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Verification of Floating-Point Adders
���

Yirng-An Chen and Randal E. Bryant
yachen+@cs.cmu.edu, bryant+@cs.cmu.edu

Computer Science Dept., Carnegie Mellon Univ., Pittsburgh, PA 15213

Abstract. The floating-point(FP) division bug in Intel’s Pentium processor and
the overflow flag erratum of the FIST instruction in Intel’s Pentium Pro and Pen-
tium II processor have demonstrated the importance and the difficulty of verifying
FP arithmetic circuits. In this paper, we present the verification of FP adders with
reusable specifications, using extended word-level SMV, which is improved by
using the Multiplicative Power HDDs (*PHDDs), and by incorporating condi-
tional symbolic simulation as well as a short-circuiting technique. Based on the
case analysis, the specifications of FP adders are divided into several hundreds
of implementation-independent sub-specifications. We applied our system and
these specifications to verify the IEEE double precision FP adder in the Aurora
III Chip at the University of Michigan. Our system found several design errors
in this FP adder and generated one counterexample for each error within several
minutes. A variant of the corrected FP adder is created to illustrate the capability
of our system to handle different FP adder designs. For each of FP adders, the
verification task finished in 2 CPU hours on a Sun UltraSPARC-II server.

1 Introduction
The floating-point (FP) division bug [7] in Intel’s Pentium processor and the overflow
flag erratum of the FIST instruction (FP to integer conversion) [9] in Intel’s Pentium
Pro and Pentium II processors have demonstrated the importance and the difficulty of
verifying FP arithmetic circuits and the high cost of an arithmetic bug. FP adders are the
most common units in FP processors. Modern high-speed FP adders [14, 15] are very
complicated, because they require many types of modules: a right shifter for alignment,
a left shifter for normalization, a leading zero anticipator (LZA), an adder for mantissas,
a rounding unit, etc. Exhaustive simulation or formal verification can be used to ensure
the correctness of FP adders.

Most of the IEEE FP standard have been formalized by Carreño and Miner [2] in the
HOL and PVS theorem provers. Theorem provers have been used to verify arithmetic
circuits [12]. However, theorem provers require users to make use of detailed circuit
knowledge and the verification process for FP circuits is very tedious. Another drawback
of theorem provers is that the proofs are implementation-dependent.

After the famous Pentium division bug [7], Intel researchers applied word-level
SMV [6] with Hybrid Decision Diagrams (HDDs) [5] to verify the functionality of the
FP unit in one of Intel’s processors [4]. Due to the limitations of HDDs, the FP adder
was partitioned into several sub-circuits to be verified. The correctness of the overall
circuit had to be ascertained manually from the verified specifications of the sub-circuits.
This partitioning approach requires user interventions and thus could be error prone.
Moreover, their specifications are highly dependent on the circuit implementations.
���
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The combination of model checking and theorem prover techniques was used to
verify a IEEE double precision FP multiplier [1]. The circuit was partitioned into several
sub-circuits which can be verified by model checking. The theorem prover handled
the completeness of the proofs by composing the verified specifications. This approach
combines the strengths of both techniques. However, the proofs are still implementation-
dependent.

In this paper, we present the verification of FP adders with reusable specifications
using extended word-level SMV, which is improved by using the Multiplicative Power
HDDs (*PHDDs) [3] to represent the FP functions, and by incorporating conditional
symbolic simulation as well as a short-circuiting technique. The specifications of FP
adders are divided into several hundreds of sub-specifications based on the signs and the
relations of two exponents. These sub-specifications are implementation-independent,
since they use only the input and output signals of FP adders.

The concept of conditional symbolic simulation is to perform the symbolic simu-
lation of the circuit with some conditions to restrict the behavior of the circuit. This
approach can be viewed as dynamically extracting circuit behavior under the given
conditions without modifying the actual circuit. Can we verify the specifications of
FP adders using conditional forward simulation, avoiding any use of circuit knowl-
edge? We identify a conflict of variable orderings between the mantissa comparator and
mantissa adder, which causes the BDD explosion in conditional forward simulation. A
short-circuiting technique to overcome this ordering conflict problem is presented and
integrated into word-level SMV package. In general, this short-circuiting technique can
be used in the verification which only exercises parts of the circuits.

