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A Relaxed Reduced Space SQP Strategy for Dynamic
Optimization Problems

J.S. Logsdon and LJ. Biegler
Department of Chemical Engineering
Carnegie Méellon University, Pittsburgh, PA 15213

Recently, strategies have been developed to solve dynamic simulation and optimization problems in a
smultaneous manner by applying orthogonal collocation on finite elements and solving the nonlinear
program (NLP) with a reduced space Successive Quadratic Programming (SQP) approach. In this paper
we develop arelaxed simultaneous approach that leads to faster performance. The method operates in the
reduced space of the control variables and solves the collocation equations inexactly at each SQP iteration.
Unlike previous simultaneous formulations, it is able to consider the state variables one element at a time.
Also, this approach is compared on two process examples to the reduced gradient, feasible path approach
outlined in Logsdon and Biegler (1992). Here nonlinear programs with up to 5500 variables are solved
with only 40% of the effort. Finally, a theoretical analysis of this approach is provided.

.NLP Formulation

Consider the following general contrall problem forte[O, tf]:-
Min " (tf)) (1)
u(t),z(t)
st. z(t) = F(z(t), u(t)), z(0) =20
g(z(t),u(t))s O gf<z(tf)) < O
Z(t)- < zZ(t) * z(t)Y
| u(t)- < u) A u()
where *F(z(tf)) is the objective function; g(u(t), z(t)) is theinequality design constraint vector over time; z(t)
is the state profile vector with initial conditions zo and upper and lower bounds z(t)", z(t)"; u(t) are the
control profiles with upper and lower bounds u(t)" and u(t)"; and gf are inequality constraints at final
conditions. As described in Logsdon and Biegler (1992), we discretize the DAE system by applying
orthogonal collocation and replace the differential equations by algebraic residual equations. These
resduals are evaluated at the shifted roots of an orthogonal Legendre polynomial over a finite element, i, in
time, t e [&, Ct+ll- Thus for the initial value problem, i=F(x, u(t), z(t)), t £ (0, tf), z(0) = ZQ one can
write the following residual equation at points tik (at point k in element i):

f‘zij (PiTY -ACI F (@fali) =0 i = 1~NE, k = 1,.K 2)
j=0

wher e the polynomial basis functions 44 Ok) and <4 (tk), are calculated beforehand and depend only on the
.Legendre polynomial root locations. Here AC is the element length and zft and U& are Lagrange-type
polynomial coefficients for the state and control variable profiles, respectively, at collocation point k and
element i. Also, notethat tik = Ci + A& Xks In our discretization, we enfor ce the continuity of the Sates at
élement endpoints but allow the control profiles to have discontinuities at these endpoints. Here, for i =
2...NE:

zZip = izi—l.jq’j(7= 1)
=0 (3)
These endpoints also provide the initial conditions for the next element states. Substituting the discretized
equations for the ODEs yields the NL P formulation for (1). It consists of the discretized DAE model, the
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continuity equations for states variables, and additional equality and inequality constraints. Finally,
approximation error constraints are added that ensure the accuracy of the solution profiles. These can range

from simple bounds on element lengths to constraints based on detailed approximation error estimates (see
Vasanthargian and Biegler, 1990).

Min Y (z:,p)
vy, Wy, z, A& 4

St N7 AK)-ANPF ('uik) =0 Zio- %0 T °
i=0

j=0

£
oZf) <0, zZf = 2ZNEj<I>j(X=)
i=0
L U L U

Z: Z:

ij s ‘ij £ %ij, Yoo Yjpox Y,

ACi ~ ACi »~ ACi ~ ACl =T
i=1
Variablesin (4) include A£,., thefinite element lengths for i =1,...NE, z¢, thevalue of the state at the final

time, and z*, u”, the collocation coefficients for the state and control profiles, respectively. Problem (4)
can be solved by any large scale nonlinear programming solver. However, it is quite large and some form
of decomposition isdesrable in order to solve this problem efficiently. To motivate our approach we define
and partition the variablesin (4) asfollows: yi arevariables defined at the beginning of element i (zip), as
well asinitial and final conditions (zo and zf); wi areinternal state variablesin the collocation equations,
dlc, k=I,K), for element i; vi arecontrol variablesin the collocation equations, (ujk, k=I,K) for element i
aswell aselement lengths (AG). Problem (4) can berewritten as:

Min ¥(yNE+i) )
Yi» Wi, Vi
st hi(yi, wi, vO = Ayi + qi(wi, vi) =0 (6)
yi+l-ocyi-Cwi =0, yi= zo (7
g(wi,Vi)<0 )
VitEVviEvi witrwitwit i =1,NE

