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Abstract

In this paper a new deterministic method for the global optimization of mathematical models
that involve the sum of linear fractional and/or bilinear terms is presented. Linear and
nonlinear convex estimator functions are developed for the linear fractional and bilinear terms.
Conditions under which these functions are nonredundant are established. It is shown that
additional estimators can be obtained through projections of the feasible region that can also
be incorporated in a convex nonlinear underestimator problem for predicting lower bounds for
the global optimum. The proposed algorithm consists of a spatial branch and bound search for
which several branching rules are discussed. Illustrative examples and computational results

are presented to demonstrate the efficiency of the proposed algorithm.




I ntroduction

Many engineering design problems can be formulated through mathematical programming
models (Reklaitis and Ravindran, 1983; Papalambros and Wilde, 1988; Grossmann, 1990).
These models, however, often involve nonconvex functions and therefore when conventional
techniques are used they can get trapped in local solutions. Recently there has been a
sgnificant effort in the area of global optimization. Stochastic and deterministic methods have
been developed; for recent extensive reviews see Schoen (1991) and Horst (1990). Deterministic
methods have the advantage that they can provide rigorous guarantee of globa optimality of
the solution but require some assumptions about the mathematical structure of the model.
Since many nonlinear optimization models in engineering design do exhibit a special structure,

there is aclear incentive to consider the solution of these problems with deterministic methods.

An important class of nonconvex optimization problems with special structure
correspond to nonlinear programming problems with bilinear or linear fractional terms. Al-
Khayya (1992) presented a review of the models and applications of bilinear programming.
The bilinear and linear fractional terms are factorable functions for which McCormick (1976)
has presented a general approach for deriving underestimator functions that can be
incorporated in global optimization algorithms. Al-Khayyal and Falk (1983) proposed an
algorithm for bilinear programs with linear constraints in which linear estimators over the
bilinear terms are used. Swaney (1990) addressed the asymptotic behavior that can occur in
this type of algorithm when a solution does not lie at an extreme point. Algorithms for bilinear
programming models have also recently been developed by Sherali and Alameddine (1990).
These authors presented a linearization reformulation technique that embeds the method
proposed by Al-Khayya and Falk (1983) and predicts stronger bounds for the global optimum.
However, the main limitation is that the size of the linear programming underestimator

problems grows exponentially with the number of constraints in the original problem.




Falk and Palocsay (1991) proposed an algorithm for optimizing the sum of linear
fractional functions subject to linear constraints. The algorithm consists of a sequence of
linear programming problems in which bounds on feasible subsets are added. These bounds
aretightened iteratively to reduce the search space. These authors also developed conver gence
properties for this algorithm by extending the approach presented by Dinkelbach (1967).
However, the rate of convergence of this method can be dow. Konno et al. (1991) addressed
the minimization of the sum of two linear fractional functions over a polytope. Thisis done
using parametric linear programming algorithms. Floudas and Visweswaran (1990) presented
an algorithm based on a Benders based decomposition approach that can be used to solve
bilinear and/or fractional programming problems. In this method a sequence of subproblems
and relaxed dual subproblems are solved. Although the advantage of this method is that the
subproblems correspond to linear programs, one potential difficulty is that the number of
relaxed dual subproblems that have to be solved at each iteration may grow exponentially with

the number of variables interacting in different nonconvex terms.

In this paper a new deterministic method for the global optimization of mathematical
models that involve the sum of linear fractions and/or bilinear terms is presented. The
proposed method is a generalization of the work presented by Quesada and Grossmann (1992)
for minimizing the sum of linear fractional functions that arises in the global optimal design of
Heat Exchanger Networks. The unique feature of the proposed method is that bilinear and
linear fractional terms are substituted by both linear and nonlinear convex estimator functions
! that can be derived using the approach presented by McCormick (1976). Conditions under
which the estimator functions for different types of terms are nonredundant are determined. A
convex nonlinear underestimator problem is then proposed that predicts lower bounds for the
global optimum. These bounds can be further strengthened by the inclusion of additional
estimators that are obtained through projections of the feasble space. For the particular case
of bilinear terms, the additional estimators are equivalent to the reformulation technique of

Sherali and Alameddine (1991). To find the global optimum, a spatial branch and bound




search is conducted in which the lower bounds are obtained from the nonlinear underestimator
problem. Modifications to the branching rules proposed by Sherali and Alameddine (1991) are

used in this search.

The paper is organized as follows. Firstly, the case of a nonconvex objective function
and a convex feasible region is considered. Here the properties of the different estimators
functions, the formulation of the convex NLP underestimator problem and the basic algorithm
are presented. Also, the performance of the algorithm is illustrated through a small example.

The algorithm is then extended to the case of nonconvex feasible regions for which the

necessary modifications are described. Finally, numerical results are given for a variety of

problems that have been reported in the literature.

M athematical model

The following mathematical programming problem that is considered in this paper
involves a nonconvex objective function with linear fractional, bilinear and convex terms, and is
defined over a bounded convex feasible region,

mnf=£ £q, J- | IcyPfl,+h(p, q, 2)

i€l j€3 7 9 et jeyr !
st g(p, g, 2) <d (FO)

ze ZcR"
pL=<P <pV

q-<q <qg", (g*0.JeJ)

p e K+ , g€ K+
The functions h, h:R'"V""1*"9'+M_> R\ and g, g:R""*"*1d"l_5 B are assumed to be convex
and differentiable. The set Z isbounded; Cy are real coefficients of the linear fractional terms or
bilinear terms; d isan m-vector. Thevariables p; and qy are bounded and non-negative and the 4
lower bound for the variables gsj e J, in the denominator of the fractional terms is strictly
positive. For simplicity in the presentation the sets | and I, and J and J' are assumed to be

digoint, although this assumption can be easily relaxed.




If any variable p, or gj (J G'J) isnot restricted to be positive, it can be substituted by two

new variables such that:

Pt = Pi*-Pf w
pzpt20, -pt2pr20

Y =Q-Of 2)
q*2q*20, ql2q/20

The variable cy forj e J isrequired to be strictly one signed to avoid singularities. In case that

the variable is negative it can be transformed by setting,
cy= -q,' (3)

To facilitate the analysis and the development of the algorithm, problem (PO) will be
reformulated by introducing additional variables and relabeling the variables p and g by the

variablesx, y and r, with the following equations:

Pt=Xio a7y AN =i iel.jed @

Pi=rio a,=yj Piqg, = Xij ieF.Jed' (5)

Also, for convenience the following sets are defined for the positive (P) and negative (N)
termsin the objective of (PO):

Pr={(j.km)]iGI,j GJ c,>0,k =j, m=0}

Pe={(i,j,kjn) |[iG 1j G J',c;>0. k=0, m=j}

Nr={(i,j,k.m)|iG1,j GJ.3<0,k=j,m=0}

Ng = {(ij,k,m)|i G I.JG J% Cy<0, k=0, m =j}

with P=Pru Pg and N = Ng u Ng.