We used our system and these specifications to verify the FP adder in the Aurora III
Chip [10] at the University of Michigan. This FP adder is based on the design described
in [14], and supports IEEE double precision and all 4 IEEE rounding modes. In this
verification work, we verified the FP adder only in the round-to-nearest mode, because
we believe that this is the most challenging rounding mode for verification. Our system
found several design errors and generated one counterexample for each error within
several minutes. A variant of the corrected FP adder is created and verified to illustrate
the capability of our system to handle different FP adder designs. For each of FP adders,
the verification task takes 2 CPU hours for IEEE double precision. We believe that our
system and specifications can be applied to directly verify other FP adder designs and
to help finding design errors.

The overflow flag erratum of the FIST instruction (FP to integer conversion) [9]
in Intel’s Pentium Pro and Pentium II processors has illustrated the importance of
verification of the conversion circuits which convert the data from one format to another
format (e.g., IEEE single precision to double precision). Since these circuits are much
simpler than FP adders and only have one input operand, we believe that our system can
be used to verify the correctness of these circuits.

2 Floating-Point Adders
Let us consider the representation of FP numbers by IEEE standard 754. Double-
precision FP numbers are stored in 64 bits: 1 bit for the sign (

���
), 11 bits for the

exponent ( � � ), and 52 bits for the mantissa ( � � ). The exponent is a signed number
represented with a bias ( � ) of 1023. The mantissa ( � � ) represents a number less than 1.



Based on the value of the exponent, the IEEE FP format can be divided into four cases:��� ������ 1 �
	��� 1 � ���� 2 ����������� 0 ����� ��!#"$" 1 �&%('�)+* , "-���� 1 �
	 �  0 � ���� 21 �.� �����/�10 0 �-2�34%('�)+* , "-�� , � ����� � 05!#"$" 1 & � �760 0

��� 1 � 	 ��98 ����� � 05!#"$" 1 & � � 0 0
where ��: � denotes Not-a-Number and ; represents infinity. Let < � = 1. � � or 0. � � .
Let = be the number of mantissa bits including the bit on the left of the binary point
and > be number of exponent bits. For IEEE double precision, = =53 and > =11.?

+ � 8 F @�8 � , �� 8 � 8 � 8 * � , �X A � 8 B 'DC(%(2(�-E @ ? � @�8 � , �@�8 * @�8 @�8 � , �� , � � , � � , � � , � � , �Table 1. Summary of the FP addition of two numbers of E and
?

. A represents the normal
and denormal numbers. * indicates FP invalid arithmetic operands.

Due to this encoding, an operation on two FP numbers cannot be rewritten as an
arithmetic function of two inputs. For example, the addition of two FP numbers F (

� �
,

� � , < � ) and G (
�IH

, � H , < H ) can not be expressed as F + G , because of special cases
when one of them is ��: � or J�; . Table 1 summarizes the possible results of the FP
addition of two numbers F and G , where K represents a normalized or denormalized
number. The result can be expressed as L�M�NO>QPIR-FTS5GVU only when both operands have
normal or denormal values. Otherwise, the result is determined by the case. When one
operand is S�; and the other is WX; , the FP adder should raise the FP invalid arithmetic
operand exception.