.* whereaisascalar and A and C are matrices composed of elementsfrom the Lagrange basis functions. A
~graightforward approach to solving (5)-(8) isto apply a general purpose large-scale NL P algorithm (e.g.
- RND/SQP or MINOS) directly and linearize (6)-(8) at thejth SQP iteration. Linearizing (6) yields:

(Ayjl + gKwp, vp)) + D(wii ,vid) (wi-wp ) + GWwil ,vp) (vi -wiJ) =0 (9)

* Herethe matrices aredefined by D = V,,hi" and G = V,hi'. Note, however, that the variables for all of
the eements must be stored and recovered in order to be used for die next linearization. Also, to calculate
L agrange multiplier estimatesfor (9) thematrices D(wp ,vii) and G(wii ,ViJ) need to be stored aswell. For
lar ge systems of ODFs which requiremany finite elements, thisrequirement can be prohibitive.
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As an alternative to this direct simultaneous approach we note from the above formulation that the equations
(6) and (7) can be solved sequentially for wi and yi+i, i = 1,... NE, once vi has been updated by SQP.
This forms the basis of our decomposition. In thefeasible path approach developed in Logsdon and Biegler
(1992), (6) is a square system solved by a Newton method for wi, with vi and yi given. To motivate a
relaxation of this method, we first state thefeasible path algorithm in Logsdon and Biegler (1992):

Feasible Path Algorithm:

0.

Choose the number of elements (NE) and the corresponding number (K) of collocation points.
Initialize the control variables, state variables and element lengths.

For values of the control variables and e ement lengths at SQP iteration j, and initial conditions for
the state variables, perform the following for each element i (i = 1,...NE):

11 Usingtheinitia conditions of element i, yji, as starting guesses, solve the residual
equations (6) by a Newton agorithm to obtain the interior states, Wji.

12  From linearization of (6) (e.g., (9)) calculate the sensitivity of this element's
dependent variables with respect to y* and vi:
" = - D(wiVi)-"G(wl|v]), Ni = - DWj, vi)"" A

Notethat A, C, D, and G can be determli ned analytically from the differential
equations and D"* is available from step 1.1.

13  Apply the continuity equations and solve for the next element's initial
conditions:

yis1-@yi- C wi = 0, A< = - C D(w|,vj*G~vj), ~- =od - C D(w|,v])-*A

14 Chainrule the derivatives from previous elements and update:

OYi+1 _9¥m+1 9¥me2  O¥in .
dVe  dvm 3ymH * dyi  form =1,..1-1

Continue until an intermediate element is reached that influences an inequality (g(wc,vc)), or until
the last element is reached. Determine the reduced gradients of the objective and inequality
congtraint functions with respect to v (i=l,...NE) according to equation (10), where v’ = [vi,
va2l, ..vNE].

9yt O _Owe dg  dg
2y av dyg Z'Ve v dw, +avc (10)

Call the SQP algorithm. If Kuhn - Tucker conditions are satisfied, STOP. Otherwise SQP creates
and solvesthe following quadratic program (11) at iteration j:

Mina, (V<D'Z)i Av +i2AvT(zTBZ)iAv (11)
st d =~ (VgTZyAv <0
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to determine the search direction, Av. Note that this QP contains al of the state and control
variable inequality constraints. In addition, our SQP method also updates the reduced Hessian
matrix, (Z"BZ), based on the BFGS formula, and performs aline search to determine the
steplength X, for the decision variables (see Cuthrell and Biegler, 1985).

5. Set vH=vJ4- XAv andj =j+1. Returnto step 1 with anew set of decision variables from SQP.

Unlikethe direct simultaneous approach, thisfeasiblepath approach hasthe advantagethat only onefinite
element needs to be considered at atime in step 1. In addition, since hj has the same structure for each
element, the sparsity of large systems can easily be exploited. This decomposition procedure has been
applied widely in the solution of ordinary and partial differential equations, where it is referred to as
parameter condensation or compactification (Ascher et al, 1988). For the special case where the state
variables occur linearly in the differential equations, Logsdon and Biegler (1992) note that (6) becomes:
'hi(yi, wi, vi) = Ayi + Dwi + si(vi) = 0 and wj = - D"}(Ayi + Sj(vi)). If (6) is generaly nonlinear,
however, solving for WJ may be expensive. Instead, we consider an relaxed approach to the solution of
“(5) - (8). Instead of solving (6) completely for each element at each iteration, we set al of the internal state
" variables wp to yp (the value at the beginning of the element) and linearize (6) about this point and vp.
Starting at this point we execute a limited number of Newton iterations for wji to obtain w~. Equations (6)
are then linearized about this point to yield:

(Ayil + i (W', vji)) + D(VT; vid) (wi- W"i) =0 (12)
We set wji to W~ and equation (7) isthen solved sequentially to determineyi+ii. Here the key questioniis:

How many Newton iterations are sufficient to determine W[ and till allow for reliable and fast
convergenceof thesolution to (4)?