By using (4) and (5 and the above definition of sets, problem (PO) can be written in the

following compact form:




minf=£ | o« r X £0Gx«<+h(xy,r;2
iel j€J tel’ JeJ
yjitk A xA (i.j, k,m)eN
a(x,y,r,z)<d (PI)
XteX =XV
yLSy <y«
i*<r <r"

ZE Z

where the new inequalities have been relaxed according to the sign of the cost coefficient (¢ > 0
for (i, ], k, m) € Pand ¢,< O for (i, j, k, m) € N). Also, the bounds for x, y and r are obtained 4
from (4) and (5) using the bounds for p and q in (PO). Problems (PlI) and (FO) are equivalent

and the algorithm is presented based on formulation (P!).
Estimator functions

Following the treatment of McCormick (1976) (see Appendix A), the bilinear terms that
appear in the constraints of (Pl) can be replaced by linear convex estimator functions (A. 11 and

A. 12) yidding the falowing constraints:

Xam<Y, T1K + Ty - ¥y'Tac (i.J.k,m)6P (62)
Xm SY Mk Ty - yiimad (i,j,k.m)eP (6b)
Xim 2 YT + Ty - vt (i.j.k,m)eN (78)
Xim £Yj"ri + rtk?j - yjiry (i,j.k.m)eN (7b)

Note from the above that it is only necessary to include over or underestimators depending of

the sign of the cost coefficient, Cy.

Additionally, as shown in Appendix A, it is possible to develop nonlinear convex
underestimator functions according to (A. 15) for the constraints with (i, j, 1, m,) e Pwhich '

yields:

e+ X A1) (i,j,k,m)6P (8




i 2%[%::“,.“( jl,J-JjC) (tj.k,m)eP (8)

The following properties can be established for the linear and nonlinear estimator

functionsin (6) and (8) for the linear fractional termsin (PO) with positive cost coefficients, c*.
L u
Propety 1. When TA = ~A?r (or TA="r). (i,], k, m) € Pg, the linear overestimator (6a)

(or (Bb)) isa linearization of the nonlinear under estimator (8a) (or (8b)).

Proof. See Appendix B.

Corollary1l. The nonlinear underestlmator (8a) (or (8b)) is stronger than the linear
overestimator (6a) (or (6b)) when r- = ’\r (or rt = y£ ) @,j, kK, m) e Pr.

Proof. See Appendix B.

Tlie following property, however, establishes that the linear overestimatorsin (6) are not

necessarily redundant.
L
Property 2. When re > ’\;?'r (orrg"< Ing. ) (itjt K, m) e Pg, thelinear overestimator (6a)

(or 6b) is nonredundant.

Proof. See Appendix B.

For the bilinear terms in (PO) with positive cost coefficients, ¢*, the following properties

can be established.

Property 3.: When x%- = Tfjy}* (or x* = To*yf), (i, j, k, m) € Pg, the linear overestimator
(6a) (or (6b)) is a secant of the nonlinear underestimator (8a) (or (8b)).

Proof. See Appendix B

Corallary 2. The linear overestimator (6a) (or (6b)) is stronger than the nonlinear
underestimator (8a) (or (8b)) over the feasible region when x* = rAA (or xA* = rruy)™), @, j, k
m) e Pg.

Proof. See Appendix B




Property_4. When Xim=> M (o X|n'< ralyi"), @, j, k, m) € Pg, the nonlinear
underestimator (8a) (or (8b)) is nonredundant.
Prodf. See Appendix B

A geometrical interpretation of properties 1 to 4 is as follows. Consider the case of a
fractional term ((i, js k, m) e Pr, Property 1 and 2) and the projection of the feasible region into
the space of the variables involved in the nonconvex term (variables x and y. Figure la). The
estimators functions (6, 8) have the property that they yield an exact approximation of the
nonconvex term when one of the variables involved in the function is at its lower or upper *
bound (see Appendix A). For the fractional term the nonlinear estimators (8) are expressed in
terms of the variables involved in that term, x and y, and provide an exact approximation at the
boundary defined by the bounds of these variables. As for the linear underestimator in (6),
note that the contours of the fractional term (r :y—) correspond to straight lines that pass
through the origin and are given by the dashed lines in Figure la. Therefore, the linear
estimator functions (6) give exact approximations at the boundaiy defined by the bounds of the
variablesr andy. Asshown in corollary 1, when the bound over the individual nonconvex term
isredundant (eg. r- :)S*Lr) there is no part of the feasible region in which the linear estimator

xL
will be stronger. However, when thisbound is not redundant (eg. i* > yJ) thelinear estimator

provides an exact approximation at pointsin which the nonlinear cannot.

For the bilinear term, the linear estimators (6) are the onesthat are expressed in terms of
the variables involved in the nonconvex term, y and r and therefore they provide an exact
approximation at the bounds of these variables as seen in Fig. |b. Also, according to Property 4,.
the nonlinear estimator in (8) will only be nonredundant if there is a strong bound over the

individual bilinear term (eg. X" > rV in Fig. Ib).
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Figure 1. Projected feasible region for (a) fractional term and (b) bilinear term
Variable bounds

It is important to have tight lower and upper bounds for the variables x, y and r
involved in the nonconvex terms in (PI) since these bounds determine the quality of the
approximation given by the estimator functions in (6 (7) and (8). Firstly, the bounds
determine the size of the search space for the global optimum. Secondly, from the value of
these bounds it is possible to determine in advance whether a given estimator function will be

redundant.

In the initialization step of the algorithm, lower and upper bounds for the variables x;o
andyj inthe fractional terms (i 6 1, J e J) and for the variables rig and yj in the bilinear terms (i
€ I'j € J) arecalculated. Thisisaccomplished by solving the corresponding minimization and

maximization subproblems for each variable:

y,-={minyj |g(x,y,1,2 £ je Jut (9a)
y," ={maxy, [g(x,y.T,2) <d} je (9b)
Xo = {minXim |9, y. 1,2 <d} 1€ 1 (9
XK)” = (maxxta | g(x v, I, 2) < d} iel (9d)
o ={minry | g(x, y; 1; 2) < dt ier (%)

o' ={maxr* |g(x,y,r,2) <d} ier (9)
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where the bounds in (Pl) are used for the variables x, y, r and z in the above subproblems.
These subproblems have a unique solution since the feasible region is convex. Also, since they

have the same feasible region and are independent, they can be solved in parallel.

Furthermore, for the fractional termsit is possible to calculate lower and upper bounds

for each individual termriy i e |,j G Jby solving the subproblems,

y-={min®,stgx,y, r,2) <d, zG Z) iel,jed (10a)
r,"=(ma”, stgx,y,rz) <d, zG Z} iG1,jGJ (10p)

The subproblems in (10) have a unigue solution (Bazaara and Shetty (1979)) and in the case
that the feasible region is given by linear constraints they can be reformulated as L P problems
through the transformation proposed by Charnes and Cooper (1962). Having generated these
boundsit is possible to determine whether the linear overestimators (6) for afractional term are

nonredundant.

Note that for the bilinear terms, it is not possible to obtain valid bounds over each
individual nonconvex term Xy, i G I%,j G A\ since the resulting subproblems are nonconvex.
However, the nonlinear underestimators (8) may still be useful when nonredundant bounds
over the individual bilinear terms are known a priori, or, as it will be shown later, when a

nonconvex feasible region is considered and bilinear terms are present in the constraints.