Figure 1.a shows the block diagram of the SNAP FP adder designed at Stanford
University [14]. As an alternative to the SNAP design, the ones complementer after
the mantissa adder can be avoided, if we ensure that input Y (shown in Figure 1.a) of
the mantissa adder is smaller than or equal to input Z (shown in Figure 1.a), when the
exponent difference is 0 and the operation of mantissa adder is subtraction. To ensure
this property, a mantissa comparator and extra circuits, as shown in [15], are needed to
swap the mantissas correctly. Figure 1.b shows a variant of the SNAP FP adder with this
modification (the compare unit is added and the ones complementer is deleted). This[ M�= \O:(]�^ unit exists in many modern high-speed FP adder designs [15] and makes the
verification harder described in Section 4.2. Figure 2 shows the detailed circuit of the
compare unit which generates the signal to swap the mantissas. The signal � �`_ � H
comes from the exponent subtractor. When � �V_ � H or � ��a � H and < �9_ < H (i.e.,b

=1), Z is < H (i.e. the mantissas are swapped). Otherwise, Z is < � .

3 Specifications of FP Adders
In this section, we focus on the general specifications of the FP adder, especially when
both operands have denormal or normal values. For the cases in which at least one of
operands is a ��: � or ; , the specifications can be easily written at the bit level. For
example, when both operands are ��: � , the expected output is �c: � (i.e. the exponent
is all 1s and the mantissa is not equal to zero). The specification can be expressed as the
"AND" of the exponent output bits is 1 and the "OR" of the mantissa output bits is 1.
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Fig. 1. The Stanford SNAP FP adder (a) and its variant (b).
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Fig. 2. Detail circuit of the compare unit

When both operands have normal or denormal values, the ideal specification is����� a L M�NI>QPIR-F S G U . However, FP addition has exponential complexity with the
word size of the exponent part for *PHDDs. Thus, the specification must be divided
into several sub-specifications for verification. According to the signs of both operands,
the function F S G can be rewritten as Equation 1. Similarly, for FP subtraction, the
function F W9G can be also rewritten as true addition when both operands have different
signs and true subtraction when both operands have the same sign.F S G a R�W 1 U � ��� � R 2 	 ��
� � < � S < H � 2 	�� 
� U � � a �IH R���]�NI^1:(P(P������ M�>QUR 2 	 ��
� � < � W < H � 2 	�� 
� U � ���a �IH R���]�NI^�� N����]�: [ ��� M�>QU(1)

3.1 True Addition
The *PHDDs for the true addition and subtraction still grow exponentially. Based on
the sizes of the two exponents, the function F S�G for true addition can be rewritten as:F S9G a R�W 1 U � � � � 2 	 ��
�� � R < � S R < H���� � U U � H! � �

2 	�� 
� � R&< H S R&< � �"� �&U
U � H � � � , where � a$# � � W � H # .



When � H  � � , the exponent is � � and the mantissa is the sum of < � and < H right
shifted by � bits (i.e. < H!�"� � in the equation).

# � � W � H # can range from 0 to 2
� W 2,

but the number of mantissa bits in FP format is only = bits.
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Fig. 3. Cases of true addition for the mantissa part.

Figure 3 illustrates the possible cases of true addition for � H  � � based on the
values of � � W � H . In Figure 3.a, for 0

 � � W � H _ = , the intermediate (precise)
result contains more than = bits. The right portion of the result contains

�
, � , L and

�
bits, where

�
is the least signification bit of the mantissa. The rounding mode will use

these bits to perform the rounding and generate the final result( <����	� ) in = -bit format.
When � � W � H�
 = as shown in Figure 3.b, the right shifted < H only contributes to
the intermediate result in the � , L and

�
bits. Depending the rounding mode, the output

mantissa will be < � or < � S 1 � 2 
��� 1. Therefore, we only need one specification
in each rounding mode for the cases � � W � H�� = . A similar analysis can be applied
to the case � H � � � . Thus, the specifications for true addition with rounding can be
written as:���� ��� Y�� 1 � ����� � ��� a L�M�NO>QPIR R W 1 U � � � 2 	 � 
�� � R&< � S R&< H �"� �&U
U U 0

