size

1 -50

Latency of Reply

seconds

The integration team was managed by the user interface TA and an instructor

Table 1 Communication Modes

Mode

Personal e-mail

Bboard (intra-team)

Bboard (inter-team)

Weekly meeting

Ad hoc meeting

Context

Low level detailed issue requiring
short term reply; questions hidden
from the general public

Team agendas and minutes; higher
level issues; issues relevant to entire
team.

Class announcements; inter-team
issues;

Team meetings; Integration meetings

Specific hard-to-solve inter-team issue

Audience
Size

1-10

3-7

7-50

3-7

3-20

Latency of Reply

minutes - days

1-2 days

1 day - 1 week

immediate

immediate

a. Zephyr is a "notice transport and delivery system" developed at MIT. A Notice Transport and Delivery
system is a method of getting small quantities of time sensitive information efficiently from one client to
another.

The inter-team communication was facilitated by the project wide bboards (such as
discuss for project level issues), and by teams cross posting messages on one another's
bboards. However, there are problems with both methods - as we observed and report in the
next section - ineffectively supporting inter-team communication.

3.2 Direct Observations

The instructors' and TAs' observations of the course were captured in a series of papers
[1][2][9]. Although these papers focus mostly on the educational aspects of the course, the
authors report on a number of software engineering issues and related information structuring
and communication issues which were raised during the course.

The instructors observed that the static nature of the communication structure1 makes
the organization slow to respond to unexpected problems. This proves to be a disadvantage
when it becomes clear that the system decomposition should change (sometimes drastically)
after the start of the course.

The instructors also observed that although communication mechanisms are in place
from the beginning of the class, students usually need two to three weeks to learn to use those
mechanisms effectively for intra-team communication. For inter-team communication, the
ramp-up time is even longer (4-6 weeks). The longer learning curve for inter-team
communication is due to the problem of learning the mapping between students, roles and
teams. During that period, messages are frequently misdirected. This is compounded by the
fact that students go through other learning curves as week during the same time (new tools,
new methodology, project support functions, etc.).

1 For example: difficulty in creating new bboards, weekly nature of meetings, etc.

Instructors found that the models and documentation submitted by the students during
the course of the class are not effective in mediating and evaluating the status of the project:
they become obsolete fairly quickly. This is potentially due to the lack of integration between
the artifact modeling method and tool, and the larger project information and communication
structures. This is also potentially due to the poor performance of the modeling tool and the
students' lack of experience in using it. For the same reason, they observed that inter-team
coordination through models and documents is not a feasible idea. The most reliable measure
of progress is the weekly TA meeting during which each TA summarized the progress of their
team, but an hour meeting cannot substitute for the volume of continuous communication that
is typically required on a large project.

Finally, they observed that the integration of the system (from a documentation, design
and code point of view) started too late. Although an integration team was formed at mid
semester, the time associated with its setup was such that it was not able to detect and resolve
project wide issues. The user interface team, which was formed at the beginning of the project
and composed of one representative of each team, had more success in maintaining some
consistency during the project.

3.3 Student Observations

Towards the end of the Fall '93 course, a written survey of the students was conducted.
The survey was structured as a homework on the information modeling lecture. Students
were asked to critique the communication infrastructure, to express their opinion on whether
or not they thought a project wide issue base would have made their task easier, and to raise
any other issues they thought were important in improving the course.

Most of the students answered that inter-team communication was the major bottleneck
of their process. They attributed the problems encountered during the integration phase to a
lack of communication between teams during the requirements phase, problems of
terminology, and important decisions made arbitrarily or not communicated in a timely
fashion.

In general, students thought that a bboard communication structure was adequate for
inter-team communication, but also reported that it could be greatly improved. Students
reported that bboards (and e-mail to some extent) helped overcome the distributed aspect of
the process (i.e. during some period of development, lots of students of the same team were
unable to meet due to different course and exam schedules, different working locations, etc.).
Reported problems with bboards included difficulty in targeting a message (which bboard to
send it to; who should reply to a request), volume of information (e.g. one student suggested
to require messages to be shorter than three lines), difficulty in maintaining the thread of a
discussion, and difficulty of searching for related posts by only using captions (i.e.
inaccessible history).

In general, students mentioned the difficulty in targeting a message as a separate issue,
related to the evolving nature and the scale of the organization. Some important roles, such
as team leader and integration liaison were rotated on a two week basis. Some students had
several e-mail addresses and did not configure their e-mail forwarding mechanisms correctly.
A simple listing of the personnel of the project including current e-mail addresses, phone
numbers, roles and team assignment was thought to be a significant improvement. Although

10

the course had such a listing, it was not maintained as the organization evolved to adapt to
the changing system decomposition.

Students found documentation and the exchange of object models an ineffective
communication medium for inter-team coordination. The main reason listed was the
insufficient turnaround time of documents and models (i.e. by the time a document or a model
was made available to the class, it was obsolete). The difficulty in searching and keeping a
history of the evolution of the document/model was also listed as a contributing factor. In
general, documentation and models were viewed as a necessary evil to be produced for the
consumption of the client, and not as an inter-team coordination mechanism.

Students found weekly meetings extremely useful for exchanging design and status
information. Their periodical nature significantly reduced the overhead associated with
organizing such a meeting. Moreover, students judged weekly meetings as the only
acceptable medium for negotiation and decision making. Although bboards were adequate
for exchanging large volumes of information, they rarely witnessed a successful negotiation
process. On the other hand, ad hoc meetings called to raise and solve specific issues were
judged a failure, primarily due to their large overhead (for example: setting up an adequate
time and location for such a meeting usually took several days), and their large attendance
(that is more people than necessary were involved, thus slowing down the decision process).
In fact, these ad hoc groups did not have the authority or influence to make and implement
unequivocal solutions for the teams they represented.

Finally, students found that the most effective inter-team communication mechanism
was the role of liaison. A fixed representative of the team attending integration or user
interface meetings proved to be the most reliable and fastest communication medium. The
role of liaison became valuable when raising and solving inter-team issues involving a
limited number of teams. In contrast, the user interface and the integration team were judged
appropriate for solving project wide issues, but ineffective in solving issues involving only
two or three teams. The negative side of the role of liaison was that it created a small number
of specialists who maintained most of the history by memory or in other personal forms, thus
rendering the organization very sensitive to changes in personnel (e.g. during the Fall '93
course, a user interface liaison dropped the class at midterm; the user interface team and the
other team spent about two weeks to find and train somebody else to fill the role, generating
a significant amount of miscommunication and misunderstanding).

3.4 Quantitative Analysis

3.4.1 Global Traffic

During the course of the semester, a total of 2502 messages were posted on the bboards
by students, TAs and instructors. We observed that most bboards followed a weekly pattern:
bboard activity increased immediately before and after the weekly meeting of the associated
team, and decreased at the beginning of the week (Sunday night and Monday morning). This
observation motivated us to sample our metrics on a weekly basis.

Figure 2 shows the communication activity on the bboards on a weekly basis. The
bottom curve (black) shows the total number of messages sent per week. The top curve (light
gray) displays the total number of unique noun phrases1 used in those messages for each

11

week. The middle curve (dark gray) displays the number of new noun phrases used in those
messages for each week (i.e. noun phrases which were not used in any previous week). The
horizontal axis represents time in weeks where the first week is numbered 0. The vertical axis
represents the number of messages for the black curve, and the number of terms divided by
10 for the gray curves.

The number of unique noun phrases were counted using a set of NLP (natural language
processing) tools ([18] and [23]). Messages were stripped of their headers, signatures, special
characters and other encoded enclosures before being submitted to the NLP tools.

The number of messages posted peaked during requirements (week #3) and the start of
final integration (week #11). The drop at weeks #6 and #7 indicates a drop in the activity of
the class waiting for the integration team to release the first merged database of models (delay
occurred due to problems with the modeling tool and with the set up time of the integration
team).

An examination of the gray curves lead to similar observations. However, the peak
during integration is more pronounced than the requirement peaks, indicating a richer
vocabulary, and possibly a broader range of issues being discussed.

Legend for next three figures

number of messages per week
number of new terms per week
number of unique terms per week

Figure 2 Global Bboard Traffic

3.4.2 Intra-team Communication

Figure 3 displays the same curves as Figure 2 for the messages posted on single team
bboards. The left graph represents the number of messages, the total number of unique terms
and the number of new terms per week for the user interface team. The right graph represents
the same information for the Hazmat team (whose assignment was to build the database and
query system for hazardous materials).

The user intert^e team shows peaks in the number of messages similar to the global
metric. However, the gray curves peak during the requirements phase, thus indicating a richer
vocabulary during problem definition. This is due to the fact that the user interface team was
composed of representatives of all the teams, and had a better shared understanding of the
overall system. This pattern was also observed for other teams who performed an integration
function, and were aware of it during requirements (e.g. the subsystem team charged with

1 We interpret unique noun phrases to represent concepts that are being formulated and exchanged.

12

code integration, not displayed here, aiso demonstrated a richer vocabulary during
requirements). In contrast, the Hazmat team displayed on the right, who did not have much
understanding of the rest of the system before integration, shows a profile similar to the
global profile (lesser volume during requirements and peaks in later phases near integration).
This profile is representative of teams which were not assigned an integration function.

These observations were correlated with the fact that the teams displaying a better
understanding of the overall system performed better according to the standards set in the
course (less deadlines missed, functionally rich subsystem demonstrated, integration with the
whole system achieved early).

Figure 3 Bboard Traffic for UI and Hazmat teams

The gray curves in Figure 4 displays the ratio of new terms to the total number of terms
per week1 for each of the user interface and Hazmat teams. The black curve displays the same
ratio for the overall number of new terms and unique terms. In both cases, the ratio is
generally decreasing, indicating fewer new terms are introduced as the project progresses.
However, the Hazmat team displays higher rates of new terms than the user interface team.
The fraction of new terms also increases during the integration phase, indicating a crisis
(there was a fairly substantial debate about whether the public interface of the Hazmat
subsystem should be available to other subsystems as a C++ object or only to the user

1 The number unique terms for week X and team Y are the number of unique noun phrases that could
be found in the messages posted on bboard Y during week X. The number of new terms for week X
and team Y are the number of unique terms which nave not yet been used in bboard Y since the
beginning of the project. The gray curve is the fraction of new terms vs. unique terms.

13

interface; the user interface team was not part of the debate since it already resolved interface
issues previously through its UI liaison).

Figure 4 Ratio of new terms to total terms for UI and Hazmat teams

3.4.3 Inter-team Communication

The observations in the previous sections are further confirmed by the examination of
the inter-team communication for the user interface and Hazmat team. In Figure 5, the
horizontal axis (x) represents time in weeks. The y axis represents the teams of the project
(the front team being project management). In the left graph, the vertical axis (z) represents
the number of messages sent from the user interface team to a given team, added with the
number of messages from the given team to the user interface team. The right graph displays
the same information for the Hazmat team.

The user interface team displays a fairly constant interaction with most of the teams,
with moderate peaks during integration. In the case of Hazmat, the inter-team interaction is
weaker, with more significant peaks during integration. Hazmat also had a stronger
interaction with management (Hazmat relied more heavily on their TA for inter-team
coordination and did not attempt very often to directly synchronize with other teams).

Hazmat

Figure 5 Bboard inter-team traffic for user interface and Hazmat teams

14

3.5 Scenarios

Ideally, in order to design better information management support for team-based SE,
we could engage in a type of extended cooperative design process with end users. In this
process we would envision future work situations by simulation of possible computer support
using mock-ups and prototypes. Thus, end users would get a hands-on experience and give
valuable feedback.

Scenarios are an intermediate step towards a cooperative design with end users. A
scenario (in the context of this document) is a sequence of events which describes how a
specific task is presently accomplished, and a sequence of events describing how the same
task might be accomplished using IWEB. By using scenarios, we identify common tasks and
analyze how those tasks could be improved with IWEB. This scenario based approach can be
thought of a first order simulation in which we project ourselves in the role of the user. Using
this approach, we hope to focus on the most important and frequent information exchange
tasks accomplished by participants in a software engineering project (here the specific
context is an instance of one of our project courses) and to whatever extend possible develop
and refine the requirements for IWEB to support them before we conduct any experiments
with real users.

Below is an example of scenario describing how an ad hoc meeting for a group would
be organized. The current sequence of events required to perform this task is labeled O (i.e.
Old way). The envisioned sequence of events required to perform the same task with IWEB
is labeled N (i.e. New way). Scenarios are labeled with times to illustrate the chronology and
duration of the task. Other scenarios are provided in an Section 12.

10:25-10:30 am

O« A subset of the group realize that they need to have a meeting
to discuss some aspect of the system. They agree to select a
time and try to get the rest of the group to attend. The
meeting time and place is posted on the group's bboard.

N. After lecture, he, along with a couple of other team members
decide to call for a special team meeting (other than their
normally scheduled weekly meeting. He volunteers to send an
IWEB message to the other team members and they agree that
everyone will check the IWEB a couple of times through the
day to see the status of the meeting. They agree that by
4:00pm the meeting will have either been confirmed or
postponed.

3:00-3:10 pm

O. Read bboard, check meeting messages.

N. Checks IWEB for message(s) about the meeting. Meeting is
confirmed for 7:30pm.

4:30-5:00 pm

O. Reads bboards, posts some internal messages. If needed, reads
another group's bboard and the Discuss board to carry on
inter-group arguments. Is annoyed by duplicate posts,
inability to find old messages, and textual drawings.

15

0. Poses a message saying that an Objectory Model exists
relating to a message that was posted. Gives a description of
how to find the model. Becomes concerned no one will ever look
at the Model because Objectory is so cumbersome to start,
further if they do start it, they will have to navigate to
the appropriate use case/model to check the information.

N. Reads the IWEB issue-base; posts some sub-issues and
responses; notices that a new task assignment has been
proposed for her team.

N. Brings up Objectory from within IWEB and does some modeling,
then annotates a new version of a specific Objectory model
and links it to a discussion node in the issue base.

7:30-8:30 pm, Attends the special team meeting

0. At the meeting takes action items to be discussed with other
teams. Meeting minutes are taken on a Duo, and then later
posted to the team bboard. Further, those minutes are later
copied by the Tech Writer into a Frame document for hypertext
access that is never used because Frame is cumbersome to start
and difficult to learn to use effectively.

N« At the meeting the team decides to "open a dialogue" within
IWEB with another team regarding a particular object model.

3.6 Problem Statement

The Software Engineering class 15-413 at Carnegie Mellon has been in existence for
some years. The class is unique in its approach to teaching software engineering to
undergraduate CS students. Where many classes just talk about software engineering and
perhaps have their students work on "toy" systems, 15-413 students work on a large scale
project. The project always involves a client with a complex, real problem who is in search
of a computer based solution. The class often has upwards of 50 people in it, which leads to
a total project membership of approximately 60 people once management (professors and
TAs) is added to the group.

During the Fall '92 and Fall '93 classes, the class has worked on the FRIEND project.
FRIEND is a system for distributed accident management involving many levels of
government, multiple cutting edge technologies, and considerable original software
development. The project work has led both management and the students to encounter many
of the classic problems found in software engineering. The academic setting in which this
project is being undertaken heightens the effects of these problems, however, and in many
cases hinders the both the education of the students and the progress of FRIEND system. We
hope to develop a system to greatly reduce the effects of these problems through the use of
informati* modeling.

The first problem to be encountered by the students, and one which endures the length
of the project, is simple intra-group communication. The 50 students in the class are broken
into groups along, each group being responsible for a functional aspect of the system (UI,
Communication, Database, etc.). Each group has approximately 5-9 people. The problem
first arises when the groups are attempting to find a convenient meeting time. Since there is

16

no readily available central repository for this type of information, the students must post e-
mail messages to electronic bulletin boards in an attempt to find a time to meet. This often
leads to people not making any real project progress for the first two weeks simply because
they cannot find a meeting time to overcome other organizational issues.

This intra-group problem continues and grows more complicated as people begin to
work on the project and need to acquire some type of shared understanding of the system as
it evolves around them. While modelling is supposed to overcome this problem (i.e. someone
should be able to look at a model and more quickly understand the system), often models and
textual descriptions quickly become too voluminous to be scanned each day to find what
other people have changed. A facility for tracking and alerting a developer to changes
relevant to his/her area of responsibility would be invaluable to increasing shared
understanding within a group.

A larger problem that becomes increasing visible when the project groups begin to
integrate their designs and especially their code, is the problem of inter-group
communication. Most systems under development are simply too complicated for a single
person to understand. This leads to decomposition and modularization of project components
and work assignments. Conversely, every developer also needs to have some level of a global
view of the system. This view must be more precise in its understanding the closer the other
project components are to the developer's area of responsibility. There is currently no readily
accessible means for a developer to at once obtain a global view of the project and also obtain
a precise view of his/her area of responsibility.

A further problem encountered in inter-group communication is the discovery, analysis,
negotiation, resolution, and dissemination of problems and fixes in the design of the system.
This is especially problematic in places where multiple groups are responsible for similar
activities or for communicating with one another. A facility for tracking arguments and
negotiation would provide a more moderated, trackable way of deciding how to resolve
problem within the project.

A problem that is especially plaguing in the academic environment is a lack of good
model usage and referral. This has two motivators. First the students are learning modeling
and modeling techniques, so one would expect them to be a little slow to grasp the need and
benefits of modeling. The long run problem, however, is convenient model access. Many of
the tools that are used are cumbersome to start and difficult to become familiar with. Finally,
the tools do not organize the material very well and it is difficult to find the state of a
document from within most tools. It would help greatly if the CASE tools and other software
in the project were nearly inspection usable.

Another problem is the explosion of client interaction. The client that we work with is
often accessible to the entire class via email and interviews. The client becomes deluged with
questions (some of which are ill formed) and in some cases returns inconsistent answer
simply because he thinks he's been asked a different question. A tool for monitoring/
cataloging client interaction would be greatly helpful in guiding design and requirements
decisions which are often made late at night by tired students too overwhelmed to go hunting
through old bulletin board messages looking for snippets of relevant information.

The previously mentioned problems with communication and information management
leave a lasting impression on the project. This lasting impression is visible later in the

17

project's life cycle as developers (especially new developers) try to understand the rationale
of the design and implementation of the system. Often a developer will be able to look at a
design and say "This is bad.1' Unfortunately, people don't just build things poorly due to
laziness (usually). There is usually a reason that a particular bad design transformed itself into
existence. Without the ability to look at the relevant factors which influenced a design, the
developers later in the project are forced to re-engineer the requirements which led to the
existing design. Most likely they will miss some of these requirements (especially the subtle
requirements generally discovered late a night by a single person). This lack of ready
information may lead to an even worse redesign than the one currently implemented. This
lack of long term "project memory" can greatly increase code entropy, code drift, and lower
productivity of the project members.

A final communication problem is that there are multiple forms of communication
being used in the project. Project members communicate through:

• Personal Electronic Mail

• Electronic Bulletin Boards

• Zephyr

• Objectory and project documents

• Meetings using whiteboards, chalk boards, overheads, and paper

• UNIX Talk Sessions

• Telephone conversations

• Group wide project meetings and presentations

• Model and code Comments

This multi-modal communication makes it difficult if not impossible for a developer to
go back through the various project documentation in search of a design decision. It is very
likely the design decision or the rationale which drove the decision do not even exist in any
formal project documentation.

A tool which combined the above communication channels into a single, tracked
environment would be extremely useful to project developers in their attempts to
communicate and then look back on what they have done and why.