Projections

The linear and nonlinear estimator functionsin (6), (7) and (8) presented in the previous .

section use fixed lower and upper bounds of the variables over which the approximation is
obtained. Additional estimators that tighten the convex representation can be generated by
considering bounds corresponding to hyperplanes of the boundary of the feasible region and
which are projected in the space of the variables involved in the estimator function. In

particular, from the solution of the subproblems (9), (10) solved in the initialization step in
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which bounds for the individual variables are determined, the following inequalities projected

in the space (yj, X*,) can be obtained:

02 T, g5y, Xim. L) ()

where X are the Lagrange multipliers and gj"(yj, X,m, £ Is a linearization of the constraint g,

given intermsof yj and X, with theremaining variables C fixed at their optimal value C*:

- l

00y, Xim L) = & V7. X L) + Vi B 7 Xiem : (12)
Xsm -Xym
The projectionsin (11) giveriseto linear inequalities of the following form:
yj £a+bxm (13a)
yj 2 &' +bXta (13p)

from which the following nonlinear under estimator s that are smilar to (8) can be gener ated:

1 1 :

r.kz’—;?]“ 25%:*"‘“'L(§j'a+bx‘m) (i.J.k,m,cPg (144)
1 1 -

nkz’—;‘; 23—.;_%'“.&:+x.m“l‘y—j STy (i.j.-k,m)6Pg (14b)

The following property can be established for these estimators:

Propety 5 The nonlinear inequality (14a) (or (14b)) is a valid convex underestimator
when b < 0 (or b* < 0), and is nonredundant with respect to the nonlinear underestimator in
(8a) (or (80)).

Proof. See Appendix B.

It can happen that when the projected inequalities in (13) are obtained using the
solution of the bounding subpraoblem, only a ssmple bound over the variable is obtained (eg.
b=0; a =vy,") instead of a linear inequality. In this case, if desired, it is possible to solve an
additional problem fixing the projection variable at a given value within the bounds (i.e. Xim =

Koy With XA <X < 3 ),
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The inequalities in (11) can also be projected in the space (Yt rig), i € I\] e J for the
bilinear termsin (FO) leading to inequalities of the form

rio<a+ by, (15a)
ro£a+byj (15b)

These can also be used to generate additional estimator functionsthrough the linear estimators

(6) and (7). Inthebilinear case the estimator s have the following form:

X'm<yjre<yfa+ (a+by)yj -yjHa+by) (,j, k,m) G Ps (16a)
Xim < TRy i + (& +by.)yi - (8l +b'y) (i, k, m) e Ps (16b)
Xm 2 Vx> V) K + (@- byj) y, -y, @- byj)  (ij . kim) eNg (17a)
X 2 YTC2 Vi M + @ - D7)y, -i'(@ - A (i, K, m) € Ng (17b)

where b<0 and b'<0vyield convex estimators. These type of inequalities are in fact equivalent to
the ones proposed by Sherali and Alameddine(1990). The difference is that they are only
generated when quadratic convex terms are obtained and here only the bilinear term is
linearized. With the approach presented in this paper, only a small number of this type of
constraints are generated since it is possible to identify nonredundant linear functionsin an

explicit form.

The bilinear terms in the constraints of problem (Pl) can come from bilinear or
fractional terms in the objective function of problem (PO). When the original term was a
fractional one, projections of the type of equation (16) are not possible to be generated since the
variable rg, i e |,j € J, does not exist in the constraint set g(x, y, r, 2) < 0. Hence, it isnot
possible to project the bounds of y, over ry;. However, projections can be performed for the )

boundsof r*, | el j e J, when the following fractional bounding problems (10) are solved:

min (or max)%Q:rti

st. g(xy, r,z)s0 PR

O<xt<x <x!
O<y‘'<y <y“
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The nonlinear problem in (PR) has a unique solution. Moreover, as Charnes and Cooper

(1962) have shown. If the constraints g(x, vy, r, z) are linear, (PR) can be transformed into a

linear programming problem. To achieve this, the transformation variable tj = % isintroduced

yidding the formulation:

min (or max) tpgo
st. gx,y,r,2£0 (PRI)

O<x"gx <x"
O<y‘<gy <y

The linear constraints and boundsin (PRI) are multiplied by tj and the resulting products of

variables are denoted as (x\ y\ r\ Z) which yieldsthe L P problem:

min (or max) Xo
st g(x\y\ilz\t) <0 (PR2

x'£0,y'>0

Here g* includes the transformed original constraints and the additional linear constraints
generated from the bounds. The solution of the LP problem (PR2) is used to generate

projections of the variable x* over » In a similar form as In (11),

Os); AL (xo'. 1)) (18)
Inthisform the projection that is generated hasthe form:

xw," £d + et, (or x3ot £d' + €t,) (19)

or expressing it In terms of the original variables,

ri2d+E (orr,j_<d'+’:} 20)
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In this way, additional estimator functions can be obtained by using equation (20) in

the linear underestimators (7),

Xim 2] 2 (0, + € +y"r* - (d+§) ;" (i,j . k. m) e Ne (213)
X!”’ 2 rt-'ly’? (dy’ + el +yjur|k - (d +§') yJu (i1j! k’ m) e NR (2Ib)

These estimators are convex when e < 0 (€ < 0).

Property _6.The nonlinear estimators in (16), (17) and (21) provide an exact
approximation at the boundary defined by the projected cut.
Proof. See Appendix B.

The estimators in (14), (16), (17) and (21) are only a subset of all the projected
estimators functions that can be generated. In this paper at most one projected estimator for
each variable in the nonconvex term is used. The estimators (16) and (21) can be particularly
relevant because when the cost coefficient, ¢, is negative the nonlinear estimators (8) cannot

be used. Thisisillustrated in example 3.
Convex Nonlinear Underestimator Problem

Having derived the linear and nonlinear bounding approximations (6), (7), (8), (14), (16),
(17) and (21) for the nonconvex terms in (Pl), a convex nonlinear underestimator problem
(NLPJ for problem (PI) can be defined as follows. Valid bounds over the variables are
generated from (9) and (10) to definetheset Q x,y, z X" <x <x, yl<y <y“ r"<r <r'} and
the nonconvex terms in problem (PI) are substituted by the convex approximating functions.
The projections for the upper and lower bounds of the variables are denoted by linear functions
$¢) = a+b(0 where the convexity conditions are satisfied (eg. Property 5). Thisthen leadsto

the following convex nonlinear programming problem:
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minfy =27 Z < "ii- Z Sdixy +h(x,y:r,2)

el Je3 T T e jE
. Xtg £YHTK + 1 A j -y~ (irj, kK, m)e N
Xim 2 ¥)"Tix + Ty - Y5 " (i,j,k,m¥€N
Xm S ¥iiTu + Ty - yin® LJ kmeP According to
Xim < ¥ T + Tuly; - YiUrut A.J,k,mEP Properties 1 to 4.
1 1 .
r,kzgi“+zq,.(yj-§1;c) (i,),k,mE€P
ANNNNA Ly R (i.J.k.m)eP
Km Ll _— .
l‘ikzﬁx‘m)*-xm (Y’I ¢(Xui.)’ (i.j.k,m)€EPR
_}_ﬁL U fom o e—
rtkzu ))+x,,,, [Yl ¢[In}) (L] k, m)€Pg (NLPJ
Xim S ¥{'T& + A yj -y~ ty) (*.j. k.m) e pg
X SYjrik + <PH) yi - Y <) (I.j, k, m) e Pg
Xim 2 B\ T& +¥4y)) yj - ViN>()) (i,j. k, m) eNg
Xim 2 Vj'rik + <)) yj - yi" <) (i,j. k, m) € Ng
Xim 2y« e) +yjr-(d+nyjt (i.J. k,m)eNg
Xim 2y + &) +y ry - @ 4 y, (i J: k, m) G Ng

ax,y,r,z2)=<d
(x,y¢r)€Q,zez

Property 7, Any feasible point (x, y, r, ) in problem NLP_ provides avalid lower bound to
the objective function of problem (PI). Furthermore, the optimal solution " of (NLPJ provides a
valid lower bound to the global optimum () of problem (PI).