 � _ =Y � 2 � ����� a L�M�NO>QPIR
R�W 1 U � � � 2 	 � 
� � R&< � S R&< H��"� = U U
U � 
 =Y � 3 � ����� � ��� a L�M�NO>QPIR R W 1 U � � � 2 	 � 
�� � R < H S R < � �"� � U U
U 0
_ � _ =Y � 4 � ����� a L�M�NO>QPIR
R�W 1 U � � � 2 	 � 
� � R&< H S R < � �"� = U U
U � 
 =

where Y � 1 � ��� , Y � 2, Y � 3 � ��� and Y � 4 are Y�M�>QP : P(P & � � a � H S � , Y�M�>QP :(P(P & � � a
� H S = , Y M�>QP :(P(P & � H a � � S � , and Y�M�>QP :(P(P & � H a � � S = , respectively.Y�M�>QP :(P(P represents the condition for true addition and exponent range (i.e. normal
and denormal numbers only).

�����
is composed from the outputs

� ���	� , � ���	� and < ���	� .
While buildingBDDs and *PHDDs for

� ���
from the circuit, the functionon left side of

� will be used to simplify the BDDs automatically by conditional forward simulation.
The number of specifications for true addition is 2 = S 1. For instance, the value of= for IEEE double precision is 53, thus the number of specifications for true addition

is 107. Since the specifications are very similar to one another, they can be generated
by a looping construct in word-level SMV.

3.2 True Subtraction

The specification for true subtraction can be divided into two cases: far (
# � � W � H # � 1)

and close ( � � W � H =0,1 or -1). For the far case, the result of mantissa subtraction does
not require a massive left shift (i.e., LZA is not active). Similar to the true addition, the
specifications for true subtraction can be written as:



���� ��� Y�� 1 � �����
����� a L�M�NO>QPIR
R�W 1 U � � � 2 	 � 
� � R&< � W R < H �"� �&U
U U 2

 �  =Y�� 2 � ����� a L�M�NI>QPOR
R�W 1 U � � � 2 	 � 
� � R&< � W R&< H��"� = U U
U � � =Y�� 3 � ����� ����� a L�M�NO>QPIR
R�W 1 U � � � 2 	 � 
�� � R&< H W R < � ��� � U U
U 2
 �  =Y�� 4 � ����� a L�M�NI>QPOR
R�W 1 U � � � 2 	 � 
�� � R < H W R < � �"� = U U U � � =

where Y�� 1 � ��� , Y�� 2, Y�� 3 � ��� and Y�� 4 are Y�M�>QP � N�� & � ��a � H S � , Y�M�>QP � N�� & � � a
� H S = , Y�M�>QP �4N�� & � H a � � S � , and Y�M�>QP �4N�� & � H a � � S = , respectively.Y�M�>QP �4N�� represents the condition for true subtraction.

For the close case, the difference of the two mantissas may generate some leading
zeroes such that normalization is required to product a result in IEEE format. For
example, when � � W � H = 0, < � W < H =0.0...01 must be left shifted by = W 1 bits to
1.0...00. The number bits to left shift is computed in the

��� Z circuit and fed into the
left shifter to perform normalization and into the subtractor to adjust the exponent. The
number of bits to be left shifted ranges from 0 to = and is a function of < �

and < H .
The combination of left shifting and mantissa subtraction make the *PHDDs become
irregular and grow exponentially. Therefore, the specifications for these cases must be
divided further to take care of the exponential growth of *PHDD sizes.

Based on the number of leading zeroes in the intermediate result of mantissa sub-
traction, the specifications for the true subtraction close case are divided as:���� ��� Y�� 1 � �����

����� a L M�NI>QPIR R W 1 U � � � 2 	 � 
� � R&< � W R&< H �"� 1 U U U 0
 � _ =Y � 2 � ����� ����� a L M�NI>QPIR R W 1 U � � � 2 	 � 
� � R < H W R&< � ��� 1 U
U U 0
 � _ =Y � 3 � ���&U � ����� a L�M�NI>QPIR R�W 1 U � � � 2 	 � 
� � R&< � W < H U
U 1
 � _ =Y � 4 � ���&U � ����� a L�M�NI>QPIR R�W 1 U � � � 2 	 � 
� � R&< H W < � U U 1
 � _ =

where Y � 1 � ��� , Y � 2 � ��� , Y � 3 � ��� , and Y � 4 � ��� are Y�M�>QP � N�� & � � a � H S 1 &
� � � ��� ,Y�M�>QP �4N�� & � H a � � S 1 &

� � � ��� , Y�M�>QP �4N�� & � � a � H & < � � < H &
� � � ��� ,

and Y�M�>QP �4N�� & � H a � � S 1& < � _ < H &
� � � ��� , respectively.