18

4 Relevant Work
In this section we briefly review relevant work that most directly motivated IWEB.1 In

Section 4.1, we describe a set of common observations, insights and understandings of
problems in information management and integration that have emerged from studies of a
variety of group work settings in engineering and software design. In Section 4.2, we further
articulate software engineering as a collaborative, social (as well as technical) design process
and summarize requirements for an improved information support infrastructure. Section 4.3
discusses gIBIS, a clear predecessor of the issue-based approach that is central to IWEB and
which has been shown to be an effective means of structuring the communication of and
access to ideas and decisions in software development contexts. In Section 4.4 we give an
overview of n-dim, a general information modeling approach and prototype support
environment that IWEB will be embedded in and will adapt for software engineering project
work. Finally, Section 4.5 summarizes how IWEB is planned to incorporate the various
requirements discussed for collaborative work and software design to provide an improved
information support environment for team-based software engineering projects. It will
integrate and extend proven information management ideas and technologies such as issue-
base discussion support with the comprehensive information modeling and project history
capabilities envisioned in n-dim.

4.1 Case Studies of Engineering and Software Design Work

The focus of the requirements analysis effort documented in this report, toward an
improved support enviroment for communication and integration of information in team-
based software design, reflects our belief that information modeling and management is a key
area impacting productivity and quality in software engineering. This belief grows out of
experience, observations of recurrent problems and subsequent case studies which were
initially targeted at engineering design, then broadened to include software design (software
engineering) and ultimately encompass and are supplemented by similar insights emerging
from collaborative, team-based work settings in general.

At the Engineering Design Research Center at Carnegie Mellon University we have
observed many different design projects, for example, a new control system for power
generation with Westinghouse, a multi-university electrical connector design with three other
Engineering Research Centers [37], and a Database design with Alcoa. In all of these we
noticed the importance of managing the information that the different groups created and the
difficulty all the project participants had in sharing it and establishing a shared understanding
of it. Subsequent projects, one with ABB Power Transformer Design [12], one with a Union
Switch and Signal in software engineering [10] and a general study of Japanese compaanies
(Sony, Mitsubishi Kaisei, Toyo Engineering) [32] have provided us with more empirical
evidence of the importance of handling information within a design activity. There are also
several other projects reported in the literature that report similar conclusions including
studies of computer-supported cooperative work at the University of Arhus [14], and the
European Esprit project case studies [5] [28]. Another is a joint Bellcore-Rutgers University
study of the design of communication systems [33].

1 The space of related work and literature on information modeling and management approaches and tools is vast
and we make no claim to covering that in a comprenensive way here.

19

Common observations and findings taken collectively from these experience reports
and empirical studies is summarized in the following points. Many of the problems/issues
detected concern information management. The significance of this is amplified by the fact
that as much as 50%-60% of daily engineering work consists of information gathering,
communication and documentation. The kinds of recurrent problems experienced in a wide
variety of contexts include:

• Information loss

• Information access problems.

• Information coordination problems.

These are primarily caused by or aggravated by the fact that today's large, monolithic,
vertical information systems do not support daily work well. In response to this, companies
often glue multiple vertical systems together by expensive, ad hoc and cumbersome
procedures. These problems result in:

• costly overhead in information management

• breakdowns in communication and understanding

The implications of these problems taken collectively from the experience reports snd
empirical studies mentioned and others indicate an urgent need for improved support for
project-wide and organization-wide information integration to handle heterogeniety of:

1. expertise:for example, in engineering design electrical, mechanical, and control
engineers in software engineering managers, analysts, human factors experts,
designers, programmers, etc.

2. perspectivexustomer, marketing, design, manufacturing

3. source: documents, sketches, drawings, messges, notes, minutes, and so on

4. scope: individual vs. group information (the need for its seamless integration)

5. modeling: product (e.g., a software artifact), process, and organization

6. tools: a polyglot of access and interfaces (the need for more uniform and
seamless interconnection)

7. history: design process and product, both within and across projects

4.2 Information Management Requirements for Software Engineering

Software engineering has been recognized as a collaborative, social, work (design)
process requiring the adaptation of methods and tools to the needs of cooperation and
incremental teamwork. Important aspects of this collaborative view of software production
are the creation of a "theory" or shared understanding of the software artifact under
development [22], and the dynamic coordination of the development process [13]. Therefore,
a comprehensive approach to software engineering must address the integration of support
technologies with software development processes and practice encompassing social,
organizational and communication and information issues and structures [27]. These
requirements are accentuated by the current trends toward a global marketplace,
multinational corporations and an increasingly distributed but interdependent workforce.
Multiple teams of people are typically required for most projects of any significant scale and
therefore productive teamwork and effective collaborative work processes are central

20

concerns. Additionally, object-oriented development, which is becoming increasingly
widespread, promotes exploratory modeling and iterative prototyping approaches that are
more conducive to group processes involving the free exchange of ideas and the negotiation
of diverse and distinct viewpoints [7] [24], These approaches are reinforced by general trends
toward iterative process models for software development. These trends indicate our need to
better understand and support the dynamic communication and negotiation processes that
lead to shared meaning and decision making in software development.

Problematic situations regularly arise in software engineering due to changes in a
multitude of factors; this is so because software engineering occurs within a dense web of
social, technical and economic factors, for example [27]:

System design generally entails articulation of a set of modules, and this system configu-
ration must be mapped onto the staff in terms of division of labor. When any of these get
out of sync, they must be renegotiated - the infrastructure must support negotiation of these
during development.

These kinds of problematic situations are unavoidable, and cannot be viewed as
negative phenomena but as an inherent part of the dynamic decision making processes
(including evaluation of progress, additions / changes of personnel, re-decomposition of the
system, teams and task assignments, reassessment and reallocation of resources, etc.)
involved in iterative development. The resolution of these situations depends on the ability
of the participants to regularly negotiate issues and agreements and to maintain a mutual
shared understanding or shared (project) memory of the state of the project [17][27]. If the
participants get too far or remain to long out of sync in their shared understanding, wasted
work, frustration and loss of commitment will result and the chances for success in a project
are compromised.

Constantine [7] notes the fundamental importance of maintaining a shared memory to
support teamwork in object-oriented system development. Among several critical roles he
identifies for team members to play, that of "information manager" is deemed most important
and central. Constantine and others advocate a primarily organizational approach to support
the dynamic negotiation and decision making processes. However, organizational
approaches alone suffer certain drawbacks in maintaining a shared memory within a project
or across projects {corporate memory) — for instance, key personnel, who are the carriers of
shared memory may leave a project or an organization. Therefore, a complementary approach
to supporting shared memory is needed that integrates organizational approaches with
technical capabilities and infrastructure to facilitate the creation of an explicit external record
of shared project memory composed of structured information from multiple media
[17][34][35].

Currently, there are a variety of research efforts, growing out of concerns with
teamwork in design activities, that are aiming to support collaborative teamwork through the
integration of organizational approaches with computational support for shared memory
[11][36][20]. At a general level there is common agreement regarding the following kinds of
requirements:

• Coordination and management of group activities and work-flow requires that
information be made available in a meaningful form at the appropriate time. The
creation of and access to meaningful information along with the seamless

21

integration of the varieties of information created and used during the design of
the product is called information modeling and management.

A design support environment should enable project work and management to
be carried out within the same uniform information modeling environment.
Facilities should be built into the environment that will enable designers to
create shared structures of information (text, models, source code, sketches,
pictures).

The environment should permit asynchronous (different time, different place)
group activity.

Facilities are required to enable retrieval of information by participants with
diverse views of that information.

4.3 gIBIS

gEBIS ([6]) is a hypertext system designed to facilitate the capture of early design
deliberations. It supports a method and rhetorical model called IBIS ([19]), which has been
developed for structuring discussions on large, complex, design problems. IBIS structures
information as a graph with three types of nodes: issues, positions and arguments. Nodes
refer to other nodes via links of different types: for example a position has a responds-to link
to an issue. An argument must be linked to a position via either a supports or objects-to link.
Issues may be organized by linking them to other issues via specializes, generalizes, replaces
or questions links. Finally, gIBIS introduces a catch all node type and link type {other) which
allows users to structure information in ways unanticipated by IBIS The set of legal rhetorical
relationships of the nodes and links in IBIS is summarized in Figure 2..

replaces
questions
is-suggested-by

specializes

questions
is-suggested-by

Issue

questions
is-suggested-by Other

other

objects-to

Figure 2. The set of legal rhetorical relationships in IBIS

The gIBIS tool allows multiple users to concurrently build and access IBIS networks.
It provides two main indices into the issue base: a graphical browser, which displays the
graph as nodes and links, and a node index, which allows the user to examine the nodes in
the order they were posted. Issue subgraphs can be clustered, thus allowing the users to
organize the graph in a hierarchical manner. gIBIS also provides a search mechanism
allowing users to search nodes by title, author and node content.

gIBIS showed the IBIS method to be powerful for design deliberation and capturing
design rationale [38]. The Issue-Position-Argument framework helped designers to focus
their thinking on the critical parts of problems and to more readily detect incompleteness and

22

inconsistencies. The IBIS model provided a canonical representation for capturing design
decisions, thus providing an information base which was understandable by all participants
in the design. Moreover, not only decisions were captured, but their rationale as well, thus
allowing decisions to be revised later in the design without fear of hidden dependencies.
Overall, the use of gIBIS "paid for itself, that is, the additional time spent recording
information in gIBIS was paid off by early detection and correction of design problems.

However, Conklin and Yakemovic noted a few areas of possible improvements. In
general, gIBIS lacks mechanisms for dealing with evolving networks of issues which can
lead to certain problems in its use, particularly when extended in duration and scope:
difficulty of maintaining and accessing appropriate history; difficulty in coping with evolving
terminology when searching through the issue base; lag time between when an issue is
effectively resolved and when the resolution is entered in the issue base. When studying
gIBIS users, they also noticed a trend from the users to use geometrical information to create
indices (e.g. by convention, some users would always position annotations on the upper right
corner of an issue context, critical issues in the upper left corner, etc.). Such information was
not accessible to the search mechanism.

4.4 /*-Dimensional Information Modeling (/i-dim)

... comparative advantage [in product development] will be in sensitive integration of hard-
ware, software and humanware [sic] into an effective system of designing[4].

n-dim [8] [10] [20] [21] [25] [34] [35] has been conceived primarily as a system to support
humans in the process of design, (and we believe the basic approach to be broadly applicable
to any team-based work context). The n-dim group views design as a social process, as
opposed to a set of algorithms or a search strategy. This view has been developed and
reinforced over the years by a number of empirical studies (as cited in Section 4.1) conducted
both by the n-dim group and other researchers.

In our view design consists of an extensive set of negotiations between design
participants over both the product and the processes used during design and manufacture,
while design shares many features of other social processes, it imposes special requirements
on information systems due to its own specific attributes. Chief amongst these attributes is
the need for collaboration among participants who often come from a wide range of
backgrounds requiring the negotiation and reconciliation of different perspectives, terms, and
knowledge bases. Hence, design takes place in a highly heterogenous environment wherein
cross-disciplinary actors confront and must be responsive to varied social and economic
factors that govern the entire life cycle of the artifact being designed. Finally designs take
place in larger organizational contexts which increasingly impose cost-effectiveness
requirements on their investments in design, designers, and design tools. An organization's
investment in design knowledge is expensive, and needs to be recouped by maintaining the
knowledge for subsequent reuse by designers with divergent perspectives: the designer, the
new design group, or a different organizational entity.

Since our goal was the creation of useful tools for supporting design, the implications
of its social nature and its specific characteristics needed to be operationalized. These
operational characteristics were the basis for creating several increasingly sophisticated
versions of a design support environment we call n-dim.

23

4.4.1 Current Information Modeling and Management Technologies

Information modeling and management involve the discovering and/or creating,
the abstracting, the interpreting, the organizing, the using, and the sharing of
information. The computer, and very specifically the networking of computers, is at the
heart and will continue to be at the heart of all new information modeling and
management technology. Important considerations are supporting ways to discover
information located elsewhere, to organize information for the purpose of exposing
relationships unong it and for sharing it both directly and by making it available for
others to discover.

A simple form of managing information is to organize files containing it under a
directory/subdirectory tree as is done in all computer operating systems. One typically
organizes such a directory system to put things which are related into the same
subdirectory. Through the use of "links" (a special pointer to a file), a file can appear to
be in more than a single subdirectory. If one browses a subdirectory, the system lists a
link exactly as it lists a file name. Clicking on a link will move one to the subdirectory
containing the file and will open the file. The system will now be in the subdirectory
where the file is located with the disadvantage that the user now views the file in the
context in which it is located, not in the context in which it referred to. Thus, this simple
form of multiple indexing has drawbacks, not the least of which is that in these
circumstances, the system (and often the user) will not know where they are nor
remember how they got there. Files can contain any of a variety of things: text,
drawings, audio recordings, film strips, and so forth.

A second way to organize information is to place it in a database, and a related
third way are document management systems. A fourth approach is to organize
information into a hypertext A hypertext is a text or graphics document with buttons
attached to it. Clicking a mouse on one of these buttons causes the system to open up
another page of text that the author has linked with the current document by associating
it with the button. On-line help systems today often are hypertexts. The document
author places buttons which are often invisible under a piece of text (or within a
drawing) so one gets the impression that one is clicking on the text. Doing so will bring
up a page relevant to that piece of text. A hypertext is, therefore, a complex interlinked
document which one can read by following several different paths through it. The
hypertext concept is an important ingredient of the world wide web (WWW).

Placing meaningful labels on the links which connect two documents in a form
the system recognizes further extends the capability to relate information and is part of
the semantic network modeling one often uses to create data models for databases. Such
labeling is also an important ingredient of the n-dim information modeling
environment.

In response to the implications and suggestions gleaned from the above
mentioned case studies (Section 4.1) and the possibilities that new technologies offer,
there are many properties we hypothesize we want to have in information management
systems. We want to keep and link information on people, on their activities, on the
formal and informal organizational structures relating those people, on the numerical
and symbolic data describing physical and software artifacts, on the group development

24

of arguments such as described by the rhetorical model of gIBIS (see Section 4.3), on
drawings, on correspondence and e-mail files, and so forth. We want to be able to store
tremendous amount of information. We want to be able to find things in this information
by browsing, by formal searching and by being pointed to it because someone else or
the system concludes it might be interesting to us. We usually want very fast responses
from such a system. We will often want the system to record enough history of the data
creation process that we can study the process and/or reproduce the arguments behind
the why of the data and not just its values. The argument that the blueprint for a design
is not enough supports such capture. Often, especially for a new activity, deciding what
information to gather, how to structure it and how to share it is a major part of the effort
one makes in managing it. We want these systems to support exploration among
alternatives for organizing and interrelating it.

With respect to this extensive list of potential requirements, there are certain
advantages and disadvantages of each of the above mentioned information technologies
depending on their context of use and the goals and expectations of the processes they
are intended to support. What is clear is that greatly expanded information management
is now possible but it will take time to discover all the attributes support systems must
have for information management as no one has yet really tested these systems. A more
detailed description of the WWW and n-dim are presented in [25] along with a
comparison along key issues in three archetypal application contexts, Generating
Standards, Supporting Collaboration and Reusing and improving work processes; the
key issues identified are structuring information, allowing ad hoc views, finding
information, maintaining history, speed of access and controlling who can join (the
information environment).

n-dim represents a hypothesis for the more comprehensive type of support needed
(than provided by the WWW for instance) for collaboration, reuse and the continuous
creation of multiple and incremental classifications leading toward standards.

4.4.2 Information Modeling in n-dim

... my first premise, based on what I have observed, is that designing is a social process....
[the design] exists only in a collective sense. Its state is not in the possession of any one
individual to describe or completely define, although participants have their own individual
views, their own images and thoughts, their own sketches, lists, diagrams, analyses, prece-
dents, pieces of hardware, and now spreadsheets which they construe as the design [3].

n-dim provides a generalized framework for modeling information, and has been
designed to be used either by itself, or as a foundation for building domain- and
organization-specific applications and environments.

n-dim is based on three fundamental mechanisms: aflat space of objects, the
ability to build modeling languages, and a notion of persistence based on the metaphor
of the library, called publishing. In our experience, the whole of these mechanisms is
greater than the sum of the pans — together, they achieve a "critical mass" in that no
subset of them yields the desired functional attributes.

25

Flat Space of Objects
The space of objects managed by n-dim is conceptually flat: there is no single,

system-imposed hierarchy. Rather, many different views, hierarchical and otherwise, of
this space can exist simultaneously.

The primary information-structuring primitive is the model. Models consist of a
set of references to other objects and a set of links which relate these references to one
another. Atoms are objects which contain single values, such as strings, integers, etc.
One atom which deserves special mention is the operation, which is used to encapsulate
a piece of executable code. Operations can be thought of as being methods in an object-
oriented programming environment, n-dim models may have many associated
operations.

As any given n-dim object can be referred to by many models,1 n-dim objects2 do
not have any single, intrinsic name. Rather, names are a property of references in
models. More formally, references are tuples of the form <model target, title>, where
model is the model from which the reference emanates, target is the object being
referred to, and title is the name given to target in the context of model. So, for instance,
an object might be referred to twice from a given model, with the first reference having
a name in Swedish and the second reference a name in English, or simultaneously from
several different models in which it plays different roles. In this sense, n-dim models
can be thought of as contexts.

The links in a model connect its references; they are tuples of the form <source,
target, type>, where both source and target are references in the containing model.
Links are purely intra-model; there is no link whose source or target are not referred to
by the model containing the link.3 The type attribute of a link does not carry any
intrinsic meaning in itself — Ai-dim will treat it as a label. The modeling language
mechanism provides a way for giving links and types of links richer semantics in
specific contexts.

Models as Languages
All models have a reference to another model which serves as their modeling

language. The modeling language of a model constrains the kinds of parts and links
which can be included in the model. Any model can be used as a modeling language.
Ai-dim provides a number of built-in models which can serve as modeling languages,
e.g. Universal is a modeling language which allows any part and any link to be included
in a model. The property of being or not being a ML has to do with the use of a model
as a language, as opposed to some intrinsic attribute. Models are used as languages by
invoking the Use As Language primitive on them, which results in a new model being
created. The model used as a language is interpreted by n-dim as a grammar which
constrains the contents of the newly created model.

Or. in fact, multiple times from the same model.
We will use the term "n-dim objsource.targeuypeecf to cover both models and atoms in what follows.
There is actually nothing preventing inter-model links in principle, as links are actually dealt with internally as
first-class objects, but it was felt that it introduced more problems than it solved in the current round of imple-
mentation.

26

The relationship of the new model to the model used as a language is similar in
nature to that of an instance to us class in certain object-oriented systems, but the
similarity is distant enough that it should only be thought of metaphorically. The
strongest resemblance lies in the fact that models inherit any associated operations
from their language at the time of creation. It is also possible to refine or even override
system-defined primitives with user-defined operations, allowing for the imposition of
more stringent semantics on references and links than currently is possible with the ML
mechanism.

Given these facilities, the potential structure and behavior of a set of models can
be specified and grouped together in a model which can be used as a language, and all
models created using it as their language will inherit these basic features. However,
unless specific action is taken to limit the structure of instances, they are free to evolve
independently, within the grammatical constraints of the language. For instance,
individual models may have operations defined on them which supercede or subsume
those defined by their language.

The rationale behind the modeling language mechanism is that users should be
able to define their own kinds of modeling structures, instead of having to rely on
system administrators or programmers to do it for them. It then can easily be seen how
information modeling structures such as the IBIS-Issue-Position-Argument model can
be accommodated in such a system.