Proof. See Appendix B.

Copollary 3. 1f the optimum solution f* from NLP_ is equal to the objective function value
f from (PI) it correspondsto the global optimum of (PI).

Proof. See Appendix B.




15

Partitioning Scheme (Branch and Bound)

An optimal solution of problem NLP_ provides a valid lower bound to the global optimum
of problem (PI) (Property 7). At the same time this solution is afeasible solution to the problem
(PI) since problem NLP_ includes al the original constraints. Hence, only an evaluation of the
origina objective function is required to obtain avalid upper bound. Also, the solutions of the
bounding subproblems (9) and (10) provide a feasible solution that can be used to generate an
upper bound of the globa solution. When the lower and upper bound are equal, the global
solution has be obtained (Corollary 3). If there is a gap between these bounds, a partition of
the feasible region must be performed. The estimator functions can then be updated in each
subregion to yield tighter lower bounds over each subregion. A spatial branch and bound
search is performed to successively partition the feasible region along the coordinate directions
of the variables. When the lower bound for a particular subregion is greater or equal than the
best upper bound available, the subregion is discarded. Also during this search procedure

feasible solutions are obtained with which the best upper bound can be updated.

For partitioning the feasible region, it is necessary to select a variable over which the
division of the space will be performed and its corresponding value. The first rule considered
here is the same one that the one used by Sherali and Alameddine (1990), only that now

bilinear and fractional terms are present in the objective function.
Rule 1: (v w, W) eargmax”.” {Cii -’—;‘;’]}
ifv'=0 IW%Z Abs{c,(r.o- %")}

i Ywr

if py> Pw select TVO el se select y,,
ifv'=0 Pv=1 Absicylry- 7_;?]}

Bu=3 Absiculr )’%’n

if R> ft* select Xvo else select v,
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In this way the nonconvex term for which the approximation differs the most is selected,
and the variable that is involved in this term and can affect the most the other approximations

isselected. A second rule that can also be used is as follows:

Rule 2: (vl wl vI\ vI") €arg max™.*** {Qij(ric -’—;';“i}
Co = aAth/' Wl(rvlvl‘ :&Yl‘w_‘;t’}

select a (vw,v'WM) for which Abs(ru~" pt)> a>
Jur

proceed as in Rule 1.

where 1 £a> 0. This rule reduces to the first one when a= 1. There is a tradeoff between the
two rules. Rule 1 may be attractive when the size of 111, IFI, 1JI or 131 is small because the
variables that are present in more terms are selected and a smaller number of partition
variables are used. In practice rule 2 can be more useful since there are cases in which there
are more than one term for which the difference in the approximation can be large. In this
situation it may be useful to select a variable on which partitioning has not been performed

previously because this alows for the tightening of its bounds.

Algorithm

StepO. Initialization.
(@) Set f=en, F=0, select toleranceseand y
(b) For eachvariablex”, iel,yyj e J, andr?, ie I\ y; i€ I, andtheterms ~,iel,jeJ,

-

determine:

-lower and upper bounds by solving the bounding programs in (9) and (10).
-Optional: obtain projections of the variables (as in (13), (15) and (19)) using
either the solutions of the previous bounding problems or problems at a fixed
leve for the projection variable.
-Evaluate the original objective function for each of these feasible solutions. Iff
<f set f=f and store the solution as the incumbent solution (*).

(© Storethe boundsin Q°, and set F=Fu{0}

Step 1. Convex underestimator problem
(a) Solve problem NLP_for Q° to obtain f,°.
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(b) Evaluate the original objective function f°. Iff°<f set f =f° and store the solution as the
incumbent solution f).

Step 2. Convergence
(@ For the subregionsj in F, if fiJ f > ef delete subregion j from F (F=F\{J}).
(b) I1f F=0 the e-global solution is given by the incumbent solution.

Step 3. Partition

(a) Takethelast region k in F (Q¥) and apply the selection rule (Rule 1 or Rule 2).

(b) Subdivide subregion QX in subregions £1** and Q“+? by adding the respective bound or
inequality. Delete subregion CI* from F and store subregions Q“** and Q**2 in F (F=(F\{k})
wik+1,k+2)).

Optional: Update the bounds in subregions k+1 and k+2 for the variables involved in the
nonconvex term with the partition variable.

Step 4. Convex underestimator problems
(a) Solve problem NLP, for Q%* and Q**?to obtain f_<** and f_**2
(b) Evaluate the original objective function for each of these feasible solutions. If f< f, set f =f
and store the solution as the incumbent solution (*).
-Optional: When the difference between the objective function of the convex under estimator
problem NLP_ and the incumbent solution fis smaller than a given tolerance
(@ - fj/f* <y), solve the original nonconvex problem (P) for Q** and/or Cl*+2
using its convex solution as the initial point. If f< f set f =f and store the
solution as the incumbent solution O.
© 1 f. " <f “Zinvert ft*** and Q“+*in F. Gotostep 2.

It should be noted that when there is a strong interdependence between the variables
involved in the nonconvex terms, it can be useful to update the bounds of some of the variables
when a partition is performed (Step 3 optional). In particular the bounds of the variables that
are involved in nonconvex termswith the partition variables can be updated. Also, the original
nonconvex problem (Pl) can be solved over the corresponding subregion when the difference

between the upper and lower bound are small to accelerate the conver gence.

The proposed algorithm can be used for the global optimization of linear fractional

programming problems, bilinear programming problems or problemsthat involve fractional and
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bilinear terms in the objective function in which the feasible region is convex. When the
feasible region is described by linear constraints the bounding problems solved in the

initialization step Ob are LP problems.

Property 8. The branch and bound agorithm will either terminate in a finite number of
partitions at a globa optimal solution, or generate a sequence of bounds that converge to the

globa solution.

Proof. See Appendix B.

[llustrative Example

Example 1 Bilinear objective

The formulation of the NLP underestimator problem and the performance of the algorithm is
illustrated by solving the following example proposed by Al-Khayyd and Falk (1983).
minf=-x+Xxy -y
st. -6x+8y<3

3X-y<3 (ALK)
O0<x,y<5

The feasible region with the origina objective function is plotted in Figure 2. First, vaid

bounds are obtained for x and y by solving the corresponding LPswhich yields:
0<x,y<1.5 (22

From the solution of these LP problems two projected inequalities can be obtained:

3+y

<33 @)
3+6x
yr—8~ @4

The NLP underestimator problem is then given by:

minf=-x+w -y
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st.-6x+8y< 3
3Xx-y<3

w20

WE 15y + 15x-2.25 (ALKY

WZ[S—;zly+1.5x—l.5[§-§1|

we 15y + BE x - 15 521

0<x, y< 15

The solution of thisinitial NLP_ isf_.° = -1.2569 and the actual objective for this solution
isf =-0.892 which is the incumbent solution. The initial underestimator problems for the Al-
Khayyal and Falk approach and the one proposed here are shown in Figure 3.