� �
1 � ��� , � � 2 � ��� ,� �

3 � ��� and
� �

4 � ��� represent the conditions that the intermediate result has � lead-
ing zeroes to be left shifted.

� �
1 � ��� , � �

2 � ��� , � �
3 � ��� and

� �
4 � ��� are computed by

2 �
 � 
 1  < � WTR&< H �"�
1 U _ 253 
 � , 2 �
 � 
 1  < H WTR&< � ���

1 U _ 2 �
 � ,
2 �
 � 
 1  < � W < H�_ 2 �
 � , and 2 �
 � 
 1  < H W < � _ 2 �
 � ), respectively. A
special case is that the output is zero when � � is equal to � H and < � is equal to < H .
The specification is as follows: R Y�M�>QP �4N�� & � � a � H & < � a < H U � ����� a

0.

3.3 Specification Coverage
Since the specifications of floating-point adders are split into several hundred sub-
specifications, do these sub-specifications cover the entire input space? To answer this
question, one might use a theorem prover to check the case splitting. In contrast, we
propose a BDD approach to compute the coverage of our specifications.

Our approach is based on the observation that our specifications are in the form
" [ M�>QP � M�N � a ^	��\I^ [ ��^ P ]�^ � N�
�� " and [ M�>QP is only dependent on the inputs of the
circuits. Thus, the union of the [ M�>QP s of our specifications, which can be computed by
BDD operations, must be TRUE when our specifications cover the entire input space.
In other words, the union of the [ M�>QP s can be used to compute the percentage of input
space covered by our specifications and to generate the missing cases.

4 Verification System: Extended Word-Level SMV with *PHDDs
To verify integer arithmetic circuits, word-level SMV [6] with HDDs [5] extended
SMV [13] to handle word level expressions in the specification formulas. For verifica-



tion of FP circuits, we replaced HDDs in word-level SMV with *PHDDs and introduced
relational operators for FP numbers. As in word-level SMV, only the word-level func-
tions are represented by *PHDDs and the rest of the functions are represented by BDDs.

4.1 Conditional Symbolic Simulation
We have introduced a conditional symbolic simulation technique into word-level SMV.
Symbolic simulation performs the simulation with inputs having symbolic values (i.e.,
Boolean variables or Boolean functions). The simulation process builds BDDs for the
circuits. If each input is a Boolean variable, this approach may cause the explosion of
BDD sizes in the middle of the process, because it tries to simulate the entire circuit
for all possible inputs at once. The concept of conditional symbolic simulation is to
perform the simulation process under a restricted condition, expressed as a Boolean
function over the inputs.

In [11], Jain and Gopalakrishnan encoded the conditions together with the original
inputs as new inputs to the symbolic simulator using a parametric form of Boolean ex-
pressions, but it is hard to incorporate this approach into word-level SMV. Our approach
is to apply the conditions directly during the symbolic simulation process. Right after
building the BDD for a circuit gate, the condition is used to simplify the BDDs using
the restrict [8] algorithm. Then, the simplified BDD is used as the input function for
the gates connected to this one. This process is repeated until the outputs are reached.
This approach can be viewed as dynamically extracting the circuit behavior under the
specified condition without modifying the actual circuit.