Private, Public and Published Models
All n-dim objects have an associated sharing status, one of private, public or

published. The sharing status can only change in one direction: private —> public—>
published. All n-dim objects start out in the private state.

Private objects exist in a user's private Workspace, and are not visible to any other
user of the system. The only way to share an object is to move it to one of the other two
states. Such a change will force a strict legality check that ensures the model is a valid
instance of its language.

Published objects are analogous to published papers in a library. Publication
simultaneously makes an object immutable and visible to others.2 In order for a model
to be published, the transitive closure of all models to which it refers must be published,
and the model which acts as its language must also be published. Once published, it is
truly immutable, even to its original author; if a revision to a published model is needed,
the only option is to copy the published model and change the copy. The new copy will
start out as a private model, which may be freely modified. Copying a model also
updates a system-maintained pedigree model which collects the revision history of a
model from its initial creation.

Public models can be thought of as being halfway between private and published
models. They are visible to all users, but can be modified, to a limited degree,

1 This is enforced all of the time by default, but can be temporarily relaxed while users works on a model or set
of models in their private workspace.

2 There is an access control mechanism, implemented using Al-dim models, but its operation is more or less in-
dependent of the published/private distinction.

27

concurrently by multiple users. The limitation is that references and links may only be
added to public models, not removed or modified.1

/i-dim: Support For Collaborative Activities
We believe that these three main features (together with other capabilities which

can be built with them such as access control revisions, etc.) will support the following
essential teamwork activities:

Structuring of information: Incremental creation and/or reuse of models

Communication, coordination & negotiation of information: sharing of models
with others in a shared information space

Preserving information within a shared (corporate) memory: recording of all
project information models for future reference as a side effect of current project
activities.

4.4.3 Current Status

n-dim has progress through three generations of development, from a Macintosh
hypertext version to a demonstration multi-machine, multi-user system. The current
version is a complete rewrite, comprising the BOS (Basic Object System) in C and
supported by an interactive language called STITCH. The system (refered to as n-
diml.l) is currently maintained by four graduate students and two staff programmers.
A public release of n-dim 1.1 is scheduled for the end of 1995.

The current system is stable enough that we can quickly implement new ideas
(such as IWEB), test them with real users, and refine them as we take into account user
feedback. The current system can maintain and store without performance degradation
as many as several hundred thousands of n-dim objects.

4.5 How IWEB Incorporates These Streams

As will be described in detail through the rest of this document, the central information
structuring concept of IWEB - the "Issue Forest" - is based squarely the type of rhetorical
model and shared issue-based support environment pioneered by the IBIS and gIBIS work.
However, we believe that IWEB adapts and extends this work in important ways.

First, IWEB embedds an issue-based support environment within a more
comprehensive and integrated information modeling environment such that much more of
the overall project information can be interrelated, cross-indexed and captured in an on-line
navigable web to support on-going communication and decision making as well as for
archival purposes. In its own terms, gIBIS is a limited stand-alone argument support system.
It was primarily developed to capture design rationale on a project and to handle some part
of the large amount of "unstructured" information on a project where lack of structure in
infomation is appropriately characterized by the statement "that the information generated in
the course of ongoing activitiy is heterogenous, ad hoc and imbedded in the activity of its

Certain user-interface realizations of models may implement the illusion of removing references or links from
public models by adding special links, called tags, but the underlying representation maintains the old infor-
mation.

28

production and use" [38]. However, much of the information generated on a project, in its
structure and use, is not appropriate to put directly into an issue base. For example,
organization charts or the various types of information produced in modeling a software
artifact through requirements, analysis, design and implementation . Yet it is important that
these and all types of related project information are able to be cross-referenced from an issue
base and vice versa. For instance, we believe it will be common to want to refer to an object
model (such as those typically produced in using the OMT method and tool [26]) from an
Issue or other node in the issue base; and it would be useful to be able to refer to a node from
the issue base in another context such as in a Task assignment model.

While gIBIS provided a limited means to refer to other information that is not in the
issue-base, it did not envision a means to comprehensively structure all project information
nor to flexibly interrelate this information using a generic linking device from which the types
of links in the issue base itself could be specialized. IWEB accomplishes this by sitting on
top of n-dim: the Issue-forest template is actually just another modeling language embedded
within rt-dim (one of potentially many others such as organization, process, document
models, etc.). In addition to the specialized components and interfaces of IWEB, its users will
be able to use all of the power of n-dim (to which they have access privileges) to create
information models and modeling structures as needed and to cross-reference these as needed
to and from the Issue Forest. This will specifically include certain model templates (modeling
languages) which will be created for software engineering project support. An illustration of
the use of n-dim to explore a large set of useful information structures for a software
engineering project is provided in [10]. This was a case study using actual project
information, but it did not include an issue base. In IWEB, we plan to augment these types of
information models with an issue base and to make them mutually complementary by
providing uniform and transparent cross-referencing.

Second, IWEB will provide several types of redundant access and notification
mechanisms to enable users to become aware of information that has been added to Issue
Forests, to be reminded of when and where they viewed the information, and to notify others
of the existence of specific issue forest information and optionally annotate it with comments
or elaborate it with additional cross-references. The specific concepts and mechanisms to
support these capabilities. What's New Models, Notices and Notification Boxes, are
described in Section 5.2.25 through Section 5.2.31 of the IWEB concepts and throughout
Section 7 on IWEB use cases. These mechanisms are provided in addition to the types of
flexible search and filtering capabilities described for gIBIS. These and others are supported
in n-dim also and thus will be provided in IWEB.

It is our expectation that the number of nodes in the Issue Forests in a deployment of
IWEB on a project may grow very rapidly with the size, scope and duration of a project, (this
is dependent, or course, on the number of participants and their decomposition into roles and
teams and so on). The What's New Model will enable users to view only those nodes and
links that have been added since they last consulted IWEB, and then to be directed, if desired,
to the overall context where these were added within an Issue Forest. Notices enable users to
direct the attention of other individuals, groups, teams or the overall project participants to a

Or, whatever development phases are elaborated ana supported in one of the numerous software development
methods and CASE tools that have been proliferated, especially in object-oriented approaches.

29

specific Issue Forest entry (node, or nodes and links) that may be especially important or
requires timely response. Notices are similar to e-mail messages which may have
attachments. Issue Forest nodes and/or links. They support a very informal and unstructured
communication process which smoothily extends the more formal and structured discussion
and negotiation process captured in the issue forests. Again, the informal and formal

formation is easily linked and the history of the exchange of information is captured. Going
iyond gIBIS, this interlinks a rhetoncal model and issue base with the broader, situated and

conversational information exchange that takes piace within projects.

We believe that these notification and reminding mechanisms planned for IWEB are
required to keep an issue base active and alive and effectively utilized by a critical mass of a
project's participants. These mechanisms will extend the on-line support of an issue base by
enabling its users to view, remember, recover and notify others about information in specific
contexts of its usage with respect to their sessions with IWEB, times of posting, viewing or
reviewing and their organizational roles and assignments.

Third, based on our experience wth an earlier direct implementation of the EBIS
rhetorical model in M-dim (a subsystem we called Negotiate) and our experience of managing
meetings, communication and negotiation in the software project course, we changed and
slightly extended the rhetorical model for IWEB. The specific nodes and links supported are
described in the Section 5, IWEB concepts (for a synposis see Figure 5.) and in Section 7 in
the IWEB use cases. It is our experience and that of others [38] that there is a trade-off
between the expressability of a rhetoncal model (that is, the number, type and complexity of
the nodes and links) and its usability (that is, the model itself cannot be too elaborate or users
will have trouble learning and using it and may reject it). With this in mind, in IWEB we are
experimenting with an modest elaboration of the basic IBIS model that we view as a
hypothecal design that must be tested and may evolve through use. l

In summary, IWEB is planned to be a dynamic issue-based communication,
negotiation, structuring and notification system which in conjunction with n-dim will greatly
expand the capabilities of previous issue-based systems. It will provide these capabilities in
a project support infrastructure with the ability to interlink heterogeneous information both
within and across projects in a comprehensive navigable web. IWEB and n-dim represent our
hypothesis for the type of support needed for collaboration. Our next step is to prove this
hypothesis by actual case studies.

1 As of the the time of final editing of this document, we have already provisionally included an additional node
type for Action Items based on emerging requirements from our introduction of IWEB into use for documenting
meetings in a software project course in the form of Indented Text IWEB (itIWEB, see Section 12).

30

5 IWEB Concepts
This section describes the key terms and concepts that underlie IWEB and its modules

and are used in our communications about them. First, we give a brief overview of a few
general terms and concepts for information modeling and n-dim that are needed to understand
our approach and certain dependencies that IWEB has on n-dim. These concepts and many
others related to n-dim are described in detail elsewhere and available from the authors of this
document [8]. Then, the concepts specific to IWEB are presented in the following informal
groupings: General, Issue Forests, Issue Forest Nodes and Links, Nodes and Links Related
Concepts, Notice and Notification, IWEB Interface Components, User Information,
Organizational Information and Software Project Course. Concepts, as well as actors and use
cases, appear in Helvetica type.

The central concept of IWEB is that of the Issue Forest. An Issue Forest is a method and
computer-based model for structuring discussions and communication between participants
in a collaborative work setting. It is composed of a variety of nodes and link-types (Issues,
Proposals, Arguments and Resolutions) that support an IBIS-like rhetorical model, and
enables a bulletin-board style interaction among its users [38]. The Issue Forest and other
components of IWEB, taken together with the general information modeling and
management environment that it sits on top of (n-dim), are intended to broadly support a style
of asynchronous computer-supported cooperative work.

vtwrim I SIIIM, posted by adlh on Nwt reb

t i t l e : 7*ai* format 1c-.
•iov shiu i
o iupper

Update History

I P«b 1 16:45:01

1 feb 1 16:50:50

I rob 1 16:54:41

o», posted by ad Hi on Med reb 1

Notice, title: T A S K Formation I?su<

The development tea* is new
cons i-lor ins the structuring of
project teams and task
assignnentj. you may want tc
review and participate in this
discusslcn.

Figure 3. An Overview of IWEB

Figure 3. illustrates the use of issue forests and notification boxes. The leftmost window
shows an issue forest used by the development team of a project for discussion of
development related issues. The rightmost window shows a notification box used for

31

notifying management. The issue forest of the development team contains two issues: Team
Formation and Project Deliverabies. The description of the Team Formation issue appears at
the bottom of the issue forest window, together with its author and the date when is was
posted. The nodes displayed at the right of the issue are proposals and arguments related to
the issue that other members of the development team have posted in response to the issue.
The management notification box displays a notice entitled Team Formation Issue which was
sent by one of the members of the development team. The notice includes the issue being
discussed (displayed in the upper right hand corner of the notification box) and includes a
description (displayed in the lower right corner of the notification box).

5.1 Information modeling and n-dim Concepts

This is a partial listing of terms and concepts associated with n-dim that are essential to
understand IWEB (which is built on n-dim). For a more complete description see [8].

5.1.1 n-dim

n-dim is an acronym for n-Dimensional Information Modeling. It is an
approach and prototype computational infrastructure for comprehensive
information modeling and management to support team-based work.

5.1.2 n-dim Object

An n-dim Object is an information object that is referenced from n-dim.

5.1.3 Flat Information Space

The space of n-dim objects is flat: n-dim objects are not instrinsically
organized hierarchically, in the sense that objects contain objects (e.g. such as in the
case of a unix file system). Any n-dim object may refer to, or be refered to by any
number of objects.

5.1.4 n-dim Controlled Object

an n-dim Controlled Objects is an n-dim object whose existence is controlled
by n-dim because they are stored in n-dim. All n-dim controlled objects have at least
three attributes: a unique id, the time created and the time last modified. Figure 4

32

gives a classification of Ai-dim controlled objects.

Atom
value

Model
default title
sharing status
legality state
owner
modeling language
operations
access
pedigree

n-dim Controlled Object
unique id
time created
time last modified

link title
link type
source reference
target reference
containing model

Reference
reference title
containing model
referenced model

Structured Model
references
links

Simple Frame
simple frame triplets <name, type, value>

Figure 4 Classification of n-dim controlled objects and their attributes

5.1.5 Ai-dim Non-Controlled Object

An n-dim non-Controlled Objects is an n-dim object whose existence is not
controlled by n-dim because it is stored external to n-dim.

5.1.6 Model

A model is a description of information created within n-dim that is either an
atom, frame, or structured model. Every model has the following attributes: owner,
sharing status, legality status, access, default title, operations, and language.

5.1.7 Reference

A reference to a model within a structured model.

5.1.8 Link

A link is a user defined relationship between two parts contained in the same
model. A link has a source, target, title, and type. Its source and target are parts that

33

the link s are relating, and the title and type are symbols.

5.1.9 Structured Model

A structured model is a collection of References and links.

5.1.10 Atom

An atom is an unstructured model with a single value.

5.1.11 Owner

Owner is a reference to the person model of the user who created the model.

5.1.12 Access

Access is a reference to a model describing which users can read and modify
that model.
For operations, the access also describes the users who can invoke the operations.
In order for users to modify a model, they must have both access to the model and
the operation they have to invoke in order to modify the model.

5.1.13 Sharing Status

The sharing status of a model determines whether a model can be shared by
multiple users, and if it can be shared, whether the users can modify the model. The
sharing status of a model can take one of three values: private, public or published.

5.1.14 Private

A private sharing status indicates that only the owner of the model may access
and modify it. Any modification to the model is allowed.

5.1.15 Public

A public sharing status indicates that any user whose person model is referred to by
the access model can view the model. However, users who can access a public
model must also have access to the various operations of the model in order to
modify it (e.g. only users who have access to the add reference operation of a public
model may add references to the given model; only users who have access to the
remove reference operation of a public model my remove references from it). Any
modifications to a public model are seen immediately by all users who are viewing
the model.

5.1.16 Published

A published sharing status indicates that any user whose person model is
referred to by the access can view the model. However, nobody may modify or
remove the model, regardless of their access to the operations of the model.

34

5.1.17 Legality State

The legality state of a model provides an indication to whether or not a given
model satisfies the constraints of its modeling language. The legality state of a
model can take one of two values: legal and under construction..

5.1.18 Legal

Legal is one of the possible states of a model that has Private status; the other
state is Under-Construction. A Legal model is necessarily completeand consistent
with respect to required and/or allowed nodes and links according to its modeling
language. When we say that a model is Legal, it is by implication a model with the
status Private and that can be changed to become under construction by
modification or by an explicit action of the user to Place Model Under Construction;
Public and Published models are always enforced to be in a Legal state.

5.1.19 Under-Construction

Under-Construction is one of the possible states of a model that has Private
status; the other state is Legal. A model that is in the under-construction state is a
model that can exist only in a users private workspace and that is not necessarily
complete or consistent with respect to required and/or allowed nodes and links
according to the modeling language that was selected in which to build the model.
When we say that a model is Under-Construction, it is by implication a model with
the status Private. There is some visible (UI) indication on both the model's Open
and Closed Views that it is under construction.

5.1.20 Operations

The operations of a model is a set of references to a number of operations
atoms. An operation atom is an n-dim model which may be executed and perform
an action on the model on which the operation is invoked on.
A model inherits the operations of its language, that is, the set of operations which
can be invoked on a model is the union of its set of operations and the set of
operations which can be invoked on its modeling language.

5.1.21 Modeling Language

The modeling language of a model is a reference to another model that
constrains the content of the given model.

5.1.22 Pedigree Model

A pedigree model is a structured model describing the history of a model.
Every time a model is copied, a link is created in its pedigree model between the
original model and its copy.

5.1.23 Person Model

A person model is an Ai-dim model representing the identity of an n-dim User.
Person models are used to identifv the owner of a model and to define the access

35

rights to the model.

5.2 IWEB Terms and Concepts

General

5.2.1 IWEB Object

An IWEB Object is any of the Issue Forest Nodes or any the other information
objects created within a Modeling Language specific to IWEB, e.g., Project,
Organization, Team, group, and User models. An IWEB Object is a subclass of n-dim
Object.

Note: It is envisioned that IWEB Objects will eventually include models created in many
other specialized modeling languages for software engineering that support Project,
process and artifact modeling and their interrelationships. For examples of these
types of models see the case study of the integration Objectory models (an Object-
oriented Analysis and Design method and tool) with Project and process models
created in n-dim [10].

Issue Forests

5.2.2 Issue Forest

An Issue Forest is a computer-based, structured information base for
collaborative design that supports communication and discussion and provides a
history of design issues and decisions. Multiple Issue Forests can be created for a
Project and specialized according to use and access depending on project
requirements and organizational context (see 5.3.1,5.3.2 and 5.3.3 for examples of
specific instances of Issue Forests that we believe will be useful in the context of a
software project course.) Typically, an Issue Forest will be accessed and modified
concurrently by multiple project Members acting in their various Roles as IWEB
actors. An Issue Forest serves as a communication medium for developers and
clients to raise, discuss and potentially resolve issues related to the Project. It is
incrementally structured and populated using Issue Forest nodes connected by Issue
Forest links and may recursively reference other Issue Forests.

Issue Forests are instances of and examples of the use of n-dim model that are made
public. Therefore, anytime a part or a link is added to an Issue Forest, any IWEB
actor who has that Issue Forest opened will see the new node without interaction
from their side. As with public models" in n-dim, the broadest classes of users, as
specified in IWEB by the actor Developer, may only add information to an Issue
Forest. A restricted set of IWEB users, /s spec; *ed by the IWEB actors IWEB
Manager and Issue Forest Manager, may create issue Forests (in the n-dim sense this
means to make a model public which is restricted by access to the operation Make
Public) and drop parts from an issue Forest for the purpose of maintenance.

36

5.2.3 Root Issue Forest

A Root issue Forest is a top-ievei Issue Forest that only an IWEB Manager can
create. A Root Issue Forest can be referenced as a Generic Node from other Issue
Forests (root or otherwise). However, a Root Issue Forest cannot be nested within
another Issue Forest. (Examples of top-level Issue Forests that might be created for
a specific project context are the General Issue Forest, Client Issue Forest and
Management Issue Forests described under Software Project Concepts group (see
5.3.1, 5.3.2 and 5.3.3).

Issue Forest Nodes and Links

5.2.4 Issue Forest Node

The Issue Forest Node describes the common attributes of all of the Issue Forest
node types. In particular, it specifies that each node will provide a space in which to
optionally put a brief textual comment on the content and purpose of the node. Issue
Forest Node is the superclass of all nodes in an Issue Forest. Only the specialized
subclasses of Issue Forest Node described below can actually be created in an Issue
Forest, not a Issue Forest Node itself.

An Issue Forest Node is a type of n-dim model, and as such, each node contains
information about who created it, the time and date it was created, and a unique
symbolic identifier within the IWEB/n-dim.

5.2.5 Issue Node

The Issue Node contains text which describes an issue that needs resolution. It
can be connected to another Issue Node with a Sub-lssue-of Link or an Abstracts Link.
An Issue Node can form the root of a new discussion in which the subject of the Issue
Node is not directly related to another Issue Node. Typically, an Issue Node will be
created with the intention that it will be resolved (have an associated Resolution
Node) in some time frame. ! An active Issue Node is an issue Issue that does not yet
have an associated resolution. Issue Node is a subclass of Issue Forest Node.

5.2.6 Proposal Node

A Proposal Node contains text which describes a possible proposal to resolve
an issue. It must be attached to one or more Issue Nodes with a Responds-to Link.
Proposal Node is a subclass of Issue Forest Node.