A sufficient condition to prove conver gence requires that the collocation equations be forced to converge
monotonically as the number of SQP iterations increases. Thus, our- relaxed SQP algorithm is essentially
the same as the one presented above, except that the solution sep in 1.1 ismodified as follows:

Step 1.1 (Modified) For a set of fixed decision variables, begin with the initial conditions for the state
variables in element i and determine the interior state variables, wji so that thefollowing inequality is
satisfied for constants C>0,0<r<|l and Y > 1.

[[bicwd, bl | < crvi i=1, . NE (13)

Clearly, this condition can be satisfied by performing a small number of Newton iterations. Moreover,

ampler fixed point iterations may also be substituted. Note that the collocation equations are conver ged
~ more tightly as the NLP algorithm proceeds toward the optimum. Thus, if the optimization problem is

difficult to converge, condition (13) effectively leads to a feasible path algorithm. Otherwise, if a few

Newton iterations are sufficient to allow smultaneous conver gence, both the collocation equations and the
_#NLP converge quickly.

-Relaxed methods that apply a fixed number of Newton iterations to the equalities have also been tried
.previoudy on various practical optimization problems. Specifying this number apriori isdifficult and we
are aware of no convergence proof in the literature for such methods, without a condition like (13).

.Moreover, in this sudy we develop a superlinear conver gence property that does not depend on specific
values of C, yand r. Intuitively, one can argue that by ensuring that the collocation equations converge
along a monotonic sequence, and by enforcing a line search for the control variables and element lengths,
we ensur e that we have a conver gent SQP algorithm. This argument is shown rigoroudy by the following
property.
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Local Convergence Property: Given the infeasible path algorithm described above, which satisfies
(13) and is made globally convergent by aline search algorithm. Then for unit stepl engths aquasi-Newton
method that satisfies the Dennis-More' (see Fletcher, 1987) conditions and any valuesfor C>0,0<r<1
and y> 1, therate of convergence of the SQP algorlthm is R-superlinear, i.e:

[|X-x*|< CrT*
with values for the following constants: € > 0, v > 1. Herex” = [w", y", v].
Proof: The proof of the Local Property is given in the Appendix.

Note that although the R-superlinear property is not as strong as the Q-superlinear properties for
conventional SQP methods, this rate of convergence till leads to acceptable performance. To enforce
convergencefrompoor starting points we perform aline search, along the direction obtained from (QP3),
in order to find a steplength that decreases an augmented Lagrangian function (Cuthrell and Biegler, 1985).
Such apoint can be guaranteed if the collocation equations are converged tightly enough, i.e. in the later
stages of the infeasible path algorithm (and, of, course, in the feasible path algorithm). Moreover, early in
the algorithm, line search failures can be overcome by restarting the problem with conver ged collocation
equations, and using smaller values of C and r in (13). This resart was not necessary for the
examples presented in this study.

Clearly the tradeoff between thefeasiblepath and relaxed methods is the cost of conver ging the collocation
equations vs. a dower convergence rate for SQP. When equations (6) are easy to converge (e.g. our first
example) both approaches are about the same. On the other hand, if the collocation equations are highly
nonlinear and expensive to solve (the second example), consder able savings are obtained with the relaxed
approach. The tradeoff between the direct simultaneous SQP approach and the relaxed methodis the cost of
gorage of the intermediate variables vs. additional Newton steps within each SQP iteration. For problems
with many date variables and/or many finite elements, storage costs for the direct smultaneous approach
can be prohibitive. In the next section we demongtrate and compar e the performance of these algorithms on
dynamic process optimization problems. ‘

Example Problems

We consider two dynamic process optimization problems to compare the feasible path and relaxed
algorithms. We consider first a small problem where (6) is easy to converge and then solve an example
where (6) ismuch larger and more nonlinear. In thefirst case we observe little difference between the two
approaches whilein the second thereis a sgnificant advantage to therelaxed approach.

Condder the nonlinear batch reactor (Ray, 1981) with temperature as the control variable; it isdesred to
maximize one of the products after afixed reaction time. Herewe consider thefollowing reaction, A—>B
—> CThepraoblemisnonlinear in therate equations for the concentration of A. Lettingci and C2 represent
the concentration of A and B, respectively, the optimal control problemis:

Max c2(1.0)

st A= -4000 exp (-2500 T)c?