4.2 Short-Circuiting Technique
Can we verify the specifications of FP adders by conditional forward simulation? In our
experience, all specifications for the FP adder design without a mantissa comparator, as
in Figure 1.a, can be verified by conditional forward simulation, but not so for the FP
adder containing a mantissa comparator, as in Figure 1.b. This is caused by a conflict of
variable orderings for the mantissa adder and the mantissa comparator, which generates
the signal < � _ < H (i.e. signal P in Figure 2). The best variable ordering for the
comparator is to interleave the two vectors from the most significant bit to the least
significant bit (i.e., � �
 1, � �
 1 , ..., � 0, � 0). Table 2 shows the CPU time in seconds and
the BDD size of the signal P under different variable orderings, where ordering offset
represents the number of bit offset from the best ordering. For example, the ordering is
� �
 1, ..., � �
 6, � �
 1 , � �
 7, � �
 2, ..., � 0, � 5, ..., � 0, when the ordering offset is 5.
Clearly, the BDD size grows exponentially with the offset. In contrast to the comparator,
the best ordering for the mantissa adder is � �
 1, ..., � �
 � 
 1, � �
 1 , � �
 � 
 2, � �
 2,
..., � 0, � � , ..., � 0, when the exponent difference is � . We observed that the best ordering
for the specification represented by *PHDDs is the same ordering as the best ordering
for the mantissa adder. Thus, the extended word-level SMV can not build the BDDs for
both the mantissa comparator and mantissa adder by conditional forward simulation,
when the exponent difference is large.

Let us examine the compare unit carefully. We find that the signal P is used only
when � � = � H . In other words, it is not necessary to build the BDDs for it, when# � � W � H # is greater than 0. Based on this fact, we introduce a short-circuiting technique
to eliminate unnecessary computations as early as possible. The word-level SMV and
*PHDD packages are modified to incorporate this technique. In the *PHDD package,



the BDD operators, such as And and Or, are modified to abort the operation and return
a special token when the number of newly created BDD nodes within this BDD call is
greater than a size threshold. In word-level SMV, for an And gate with two inputs, if
the first input evaluates 0, 0 will be returned without building the BDDs for the second
input. Otherwise, the second input will be evaluated. If the second input evaluates to 0
and the first input evaluates to a special token, 0 is returned. Similar technique is applied
to Or gates with two inputs. Nand(Nor) gates can be decomposed into Not and And (Or)
gates and use the same technique to terminate earlier. For other logic gates with two
inputs, the result is a special token, if any of the inputs evaluates to a special token. If the
special token is propagated to the output of the circuit, then the size threshold is doubled
and the output is recomputed. This process is repeated until the output BDD is built. For
example, when the exponent difference is 30, the size threshold is 10000, the ordering
is the best ordering of mantissa adder, and the evaluation sequence of the compare unit
shown in Figure 2 is P , ^ , � , � and

b
, the values of signals P , ^ , � , � and

b
will be

special token, 0, 0, 1, and 1, respectively, by conditional forward simulation. With these
modification, the new system can verify all of the specifications for both types of FP
adders by conditional forward simulation. We believe that this short-circuitingtechnique
can be generalized and used in the verification which only exercises part of the circuits.

Ordering Offset BDD Size CPU Time (Sec.)
0 157 0.68
1 309 0.88
2 608 1.35
3 1195 2.11
4 2346 3.79
5 4601 7.16
6 9016 13.05
7 17655 26.69
8 34550 61.61
9 67573 135.22

Table 2. Performance measurements of a 52-bit comparator with different orderings.

5 Verification of FP Adders
In this section, we used the FP adder in the Aurora III Chip [10], designed by Dr.
Huff as part of his PhD dissertation at the University of Michigan, as an example to
illustrate the verification of FP adders. This adder is based on the same approach as
the SNAP FP adder [14] at Stanford University. Dr. Huff found several errors with the
approach described in [14]. This FP adder only handles operands with normal values.
When the result is a denormal value, it is truncated to 0. This adder supports IEEE
double precision format and the 4 IEEE rounding modes. In this verification work, we
verify the adder only in round to nearest mode, because we believe that the round to
nearest mode is the hardest one to verify. All experiments were carried out on a Sun 248
MHz UltraSPARC-II server with 1.5 GB memory.