5.2.7 Argument Node

An Argument Node contains text which states an argument for or against a
proposal. It must be attached to a Proposal Node with either an Argues-for Link or an
Argues-against Link. An Argument Node may be attached to more than one Proposal.

This interpretation of the expected usage of Issue nodes, and IWEB nodes and links in general, is based on its
intended structure which is very similar to an iBIS-like rnetoncal model for discussions ana decision making.
It must be evaluated by use and is subject to adaptation according to the policy and procedures of the organiza-
tion and project in which IWEB is used.

37

Argument Node is a subclass of Issue Forest Node.

5.2.8 Resolution Node

A Resolution Node contains text and possibly other references describing how
one or more issues are resoived and may be connected -ith a Based-on Link to
proposals attached to those issues (issues resolved by the same Resolution Node must
be related by a sequence of sub-issue-of or Abstracts Links, though issues related in
these ways are not all automatically resolved when a resolution is entered for one
of them; see 5.2.24). Therefore, a resolution resolves a discussion structured by one
or more issues and any associated proposal and Argument Nodes. A resolution may
be attached to one or more Issue Nodes with a Resolves-link and to zero or more
Proposal Nodes with a Based-on Link. A Resolution includes an Executive Summary
that must be completed by the author of the resolution. There can only be one
Resolution Node for each Issue Node, and an issue that has an attached Resolution
Node is a Resolved Issue. A Resolution Node is a subclass of Issue Forest Node.

5.2.9 Generic Node

A Generic Node is a place holder for information in the Issue Forest. It can
contain references to other Issue Forest nodes or external information objects (IWEB
Objects or n-dim Objects). A Generic Node can be linked from any other node in the
Issue Forest, but must be linked with a References Link. Generic Node is a subclass
of Issue Forest Node.

5.2.10 Issue Forest Link

The Issue Forest Link describes the common attributes of all of the Issue Forest
Link types. In particular, it specifies that each link will have a source and target node
each of which must be one of the types of Issue Forest Nodes. Issue Forest Link is
the superclass of all links in an Issue Forest. Only the specialized subclasses of Issue
Forest Link described below can actually be created in an Issue Forest, not an Issue
Forest Link itself.

An Issue Forest Link is a type of /i-dim link, and as such, each link contains the
following information: a name, a type, a source and a target.

5.2.11 Sub-Issue-of Link

Sub-lssue-of Link denotes that the source node is a sub-issue of the target node.
Both nodes must be Issue Nodes.

5.2.12 Abstracts Link

The Abstracts Link denotes that the source node is a more specific version of
the Issue stated in the target node. Read in the reverse, the target node is a more
general version of the issue presented in the source node. This link connects two
Issues nodes. The same Issue Node may abstract or be abstracted by more than one
other Issue Node.

38

5.2.13 Responds-to Link

The Responds-to LinK denotes thai the source node, which must be a Proposal
Node, is a proposal for addressing the target node, which must be an Issue Node.

5.2.14 Argues-for Link

The Argues-for Link denotes that the source node, which must be an Argument
Node, supports the discussion or idea presented in the target node, which must be a
Proposal Node.

5.2.15 Argues-against Link

The Argues-against Link denotes that the source node, which must be an
Argument Node, questions or refutes the discussion or idea presented in the target
node, which must be a Proposal Node.

5.2.16 Based-onLink

The Based-on Link denotes that the source node, which must be a Resolution
Node, is based on the proposal presented in the target node, which must be a
Proposal Node.

5.2.17 Resolves Link

The Resolves Link denotes that the source node, which must be a Resolution
Node, resolves the issue presented in the target node, which must be an Issue Node.

5.2.18 Reference Link

The Reference Link denotes that the target node, which must be a Generic Node,
contains information which is related to the source node. The source node can be
any type n-dim Object.

Connectivity of Issue Forest Nodes and Links
The following table and graph (Figure 5.) summarize the supported connections

between nodes and the respective link-types.

Table 2: Connectivity Between Source Node and Target Node

Source Node

Any Node

Argument Node

Argument Node

Issue Node

Proposal Node

Issue Node

Link Type

Reference Link

Argues-for Link

Argues-against Link

Abstracts Link

Responas-to Link

Sub-issue-of Link

Target Node

Generic Node

Proposal Node

Proposal Node

Issue Node

Issue Node

Issue Node

39

Table 2: Connectivity Between Source Node and Target Node

Source Node

Resolution Node

Resolution Node

Link Type

Based-on Link

Resolves Link

Target Node

Proposal Node

Issue Node

Sub-Issue-of Link

(0..n:0..n)

Responds-to Link,
(1..n:0..n)

Argues-against Link

MO. .n:0. .n)

Abstracts Link
(0..n:0..n)

Based-on Link

(0..n:0..1)

Argues-for Link

(0. . ..:0. .n>

Argument Node

Resolves Link

O
Resolution Node

/—N Reference Link
(\ •

(0 . . n : 0 . . n)
Any Node

O
Generic Node

* An Argument Node must be connected to at least one Proposal Node, however, this may be done
using either an Argues-tor link or an Argues-against link: therefore the node (Argument) to node
(Proposal) is really 1 .. n. but the cardinality ot the relationship specified in terms or either link
type must be 0 .. n. because neither is mandatory, either one or the other is required.

Figure 5. Visual Representation of Node and Link Connectivity

40

Nodes and Links Related Concepts

5.2.19 Root Issue Node

A Root issue Node is an issue Node that currently has no parent Issue Node (that
is. is not a sub-issue of any other issue). When a new discussion is started in the
Issue Forest, a new Issue Node will be created that is a root issue. A new root issue
may also be entered as a super-issue to which an existing issue or issues are
connected with a Sub-lssue-of Link. Subsequently, however, the new root issue may
become a subissue to other issues by being linked to them through a Sub-lssue-of
Link; in that case it ceases to be a root issue. See the use case 7.2.7

5.2.20 Executive Summary

An Executive Summary is a brief overview of an entire related discussion that
encompasses a combination of an Issue Node (or Issue Nodes), possible Proposal
Nodes and a Resolution Node. An IWEB Author must enter an Executive Summary
when they create a Resolution Node. This will typically summarize the discussion
represented by a tree or network of IWEB nodes emanating from an Issue (not
necessarily a root issue) that is resolved by the new Resolution.

5.2.21 Can-be-resolved-by List

This is the list of people who are authorized to and are responsible for
subsequently creating / linking a Resolution Node to the Issue Node. The Can-be-
resolved-by List consists of the creator of an issue, any other names that the creator
wants to add and the default list of people who may resolve issues as established by
the project.

5.2.22 Issue Forest Access

Issue Forest Access is a model which contains two lists of users: 1. those who
can view the Issue Forest (acting in the role of IWEB Users); 2. those who can edit
(create and post nodes and drop notices in Notification Boxes) the Issue Forest (acting
in the role of Authors.)

5.2.23 Node-and-Link Subassembly

A Node-and-Link Subassembly is subset of connected nodes and links from a
single Issue Forest that may be referenced together elsewhere (for instance in a
Notification Box or What's New Model) - any links that are included in the subassembly
must be accompanied by both their source and target nodes.

5.2.24 Resolved Issue

A Resolved Issue is an Issue Node that has a corresponding Resolution Node
attached with a resolve-link. This link may be created directly by an Author actor,
or may be created automatically when a Resolution Node is attached with a Based-on
Link to a Proposal Node that is connected to its parent issue: see (Create Resolution
Node, 7.2.4). A Resolved Issue is displayed differently than issues that have not been
resolved. If an issue is resolved, all of its attached sub-issues (if any) are

41

automatically resolved, i.e., resolution links are automatically created between the
same Resolution Node and all of the sub-issues. However, if ail of the sub-issues of
an Issue Node are resolved, this does not necessarily completely resolve the (super)
issue (there is not a strict composition relationship between issues and sub-issues);
therefore, no Resolves Link is automi: 'cally created to the (super)issue. Resolution
links will not be automatically addea . issues which another issue abstracts, i.e.,
abstracts links do not play a role in automatically propagating resolutions. See
5.2.8and 7.2.4.

Notice and Notification

The following are concepts to facilitate the easy noticing by users of new entries into
the Issue Forest (What's New Model), and their direct notification about something in the Issue
Forest by another User who wants to draw their attention to new or existing entries (Notification
Box).

5.2.25 What's New Model

A What's New Model provides a User an index of everything that has been
added to a specific Issue Forest since the last time they consulted it. A What's New
Model is created for each User / Root Issue Forest pair and is automatically
maintained by the system. On opening or update by the User, the What's New Model
contains references to all of the new nodes and links that have been created in the
Issue Forest since the last time that the User updated their view of What's New.

5.2.26 Notification Box

Notification Boxes may be created at the personal, group, Team and Project
level. They provide a means for an IWEB Author to directly notify an individual,
Team or Ad Hoc Group about a specific node or Node-and-Link Subassembly in the
Issue Forest. A Notification Box is automatically created for each (sub)lssue Forest, for
example, one for each Team corresponding to each Teams' Issue Forest within a
Project wide Issue Forest (see 5.3.1), or one for each Ad Hoc Group Issue Forest1 that
may be created during a Project. When a Notice is "dropped" into a Notification Box
all of the Members on the Notification Box distribution list of the box are alerted that
they have a new Notice in the box. All IWEB Authors2 (project Members) can see all
of the project's Notification Boxes and the distribution lists for the boxes. Users can
see only the contents of only those Notification Boxes for which they are Members of
the distribution list. (See the note under 5.3.4 which discusses the possible
configuration of Notification Boxes to match the Organization and specific Issue Forests

A Notification Box is not automatically created for an Ad Hoc Group unless a corresponding Issue Forest
is created for that group. In that case, however, a Notification Box may still be manually created for the Ad
Hoc Group.
IWEB Viewer actors can see only the Issue Forests and corresponding What's New boxes. This implies that
viewers cannot have distribution boxes nor be on the distribution lists for group or Team boxes. This is an ar-
bitrary decision for simplicity in the first prototype of IWEB. It is based on the assumption that having Notifi-
cation Boxes implies a level of involvement and interaction in a project that goes beyond just observation or
viewing and that people involved at that level will be given privileges of an IWEB author anyway. This assump-
tion must be tested.

42

that are envisioned for the software project course that motivated the development
of IWEB, as discussed in Section 3.)

5.2.27 Notice

A Notice is a model that is created by IWEB for inclusion in Notification Box
whenever an IWEB User drops a reference to an Issue Forest Node, an Issue Forest
Link or a Node-and-Link Subassembly in the box, or for inclusion in the What's New
model whenever a new Issue Forest Link is created
(in which case the Notice will contain the subassembly consisting of a copy of the
new link and references to the source and target models.) The Notice contains
information about the time and date of the creation and, in the case of a notification,
the person who dropped it in the box.

5.2.28 View Access

View Access to a Notification Box means that a User can see the contents of the
box. The User will be included on the Notification Box Distribution List.

5.2.29 Drop Access

Drop Access to a Notification Box means that a User can drop notices in the box.
All Authors have Drop Access to all Notification Boxes. IWEB Users do not have Drop
Access to Notification Boxes. Having Drop Access implies that the User can see all of
the Notification Boxes, but a User can only open (see the contents) of those boxes to
which they also have View Access.

5.2.30 Notification Box Distribution List

The Notification Box Distribution List is the list of Users who have View Access.
Anyone can see the distribution list for a box in order that they can determine
whether to notify others by using that box.]

5.2.31 Update of a What's New Model or a Notification Box

Update is a User applied operation to the What's New Model and/or a Notification
Box. Upon update: all of the items in the respective model that have been viewed
(opened, touched - not necessarily read or understood!) by the User and marked for
removal are removed from the view of the model; if the update is applied to a What's
New Model, any new entries in the Issue Forest will appear in the view of the What's
New Model; if the notification is applied to a Notification Box, any new notifications
directed to that box will appear there.

IWEB Interface Objects

5.2.32 Issue Forest Directory

An Issue Forest Directory is a list of all Issue Forests that have been created in

1 In this respect, a distribution list and the access list for an Sl-dim model are necessarily distinct and different
because in rt-dim a User can not see the access list for a model to which they don't have access.

43

the IWEB sytern. The User may filter their view of the Issue Forest Directory so that
it includes only the Root Issue Forests.

5.2.33 What's New History

A view of the What's New Model that allows the User to see what appeared in
the What's New Model in specified time frames, marked as intervals between one
update to the next update.

5.2.34 Notification Box History

A view of the Notification Box model that allows the User to see what appeared
in the Notification Box in specified time frames, marked as intervals between one
update to the next update.

5.2.35 Notification Box Closed View

The closed view of a Notification Box (or its icon) may be seen by those who do
not have access to it. This is necessary so that all IWEB users can notify other users
about entries in the Issue Forest. The view of a Notification Box includes the ability to
display its distribution list. Only those who are Members of the distribution list may
see the contents of a Notification Box (its opened view).

5.2.36 Notification Box Opened View

The opened view of a Notification Box displays its contents to the User (this is
equivalent to viewing the contents of an n-dim model). The contents are not
structured by any groupings of where the notices in the box came from. This is not
needed because when a User opens a Notice (a referenced Issue Forest Node or Node-
and-Link Subassembly) the Issue Forest in which it was created or most recently
referenced is brought into view and the node or subassembly is highlighted. The
User may customize the viewable area and layout of notices within the Notification
Box.

User Information

5.2.37 User

A User is a model in IWEB that represents a person who uses IWEB in the role
of an IWEB User actor. Each IWEB User will have a corresponding User model that
will be created when they are added to list of permitted users of IWEB by the
System Administrator. A User model references the following other models with
information related to an IWEB User: Contact, Schedule, Roles, Notification Box, and
an associated n-6\rr\ Person model (by which the IWEB user's access to various
models in IWEB and /z-dim is managed). Each of these referenced models has
information specific to the IWEB User represented by the User model.

5.2.38 Contact

A Contact model is associated with a User. It is a text or frame model with
information similar to a Unix plan file that describes how to get in touch with a

44

person through phone, e-mail, address, and so on. It may include both home, office
and other sources for these Contact points. It may also include a brief description of
the person's interests, projects, task assignments and any other information that the
person may want others to know about.

5.2.39 Schedule

A Schedule model is associated with a User. It is a text object that summarizes
a person's daily, weekly and/or monthly scheduled such that other IWEB Users,
who may be working with that person on a common Project, may infer when the
person may be available for meetings or other working Tasks that must be
scheduled. (In the future, this could be structured "calendar" model with
operations that enable it to act as an active assistant or agent in arranging meetings
with other IWEB Users by interacting with their Schedules.)

5.2.40 Roles

A Roles model is associated with a User. It is text model that describe what
Roles the person is assigned to or plays in a Project that is using IWEB. The model
may also contain references to Tasks or one or more models that describe a specific
Role.

Organizational Information

5.2.41 Team

A Project Team represents a designated group of Users in the Project that is
using IWEB. A Team model references the following other models with information
related to Team: associated Issue Forest, Members, Tasks, associated Ad Hoc Groups,
and the corresponding Notification Box for the Team.
Teams can only be formed by IWEB Managers and will typically be created at the
beginning of a Project; whenever a Team is created, a corresponding Issue Forest
and Notification Box are automatically created.

5.2.42 Members

A Members model is a collection of references to Users models. It represents
the Members of Team or Organization models (associated with levels or contexts of
decomposition) within projects, associated with the same Organization structures,
that are using IWEB.

5.2.43 Ad Hoc Group

An Ad Hoc Group represents a group of Users who are working on the same
problem or sub-task. Ad Hoc Group models are created in the same Modeling
Language as Team models and therefore may include the same referenced models
that a Team includes. The Users in a Ad Hoc Group can be from the same or different
Teams and the Ad Hoc Group can be referenced by each of these Teams. Ad Hoc
Groups can be formed by Issue Forest Managers, who may also be Developers
(students), at any time during the course of a Project that is using IWEB. They will

45

typically be created dynamically to address sub Tasks of Teams or the types of
"unforeseen" issues and problems that arise regularly in software engineering
project work. When a Team is created, a corresponding Issue Forest and Notification
Box are NOT automatically created.

5.2.44 Organization

An Organization model represents the global organizational information for a
Project that is using IWEB. An Organization model references the following other
models with information related to the Organization: Teams, Ad Hoc Groups, Members
and Notification Boxes.

Project Information

5.2.45 Project

A Project model refers to any information relevant to the project such as
artifact models and documents, organization structures, process models, tools, and
so on. An illustration of the possible content and use of Project models in adapting

to support software engineering project work is given in [10].

5.2.46 Task

Tasks are models which include descriptions of discrete pieces of work to be
assigned to project Members. Tasks include information about start and end
conditions, requirements for completion, the relationship of the Tasks to other Tasks
and to the overall project goals, expected time and resources requirements, and so
on. Depending on their complexity and scope, Tasks may be assigned to Teams or
Users in a Project.

5.3 Software Project Course

In this section we describe concepts for specific Issue Forests and related notification
components that illustrate the adaptation of the general concepts of IWEB to the context of
the software project course that we are using as a test-bed for the requirements elicitation and
evaluation of IWEB (see Section 3). In this context, the set of Root Issue Forest reflects the
organizational divisions of the Project into management (in an academic setting this is the
instructors and teaching assistants), development and client groups and related issue,
discussion and communication needs.

5.3.1 General Issue Forest

This Issue Forest contains issues that can be viewed by all Members of a
Project. These issues include design and implementation questions, and any other
issues that arise from within the project Teams that have to do with the creation and
construction of the software being deveioDed.

5.3.2 Management Issue Forest

This Issue Forest contains issues in the management of the software project.
These issues include scheduling, Team decomposition, and other issues which are

46

decided by management. Only Project Managers can read/post to the Management
Issue Forest.

5.3.3 Client Issue Forest

This Issue Forest contains issues that involve interaction with the client. These
issues include trade-offs (time vs. cost, time vs. functionality, functionality vs. cost,
etc.), interface design, and other client driven discussions. Only Clients and Client-
Liaisons can post to the Client Issue Forest.

5.3.4 Project Course Notification Boxes

Assuming that the Teams and persons for an instance of our software project
course are the same across the General Issue Forest, Client Issue Forest and
Management Issue Forest, only one set of project course Notification Boxes will exist
to serve them all. Ad Hoc Group Notification Boxes will be classified according to the
Root Issue Forest from which they derive - for instance, groups involved in the
General Issue Forest, Client Issue Forest, Management Issue Forest - unless the group
applies to all Issue Forest classes. Therefore, general developers will only see the
General Issue Forest but will be able to see all of the above mentioned Notification
Boxes. A Manager may be able to see the Client and Management Issue Forests as
well as the General Issue Forest, but will see the same set of Notification Boxes as the
general developer. In terms of the views of Notification Boxes, this implies that there
is only one "expanding" Notice box area in the UI, not separate ones per Issue Forest
class.

47

6 Overview of Actors

6.1 IWEB Actors

This section describes the different users of IWEB. Actors model prospective users ~
everything external communicating with the system, including other systems. Actors
represent a certain role, or class descnption of behavior, rather than an actual person who uses
the system. Actors are the main tool for finding use cases. Figure 6. displays all the IWEB
actors as well as their inheritance relationships.

IWEB sits within the larger n-dim environment and specializes n-dim for the software
engineering domain. The actors and use cases described in the following sections are, unless
specified otherwise, an addition to n-dim.

inherits I ^-dim User

IWEB User

Author

Issue Forest Manager

System Administrate
o

Issue Forest Liaison
Project Manager

IWEB Manager

Figure 6. IWEB Actors

48

6.1.1 /i-dim User

/l-dim User is an actor who accesses and modifies models in n-dim. Each n-dim
model has an access permissions enabling or denying an n-dim User the access of a
given model and/or any of its operations. The use cases associated with the n-dim
actor are described in the n-dim use case document [ref].