2
176
1.6
1.26
1
0.76

Optimal

0.6 A
solution

0.26

¢
0 02606076 1 12616176 2

Figure 2. Feasible region and contoursfor example (ALK)

Since thereis a gap between the lower bound and the incumbent solution a partition is
made selecting the variable x. The solutions of problem NLP_ at the two subregions are f *=
-0.995 (x < 0.803) and f? = -1.1761 (x £ 0.803) and the incumbent solution is f= -1.0048.
Therefore, the first subregion can be diminated. A new partition is performed in the second
subregion with thevariabley yielding f* = -1.0833 (y < 0.783) and f_*= -1.0807 (y £ 0.783) with
the incumbent being f= -1.0833. Hence, the global solution is found at x=1.167, y=0.5, f=

1.0833 The computational results for this example are given in Table 1.
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The total time required to solve the problem with the proposed algorithm, including the

Table 1. Computational resultsfor example 1 (or problem ALK).

method Size® Initial 1, Initial r Subregions Solution
Al-Khayyal (3.4) -3.000 -0.750 >103 -1.0833
Sherali (5.21) -1.500 -0.9375 11 -1.0833
proposed (3,6) -1.2569 -0.892 5 -1.0833

* (n,m) n=no. of variables, m = no. congtraints.

time for the bounding problems, is 0.75CPU sees, on a | BM/R6000-530 using MINOS 5.2 for

solving the LP and NLP problems.

Optimal
solution 1

Optimal
solution

0 . 0 )
00.260.60.7611.261.61.76 2 6 0.260.60.76 1 1.261.61.76 2

@ (b)
Figure 3. Feasible region and contours for underestimators by (a) Al-Khayyal and Falk, (b)
proposed method.

This example has also been modified (Example |a) to have an objective function that

involves bilinear and fractional terms as in problem (PO):

minf=-x+xy-y+%

st. -6x+8y <3
3x-y=3
x+yz21l

(ALK 1)

O<x,y<5

Applying the algorithm, the initial convex NLP_has a solution of f_° = -1.00 with x=1.00
and y=0.00, and the incumbent solution is f* = -1.00. Hence, the global optimal solution is

obtained in this case without having to perform a spatial branch and bound sear ch.
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Nonconvex Feasible Regions

The solution method presented for the nonconvex objective function defined over a
convex feasible region in problem (FO) can be extended with some modifications to the case of
nonconvex feasible regions. In this section an outline of the necessary modifications are given.
Here the constraints that describe the feasible region can involve convex, linear fractional and
bilinear terms in the same form than the nonconvex objective function in problem (PO). The

problem considered is as fallows (variable bounds are omitted):

mingo
st. ghO /e L P2
wheaeg=Sivf- | | QHQG +Wp, q,2, /=FO1l..L
i jej 7 9 ter jg- )

Problem (P2) can be reformulated in the same form as (PO) yielding,

mingo

st g,<0 ielL P3)
¥y ik 2 X L, k,m)€P
¥ Tik < Xim (.1, k,m)eN

whereg/=£ £, ry- £ Z Ciixy +h(xy, 2, /=0,1. L

i€l j€l el jej’
The same type of transformations and estimator functions that were presented previoudy are

used for every function g, (/e {Gu L)

An important difference between having the nonconvex terms only in the objective
function or in the constraint is that there are aternative representations of the nonconvex
constraints. Depending of the individual bounds of each particular nonconvex term, different

representations may be tighter or nonredundant.

Consider the falowing nonconvex constraint:
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Y Z, S XXy (25)
=

which can also we written as follows

|-<5 X2 (zX,X2) (26)
= £nz1 _ (27)

With (26) and (27) it is possible to develop nonlinear overestimator functions over the

fractional term, = If the bounds are nonredundant, linear underestimators can also be

X

obtained. These estimators give exact approximations at the lower and upper bounds of the

variablesinvolved in the estimator s function (x; X and z).

The congraint in (25), however, can also be expressed as,

I

| fsx, (28)

T

and nonlinear underestimators can be generated over each fractional term, 3 These

X
estimator s provide exact approximations at the lower and upper bounds of each variables z,and
which are nonredundant. There are points for which each variable z,is at either of its bounds
and XI" < X! <xi, x," <X, <x," and z- < z< Z". For thispoint, representation (26) cannot yidd

an exact approximation while the representation (28) is exact.

Independently on whether or not the nonconvex constraints in problem (P2) are
rearranged, several modifications are required in the algorithm presented earlier to handle
nonconvex feasible regions. Firstly, the solution of the nonlinear convex problems are not
necessar ily feasble solutions and they cannot always be used to update the upper bound. For
this reason the original nonconvex problem (P2) can be solved to ensurethat an upper bound is
available during the search. In thiswork the solution of the first convex problem NLP, is used
as an initial point. To update the upper bound additional nhonconvex problems can be solved

during the search.
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Secondly, to generate the lower and upper bounds of the variables there are different
options. One isto simply consider the subset of convex constraints to generate these bounds.
Alternatively, the nonconvex terms present in the constraints can be substituted by the linear
estimator functions (6)-(7). This alows to consider the possible interactions between all the
variables. The bounding subproblems can be solved in parallel since they are independent. In
the case that they are solved in a sequential form the bounds that are obtained can be used in
the subsequent subproblems if these variables are involved in estimator functions of nonconvex

terms since better approximations will be obtained.

Finally, a modification of the branching rule is also necessary. The coefficients of the
nonconvex terms in the constraints are not sufficient for comparing the approximations since
the constraints can be scaled up or down by constant factors affecting in this form the
selection of the term. This problem can be avoided by including the Lagrange multipliers of the
constraints along with the coefficient of the nonconvex term in the selection rule. In this form
the selection rule when nonconvex terms are present in the constraints and objective function

Is as follows:
Rule3: (v, w, W\ V") earg maXjny {X'Q," (k- ")} /€ L uO
proceed as Rule 1 or Rule 2
This rule has the advantage that when different expressions of the same constraint (as in 26

and 28) are included in the formulation, only the constraint that is active {X¢> 0) is considered
when selecting the partition variable.

[llustrative Example

Example 2 Nonconvex Feasible Region

The following example has a feasible region that is digoint (see Fig 4). The problem is

given by:
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minf=-x;2x, -yi - 2y»
st xNi <10
xay> ™ 10
2xj +2y, =13
15x, + 20y, = 87

05<xj<5
05<x,<4
0.5<y!< 10
05sy,s3

The first convex underestimator problem has a solution of f,° = -23.8. Using this
solution as a starting point, the origina nonconvex problem is solved to obtain an upper
bound. This yields the incumbent solution with an objective function of f= -23.06. The
variable yi is selected for partitioning (y'= 8.944) since it is over its terms that the
approximations are not exact. The two new subregions have solutions that are greater of equal
than the incumbent solution and the globa solution is Xi=1.118, x,=4, y!=8.944 and y,=2.5

with f=-23.06.
Computational Results

In this section the global
optimization of linear fractional,
bilinear and polynomia problems is
considered with the proposed
agorithm. Sze and characteristics of

these problems are given in Table 2.