The FP adder is described in the Verilog language in a hierarchical manner. The
circuit was synthesized into flattened, gate-level Verilog by Dr. John Zhong at SGI.
Then, a simple Perl script was used to translate the circuit from gate-level Verilog to
SMV format and to perform latch removal.



5.1 Latch Removal
Huff’s FP adder is a pipelined, two phase design with a latency of three clock cycles.
We handled the latches during the translation from gate-level Verilog to SMV format.
Figure 4.a shows the latches in the pipelined, two phase design. In the design, phase
2 clock is the complement of the phase 1 clock. Since we only verify the functional
correctness of the design and the FP adder does not have any feedback loops, the latches
can be removed. One approach is to direct connect the input of the latch to the output
of the latch. This approach will eliminate some logic circuits related to the latch enable
signals as shown on the right side of the latches in Figure 4.a. With this approach, the
correctness of these circuits can not be checked. For example, an design error in the
circuit, always generated 0s for the enable signals of latches, can not be found, if we use
this approach to remove the latches.
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Fig. 4. Latch Removal. (a) The pipelined, two phase design. (b) The design after latch removal.

Our approach for latch removal is based on this observation: the data are written into
the latches when the enable signals are 1. To ensure the correctness of the circuits for the
enable signals, the latches can be replaced by Z�>QP gates, as shown in Figure 4.b, without
losing the functional behavior of the circuit. Since phase 2 clock is the complement of
the phase 1 clock, we must replace the phase 2 clock by the phase 1 clock. Otherwise the
circuit behavior will be incorrect. With this approach, we can also check the correctness
of circuits for the enable signals of the latches.

5.2 Design with Bugs

During the verification process, our system found several design errors in Huff’s FP
adder. These errors were not caught by random simulation performed by Dr. Huff. The
first error we found is the case when Z S Y = 01.111...11, Z S Y S 1=10.000...00, and
the rounding logic decides to add 1 to the least significant bit (i.e., the result should beZ S Y S 1), but the circuit design outputs A+C as the result. This error is caused by
the incorrect logic in the path select unit, which categorized this case as a no shift case
instead of a right shift by 1. While we were verifying the specification of true addition,
our system generated a counterexample for this case in around 50 seconds. To ensure that
this bug is not introduced by the translation, we have used Cadence’s Verilog simulation
to verify this bug in the original design by simulating the input pattern generated from
our system.

Another design error we found is in the sticky bitgeneration. The sticky bit generation
is based on the table given in page 10 of Quach’s paper describing the SNAP FP



adder [14]. The table only handles cases when the absolute value of the exponent
difference is less than 54. The sticky bit is set 1 when the absolute value of the exponent
difference is greater than 53 (for normal numbers only). The bug is that the sticky bit is
not always 1 when the absolute value of the exponent difference is equal to 54. Figure 5
shows the sticky bit generation when � � W � H = 54. Since � � has 52 bits, the leading 1
will be the Round ( L ) bit and the sticky (

�
) bit is the

� L of all of � H bits, which may
be 0. Therefore an entry for the case

# � � W � H# a 54 is needed in the table of Quach’s
paper [14].

Nx

Ny

L G SR

1.

1.

Fig. 5. Sticky bit generation, when � � � ��� = 54.

5.3 Corrected Designs
After identifying the bugs, we fixed the circuit in the SMV format. In addition, we
created another FP adder by adding the compare unit in Figure 1.b into Huff’s FP adder.
This new adder is equivalent to the FP adder in Figure 1.b, since the ones complement
unit will not be active at any time.

To verify the FP adders, we combined the specifications for both addition and
subtraction instructions into the specification of true addition and subtraction. We use
the same specifications to verify both FP adders. Table 3 shows the CPU time in seconds
and the maximum memory required for the verification of both FP adders. The CPU
time is the total time for verifying all specifications. The FP adder II can not be verified
by conditional forward simulation without the short-circuiting technique. The maximum
memory is the maximum memory requirement of these 18 runs. For both FP adders, the
verification can be done within two hours and requires less than 55 MB. Each individual
specification can be verified in less than 200 seconds.