6.1.2 IWEB User

An IWEB User initiates and terminates IWEB sessions, examines information
he/she has access to in IWEB, such as Issue Forests, Notification Boxes and What's
New models. An IWEB User can also control the visual display of information,
perform searches on data stored in IWEB and examine other information as well.
All IWEB Users known to IWEB have a User Model associated with them. Such
model contains telephone and e-mail information which allows other IWEB Users
to communicate with a given IWEB User. Each IWEB User has the ability to
modify its own User modellWEB User inherits from the n-dim User actor.

6.1.3 Author

The role of Author is to make changes to the IWEB information base. This
actor sends notices, manipulates ad hoc groups, posts Issue Nodes in Issue Forests.
Author inherits from IWEB User.

6.1.4 Issue Forest Manager

The role of Issue Forest Manager is to maintain a set of Issue Forests. Such
maintenance work includes removing obsolete Issue Nodes, restructuring an Issue
Forest into a number of sub Issue Forests and specifying access rights of other users
to a given set of Issue Forests. Issue Forest Manager inherits from Author

6.1.5 IWEB Manager

The role of the IWEB Manager is to maintain a set of Root Issue Forests and
other global level information associated with a project. This maintenance work
includes creating and removing Root Issue Forests from the Issue Forest Directory,
adding and removing users from the access list of Root Issue Forest, and
restructuring Root Issue Forests into sub Issue Forests. The IWEB Manager inherits
from the Issue Forest Manager.

6.1.6 Issue Forest Liaison

The role of Issue Forest Liaison is to forward Issue Nodes nodes from one Issue
Forest to another. The Issue Forest Liaison can also post Issue Nodes to multiple
Issue Forests. In a project, use cases associated with the Issue Forest Liaison are
typically used by a person whose responsibility is to bridge between organizational
divisions (e.g. management vs. development). Issue Forest Liaison inherits from
Author.

49

6.1.7 Project Manager

The roie of the Project Manager is to edit a set of organizational models
provided in I WEB. The Project Manager creates and updates Roie. Team and Task
models, and maps them to User models. Project Manager inherits from Author.

6.1.8 System Administrator

The role of the System Administrator is to maintain information associated with
a given installation of IWEB. This maintenance work includes adding and
removing User models from IWEB, restart database servers the IWEB System is not
able to restart, repairing corrupted databases if needed, and moving IWEB
databases from and to disk partitions.

6.2 Mapping between IWEB actors and the software engineering course roles

This section describes how the IWEB Actors would be mapped to typical roles in a
software engineering course. As described in the terms and concept sections, we assume that
three root issue forests are created by an IWEB Manager (typically an Instructor or a TA): one
for the use of management (Instructors and TAs), one for Developers (students) and one for the
Client (interaction between the external Client and the requirements group).

6.2.1 Client

The role of the Client in IWEB is based on the role of the Client in the overall
development process: to decide on the functional and interface requirements of the
project. A Client answers questions from Developers which are presented by a Client
Liaison. A Client has the ability to post in the Client Issue Forest. The Client cannot
read or post to the Management Issue Forest, or the General Issue Forest. Client is
an Author who only has access to the Client Issue Forest.

6.2.2 Developer

A Developer is a student which is responsible for specifying, designing and
building a subsystem or a part of a subsystem for the Client. A Developer is an Author
which has only access to the Developer Root Issue Forest.

6.2.3 Team Information Manager

A Team Information Manager is an Issue Forest Manager whose is responsible for
maintaining Issues Forests which belong to a team. A Team Information Manager is
also a Project Manager whose is responsible for the organizational models associated
with a team.

6.2.4 Client Liaison

A Client Liaison is a mediator between Clients and Developers. This purpose of
the role is to create the ability to post to both the Developer Root Issue Forest and
the Client Root Issue Forest. Additionally, Client Liaisons have the ability to do
"cross-posts'* 10 both Issue Forests, thereoy serving as a channel and control point
for Client-Developer communication. Client Liaison is an Issue Forest Liaison who has

50

access to both the Client Issue Forest and General Issue Forest.

6.2.5 Instructor

An Instructor is an Author who has access to all issue forests and organizational
models.

6.2.6 Project Information Manager

A Project Information Manager is an IWEB Manager responsible for setting up
and maintaining the root issue forests. A Project Information Manager is also a Project
Manager responsible for the project organizational models.

6.2.7 Experimenter

The role of the Experimenter is to study the use of IWEB. The Experimenter
devises hypotheses about how people use the system, sets up an experimental
context, makes observations, and decides whether observations confirm
hypotheses. The Experimenter needs support from the system for making
quantitative observations. For example, the system might record a replayable
transcript of time-stamped user actions including keystrokes, mouse movements,
and menu picks. Analysis of this transcript would provide quantitative observations
such as typical command sequences and frequencies. This information can be used
to justify proposed changes to the system.

51

7 IWEB Use Cases
This section describes the different use cases of IWEB. For each actor defined in the

previous section, a set of use cases describe the functionality associated available to that
actor. A use case is a complete course of events in the system from the user's perspective. A
use case is composed of a brief description, summarizing the purpose of the use case and
which actor invokes it, and a flow of events, completely describing all the user visible events
occurring during the interaction of the actor and the system.

This section is organized as follows. Each subsection represents all the use cases
associated with a specific actor. When the number of use cases associated with a single actor
is large, the actor subsection is further divided into functional groups (e.g. Issue Forest use
cases, Notification Box use cases, etc.). For each functional group, a figure summarizes the
associations between the actor and all the use cases presented in that group. Subsections are
in order: IWEB User (Section 7.1), Author (Section 7.2), Issue Forest Manager (Section 7.3),
IWEB Manager (Section 7.4), Issue Forest Liaison (Section 7.5), Project Manager (Section
7.6) and System Administrator (Section 7.7).

7.1 Use Cases for IWEB User

Session Use Cases

Open IWEB

IWE^User

Close IWEB

Figure 7. IWEB User - Session Use Cases Communication Associations

7.1.1 Open IWEB

Brief Description: An IWEB session is opened by an IWEB User before any other
use case can be invoked. IWEB connects with the database servers associated with
the current installation of IWEB. The models (e.g. Issue Forest, What's New and
Notification Boxes) which were marked by the IWEB User (or the IWEB Manager)
as "open on start-up" are opened.

Flow of Events: When IWEB starts, it attempts to connect with the central IWEB
server. In case of failure, IWEB notifies the user that the central services are
temporarily unavailable and falls back on the users' local database.

Any model that was marked by the IWEB User as "open on start up" is also opened.
If this is the first time the IWEB User invokes this use case, only the default models
marked as "open on start-up" by the IWEB Manager are displayed. This use case

52

ends when the entry port is displayed.

See Visual Presentation in Section on page 79.

7.1.2 Close IWEB

Brief Description: An IWEB session is terminated when an IWEB User selects the
quit function from the entry port. IWEB terminates.

Flow of Events: When the user initiates the termination of a session, IWEB checks
for any Issue Forest Nodes drafted by the user but not yet posted. The IWEB User
has the choice to either save the drafts or post the Issue Forest Nodes as they are. At
any point when IWEB queries the IWEB User about posting/saving draft issues, the
user has the option of interrupting the termination process. This use case ends when
IWEB terminates

Issue Forest Viewing Use Cases

CD
' IF Dire

View DF Directory

View IF

View IF Access List
IWEB User

ViewlFNodeJWIFNC

Search IF

CD
Layout IF Display

Figure 8. IWEB User - Viewing Use Cases Communication Associations

7.1.3 View Issue Forest Directory
Brief Description: The View Issue Forest Directory Use Case is used by an IWEB
User to view a list of all existing Issue Forests in the system.
Flow of Events: The IWEB User issues a "view Issue Forests" command from the
IWEB entry port. IWEB displays a list of all the Root Issue Forests accessible in the
system. The IWEB User has the option of requesting IWEB to list all the Issue
Forests accessible by the IWEB User (not only the root forests), as well as their
relationships (which Issue Forests are nested in which Issue Forests). This use case
ends when the Issue Forest Directory is displayed.

53

7.1.4 View Issue Forest

Brief Description: The View Issue Forest Use Case is used by an I WEB User to
browse through an Issue Forest.

Flow of Events: The I WEB User selects an Issue Forest in the Issue Forest Directory
(or in any other open model containing a reference to an Issue Forest, like a parent
Issue Forest) and issues a "view Issue Forest" command. This use case ends when
IWEB opens the selected Issue Forest.

7.1.5 View Issue Forest Access List

Brief Description: The View Issue Forest Access List Use Case is used by an
IWEB User to view the access list of a given Issue Forest.

Flow of Events: The IWEB User selects an Issue Forest in the Issue Forest
Directory (or in any other open model containing a reference to the Issue Forest)
and issues a "view Issue Forest Access List" command. The use case ends when
IWEB opens a dialog listing all the IWEB Users which currently have access to the
selected Issue Forest. It is to be noted that an IWEB User is able to see an Issue
Forest (open or closed) only if he/she has access to it.

7.1.6 View Issue Forest Node

Brief Description: The View Issue Forest Node Use Case is used by an IWEB User
to inspect the content of an Issue Forest Node.

Flow of Events: When an Issue Forest Node is selected for viewing anywhere in
IWEB (i.e. directly from an Issue Forest, from What's New, or from a Notification
Box), the node information is displayed. Node information will vary depending on
the type of node being viewed. All references to the node being viewed (in the Issue
Forest, What's New and any Notification Boxes referring it) are subsequently
displayed differently to indicate the fact that the IWEB User viewed the node. On
subsequent updates, the reference to the viewed node will be removed from What's
New or the respective Notification Box. It is to be noted that nodes from the same
Issue Forest may be displayed differently in different IWEB Users workspaces,
given that they may not have read the same set of nodes. The use case ends when
the Issue Forest Node content is displayed.

7.1.7 Search Issue Forest

Brief Description: The Search Issue Forest Use Case is used by an IWEB User to
search an Issue Forest. The IWEB User can query for Issue Forest Nodes by various
criteria including title, by creation time, and the user who posted the node. The
IWEB User can also query for issues by resolution status (e.g. search all resolved
issues: search all unresolved issues).

Flow of Events: The IWEB User selects an Issue Forest and issues a search
command. IWEB displays a search dialog:

The IWEB User can search issues in the selected Issue Forest by title, in which case
they type a partial title. IWEB will then collect all the nodes whose title match the

54

partial title.

The IWEB User can search the Issue Forest for unresolved issues. IWEB will then
collect all the issues which are not ihe target of a resolves iink. and which are not
subissues of an issue which is the target of a resolves link.

The IWEB User can search the Issue Forest by user, in which case the IWEB User
chooses a set of users he/she is interested in. IWEB will then collect all the nodes
posted by any of the users included in the set.

The IWEB User may select any of the above, in which case IWEB will collect the
nodes satisfying all of the search criteria.

The IWEB User may restrict the scope of the search to the selected Issue Forest or to
include nested Issue Forests in the search.

In all cases, IWEB will return a model that collects the results of the search. The
IWEB User may choose to include the search model in his/her workspace or discard
it. This use case ends when IWEB displays the search model.

7.1.8 Layout Issue Forest Display

Brief Description: The Layout Issue Forest Display Use Case is used by an IWEB
User to personalize the layout of an Issue Forest. Layouts of Issue Forests are stored
on a per user basis, allowing different users to view the same Issue Forest
differently.

Flow of Events: The IWEB User selects one or more nodes in an Issue Forest and
drags them with the mouse. The use case ends when IWEB moves all the selected
nodes and updates the shape of any connected link. The IWEB User may also select
a single link and modify its shape by dragging it. The layout of an Issue Forest is
stored on a per user basis, allowing each user to personalize the layout of the same
Issue Forest.

55

"What's New" Use Cases

Open What's New

Update What's New

IWEBUser

Filter What'ssNew

CD
lat's New HisView What's New History

Figure 9. IWEB User - "What's New" Use Cases Communication Associations

7.1.9 Open What's New

Brief Description: The Open What's New Use Case is used by an IWEB User to
view the nodes and links which were recently created.

Flow of Events: The IWEB User selects "What's New" from the IWEB entry port,
and the What's New Window opens. IWEB opens the What's New Window and
includes all the nodes and links which were created since last time the What's New
window was either opened or updated by this IWEB User. The What's New window
also includes all the nodes and links which were previously created but not yet
viewed by the IWEB User. The use case ends when the What's New Window is
displayed.

See Visual Presentation in Section on page 79.

7.1.10 Update What's New

Brief Description: The Update What's New Use Case is used by an IWEB User to
update the state of the What's New window to include nodes and links which were
created since the last time they updated/opened the What's New window.

Flow of Events: The IWEB User selects "Update" in the What's New window.
IWEB modifies the content of the What's New window to include all the nodes and
links which were created since the last time the What's New window was updated
or opened. The nodes and links which were previously created but not viewed by
the IWEB User continue to be included in the What's New window. Any node which
was viewed by the IWEB User is dropped from the What's New model. Any node
which was ever referenced by the What's New model can be recovered by an IWEB
Viewer using the View What's New history. The use case ends when the new
contents of the What's New Window is displayed.

56

7.1.11 Filter What's New

Brief Description: The Filter What's New Use Case is used by an IWEB User to
restrict the nodes displayed in the What s New window based on their type, title.
Issue Forest or author.

Flow of Events: The IWEB User issues a "filter" command in the What's New
Window. IWEB displays a filtering control panel. The IWEB User can then select
which nodes to display in the What's New Window by setting filters in the filter
window. Filters include date, keyword, author, topic, and Issue Forest name. After
specifying a filter the user issues an "apply filter" command in the filter control
panel. The IWEB User has the option to apply the filter to the What's New Window
only for this session, or for all subsequent updates of the What's New Window. The
use case ends when the filtered nodes are displayed and the filter panel is closed.

It should be noted that the filter affects only what is viewed in the What's New
Window. Nodes that have been filtered out continue to be referenced in the What's
New Model and can be subsequently viewed.

See Visual Presentation in Section on page 80.

7.1.12 View What's New History

Brief Description: The View What's New History Use Case is used by an IWEB
User to restore the What's New Window to a previous state.

Flow of Events: When an IWEB User issues a "view history" command in the
What's New Window, IWEB displays a list of all dates/times at which the What's
New model was updated or opened by this IWEB User. The IWEB User can then
select one of the date/times in the history. IWEB then displays the What's New
Window as it was at the selected time. Nodes which the IWEB user has already read
are displayed differently.

An alternate way for an IWEB User to view a previous state of the What's New
model is to issue a "view model as at last update" command. IWEB then displays
the What's New Window as it was before the last update. An IWEB User can
repeatedly issue "view model as at last update" commands to browse backward
through the What's New history. Similarly the IWEB User can issue *kview model
as at next update" commands to browse the What's New history forward. Issuing a
"view model as at next update" command on the most recent version of the What's
New Window is equivalent to issuing an "update" command (see Update What's
New Use Case).

Thi use case ends when the IWEB User has completed browsing through What's
New History.

See Visual Presentation in Section on page 80.

57

Notification Boxes Use Cases

jr Actor

Use Case

View Notification Box Directory

IWEBUser

C3

Open Notification Box

Update Notification Box

cp
Filter Notification Box

O
View Notification Box History

View Notification Box Distribution List

Figure 10. IWEB User - Notification Boxes Use Cases Communication Associations

7.1.13 View Notification Box Directory

Brief Description: The View Notification Box Directory Use Case is used by an
IWEB User to view the Notification Boxes in the system.

Flow of Events: The IWEB User issues a "view notification boxes" command in the
IWEB entry port. IWEB displays a list of the Notification Boxes in the system. The
IWEB User has also the option of displaying only the Notification Boxes they have
access to. This use case ends when the Notification Box Directory is displayed.

7.1.14 Open Notification Box

Brief Description: The Open Notification Box Use Case is used by an IWEB User
to open and inspect the contents of a Notification Box.

Flow of Events: The IWEB User selects a Notification Box in the Notification Box
Directory and issues an "open notification box" command. IWEB displays a View
of the Notification Box, containing all the notices which were dropped in the
selected Notification Box since last time the IWEB User updated or opened the
Notification Box. The Notification Box View will also continue to include any
notices from before which have not yet been viewed by the IWEB User. This use
case ends when the Notification Box is displayed.

7.1.15 Update Notification Box View

Brief Description: The Update Notification Box View Use Case is used by an IWEB

58

User to update the contents of a Notification Box View.

Flow of Events: The IWEB User selects a Notification Box View and issues an
"update" command. IWEB updates the content of the Notification Box View to
include any notices which were dropped in the Notification Box since it was last
opened or viewed. The Notification Box View will also continue to include any
notices from before which have not yet been viewed by the IWEB User. The use
case ends when the new contents of the Notfication Box is displayed.

7.1.16 View Notice

Brief Description: The View Notice Use Case is used by an IWEB User to view
the contents of a notice in a Notification Box.

Flow of Events: The IWEB User selects a Notice in a Notification Box View and
issues a "view" command. IWEB opens the Issue Forest which is associated with
the notice and highlights in the Issue Forest the subassembly referred to by the
Notice. If needed, IWEB scrolls the Issue Forest View to allow the user to view the
subassembly. This use case ends when the Issue Forest Nodes of the Notice are
highlighted.

7.1.17 Filter Notification Box View

Brief Description: The Filter Notification Box View Use Case is used by an IWEB
User to restrict the types of Notices displayed in the Notification Box View. Notices
can be restricted by Author, date of notice, keyword, topic and Issue Forest Name.

Flow of Events: The IWEB User issues a "filter" command in the Notification Box
View. IWEB displays a filtering control panel. The IWEB User can then select which
Notices to display in the Notification Box by setting filters in the filter window.
Filters include date, keyword, author, topic, and Issue Forest name. After specifying
a filter the user issues an "apply filter" command in the filter control panel. The
IWEB User has the option to apply the filter to the Notification Box View only for
this session, or for all subsequent updates of the Notification Box View. The use
case ends when the filtered nodes are displayed and the filter panel is closed.

It should be noted that the filter affects only what is viewed in the Notification Box
View. Nodes that have been filtered out continue to be referenced in the Notification
Box View and can be subsequently viewed.

See Visual Presentation in Section on page 80.

7.1.18 View Notification Box History

Brief Description: The Notification Box History Use Case is used by an IWEB User
to restore the state of the Notification Box View to a previous state.

Flow of Events: The IWEB User selects an open Notification Box and issues a "view
history" command. IWEB displays a list of all date/times at which the Notification
Box was opened or updated. The IWEB User selects one of those times and IWEB
restores the Notification Box View to the same state as it was at the selected time.
Notices which have already been viewed are displayed differently.

59

An alternate way for an IWEB User to view a previous state of the Notification Box
View is to issue a "view model as at last update" command. IWEB then displays the
Notification Box View as it was before the last update. An IWEB User can
repeatedly issue "view model as at last update" commands to browse backward
through the Notification Box history. Similarly the IWEB User can issue "view
model as at next update" commands to browse forward through the Notification
Box history. Issuing a "view model as at next update" command on the most recent
version of the Notification Box View is equivalent to issuing an "update" command
(see Update Notification Box Use Case).

This use case ends when the IWEB User is done browsing the Notification Box
history.

See Visual Presentation in Section on page 80.

7.1.19 View Notification Box Distribution List

Brief Description: The View Notification Box Distribution List Use Case is used
by an IWEB User to view the set of users who have access to view the notices of a
given Notification Box.