Examples 3, 4 and 5 are fractiona

programs given in Falk and Palocsay

Figure 4. Digoint feasible region for example problem. (1991). Examples 6, 8, 9 and 10
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correspond to bilinear problems, example 7 is a polynomial problem that can be reformulated
as a bilinear problem and example 11 involves both bilinear and fractional terms. The
computational results are given in Table 3. As can be seen 4 out of the 12 examples only
required the solution of one convex NLP underestimator problem. Except for the example 11,
the computational requirements were very modest. The bounding subproblems, nonconvex
subproblems and the convex NLP subproblemswere solved using MINOS 5.2 through GAMS on
a IBM/R6000-530. The total time requirements for the underestimator subproblemswas less
than 1 cpu sec. except for problem 11 that required 10.3 sec. For the initialization step the _.
total time requirements were also less than 1 cpu sec. Details on the examples are given

below.

In some of these examples (Examples 9 and 10) it was not possible to generate

Table 2. Size and characterigics of examipieproblems
Example Total no. Nonconvex { Nonconvex | Congraints Feasible

variables var. terms Redion

1 2 2 1 2 C

la 2 2 2 3 C

2 4 4 4 6 N

3 6 4 2 5 C

4 7 4 2 9 C

5 6 4 2 6 C

6 4 4 4 6 C

7 4 3 2 3

8 2 2 1 1 ﬁ

9 4 4 2 4 N

10 9 6 2 6 N

11 10 7 5 7 N

12 20 14 7 16 C

C-convex, N=nonconvex

additional estimatorsthrough the projections and there was a difference between the lower and
upper bound at the initial node. For these examples the estimators used here correspond to .
the convex envelope of that nonconvex terms. Nevertheless, the algorithm presented hereand -~
the modifications to the branching rule (Rule 2 and 3) allowed fast convergence by using a

different variable to partition on.




Table 3. Computational results for examples.
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Example { Initial Tower | Initial upper Global Number of

bound bound solution subreqions
1 -1.2569 -0.892 -1.0833 5
la -1 -1 -1 1
2 -21.8 -21.06 -21.06 3
3 -5.0529 -4.9919 -5.0 3
4 -2.47 -2.47 -2.47 1
5 1.5953 1625 1.6231 3
6 -13 -13 -13 1
7 -6 -2 -4.5 3
8 -6.66 -6.66 -6.66 1
9 2.8284 2.966 2.966 5
10 -500 -400 -400 3
11 7049 2834 7049 53
12 126.91 131.87 127.01 3

! Not solved to optimality. Tolerance 5%

Example 3. Linear fractional objective. The formulation for this example is given by:

63x! - 18x2 + 39
laxl + 26X2+13

_37x,+73x2 + 13
maxf=13x;, + 13, + 13 *

st Bx!'-3x2=3 (FAD)

15 <x, <3

Introducing the additional variables, y, and z,, and constraints to express the objective

function as a sum of linear fractions of single variablesyields.
S yi =37x! + 73x, + 13
Zi =13 X! + 13x, + 13
yo = 63x! - 18x, + 39
Z2=13x! + 26x, + 13
5x!l - 3x, =3
15 <Xi <3
y.z20

(FAL’)

Since this is a minimization problem and all the coefficients are negative, it is not

possible to use the nonlinear underestimators (8) of the fractional terms. Bounds are
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generated for all the variables and it Is possible to identify a projection for the first fractional
term that can be used to generate an additional estimator

-59.948
—z * 4.5764 (29)

n

The first convex underestimator problem has a solution of f ° = -5.0529 with the ratio
terms r=(-3.8525, -1.228), The exact objective function isf = -4.9919 and it is the incumbent
solution. The approximation for the first term is exact, so the second term is used for
partitioning the feasible space. Two subregions are considered using the value of the
incumbent solution to partition. The first one has a solution of f' = -4.98 (r, = 1.1394) and it
can be discarded, the second one has a solution of f? = -5.0002 (r, s 1.1394). This subregion
is 0.004% within global optimality. At this point the algorithm can stop or if an extra partition
is done the global solution with an objective function of f=-5.0 is found exactly with x* 3.0
and X2 =4.0. 11 should be noted that Falk and Palocsay (1991) required 20 iterations to solve

this problem.

Example 4. Linear fractional objective. For the next example a similar transformation

isnecessary. The problem is given by:

minf. -*-7?
ZIl Z2

st y!=3x! +x;,-2x3+0.8
Zi = 2X! - X, + X3
Yo = 4x! - 2%, + X3
Zp = 7X! + 3X, - X3
X!+ X, -Xz= 1
X 1 +Xo-Xg<-1 (FA2)
12xy + 5%, + 12x3< 34.8
12x; + 12x, + 7x3<34.8
6x; +y, +x3<-4.1
Xi£0, X, £0, X3 2 0

The global optimal solutionisxi =1, x3 =0 and f*= -2.47.
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Example 5. Linear fractional objective. The last problem of this series correspondsto a

minimization problem and the formulation after the addition of extravariables is given by:
min f= ¥11+£22
st y!l=-Xj+2X,+2
Zx =3Xj -4X2+°
y2=4xj-3X2+4 (FA3)
22=-2X,+X2+3
XI+X2n 1.5
*1=X,
O=Xj =1

O<Xa<1
for this example a solution within e=0.07% of the global optimal x*O, x,=0.284 and f*=1.6231

is obtained.

Example 6. Bilinear objective. The next example is a bilinear problem taken from

Visweswaran and Floudas (1990b) and the formulation is given by,

minf=Xxj -Xz-yi - X" + Xjys +X2yi -X2y,
st. Xj +4x,<8
4Xo +XoN 12
Xo+4X-£12
2yi+y,"8 (D
y,+2y,<8
yl+y,<5
Xi.Xayir Y220

The global optimal solution correspondsto X!=3, x,=0, yi=4, y,=0 and f*=-13.

Example 7. Polynomia objective. The next problem is a polynomia problem taken from

Floudas and Visweswaran (1991) and the formulation is:

minf =-6y + 4.5y% - y*
O<y<3 (FL3)
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The feasible region is convex and the only nonconvex term is the one with the cubic term. The

problem can be reformulated as:

minf=-6y + 4.5y% x,

St X3£Xpy
X; Xy (FL3Y

n=y
0sXj<3,0s%x,59,0=s%x3527,0sy<3

1

- T Original function

" i _—y " i *Y
0.5 1 1.5 2 2.5 3

Figure 5. First underestimator for polynomia problem.

The original objective function and the approximation are plotted against the original

variablein Fig. 5. The globa optimal solution is at y=3 with f*=-4.5.

Example 8. Bilinear constraint. Consider the small example presented by Sahinidis
and Grossmann (1991) where the formulation includes a bilinear constraint,

minf=-x-y

st xy <4

O<xs6 A2
O<y<4

The globa optimal solution is at x=6, y=2/3 and f*=-6,66.

Example 9. Bilinear constraint. The next small example is taken from Lo and

Papalambros (1990). Here the model is given by:
min 2% +x,
st 7--x,<0
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X1¥) +X¥2 2 0
X1 =Y1
X2=Y2
0.1<x,y<2.5

The global solution isx"0.517, Xa=1.932 with f*=2.966.