In our experience, the decomposition type of the subtrahend’s variables for the true
subtraction cases is very important to the verification time. For the true subtraction
cases, the best decomposition type of the subtrahend’s variables is negative Davio
decomposition. If the subtrahend’s variables use the positive Davio decomposition, the
*PHDDs for

�����
can not be built after a long CPU time (> 4 hours).

CPU Time (Sec.) Max. Memory(MB)
Case FP adder I FP adder II FP adder I FP adder II

True addition 3283 3329 49 55
True subtraction(far) 2654 2668 35 35

True subtraction (close) 994 1002 53 48

Table 3. Performance measurements of verification of FP adders. FP adder I is Huff’s FP
adder with bugs fixed. FP adder II is FP adder I with the compare unit in Figure 1.b. For true
subtraction, far represent cases

� � � � ���
���

1, and close represent cases
� � � � ���

���
1.

For the coverage, the verified specifications cover 99.78% of the input space for
the FP adders in IEEE round-to-nearest mode. The reason for uncovered input space
(0.22%) is that the circuit does not caused by the unimplemented features includes the
cases of any operands with denormal, ��: � or ; values, and the cases of that the result
of the true subtraction is denormal value



Our results should not be compared with the results in [4], since the FP adders
handle difference precision and the CPU performance ratio of two different machines is
unknown. However, their approach is implementation-dependent, while our approach is
implementation-independent.

6 Conversion Circuits
The overflow flag erratum of the FIST instruction (FP to integer conversion) [9] in Intel’s
Pentium Pro and Pentium II processors has illustrated the importance of verification of
conversion circuits [10] which convert the data from one format to another. For example,
the MIPS processor supports conversions between any of the three number formats:
integer, IEEE single precision, and IEEE double precision.

We believe that the verification of the conversion circuits is much easier than the
verification of FP adders, since these circuits are much simple than FP adders and only
have one operand(i.e. less variables than FP adders). For example, the specification of
the double-to-single operation, which converts the data from double precision to single
precision, can be written as "(overflow flag = expected overflow) & (not overflow flag
� (output = expected output))", where overflow flag and output are directly from
the circuit, and expected overflow and expected output are computed in terms of the
inputs. This specification covers double precision which cannot be represented in single
precision. For example, expected output is computed by L�M�NI>QPIR R�W 1 U � � < � 2 	 
��U .
Similarly, expected overflow can be computed from the inputs. For another example, the
specification of the single-to-double operation can be written as "output = input", since
every number represented in single precision can be represented in double precision
without rounding(i.e. the output represents the exact value of input).

7 Conclusions and Future Work
We presented the verification of FP adders with reusable specifications using ex-
tended word-level SMV, which were improved by using the Multiplicative Power HDDs
(*PHDDs), and by incorporating conditional symbolic simulation as well as a short-
circuiting technique. Based on the case analysis, the specifications of FP adders are
divided into several hundreds of implementation-independent sub-specifications. Con-
ditional forward simulation has the advantage of implementation-independent spec-
ifications. The short-circuiting technique makes these specifications reusable to any
implementations of FP adders.

We used our system and reusable specifications to verify a FP adder from Univer-
sity of Michigan. Our system found several bugs in Huff’s FP adder and generated
counterexamples within several minutes. A variant of the corrected FP adder is created
and verified to demonstrate the capability of our system to handle different FP adder
designs. For each of FP adders, the verification task finished in 2 CPU hours on a
Sun UltraSPARC-II server for IEEE double precision. We believe that our system and
specifications can be applied to directly verify FP adders and to help finding errors.

The overflow flag erratum of the FIST instruction [9] in Intel’s Pentium Pro and
Pentium II processors has illustrated the importance of verification of the conversion
circuits which convert the data from one format to another format. Since these circuits
are much simpler than FP adders and only have one input operand, we believe that our
system can be used to verify the correctness of these circuits. We plan to verify the
conversion circuits in the Aurora III chip.
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