A= 4000 exp (-2500 T ) <% - 6.2x10%exp(-5000 T)c,

C!(0)=1.0, c(0)=0 298 <£ T <> 398
Usmg two point collocation, six f|n|te elements and the feasible path approach, Logsdon and Biegler
(1992) achleveconvergmceln 18 SQP iterations. Here, 3to 4 Newton iterations weierequiredinitially for
each element and then 2-3 iterations wer e required to conver ge the state variables for subsequent control
variable movements from SQP. The temperature profilewas initialized as a congtant profileat 300° and the
steep optimal profiles are shown in Logsdon and Biegler (1992). In therelaxed approach, it becomesclear
that awiderange of valuesfor C, r and y will lead to smilar performance because, with either oneor two
Newton iterations of (6) we obtain monotonic convergence for the collocation equations. This arises
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because the ODEs are only mildly nonlinear in the state variables and thus relatively easy to converge.
Therefore, we only need to compare the performance of the feasible path method with relaxed approaches
that use only one or two Newton iterations on the state variables. All three methods converge to virtualy
identical profiles with about the same performance, as seenin Table 1

Table 1: Comparison of Approaches for Example Problems
Method SQP CPU Seconds Objective Function
Iterations (Vaxstation 3200)

Nonlinear Batch Reactor (18 control variables, 36 state variables, 6 finite elements)

Feasible Path 18 34.65 0.610775 (final concentration)

Two Newton Iters. 16 33.36 0.610667
Maximum Distillate Problem (36 control variables, 5460 state variables, 12 finite elements)

Feasible Path 51 4184 38.615 (moles recovered)
Two Newton Iters. 61 1663 38.615

Monotonic 58 1595 38.615

Sequence for h(x)

To demonstrate the performance of the relaxed algorithm on a larger problem, we consder a
cyclohexane/hexane batch distillation which was smulated successfully smulated by Domenech and
Enjalbert (1980). Here we consider the maximum distillate problem for a batch time of one hour. The
smulation mode described by Domenech and Enjalbert (1980) includes tray and condenser holdups and
assumes equimolar overflow (no enthalpy balances). For this 12-stage column we specify a boilup rate of
120 moles/hr, plate and condenser holdups of one and ten models, respectively, and a45/55% chargeof a
200 mole cyclohexane/toluene mixture. Antoine equations are used tqQ describe the equilibium K values and
ideal mixtures are assumed Further details of this optimization problem can also be found in Logsdon
(1990), This problem is complicated by a state variableinequality congtraint for thetop plate cyclohexane
concentration (greater than 99.5 % for each point in time). This constraint requires the use of orthogonal
collocation, as gate variable congraints are very difficult to enforce otherwise.

To form (4) wewrite explicit expressonsfor the derivative terms and theright hand sides of the differential
equations at each of the collocation points. This requires expressions for the equilibrium congtants, and
additionally the bubble point constraints must be enforced to determine the temperature profiles. To
complete the model, we add the continuity equations for the sate profiles. A total of 12 elements and 3
collocation points per element were chosen; details of this choice are given in Logsdon (1990). The
resulting NLP (4) has 429 congraints with 457 variablesfor each element. Also, given the size of the
system ofI equations, the ITU decomposition of D(wi, vO in step 1 was performed by the MA28 sarse
* matrix solver.

For the feasible path, reduced gradient method an average of 6 to 8 Newton iterations are required to
1" conver ge the state variables in each element Unlike the small example, we see that the state variables are
quite nonlinear and the collocation equations are harder to converge. Next we solve this problem with a
“heurigtic relaxed method where only two Newton iterations are applied to (5) in order toyield reasonable
'linearizations for the SQP method. Finally, we apply the relaxed method with constraints (13) that force
_monotonic convergence of (5). Here we choose, C =r = 0.8 and y = 1.1. As aresult, the number of
Newton iterationsfor each element aver ages between one and threeiterations. Conver genceis not sensitive
to this choice of parameters since awide range of congtants will guarantee monotonic conver gence and give
gmilar performance. However, use of (13) is critical for convergence of SQP. For example, if only one
Newton iteration is applied to (5) and (13) is not enfor ced, the SQP algorithm terminates in a line search
failure. Here, the control profiles for all three methods are virtually identical to the ones presented in
L ogsdon (1990) as arethe objectivefunction valuesin Table 1. Solution timesarealso listed in Table 1 for
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the different methods. Note that both relaxed approaches require only 40% of the effort required by the
feasible path case.