Example 10. Bilinear constraint. The following example is taken from Lasdon et al.

(1979) and Swaney (1990)

min 6xj + 16X2 + |OX4 -9*5 + 10%7 » 15xg
St X!+ X, -X3-Xg=0
0.03X! +0.0IX; -X3X9 - X3Xg= 0
X3+ X4-Xe=0
Xe+x7;-Xe=0
Xaxg + 0.02X4 - 0.025X5< 0
xgXg + 0.02X7 - 0.015xe £0
X£0, X! <300, x, <300, x3< 100, X4 < 100, X5°100, Xgs< 200, x7 < 200, Xe< 200
0.01 £X9<0.03

The global solutionislocated at x3=0, Xe=100 and X9=0.01 with f*=-400.

Example 11. Bilinear and fractional constraints. The last example isthe mathematical

model for an alkylation plant and is taken from Liebman et al. (1986). The model is:

min 5.04xj + 0.035x2 + 10x3 + 3.36xs - O063X4X7
st X, = 1.22x4 -Xs
X9 +0.222%x45-35.82=0
3X7-X10-133=0
X7<86.35 + 1.098XQ - 0.038 X + 0.325(x6 - 89)
XeXa + 10005 - 9800(~=0;
X, + X5 -XiXa = 0
1.12 + 0.13167X8 -0.00667X8° -f* 2 0

1<X1<,2000, L<xa< 16000, 0<Xx3< 120, 1 £ X4 £5000, 0< X5 2000
85<xs<93,90< X795, 3sXsM 12, 12< X9 4, 145£X40< 162
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Tighter bounds for the variables are obtained by solving a bounding subproblems. In this
formulation it is possible to rewrite some of the constraints, in particular it proves useful to

rewrite the sixth constraint in the following forms:

X2 . X5
x!+x, —x8=o

.55 __ _
xg"'xa xl-O

The first convex problem has a solution of f; = -2824 and using these solution as an
initial point for solving a nonconvex problem an upper bound of "= -1161 with x5=2000 is
obtained and corresponds to the global solution. After 53 nodes the solution is proven optimal

within a 5% tolerance.

Example 12. Linear fractional objective. This formulation corresponds to a heat
exchanger network in which the objective is to minmiize the total area. Arithmetic mean is

used for calculating the temperature driving force.

_90Qn  70Qi2 5Qz  20Q2 2Qm 50Q: 100Q"
minf= u—*—r~+ 3f~+ W’“‘ + ..*—I-,—~+ W~ +~£F~+ ~~;e—|-~

1 1 21 2 HI Cl c2
st, Qu + le = Tcu - 300
Q +Q =T -T
*%19 2 cr cl
=400-T
AHI c12
Q =1.5(T -310)
wC1 HII
Q =1.5(T -T
~11 H12  HII
Q =15(410-T )
A12 H12
Q =15(T -300)
rC2 H21
Q =1.5(T -T )
n21 H2  H2A
= T5(A20- T
n22 H22
T -T +IL___-300
AP - HIZ  Cll _ HI
410-T +T T
AP cl2 H12 cCll
12 2
T T +T 300
Aar H22 CIl H2L
AT = O
21 2
r 420 -T ot Thae ™ Tenn
AP= 5
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450-400+450-T
£12.

AT———
Hi 2
310-285+T _ - 295
A% HI 1

ci= 2
300- 285+ T— - 295
H21

AT ==
QAT.TrO

The global optimal solution is Q,; = 100, Q¢ = 150 and Qg = 80 with f = 127.01.

Conclusions

An algorithm for the global optimization of linear fractional and bilinear programming problems
has been proposed that relies on the solution of nonlinear convex underestimator problems
which result from substituting the nonconvex terms by linear and nonlinear estimator
functions. Conditions under which these functions are nonredundant have been established.
It has also been shown that additional valid estimator functions can be obtained through
projections from subproblems for tightening the variable bounds. Thirteen examples reported
in the literature have been solved using the proposed method, showing that strong lower
bounds are obtained in most of the cases. This greatly reduces the enumeration of nodes in
the spatial branch and bound search with which the computational requirements are kept
small. Efforts are currently under way to test the performance of the algorithm in larger

problems.
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Appendix A. Estimator sfor Factorable Functions
A concave overestimating function of a product of functions Is given by (McCormick (1983)),
fix) gy) < minif” Cgy) + g~ C™) - f»g". f- Cy(y) + d'Ci(X) - P-g'] A.D

where f, g** and g~ are positive bounds over the functions fix) and g(y) such that:

O<fi<fix}<t (A2
059g-54gy) £9" (A3 .

#

and Jox) and Cgty) are concave functions such that for all x andy in some convex set:

CK Si(x) (A4
o) £9(y) (A-5)

Inasimilar way as in (A. 1), the convex underestimating function of a product of functions is

given by.
fix) gy) £ maxif cy) + g' ™) - f g". f-ogy) + gafy) - f-g-] (A.6)

and q(x) and ¢yy) are convex functions such that for all x andy in some convex set:

edx) < f1x) A7)
cdy) < giy) A8

In the case of bilinear functions (flxX)=x and g(y)=y) the individual concave and convex bounding

functions of each individual term are given by the function itsdlf:

C(x) =x=cqX) (A9 .
Caly) =Y =cyy) (A. 10)

Thus, from (A. 1) and (A.6) the following under and over estimator functions are obtai ned:

Xy £max[ X*y + y*ac -xy-. X"y +y"x - X%y {A.11)
xy £maxl yhf + y"x -xV1, X"y #*ac - x'y-) (A.12)
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For fractional linear terms (f(x)=x and g(y):gll). it is possible to generate a convex
underestimator function because the individual convex bounding functions are given by,

cKx)=x (A. 13
cg(y] = - (A.14)

From (A.11) the underestimator function can be expressed as:

X X 1 1. x 1 1

;Zmax[yL+x“(§-§z:].y,+:c‘-(y—yu)] (A.15)

The estimator functions (A. 11), (A. 12) and (A. 15) have the property that they match the
original function when one of the variablesis at a bound. Thisis because the individual convex

and concave bounding functionsin (A.9), (A. 10), (A. 13) and (A. 14) arethe functionsthemselves.
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Appendix B. Mathematical Properties and Proofs

Property 1. When r/= o (or ™ =~fc-), (i, j, k, m) e Pg, the linear overestimator (6a)
(or (Bh)) is alinearization of the nonlinear underestimator (8a) (or (8b)).
Proof Consider the linear overestimator (6a)

Xim ™ YjNK + idty - y;ril (B.1)

Rearranging (B.I) leads to:
N -"+r b (B.2

Using the condition that ry = ".Ij'-f equation (B.2) yields
FikAA +x HAT - o) (B.3)
The nonlinear underestimator (8a) gives rise to the constraint

rix”™ + Xim-(*-2)) (B.4)

The first term of equations (B.3) and (B.4) isthe same. Now compare the nonlinear term NTty)
= f;?" i Ii‘ir)fr<>m equation (B.4) with the linear term {%A - 7)™ equation (B.3). Both

terms are equal at y)". Furthermore, alinearization of the nonlinear term at yj = yj" yields the

linear term:
NThs) + VMNT(y;-)(Yo-yj-)=" (iyi)= ~ -~ T (B.5

Thus, (68) is a linearization of (88) and in a similar form it can be proven that for r* = -“’;t",

(6b) isalinearization of (8b). I

Corollary1. The nonlinear underestimator (8a) (or (8b)) is stronger than the linear
L
overestimator (6a) (or (6b)) when ry - = ’}’; k(orry'= ”;} £), (i,js kK, m) e Pr.