Flow of Events: The IWEB User selects a Notification Box and issues a "view
notification box distribution list" command. IWEB displays a model referring to the
user models associated with all the IWEB Users who have access to the Notification
Box. Any IWEB User who has drop access to a Notification Box may view its
distribution list. They may not themselves be on the distribution list per se. In case
the Notification Box is associated with an Issue Forest, the distribution list of the
Notification Box is identical to the access list of the Issue Forest. This use case ends
when the Notification Box Distribution List is displayed.

7.1.20 View Notification Box Usage List

Brief Description: The View Notification Box Usage List Use Case is used by an
IWEB User to view the sub set of IWEB Users in the distribution list of a
Notification Box who have actually accessed the Notification Box.

Flow of Events: The IWEB User selects a Notification Box and issues a "view
notification box usage list" command. IWEB displays a model referring to the user
models associated with the IWEB Users who have accessed the Notification Box.
Any IWEB User who has drop access to a Notification Box may view its usage list.
They may not themselves be on the distribution list. This use case ends when the
Notification Box Usage List is displayed.

60

User Model Use Cases

CD
View User Model

IWEB User

Edit Schedule

Edit Contact Information

Edit Roles

Hit TaskEdit Tasks

Figure 11. IWEB User - User Model Use Cases Communication Associations

7.1.21 View User Model

Brief Description: The View User Model use case is used by a IWEB User to refer
to the contact, schedule information, roles and tasks associated with an IWEB User.

7.1.22 Edit Schedule

Brief Description: The Edit Schedule use case is used by an IWEB User to modify
his/her available times.

7.1.23 Edit Contact Information

Brief Description: The Edit Contact Information use case is used by an IWEB User
to modify his e-mail address, phone number, and so on, as stored by IWEB.

7.1.24 Edit Roles

Brief Description: The Edit Roles use case is used by an IWEB User to add or
remove Roles from his/her User Model.

7.1.25 Edit Tasks

Brief Description: The Edit Tasks use case is used by an IWEB User to add or
remove Tasks from his/her User Model.

Organizational Model Use Cases

7.1.26 View Organizational Model

Brief Description: The View Organizational Model use case is used by a IWEB User
to browse through project organization, user, role, group and team models stored by

61

IWEB.

7.2 Use Cases for Author

Edit Issue Forest Use Cases

Figure 12. illustrates the relation ship between IWEB Issue Forest use cases and n-dim
use cases. The use cases displayed in gray are n-dim use cases; the use cases displayed in
white are IWEB use cases. A uses relationship between the Add Issue Forest Node use case
and the Publish Model use case means that the Add Issue Forest Node use case "reuses" part
of the flow of events of the Publish Model use case.

Add Referenc^Pu!

Add IssuTRSwt Node

Create^enencNode ,--'' /" S \ Create r̂gument Node

f * x ' ' CreatefropSsal Node ^ x

CreatelssueNode Create ResoTufion Node

n-dim Use Case I

IWEB Use Cs

• uses

•
Figure 12. Issue Forest Use Case Dependencies

7.2.1 Add Issue Forest Node

Brief Description: The Add Issue Forest Node is an abstract use case used by some
Issue Forest use cases to add Issue Forest Nodes to an Issue Forest.

Flow of Events: The Add Issue Forest Node use case uses parts of the n-dim use
case Publish Model to publish an existing Issue Node and uses parts of the n-dim
use case Add Reference To Public Model to add the node in the Issue Forest. This
use case ends when the Issue Forest Node is displayed in the Issue Forest.

62

Edit Issue Forest Coupled Node-Link1 Use Cases

The following use cases are used by an Author to add nodes to an Issue Forest. IWEB
ensures that the issue models are syntactically correct by creating the required links for each
issue node which is created.

CD
Create Issue Node

CD
ate PropCreate Proposal

0 ^ Create Resolution Node

IWEtfAuthor
^Create Argument Node

CD
Create Generic Node

Figure 13. IWEB Author - Issue Forest Node-Link Use Cases Communication Associations
7.2.2 Create Issue Node

Brief Description: The Create Issue Node Use Case is used by an Author to create
a new Issue node in IWEB. The Author is automatically included in the can-be-
resolved-by list for the Issue node and may also enter additional names to the list.
This use case uses the Add Issue Forest Node Use Case.

Flow of Events: The Create Issue Use Case starts when the Author issues the "create
issue" command. The Author is given the opportunity to enter new information
about an issue into the system. The Author enters a textual description of the issue.
This use case ends when the new Issue is displayed in the Issue Forest.

7.2.3 Create Proposal Node

Brief Description: The Create Proposal Node Use Case is used by the Author to
create a new Proposal node in IWEB that will be connected to an existing Issue
node by a responds-to link. This use case uses the Add Issue Forest Node Use Case.

Flow of Events: The Create Proposal Use Case starts when the Author selects an
Issue node to which the Proposal is to be addressed and issues the ktcreate proposal"
command. The Author is then given an interface to enter a new proposal node for
resolving the issue. The Author enters a description of the Proposal, and indicates
when they are done. The new proposal node is added to the Issue Forest and a

1 In this group ot use cases, the user will create one or more new nodes, and any required links will automatically
be created by the system between two designated nodes - the new node and another user selected node of the
appropriate type.

63

"responds-tcT link is automatically created between the currently selected issue and
the new node. The use case ends when the new node and link are added to and
displayed in the Issue Forest.

7.2.4 Create Resolution Node

Brief Description: The Create Resolution Node Use Case is used by the Author to
create a new Resolution node in IWEB that will be connected to an existing
Proposal node by a based-on link and/or connected to other existing Issue nodes by
resolves links. This use case uses the Create IWEB Node Use Case.

Flow of Events: The Create Resolution Use Case usually starts when the Author
selects an existing Proposal node and issues the command "Create Resolution." The
system checks if the Author is authorized to post a resolution to the Issue that the
Proposal is attached to by determining if the Author is a member of the can-be-
resolved'by list for that Issue. If this is not the case, IWEB abons the command and
displays an error message to be acknowledged by the Author. The Author is then
given an interface to enter the contents of a new Resolution node. As part of the
Resolution the Author must enter an Executive Summary of the entire related
discussion that the Issue / Proposal / Resolution encompasses. When the Resolution
node is completed the following links are automatically created: a "based-on" link
is created between the new Resolution and the Proposal and a "resolves" link is
created between the new Resolution and the parent Issue node of the Proposal.

An alternative course of events starts when the Author selects an existing Issue and
issues the command "Create Resolution." Similar to above, the system checks if the
Author is authorized to post a resolution to the Issue, and if not, the command is
aborted. When the Resolution node is completed a resolves link is automatically
created between the new Resolution and the selected Issue node.

In either of the above cases, the status of the affected Issue node is changed to that
of a Resolved Issue and it is displayed differently than issues that have not been
resolved. The use case ends when the new Resolution node and the appropriate new
link are added to and displayed in the Issue Forest.

7.2.5 Create Argument Node

Brief Description: The Create Argument Node Use Case is used by the Author to
create a new Argument node in IWEB that will be connected to an existing Proposal
node by an argument-for or an argument-against node. This use case uses the Create
IWEB Node Use Case.

Flow of Events: The Create Argument Node Use Case starts when the Author
selects a a Proposal node in IWEB and issues the "add argument node" command.
The Author then enters a textual commentary as the body of the Argument Node.
The Author must select whether this is an argument for or against the parent node.
The node is added to the IF and a link of the selected type is created between the
new node and the Proposal node being commented on. The use case ends when the
node and the new link are added to and displayed in the Issue Forest.

64

7.2.6 Create Generic Node

Brief Description: The Create Generic Node Use Case is used by the Author to
create a new generic IWEB node of any n-dim type and link it to any other existing
IF node with a reference link. This use case uses the Create IWEB Node Use Case.

Flow of Events: The Create Generic Node Use Case starts when an Author selects
an IWEB node to which they want to attach a generic node containing any other
system supported information object construct. (For example, the generic node may
contain related information for annotation or reference; the information may often
be textual (annotation) in which case a text editor will be brought up.) The Author
then issues the "create generic node" command. This use case ends when the
creation of the generic node is completed and when a reference link is created from
the selected Issue Forest node to the new generic node.

Issue Forest Link Use Cases
The following use cases are used by an Author to add links to an Issue Forest. It should

be noted that all Issue Forest links (except reference links) have their title set to their type.
Therefore, the IWEB Author never specifies explicitely the title of an Issue Forest link.

-2-
IWEEtXuthor

Create-Sub-Issue-Of Link

Create Abstracts Link

CD
Create Responds-To Link

CD
Create Argue Link

CD
Create Resolves Link

CD
Create Based-On Link

CD
ReferencCreate Reference Link

Figure 14. IWEB Author - Issue Forest Link Use Cases Communication Associations

7.2.7 Create Sub-Issue-Of Link

Brief Description: The Create Sub-Issue-Of Link Use Case is used by an Author to
create a sub-issue-of link between two existing issues of the same Issue Forest.

Flow of Events: The Create Sub-Issue-Of Link Use Case starts when the Author
selects two issue nodes (source, then target) and issues the create sub-issue-of link
command. IWEB checks if the issue nodes are already connected by a path of sub-

65

issue-of links. If that is the case, IWEB aborts the command and reports an error to
the Author. Otherwise. IWEB creates a sub-issue-of link between the source and
target issue and sets the title of the link to sub-issue-of. This use case ends when the
link is displayed.

7.2.8 Create Abstracts Link

Brief Description: The Create Abstracts Link Use Case is used by an Author to
create an abstracts link between two existing issues of the same Issue Forest.

Flow of Events: The Create Abstracts Link Use Case starts when the Author selects
two issue nodes (source, then target) in an Issue Forest and issues the create
abstracts link command. IWEB checks if the issue nodes are already connected by
a path of abstracts links. If it is the case, IWEB aborts the command and reports an
error to the Author. Otherwise, IWEB creates an abstracts link between the source
and target issue and sets the title of the link to abstracts. This use case ends when
the link is displayed.

7.2.9 Create Responds-to Link

Brief Description: The Create Responds-to Link use Case is used by an Author to
create a responds-to link between an existing proposal and an existing issue. This
use case is typically used when an Author creates a Proposal which responds to
more than one Issue.

Flow of Events: The Author selects a Proposal and an Issue node in an Issue Forest
and issue the create responds-to link command. IWEB checks if the pair of nodes
is already linked with a responds-to link, in which case, IWEB aborts the operation
and reports an error to the Author. Otherwise, IWEB creates a new responds-to link
between the selected nodes and sets its title to responds-to. This use case ends when
the link is displayed.

7.2.10 Create Argue Link

Brief Description: The Create Argue Link Use Case is used by an Author to create
an argue-for or an argue-against link between an existing argument and proposal
node in the same Issue Forest.

Flow of Events: The Create Argue Link Use Case starts when the Author selects an
argument node and a proposal node in an Issue Forest, and issues the create argue
link command. IWEB checks if the argument node already has an outgoing argue-
for or argue-against link to the selected proposal. If it is the case, IWEB aborts the
command and reports an error to the Author. Otherwise, the Author selects whether
an argue-for or an argue-against link is to be created. IWEB then creates an argue
link from the argument to the proposal and sets the title of the link to argues-for or
argues-against respectively. The use case ends when the link is displayed.

7.2.11 Create Resolves Link

Brief Description: The Create Resolves Link Use Case is used by an Author to
create a resolves link from a resolution node to an issue node. Although the

66

resolution node may already have an outgoing resolves link to another issue, the
Author may want to add another resolves iink to an issue abstracting or containing
the first issue.

Flow of Events: The Create Resolves Link Use Case starts when the Author selects
a resolution node and an issue node in an Issue Forest, and issues the create resolves
link command. IWEB first checks if the following is true:

- the Author belongs to the can-be-resolved-by list of the selected issue,

- the resolution node does not always have a resolves link to the selected issue,

- there is a path of sub-issue-of or abstracts links from an issue referred to by the
selected resolution node to the selected issue node.

If any of the above checks fail, IWEB aborts the command and reports an error to
the Author. Otherwise, IWEB creates a reference link between the resolution and
the issue and sets the title of the link to resolves. This use case ends when the link
is displayed.

7.2.12 Create Based-on Link

Brief Description: The Create Based-on Link Use Case is used by an Author to
create a based-on link from an existing resolution node to a proposal node.
Although the resolution node may already have a based-on link to a proposal, the
Author may want to add another based-on link to a different proposal to indicate
that the resolution was synthesized from a number of proposals.

Flow of Events: The Author selects a resolution node and a proposal node in an
Issue Forest, and issues the create based-on link command. IWEB first checks if the
pair of nodes are already connected by a based-on link, in which case, IWEB aborts
the operation and reports an error to the Author. Otherwise, IWEB creates a based-
on link between the selected nodes and sets its title to based-on. This use case ends
when the link is displayed.

7.2.13 Create Reference Link

Brief Description: The Create Reference Link Use Case is used by an Author to
create a reference link from an Issue Forest Node to an arbitrary IWEB node in the
same Issue Forest. If the node the Author wants to create a reference link to does
not belong to the same Issue Forest, the Author may use the Add Node Use Case
prior to this use case to add the node to the Issue Forest.

Flow of Events: The Create Reference Link Use Case starts when the Author selects
an Issue Forest Node (source), an arbitrary IWEB node (target) in the same Issue
Forest and issues the create reference link command. IWEB checks if there is
already a reference link between the selected nodes. If it is the case, IWEB aborts
the command and reports an error to the Author. Otherwise, IWEB creates a
reference link between the source and the target. This use case ends when the link
is displayed.

67

Notification Boxes Use Cases

IWEfiAuihor Notify via Notification Box

Figure 15. IWEB Author - Notification Box Use Cases Communication Associations

7.2.14 Notify via Notification Box

Brief Description: The Notify via Notification Box use case is used by an Author
to notify an individual or team about a specific node or subassembly in an Issue
Forest.

Flow of Events: The Author selects one or more Issue Forest Nodes and/or Links
in an Issue Forest and a Notification Box he/she has drop access to. The Author then
issues a "notify" command. IWEB creates a notices, adds references in the notice
to the selected subassembly and adds the notice in the Notification Box. IWEB then
broadcasts the fact that a new notice has been added to the notification box to all the
IWEB Users who have that Notification Box open for viewing. This use case ends
when the Notice is availble to the other IWEB Users.

7.3 Use Cases for Issue Forest Manager

Actor I

Use Case [

Issue Forest \
Manager ^

CD
Create Issue Forest

S CD
/ Add Issue Forest Access

Remove Issue Forest Access

NT^*' CD
V Maye Issue Nodes to Issue Forest

.Create Notification Box

CD
Edit Notification Box DL

Figure 16. Issue Forest Manager - Use Cases Communication Associations

7.3.1 Create Issue Forest
Brief Description: The Create Issue Forest use case is used by an Issue Forest

68

Manager to create new Issue Forests within an Issue Forest he/she is managing.

Flow of Events: The Issue Forest Manager issues an "create Issue Forest" in an
open Issue Forest. The Issue Forest Manager specifies the name of the new Issue
Forest, a group of users who can post to it, and a group of users who can view it.
The users specified in the access groups have to already have equivalent access to
the parent Issue Forest.

IWEB adds the new Issue Forest to the selected Issue Forest, and creates a
Notification Box for it. The creation of the new Issue Forest is broadcast under the
form of a notice in the Notification Box of the parent Issue Forest. The use case ends
when the Notice is available to the other IWEB Users.

7.3.2 Add Issue Forest Access for User

Brief Description: The Add Issue Forest Access for User use case is used by an
Issue Forest Manager to enable an IWEB User to view or an IWEB Author to
modify an Issue Forest. Before an IWEB User can be added to an Issue Forest, they
first has to have access to the parent Issue Forest.

7.3.3 Remove Issue Forest Access

Brief Description: The Remove Issue Forest Access use case is used by an Issue
Forest Manager to deny an IWEB User the view or modification of an Issue Forest
and its containing Issue Forests.

7.3.4 Move Issue Forest Nodes To Issue Forest

Brief Description: The Move Issue Forest Nodes To Issue Forest use case is used
by an Issue Forest Manager to move an aggregate of Issue Forest Nodes to another
Issue Forest the Issue Forest Manager has access to.

Flow of Events: The Issue Forest Manager selects an issue or a set of issue nodes
in an Issue Forest and issues a "move issue nodes" command. IWEB then selects
all the Issue Forest Nodes reachable through Issue Forest links in the same Issue
Forest. IWEB then prompts the user for a target Issue Forest. Once the Issue Forest
Manager selects an Issue Forest he/she manages, IWEB moves all of the selected
Issue Forest Nodes and Links to the new Issue Forest. Notices are posted by IWEB
in the Notification Boxes associated with both Issue Forests. The use case ends
when the Notices are available to the other IWEB Users.

7.3.5 Create Notification Box

Brief Description: The Create Notification Box use case is used by the Issue Forest
Manager to create any additional Notification Boxes that are desired beyond those
that are automatically created corresponding to Issue Forests. The Issue Forest
manager also adds one or more IWEB Users to the distribution list for the box - any
users whose names are added must have privileges of an Author in order to be able

69

to see the contents of the box.

7.3.6 Edit Notification Box Distribution List

Brief Description: The Edit Notification Box Distribution List use case is used by
an Issue Forest Manager to add or remove IWEB Users from the distribution list of
a Notification Box. If the Notification Box corresponds to an Issue Forest, the
Notification Box Distribution List has to be a superset of the users who can access
the Issue Forest.

7.4 Use Cases for IWEB Manager

Actor | Create Root Issue Forest

C3 UseCase _
" dd Root Issue Forest Access

CD
Q ^^—^Remove Root Issue Forest Access

IWEB Manager
Create RootNotTfication Box

Figure 17. IWEB Manager - Use Cases Communication Associations

7.4.1 Create Root Issue Forest

Brief Description: The Create Root Issue Forest use case is used by an IWEB
Manager to create a new Root Issue Forest.

Flow of Events: The IWEB Manager issues a "create root Issue Forest" command in
the Issue Forest directory, specifies the name of the new Issue Forest, a group of
users who can post issues on it, and a group of users who read issues in it. IWEB
creates a new Issue Forest, adds its name to the Issue Forest directory, creates a
Notification Box for it which is also added in the Notification Box directory. The
creation of the new Issue Forest is broadcast under the form of a Notice posted in
the project Notification Box. This use case ends when the Notice is available to the
other IWEB Users.

7.4.2 Add Root Issue Forest Access for User

Brief Description: The Add Root Issue Forest Access for User use case is used by
an IWEB Manager to enable an IWEB User to view and/or modify a root Issue Forest.
In order for the IWEB User to be able to modify Issue Forests nested in the Root Issue
Forest, the Issue Forest Manager of the corresponding Issue Forests (or the IWEB

70

Manager) has to add the new IWEB User to these Issue Forests as well.

7.4.3 Remove Root Issue Forest Access

Brief Description: The Remove Root Issue Forest Access is used by a IWEB
Manager to deny an IWEB User the view or modification of a Root Issue Forest (and
all of its containing Issue Forests).

7.4.4 Create Root Notification Box

Brief Description: The Create Root Notification Box use case is used by the IWEB
Manager to create any additional Notification Boxes at the global level that are
desired beyond those that are automatically created corresponding to Root Issue
Forests. The IWEB Manager also adds one or more IWEB Users to the distribution
list for the box - any users whose names are added must have privileges of an Author
in order to be able to see the contents of the box.