Summary and Conclusions

This paper presents a numerical method for obtaining optimal control profiles that is structured to the
discretized ODE equations. Here, orthogonal collocation is used within an NLP framework in order to
solve for the control profiles, athough other ODE discretizations may be suitable as well. Moreover, the
NLP framework allows us to enforce state path constraints and control path constraints. Also, switching
times and integration step lengths can be posed as optimization variables to obtain accurate solution of the
optimal control profile. This work thus enhances previous optimization-based studies in that we explore a
decomposition technique in order to reduce the problem size, tailor the decomposition to the problem
structure and develop arelaxed, reduced gradient algorithm. In addition, alocal convergence analysisis
provided which shows that the infeasible path approach can converge at an R-superlinear rate. Two
.example problems were considered in the paper. In the first example, the collocation equations were easy to
solve in each element and we found that the relaxed approach performed as well as the feasible path
approach of Logsdon and Biegler (1992). However, on a much larger batch distillation optimization, the
* benefits of the relaxed approach are clear. For a 12-stage binary column, the resulting formulation had
about 5500 variables and 36 degrees of freedom. Here the relaxed approach was about 2.5 times faster
than the feasible path approach and again converged to a virtually identical solution.
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Appendix: Proof of Local Convergence Property

We start with the SQP iteration| for al the variables (with a steplength of unity): X3+ = X3 + dj, where we partition

the search direction into null and range space directions, dj = Zj Av + Y] pY- Here the first term, is due to the
solution of (11) and the second is due to changes in the dependent variables in order to converge the collocation
equations. Now define the distance to the optimal solution, g, by XJ - x* and substitute the expression from (11).
For smplicity we treat the case where theinequality constraints are inactive (Active constraints can also be handled
here at the expense of additional algebraic manipulations.). Also, we note that second order optimality conditions
are satisfied and that Z* T\Y*Z*, the projected Hessian at the optimum is positive semidefinite. The matrix Zj"BjZj
= M| is maintained positive definite and bounded by the quasi-Newton updates in SQP. From (11) we have
AVI=-(M)-"ZV\}; and

-(MjrzIV Vil My 12T Vy;
|= e +1Z Vi
J PY

€i+l = Xj+i ~**= Xj - x* + [Z] Y]]

Now if.we partition €; and g+-1 asitbllows:

e‘:‘- ci 4
N gty [;'] SRR

< J+1

then we obtain the relations:
— _ H |_||Z'“V H
{WH'J _ °}'] . Mi™17Vi
e_]¥+1 _ejy PY
For & wenotethe following property, because Z(XJ) liesin the null space of Vh(xj)".
0=h(x*) =h(x) + Vh(x;)V O lejlp = h(xj) + Vh(x))"Y;e+ Of |ej [P

Because Y] is chosen so that Vh(xj)'Y]j is nonsingular, we have that g? = O|lh(xj)|l and by (13), &' is R-
superlinearly conver gent.

We now consider the €' component. From above we have: Mjet,; = Mjg* - Zj‘\/x|/j and by Taylor series:
Mgty =Mig' - ZIVY* - Z)\W(Ziy+Yied) + g gl

where W* isthe Hessian of die Lagrange function at the solution. Now the following relations derive from above
and the definition of €j +1:

Mjeh = (Mj - ZIW*Z))eYi1 - (M] - ZIw*Z)AV] - Zdw*Yjed + Of |gj|[?

ZTW.Zkeyn = (Mj - ZIW*Z))Avj - ZjW.Yjel + O |ej|p
The remainder of the proof is based on the quasi-Newton condition originally due to Dennis and More' (see
Fletcher, 1987) | | (MJ-ZJW«zZJ)AVI|IE X| [d]]] £ K(| |¢j]| +]|§+i]]) where «k>0andlimj_», K= 0.
Substituting this expression above and taking norms gives the following order terms:

co| lg"H <, K (| |p”||) + CrYJ where © >0, and the last term on theright hand side comes from (13) and the
order result for ey.Thedesired result now follows from the following induction. We assume that 11 €11 is bounded

above by D JJ, for someD > 0 and 1< f < 7, and show that | \t*]ﬂ\\ <, D r*0+D. Substituting into the above

order result shows that: 11%4+i 1242 AJ(X + C/D kY -0i) A D rf 0+D 4 c € the terms in parentheses in the middle
expression go to zero asj goes to infinity. For j sufficiently large, they are therefore less than r. Thus, both
components of g have the desired convergencerates and the algorithm is R-superlinearly conver gent
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