7.5 Use Cases for Issue Forest Liaison

Dual Issue Forest Manipulation Use Cases

Cross Post

Issue Forest Liaison

Forward Node

Figure 18. Issue Forest Liaison -Dual Issue Forest Communication Associations

7.5.1 Cross Post

Brief Description: The Cross Post use case is used by the Issue Forest Liaison actor
to post Issue Forest Nodes on two different Issue Forests at the same time. An Issue
Forest Liaison will typically use this use case to post issues on different Issue
Forests which are not accessible by the same set of users.

7.5.2 Forward Node

Brief Description: The Forward Node use case is used by the Issue Forest Liaison
to add existing Issue Forest Nodes to a different Issue Forest. An Issue Forest
Liaison will typically use this use case to post existing issues on an Issue Forest
which can be accessed by different users, thus broadening the scope of the

71

discussion for that specific issue.

7.6 Use Cases for Project Manager

Edit Organizational Model Use Cases

j-
IWEfiAuthori

CD
Create Role

CD
Remove Role

Assign Role to User

CD
Relieve User from Role

CD
Create Team

CD
Remove Team

CD
ember!Add Member To Team

3
Remove Member From Team

CD
Create Task

Asign Task To Member or Team

CD
Relieve Member or Team From Task

CD
Add Issue Forest To Team

CD
Remove Issue Forest From Team

Figure 19. Project Manager - Organization Model Use Cases Communication Associations

7.6.1 Create Role

Brief Description: The Create Role use case is used by a Project Manager to create
new role models in IWEB. Roles created in this use case can then be used in the

72

Assign Role to User use case.

7.6.2 Remove Role

Brief Description: The Remove Role use case is used by a Project Manager to
remove a role model in IWEB. A role can be removed only if no more users are
assigned this role.

7.63 Assign Role to User

Brief Description: The Assign Role to User use case is used by a Project Manager
to assign a role to an IWEB User. A role can be assigned to more than one user.

7.6.4 Relieve User from Role

Brief Description: The Relieve User from Role use case is used by an Project
Manager to remove a role from a user's model.

7.6.5 Create Team

Brief Description: The Create Team use case is used by a Project Manager to create
a new Team model and add it to the Organizational Model.

7.6.6 Remove Team

Brief Description: The Remove Team use case is used by a Project Manager to
remove a Team model from the Organizational Model.

7.6.7 Add Member To Team

Brief Description: The Add Member To Team use case is used by a Project
Manager to add a User Model to a Team Model. A User Model may be included in
more than one Team Model.

7.6.8 Remove Member From Team

Brief Description: The Remove Member from Team use case is used by a Project
Manager to remove a User Model from a Team Model. Removing a User Model
from a Team Model does not destroy or otherwise affect the selected User Model.

7.6.9 Create Task

Brief Description: The Create Task use case is used by a Project Manager to create
a new Task Model.

7.6.10 Assign Task To Team Or User

Brief Description: The Assign Task To Team Or User is used by a Project Manager
to add a Task to a Team or User Model.

7.6.11 Relieve Team Or User From Task

Brief Description: The Relieve Team Or User From Task is used by a Project

73

Manager to remove a Task from a Team or User Model.

7.6.12 Add Issue Forest To Team

Brief Description: T.. : Add Issue Forest To Team use case is used by a Project
Manager to add an Issue Forest to a Team Model.

7.6.13 Remove Issue Forest From Team

Brief Description: The Remove Issue Forest From Team use case is used by a
Project Manager to remove an Issue Forest from a Team Model. The Issue Forest is
not destroyed or otherwise affected.

7.7 Use Cases for System Administrator

Edit User Configuration Use Cases

Add User

System Administrator

CD
Remove User

Figure 20. System Administrator - Configuration Use Cases Communication Associations
7.7.1 Add User

Brief Description: The Add User use case is used by a System Administrator to add
a user to the system.

7.7.2 Remove User

Brief Description: The Remove User use case is used by a System Administrator

74

to remove a user from the system.

Data Management Use Cases

Archive Info.

.1.System A&iiiustratoN. **&* DB

DBServer

Figure 21. System Administrator - Data Management Use Cases Communication Associations

7.7.3 Archive Information

Brief Description: The Archive Information use case is used by the System
Administrator to remove seldom accessed nodes from the active Issue Forest and
place them into a more stable (but not easily accessible) storage medium.

7.7.4 Repair Database

Brief Description: The Repair Database use case is used by the System
Administrator to repair inconsistencies resulting from crashes or errors caused by
IWEB.

7.7.5 Start Database Server

Brief Description: The Stan Database Server use case is used by the System
Administrator to restart a database server which crashed.

7.8 Use Cases for IWEB System

Once IWEB has been installed and started, it will continuously manage the Issue
Forests and other models created by the user. Even when no users are logged in, IWEB can
initiate use cases and do work (e.g. build terminology dictionaries, restart crashed database
servers, etc.).

7.8.1 Create Notification Box Automatically

Brief Description: The Create Notification Box Automatically use case is used by
the IWEB System to create corresponding Notification Boxes whenever an Issue
Forest is created. The distribution list of the Notification Box will have the same
persons as associated with the IF that spawned its creation - for instance, the team
members associated with a team that has an IF will be members of the distribution
list for the corresponding Notification Box.

75

8 Visual Presentation of the Use Cases
This section presents conceptual sketches for the user interface of IWEB. Given that

use cases are a functional description of the system and do not include any reference to any
particular user interface, the purpose of this section is to give the reader a more concrete view
of how the user would interact with IWEB.

At the time of publication of this report, a prototype of IWEB was used to reconstruct
the information base of the JEWEL project (Software Engineering classes of Fall'94 and
Spring'95). We included screen dumps from that reconstruction for the purpose of
comparison with the initial requirements sketches.

Section 8.1 includes the requirements sketches. Section 8.1.1 describes the main
windows of IWEB and their relationship. Section 8.1.2 presents the windows associated with
browsing and searching the Issue Forests. Section 8.1.3 presents the Entry Port, which is the
first window displayed when the user starts IWEB. Section 8.1.4 presents the windows
associated with the What's New functionality.

Section 8.2 includes screen dumps taken from the JEWEL information base. Section
8.2.1 presents a typical IWEB screen as seen by a user. Section 8.2.2 presents a view of the
Project Model. Section 8.2.3 presents a view of the Team Model. Section 8.2.4 shows the
Issue Forest Viewer displaying a team Issue Forest. Section 8.2.5 shows the Notification Box
viewer displaying a team's Notification Box. It is to be noted that Project and Team Models
are n-dim models. At the time of publication of this report, none of the windows associated
with the What's New functionality was implemented.

8.1 Conceptual Sketches

8.1.1 General Vision for a screen in IWEB

A general vision for the display of the IWEB screen is shown in Figure 22. As
currently defined, the Issue Forest and Notification Boxes are the primary tools offered
by the system. It is hoped that visual space can be managed in such a way as to allow
the display of as much information as possible. We hope to make available through the
user interface all the information the user knows he wants access to, while keeping
other information organized and easily accessible.

Issue Nodes and Notices are displayed in such a way to reflect whether the user
has ever viewed them or not. For example, an Issue Node will initially appear in black
and white colors when it is initially posted and then grayed out once the user views the
node. The same Issue Forest Node may appear in many places at any one time (e.g. in
an Issue Forest, in a Notice and in the What's New Window). The user may issue node
viewing commands from any of these places. Once the node is viewed, the

76

representation of the node in each place will be grayed out.

15-413- IWEB - General Issue Forest Notification Boxes

Figure 22. IWEB Screen

8.1.2 Issue Forest Windows

There are two main alternative windowing strategies for the Issue Forest Portion
of the IWEB. The strategy presented in Figure 23. shows the use of multiple windows,
one window for each issue forest (or sub-forest). This has the benefit of helping to
compartmentalize information, but may lead to a cluttered screen. Figure 24. shows the
use of a single window for all issue forests. In this case, the user would use scroll bars
to move among sub-forests that exist within each main Issue Forest, for example UI,
Comm., and so on as shown in the figure.

77

Ul.toois Sub-Forest

o

L

V

Ul.tools.tasks

UI.tools.tk

Figure 23. Recursive Forest Concept

General Issue Forest
Project Issues

O

UI Comm

<JL

DB

> <L

Figure 24. Flat Space Concept

8.1.3 Entry Port

The entry port of IWEB is the first window which appears on the screen when the
user starts IWEB. The entry port gives the user access to global functionality such as
the issue forest directory, the notification box directory or the what's new window.

78

System
Controls

General
IF

What's
New

Notif.
Boxes

Project
Info

Hot
List

Figure 25. IWEB Entry Port

8.1.4 What's New

What's New Window

The What's New window displays all the Issue Forest Nodes which have been
posted in a given Root Issue Forest or any of its sub Issue Forest since the last time the
user updated or opened the What's New window. The What's New window also
provides access to functionality to filter the content of a What's New window, display
its history or update its content.

What's New Window
What's New

Filter History Update

Figure 26. What's New Window

79

Filter What's New (or Notification Box) Window
The Filter window is used by an IWEB User to specify new criteria for filtering a

What's New window or a Notification Box window. The user can either apply the filter
once or keep the filter as the default filter for the given window.

Filter Panel

Start Date:,

End Date: _

Keywords:

Author:

Topic:

APPLY
FILTER

SAVE
DEFAULTS

Figure 27. Filter Panel

View What's New (or Notification Box) History Window

The History window is used by an IWEB User to view the state of the What's New
window or a notification box as of a previous date. The History window lists all the
times at which the What's New window was either opened or updated.

History Window

1 session (Last Update - Login) O

session (Login - Last Update) O
Open Update

I] i time
U2 time
U3 time
U4 time
U5 time

Figure 28. History Window

80

8.2 IWEB Screen Dumps

8.2.1 Overview

Figure 29. presents a typical IWEB screen. The window on the left hand side is
an Issue Forest Viewer displaying the Issue Forest for the development team. On the
right, a Notification Box Viewer displays the Notification Box associated with that
Issue Forest. Various pans of both viewers are further detailed in Section 8.2.4 and in
Section 8.2.5.

i should ch« D«v«tlop««nt T<*» to* a«<.<oaf >**4 into
> support fystasi d»vlop—nt «nn proi*>.*i vippori t««r.»?

t l t l« : T««s formation l*su«

Of d»ylep«tnt fm i* now
eonsid«rin>? th* structuring of

joct tciM and task
ign—nta. You stay want to

r«vl*w and participate in this
llscussicn.

Figure 29. Typical IWEB Screen

81

8.2.2 Project Model

Figure 30. shows the Project Model for the JEWEL project. A Project Model is
an rt-dim model which typically refers to (including but not limited to) models referring
to, respectively, all the Issue Forests, Member models, Notification Boxes and Team
models associated with the project. In the case of the JEWEL project, the Project Model
also contains a reference to the WWW page documenting the project.

Figure 30. Project Model and WWW Page for JEWEL

82

8.2.3 Team Model

Figure 31. displays the Team Model for the Emission team of the JEWEL project.
A Team Model is an n-dim model which typically refers to (including but not limited
to) models referring to, respectively, all the Member models of the team, ail the meeting
minutes and agendas, all the Issue Forests associated with the team, and all of its
Notification Boxes. In the case of the Emission team, the object models associated with
the Emissions subsystem are also referred to by the Team Model. Figure 31. also
pictures an open OMT model displayed by OMTool.

void Wnta<cnar 'addr.int mmbytas)
int Rtad(int numftytts.ctiar aaddr)

void quamy.assurancaO
void tpatially_iiiocatlon(Gndt T)

void datajbrmattingO
void tptciattonO

intStattfd
tatCountyid
Int PoNutantiO
int Unrtt (tons/yr. tons/day)
intTIw
float Amount

int gtt.StatttdO
int gat.CountyidO
int gtt.PolkJtantidO
int gtt.unitto

float gtt.AmountQ

Figure 31. Team Model and OMT Model for Emission Team (JEWEL Project)

83

8.2.4 Issue Forest Viewer

The Issue Forest Viewer is the main access the user has to view an Issue Forest.
Figure 32.pictures the Issue Forest for the Emission Team. The upper part of the Viewer
displays the structure and title of the Issue Nodes. The bottom part displays the content
of the selected node (such as its author, date of post, description and references). In this
case a Proposal referring to the OMT model Emission is displayed.

Figure 32. Issue Forest Viewer for Emission Team (JEWEL Project)

84

8.2.5 Notification Box Viewer

The Notification Box Viewer is the main access the user uses to view a
Notification Box. Figure 33. displays the Notification Box of the Emission Team. The
bottom left pan of the Viewer displays the dates and times the Notification Box was
opened or updated by the user. The upper right part of the Viewer displays the Notices
unread as of the time selected in the lower left. The top right part displays the nodes
associated with the selected Notice. The bottom right part displays the content of the
Notice, such as its author, its description and any associated references.

Figure 33. Notification Box Viewer for Emission Team (JEWEL Project)

85

9 Non-Functional Requirements

9.1 Student Acceptance

Our experience < ith Objectory during Fall'93 gave us a deerer understanding of how
non-functional issue a factor in the acceptance c - ol. Until then, we considered
Objectory as an effect! \ ^ tool for supponing the OOSE. nod, and had some successes with
using it. The student survey and our direct observations indicated that the students did not
share that opinion. Although Objectory is relatively complete in functionality, the course
environment (e.g. smaller machines, large number of users, non standard platform) in which
it was installed degraded the performance of the tool, both in terms of speed and reliability.
Some defects in the software which were not encountered during our previous experience
became major bottlenecks in the use of the tool. Moreover, constraining students to use the
tool (i.e. dictating a project standard) did not improve the students' opinion of the tool.
Although a subset of students acknowledged the usefulness of the tool, most of them
generated models for the sake of deliverables and not for the sake of documentation or inter-
team coordination.

In order for IWEB to be useful in the context of the course, its implementation will have
to meet the standards set by other tools that the students use on a daily basis. We will have to
take special care with availability and response time. Similarly, the user interface of the tool
will have to meet usability standards set by tools with similar functionality.

Specifically, we will take the bboard and e-mail reader that students use (AMS
messages) as a standard for performance and reliability. IWEB start-up time should be less
than the start-up time of messages. Its response time should be comparable. The default
interface to an issue forest should be very similar to the folder interface of messages, although
alternate, more n-dim-like interfaces may be provided as well.

9.2 Organizational Assumptions

We do not assume that IWEB by itself will improve project performance in general or
inter-team communication in particular. We assume that the organization using IWEB will
have to adapt to the communication infrastructure in order to use it effectively. We foresee
that at least one user per team should carry the role of information manager. His/her task
would be to maintain the issue forests owned by a team (drop obsolete issues, create sub issue
forests, update dictionaries, etc.). We also assume that the need for early integration and inter-
team communication should be encouraged, through various assignments and incentives
from the beginning of the project.

We also assume that the accessibility of the communication medium can significantly
influence its use. We observe that students preferred to use personal e-mail to discuss some
issues because the messages posted on the bboard could be accessed by everybody. For that
purpose, IWEB will provide access control mechanisms for the students to enable or deny the
access of some models to other users (including management).

86

10 Future Plans
As described in Section 2, an important part of our requirements and development process

is early user evaluation. We are interested in evaluating and improving IWEB by observing its
use in real life context. This section describes our short term and mid term plans for deploying
and evaluating IWEB.

10.1 Test Case

In order to maximize the chance of user accepting the tool, we will first conduct an in-house
test of IWEB. A subset of the n-dim group (6 developers and 3 non-developers) will initially use
an alpha version of IWEB in the Fall of 94. We will use this test to refine the user interface,
improve the speed and response time of the system and detect and solve any reliability problems.

While conducting this test, we will have to be aware that the n-dim group will be a more
tolerant audience that the course students, given that they developed n-dim (and therefore have
a deeper understanding of its fundamental concepts) and that they are seasoned developers.

10.2 Proposed Experiments

During the in-house tests of IWEB, as a transitional step, we will introduce the IWEB
rhetorical model by using indented-text IWEB (itIWEB) in two courses: the advanced software
engineering course of Spring *95 and the Navigator course of Fall 494-Spring '95. itIWEB is a
low-tech textual version of IWEB containing a subset of links and nodes. It follows specific
conventions that can be easily used on paper or whiteboards, as well as with text editors and
document publishing tools (see Section 12.5).

IWEB, itIWEB, and student training, will be introduced during the INI Software
Engineering project during the Summer 495 term. At that stage, we expect to be able to use the
metrics part of IWEB developed during the Spring for early detection of problems and inter-team
communication evaluation.

10.3 Metrics Collection and Postmortem Evaluation

In addition to evaluating similar metrics to those we used for the Fall'93 case study (see
Section 3), we plan to collect metrics on the usage of IWEB. The data available for Fall'93 only
allowed us to evaluate metrics on which information was sent, however, we have little idea of
how much of that information reached its intended receiver. In IWEB, we plan to collect
frequency and time information on the nodes accessed by each user in order to evaluate such
metrics.

Given that IWEB will provide different user interfaces to the same models (i.e. bboard-like
interface, gIBIS-like graph display) and multiple indices into the same information (notification
boxes, what's new, issue forest browser), we will collect data on interface usage, in order to help
us refine the user interface and evaluate the usefulness of different indices. We are also interested
in the frequency of use of the issue forest dictionaries.

In order to assess the impact of IWEB on the overall process, we will measure whether the
integration phase of the project starts earlier than in previous instances of the same course, and
whether the on-line communication traffic increases. We will also measure the relative size of the
respective teams' vocabulary and see if the size of their shared vocabulary increases earlier.

87

11 References
f 1] B. Bruegge and R. Coyne. Model-Based Software Engineering in Larger Scale Project Courses," Pro-

ceedings of the IFIP Working Conference on Software Engineering Education, Hong Kong (September
1993).

[2] B. Bruegge and R. Coyne. Teaching Iterative and Collaborative Design: Lessons and Directions," Soft-
ware Engineenng Education: Lecture Notes in Computer Science, J. L. Diaz-Herrera (ed.), 7th SEI Con-
ference on Software Engineering, San Antonio, Texas (Janurary 1994).

[3] L. Bucciarelli, "An ethnographic perspective on engineering design", Design Studies, Vol 9, p. 160,
1988.

[4] K. Clark and T. Fujimoto. Product Development Performance. Harvard Business Press, Cambridge, MA,
1991.

[S] COMIC Project Deliverable. Parts 1.1 and 3.1, Computing Department, Lancaster University, Lancaster
U.K, 1993.

[6] J. Conklin and M. Begeman, "gIBIS: A Hypertext Tool for Exploratory Policy Discussion," ACM Trans-
actions on Office Information Systems, vol. 6, no. 4 (October 1988): pp. 303 - 331.

[7] L. Constantine, Teamwork Paradigms and the Structured Open Team," Proceedings: Embedded Sys-
tems Conference. San Francisco (1989).

[8] R. Coyne et al.. "Requirements Analysis for n-dim," (work in progress) Engineering Design Research
Center, CMU (1994).

[9] R. Coyne, A. Dutoit, B. Bruegge and D. Rothenberger., 'Teaching More Comprehensive Model-Based
Software Engineering: Experience With Objectory's Use Case Approach," Proceedings of the Confer-
ence on Software Engineering Education, New Orleans (Janurary 199S). Also available as Tech. Report,
EDRC-05-86-94, Engineering Design Research Center, CMU (1994).

[10]R. Coyne and M. Ehrenberger, "Information Modeling for Software Engineering: An Illustrative Project
History," Tech. Report, EDRC-05-88-94, Engineering Design Research Center, CMU (1994).

[11]J.C. Ferrans et al., "Hyperweb: A Framework for Hypermedia-Based Environments," Software Engi-
neering Notes, vol. 17 (December 1992): pp. 1-10.

[12] S. Finger, E. Gardner, and E. Subrahmanian, "Design Support Systems for Concurrent Engineering: A
Case Study in Large Power Transformers Design," Proceedings of the International Conference on En-
gineering Design. Heuritsa. Zurich (1993): pp. 1433-1440.

[13] F. Floyd, F. Feisin and G. Schmidt, "STEPS to Software Development with Users," 2nd European Soft-
ware Engineering Conference, Warwick, Coventry, UK, (1989): pp. 48-64.

[14]K. Gronbaek. M. Kyng, and P. Mogensen. "CSCW Challenges: Cooperative Design in Engineering
Projects," Communications of the ACM. vol. 36,no. 6 (1993): pp. 67-77.

[15] I. Jacobson et al.. Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wes-
ley Publishing Company. NY. 1992.

[16] J. Jacquot, J. Guyard. and L. Boidot. "Modeling Teamwork in an Academic Environment," Software En-
gineering Education: Lecture Notes in Computer Science, J.E. Tomayko (ed.) (1990): pp. 110-122.

(17] S. Konda et al., "Shared Memory in Design: A Unifying Theme for Research and Practice, " Research in
Engineenng Design, vol. 4 (1992): pp 23-42.

(18]S. Konda and I. Monarch. "An Interactive Computational Approach for Building a Software Risk Tax-
onomy," 3rd Annual Conference on Software Risk. Pittsburgh (April 1994).

[19] W. Kunz and H. Rittel. "Issues as Elements of Information Systems," Working Paper No. 131, Inst. of
Urban and Regional Development, University of California. Berkeley (1980).

[20] S. Levy et al., "An Overview of the n-dim Environment," Tech. Report. EDRC-05-65-93, Engineering
Design Research Center, CMU (1993).

[21] S. Levy, E. Gardener, and E. Subrahmanian, "The n-dim White Papers," Tech. Report, EDRC-xx-94 (in
progress). Engineering Design Research Center, CMU (1994).

[22] P. Naur, Computing: A Human Activity. ACM Press, Addison-Wesley, NY. 1992.

88

[231Y. Reich et aL "New Roles tor Machine Learning in Design,'* Artificial Intelligence in Engineering, vol.
8 (1993): pp. 165-181.

(24] M. Rettig, The Practical Programmer: Software Teams." Communications of the ACM. vol. 33 (Octo-
ber 1990).

(251J- Robertson. E. Subrahmanian. M. Thomas and A. Westerberg, "Management of the design process: the
impact of information modeling." In Proceedings of FOCAPD, Snowmass. CO, July 10-15, 1994.

[26] J. Rumbaugh, et al.. Object Modeling and Design, Prentice-Hall, NJ, 1991.

[27] W. Scacchi. "Managing Software Engineering Projects: A Social Analysis." IEEE Transactions on Soft-
ware Engineering, vol. 10. (January 1984): pp. 45-59.

[28] K. Schmidt. "Modes and Mechanisms of Interaction in Cooperative Work," Computational Mechanisms
of Interaction for CSCW, C. Simone and K. Schmidt (ed.). Computing Department, Lancaster Universi-
ty, 1993, pp. 21-104. [COMIC Deliverable 3.1].

[29] Ben Schneiderman. Designing the User Interface: Strategies for Effective Human-Computer Interaction,
Addison-Wesley Publishing Company, NY, 1992: pp. 474.

[30] D. Siewiorek et al. "An Interdisciplinary Concurrent Design Methodology as Applied to The Navigator
Wearable Computer System," Journal of Computer and Software Engineering, vol. 2, no. 2 (1993).

[31] A. Smailagic and D. Siewiorek. "A Case Study in Embedded Systems Design: The Vuman 2 Wearable
Computer," IEEE Design and Test of Computers, vol. 10, no. 4 (1993).

[32] E. Subrahmanian, S. Finger, and T. Mitchell, "A Report on the NSF-EDRC Study of Product Design Pro-
cesses in Selected Japanese Companies," Tech. Report. EDRC-05-75-93, Engineering Design Research
Center, CMU (1993).

[33] D. Sonnenwald, "Constested Collaboration: Case Studies in Design," Ph.D. Thesis, Department of Soci-
ology, Rutgers University (1993).

[34] E. Subrahmanian et al.. "Computational Support for Shared Memory in Design," Automation-Based Cre-
ative Design: Issues in Computers and Architectures. I. White and A. Tzonis (ed). Elsevier (1993).

[35] E. Subrahmanian et al.. "Support System for Different-Time Different Place Collaboration for Concur-
rent Engineering," Workshop on Enabling Technologies In Concurrent Engineering, West Virginia
(1993).

[36] G. Toye et al., "SHARE: a Methodology and Environment for Collaborative Product Development,**
Tech. Report 0420. Center tor Design Research, Stanford University (1993).

[37] D. Wilkins et al., "CINERG: a Design Discovery Experiment," Preprints of the NSF Engineering Design
Conference, College or Engineering, University of Massachusetts. Amherst (June 1989).

[38] B. Yakemovic and J. Conklin. 'Report on a Development Project Use of an Issue-based Information Sys-
tem." Proceedings or the Conference on Computer-Supported Cooperative Work. Los Angeles (October
1990): pp. 105-118.

89

12 Appendix
This appendix provides more examples of scenarios developed during the requirements

elicitation phase. Section 12.1 describes the conventions used to describe conventions for
writing scenarios. Section 12.2 describes general tasks which are engaged in throughout a
project (typically on a daily basis). Section 12.3 describes requirements tasks, generally
occuring at the beginning of the project. Section 12.4 describes organizational tasks.

12.1 Conventions

Scenarios presented here are composed of two sequences of events. The first one
described how a given task is currently accomplished (labeled O. for old way). The second
one descirbes how the same task would be accomplished using IWEB (labeled N. for new
way). Each scenario is also labeled with actual times to illustrate the typical duration of
sequences of events.

12.2 General tasks

Before lecture: stops at cluster to make a quick check of the IWEB for new
announcements, issues, communications (Doesn't consult any in depth, just notes there
existence for later.

9:00-10:20 Attends lecture and takes quiz:

0. Waits for quiz to come back. Answers are not generally returned.

N. Is reminded that answers to the quiz questions are always posted
and available in IWEB by later in the day.

10:25-10:30

O. A subset of the group realize that they need to have a meeting
to discuss some aspect of the system. They agree to select a time
and try to get the rest of the group to attend. The meeting time
and place is posted on the group's bboard.

N. After lecture, he, along with a couple of other team members
decide to call for a special team meeting (other than their
normally scheduled weekly meeting. He volunteers to send an IWEB
message to the other team members and they agree that everyone
will check the IWEB a couple of times through the day to see the
status of the meeting. They agree that by 4:00pm the meeting will
have either been confirmed or postponed.

3:00-3:10

O. Read bboard, check meeting messages.

N. Checks IWEB for message(s) about the meeting. Meeting is
confirmed for 7:30pm.

4:30-5:00

O. Reads bboards, posts some internal messages. If needed, reads
another group's bboard and discuss board to carry on inter-group
arguments. Is annoyed by duplicate posts, inability to find old

90

messages, and textual drawings.

O. Posts a message saying that an Objectory Model exists relating
to a message that was posted. Gives a description of how to find
the model. Becomes concerned no one will ever look at the Model
because Objectory is so cumbersome to start, further if they do
start it, they will have to navigate to the appropriate use case/
model to check the information.

N. Reads the IWEB issue-base; posts some sub-issues and responses;
notices that a new task assignment has been proposed for her
team.

N. Brings up Objectory from within IWEB and does some modeling, then
annotates a new version of a specific Objectory model and links
it to a discussion node in the issue base.

7:30-8:30 Attends the special team meeting

O. At the meeting takes action items to be discussed with other
teams. Meeting minutes are taken on a Duo, and then later posted
to the team bboard. Further, those minutes are later copied by
the Tech Writer into a Frame document for hypertext access that
is never used because Frame is cumbersome to start and difficult
to learn to use effectively.

N. At the meeting the team decides to "open a dialogue" within IWEB
with another team regarding a particular object model.

8:30-8:45

O. See above

N. After the meeting, he updates the team's project meeting models
in the IWEB with the minutes, notes and action items from the
meeting. (Some of these he scans in from paper, others were taken
on-line at the meeting and are merely linked in.)

12.3 Requirement tasks

9:00 PM

O. Unable to remember which use cases their group is responsible for
(and what a use case is in the first place), students search
bulletin boards, send each other zephyrs, and possibly go back
to their dorm room in search of the appropriate use cases, and
then the directory to find Objectory and the files in.

N. Unable to remember which use cases their group is responsible
for, students check the IWEB for the slides from latest class
where they were assigned. Alternatively, they select their own
name from the IWEB and follow the link to the group they belong
t Once at the group, the select the use cases node, which starts
Objectory for them and loads the use files into the tool.

9:15

91

O. A student brings up Objectory and begins to edit one of the use
cases. After editing, the student posts a message to the bboard
saying that the use case has been edited, but that there is a
question about its content. The student copies and pastes a
section of the use case into the message to illustrate what the
problem is.

N. A student starts IWEB and begins to edit one of the use cases for
his group by clicking on the use case in IWEB which starts
Objectory. After editing the use case, he enters a discussion
node for his group. The node is linked to the use case so that
other students can simply call the entire use case up with one
click.

9:30

0. A student realizes that it is unclear whether his or another team
should really be responsible for a use case.

0. The students posts to both teams1 bulletin boards asking people
to begin a discussion about the problem and resolve it.

N. The student creates a new issue node in the issue base and details
the problem there. He attaches the use case in question to the
node. Further .he issue node is attached to the groups announce
nodes to ind^ .te that each member of the group should begin to
track this issue.

9:45 A student begins working on an interaction diagram and is unable
to remember the proper commands for interacting with the tool.

0. The student pulls out the manual and begins to read the examples.

N. The student selects the Objectory Info Node and then Interaction
Diagrams. The manual documentation appears on scree The student
also brings up an animated example of how to create/edit
Interaction Diagrams that was created by a TA earlier in the
semester.

10:00 The student realizes that there is a new requirement but is unsure
how to specify the requirement.

0. The student sends zephyrs to the a teammate who replies. After a
series of zephyr messages, the new requirement is formalized and
entered into Objectory.

N. The student opens a tracked zephyr from inside IWEB. After a
series of zephyr message, the new requirement is formalized and
entered into Objectory. The student then edits out the extraneous
messages from the tracked zephyr and attaches these to the new
requirement.

11:00 A Manager questions the new requirement.

O. The student receives a zephyr/email from a manager stating that
they do not agree with the new requirement. The student and the
manager spend 25 minutes as the student attempts to reconstruct
the previous zephyr session Unfortunately, the student forgets a
key idea that drove the new requirement (hey, it's late).

92

Eventually, -he manager disconnects still unclear on why the new
requirement is there.

N. The student receives a zephyr/email and directs the manager to
the IWEB detailed zephyr node which recreates the conversation
which was earlier created by the two students.The manager sees
the key argument upon which the change hangs, smiles,
disconnects, and goes home to a restful night of slumber sure
that all is well is 15-413 land.

12.4 Organizational Tasks

Problem: N e w Temporary group needed to resolve intra-group subsystem problem.
(Such as the query manager). Later, a team member from another group joins this new
subgroup due to some cross team dependencies.

O. The students split off and form a subgroup, but all there message
traffic regarding the subsystem is still sent to the main team
bboard. When the new team member comes into the group, messages
are duplicated and sent to both teams bboards. When the group
reaches a conclusion, a message is posted to both team bboards.
Members of both teams skip the new message because they believe
that it is intended just for the small subgroup.

N. The students create a transient group in the IWEB. A sub-forest
is created in the issue forest to handle discussion about the
groups tasks and ideas. The other team members are not disrupted
by the new group's activities. When the new team member joins
from the other group, she is merely added to the new transient
group. When the group comes to a conclusion, dissemination nodes
are added and placed in the Group mailboxes of both the involved
original groups. The member takes note of the dissemination node
and read the announcement.

Problem: Management wants to know the status of the tool tasks and how the tasks are
progression.

O. Management must search through each bulletin board and look for
messages which discuss the tool task. When they do not find any,
they each ask their group during the next meeting. The groups
deliver status (incompletely) and the managers spend time at the
next meeting discussing it.

N. Management logs into the IWEB and finds the root nodes of all
issue forests which discuss tool tasks. Alternatively, they have
the what's new window list new nodes from a certain date which
contain the keywords "tool task".

93

12.5 itIWEB template
When and Where Role

Date: Primary Facilitator:

Start: Secondary Facilitators:

End: Timekeeper:

Building: Minute Taker:

Room: Scribe:

1. Agenda [Allocated Time:]

This section should contain a list of issues which are to be discussed during
the meeting. They should be structured following the itIWEB method outlined in
the discussion section below. Issues listed here may also include proposals and
arguments from previous meetings or from previous bboard discussions.

2. Status (information sharing) [Allocated Time:]

This section should contain the action items of the previous meeting. The
syntax for action items is given in section 4.

As the meeting progresses, these action items should be completed with the
information provided by the persons who were assigned the action items. The
additional information should be structured in issues, proposals, arguments and
resolutions. Any new action item generated in the status report discussion, and any
incomplete action item in this section should be added to the action item section of
this meeting and referred to from a {ref} paragraph of the corresponding issue,
proposal, argument or resolution.

3. Discussion (issue-based information processing) [Allocated Time:]

This section should include any new or continuing issues, proposals,
arguments and resolutions; this includes the issues listed in the agenda. Action
items generated during this discussion should be added to the action item section
and referred to from the (ref} section of the relevant issue/proposal/argument/
resolution.

The following paragraphs represent an indented text information web
(itIWEB). itIWEB is an issue-based method for structuring discussions. The order in
which the paragraphs appear is very important, especially the Resolution
Paragraphs and sub-Resolution Paragraphs.

Description of the itIWEB method: paragraph types and indentation conventions.

I: [1] The Issue Paragraph contains text that describes an issue that needs a resolution.
Typically, it is created with the intention that it will be resolved, that is have an asso-

94

ciated Resolution Paragraph. An active Issue Paragraph is an issue that does not yet
have an associated resolution.

{ref}: The Reference Paragraph is a place holder for information. It
may reference another itIWEB Paragraph, including action
items at the end of the minutes, or external information such
as a file location or itIWEB paragraphs in other meeting min-
utes. They may be left empty or removed if not needed. Refer-
ence Paragraphs can follow any itIWEB Paragraph and it is
assumed the information they contain is directly associated
with the preceding itIWEB Paragraph (this Reference Para-
graph is associated with the Issue Paragraph above).

P: The Proposal Paragraph contains text that describes a possible proposal intended
to resolve the issue above. There may be several Proposal Paragraphs for each
Issue Paragraph.

{ref}: (this Reference Paragraph is associated with the Proposal
Paragraph above)

R: The Resolution Paragraph contains text describing how an issue will be resolved.
If the Resolution Paragraph is placed directly after a Proposal Paragraph, as is the
case here, the resolution is assumed to be based-on that proposal. If a resolution is
not based on one of the listed proposals, the Resolution Paragraph should follow
the Issue Paragraph (as an example, see the position of the next Resolution Para-
graph).

{ref}:

+A: The Argue-for Paragraph contains text that states an argument in favor of a
proposal.

{ref}:

-A: The Argue-against Paragraph contains text that states an argument against a
proposal.

(ref}:

si: The sub-Issue Paragraph contains text that more specifically describes some
aspect of the previous Issue Paragraph. Typically, it is created with the inten-
tion that it will be resolved, that is have an associated sub-Resolution Para-
graph. An active sub-Issue Paragraph is a sub-issue that does not yet have
an associated sub-resolution.

Iref}:

sP: The sub-Proposal Paragraph contains text that describes a possible pro-
posal that is intended to resolve a sub-issue.

{ref}:

sR: The sub-Resolution Paragraph contains text describing how a sub-issue
will be resoived. If the sub-Resolution Paragraph is placed directly after
a sub-Proposal Paragraph (as is the case here), the sub-resolution is
assumed to be based-on that sub-proposal. If a sub-resolution is not

95

based on a listed sub-proposal, the sub-Resolution Paragraph should fol-
low a sub-Issue Paragraph. Resolution of all of the sub-Issues of an Issue
does not imply that the Issue is necessarily resolved, however, the Reso-
lution to the Issue must include, subsume or override any sub-Issue Res-
olutions.

{ref}:

+sA: The sub-Argue-for Paragraph contains text that states an argument
in favor of a sub-proposal,
{ref}:

-sA: The sub-Argue-against Paragraph contains text that states an argu-
ment against a sub-proposal,
{ref}:

I: [2] This Issue Paragraph contains text that describes another issue that needs a resolu-
tion.

{ref}: remember, you may refer to an action item at the end of the
minutes or from some other meeting. The following are exam-
ples: "see At [3]"; "see At [5] in the 12.5.94 Info-group meet-
ing minutes. "

R: Since this Resolution Paragraph directly follows an Issue Paragraph, it is not
based-on any of the proposals listed. It resolves the Issue and all sub-Issues (if
any).

{ref}:

P: Since this Proposal Paragraph follows a Resolution Paragraph, it can be assumed
it was not the basis of the resolution.

+A: {text}
{ref}:

-A: {text}
{ref}:

96

Schematic view of the ltlWEB paragraph types: sequence and hierarchy

I: [3] {text].

{ref}:

P:

R:

+A:

-A:

si:

sP:
{ref}:

sR:

+sA:

-sA:

I: [4]

R:

P:

+A:

-A:
{ref}:

4. Action Items

This section contains the action items generated in this meeting. It may contain
action items from a previous meeting which were not completed or new action
items generated during the discussion of the issues listed in the agenda.

An action item is represented with an action item tag "AI:" followed by a
number (e.g.[l]) which identifies it uniquely in this document. The action item is
assigned to a specific person and is followed by a number tasks to be completed as
part of the action item. The action item or the tasks may refer to issues, proposals or
anything else in the discussion and status sections.

AI: [1] The Action Item Paragraph contains text that describes a specific action that must
be taken. It may refer to an issue, proposal or any other paragraph in the discussion
or status sections. Since this action item follows an issue, it refers to that issue. Action
item paragraphs are followed by an associated person and associated tasks. The
action items are also listed in the final section of the minutes.

97

For: The Person Paragraph assigns a specific person(s) to an action item.

Task: The Task Paragraph lists any number of tasks to be completed as part of the
action item.

Example:

AI: [2] Homework 2 grading (this action item duplicates the first action item discussed)

For: Allen Dutoit

Task: Submit graded homework 2 in time for review by Prof. Bernd Bruegge and
James Uzmack

AI: [3] TIGER files demo (this action item has a reference to an issue from another meet-
ing.)

{ref}: see to issue I:[1291] in minutes for 1-15-1996 meeting

For: John Doe & Jane Smith

Task: Get TIGER files for the state of PA.
Task: Compile TIGER demo for pmax/ultrix and install it in the afs tools direc-

tory.
{ref}: /afs/cs/project/classes-bob/JEWEL/tools

98

	Carnegie Mellon University
	Research Showcase @ CMU
	1994

	Requirements analysis for information web (IWEB) : an issue-based, information modeling and management environment for software engineering
	Robert Coyne
	Carnegie Mellon University.Engineering Design Research Center.

	tmp.1336594417.pdf.1utyN