Proof. From Property 1 and the fact that the nonlinear underestimatorsin (83 are convex inyj,

any linearization is a supporting hyperplane (see Fig. 1). I
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NonIin_ear
under estimator

Lin_ear
over estimator

- -
Figure 1. Comparison between linear and nonlinear estimators (6a) and (8a) of the linear
fractional termsin (PO).

L w 1
Property 2. When r, - > }E}',;?r (orrr<n rJ"~), (i,j, k, m) € Pg, thelinear overestimator (6a)

(or 6b) is nonredundant.
Proof. Consider a feasible point with x* and yf such that —’i’,;'.’z Mt with X n* > Xj,- and yj* <

yjU. Evaluating the linear overestimator (6a) at (x*/, yj*) and rearranging it asin (B.2) yields:
+ Lyt | +
X' T W' oo TN WY, L (B.6)

The linear overestimator for that point then reduces tos

Tk 2 rikLl (B?)
The nonlinear underestimator (8a) for this point is,
oy =g (8.9)
Fic -4 Sr A (3¢ 7 '
and using therelationi“"', ~ =1y, for expressing (B.8) in terms of ry " yields
I 2 : (B.9)

Defining azle\j and p= f;‘“'f . the equation (B.9) can be expressed as

rEfa+plrt-apry- =rk-[a+p(l-a)] (B.10)
Since0<a<land0O< P<1,
l=a+(l-a)>a+B(l-a) =¢ (B.11)

the nonlinear underestimator reduces to.
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Tik 2 ¢ry® . ¢<1 (B.12)
Comparing (B.7) and (B.12), it follows that the linear overestimator (6a) is stronger at the point

(xun*, y/) and then nonredundant. |

Property 3.: When x* = Tufyf* (or x*** = rurj™), (i, ], k, m) e Pg thelinear overestimator
(6a) (or (Bb)) isa secant of the nonlinear underestimator (8a) (or (8b)).

Proof. The nonlinear under estimator (8a)

Xim L{ hA
T 2 3G + Xim (Dj u,)j (B.13)
can be expressed as:
u
qu-yj“r,k-xmleq—m;FLsO (B.14)
Using Xim™ = ritys"
X - Y+l AN -0 <0 (B. 15)

The linear overestimator (6a) is given by
Xtosy, " rg +r™j-yrrn (B. 16)

that can be expressed as:

XM - yj'ric+ i (v - ¥i) <0 (5-17)
The difference between both equations (B.15) and (B.17) isin the last term“f’%- -yj*) versus

(vj" - y,)- Both term are equal at the extreme valuesyj = y,L andyj =yj". Sincethe nonlinear
term is convex and the linear one matches itsvalue at the extreme pointsthe latter is a secant

of the nonlinear estimator. |

Corollary_2. The linear overestimator (6a) (or (6b)) is stronger than the nonlinear
underestimator (8a) (or (8b)) over the feasible region when x* = rA (or x* = TA), (i, j K.

Proof. Thisfollows trivially from Property 3 and the fact that the nonlinear underestimator (8a)
isconvex (see Fig. 6). [
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Linear
over estimator

Nonlinear
under estimator

: >
fen J tra
Figure 6. Comparison between linear and nonlinear estimators (6a) and (8a) of the bilinear
termsin (PO).

Property 4 When "> r”jt- (or Xin'< ruyj"), (s j, k, m) € Pg, the nonlinear
underestimator (8a) (or (8b)) is nonredundant.
Proof. Consider a feasible point (rik\ y;*) such that r*yf = XA U s A > A and XigY > xA

> Xm". The nonlinear undérestimator (8a) for this point gives:

2o yu +ximl{_

|
yielding
&_y_j.;.:’m_ < Eyt}-:_ _m_!me_r > = (B.19)
which in turn implies
-k (B.20)

Now consider the linear overestimator (6a) for the same point:

T Ly,
Xem S YU + rulyyt - ¥ =XIy]T “;.[:"" ﬁ#‘k— (B.21)
which yields.
u G L Uy
R i 622
+ri

y.u
Defininga="7> 1 and P = J’LT < 1. equation (B.22) reducesto:

Xim SXim" (B+a(l -B) =%l (1-1+B-a@-1)=x, (1 +B-11-3) (B23
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Since (p- 1) <0and (1- a) <0, X <O X4, with O > 1. The comparison with the other linear
overestimator (6b) is equivalent and also yields x;, €« Ox**-, which in turn implies that the

nonlinear underestimator (8a) is stronger at (r™,vyj"). I

Property_ 5 The nonlinear inequality (14a) (or (14b)) is a valid convex underestimator
when b < 0 (or b' < 0), and is nonredundant with respect to the nonlinear underestimator in
(8a) (or (8b)).

Proof_For the first part of the proof constraint (13) can be expressed as,
1 1

Vi a+bXgm— (B.24)

Multiplying by the lower bound constraint (x* - Xj.- £ 0) yieldsthevalid inequality,
B - X8 G T

Rearranging yields:

Xe 1
—’;‘;‘1 2T pame Mg ] (B.26)

which corresponds to the nonlinear underestimator (14).

The Hessian matrix of the underestimating function in (14) isgiven by
_2b(a+ bxam)

0
(a+ bxm)®
(B.27)
0 2xln|1‘
yi®
The term (a+bxj) is positive over the feasible region since,
atbx,, * y,>0 (B.28)
and hence,
L
] 21(1;(3;%1 L.01ifb<o (B.29)
Also for x;,,, >0,

2 L
—%E‘-> 0 (B.30)

Ifx~M) equation (B.26) reduces to the convex inequality (b<0).

Therefore, if b<0 the Hessian matrix (B.27) is positive definitive and the function is convex.
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Now consider a feasible point (x**, yf) inthestrict interior such thaty,* = a + hx** and
J-<yjt<yj' "It < Xim* <Am™- Equation (14) for the nonlinear underestimator with

projection reduces to.

X", _Xim' ! !
v a+bx,.,,

and is therefore an exact approximation of the linear fractional term. Since yj+ does not lie in

the boundary defined by the bounds of the variables x* and yj the nonlinear underestimator

(8a) yields,
X m+L . X1m* '.' XfanL < x'irnj' + im'= -"+ XimL _X|I’T.1'+l' ‘__,,3311
Yj yj" yi yj " yj

which Is a strict inequality The other nolinear underestimator (8b) for this point yields,
E"E- xm.“l'y— y:. xnly —dsh (B.34)
which is a strict inequality.
Hence, the projected nonlinear underestimator (14) is stronger than the nonlinear

underestimators (8) for the point (X", y,*). I

Property 6.The additional estimators in (16), (17) and (21) provide an exact
approximation at the boundary defined by the projected cut.
Proof, In the same spirit as the proof for Property 5, select a point for which the projected
inequality (20) is a strict inequality and for which thevariables are not at their bounds.

Property 7. Any feasible point (X, y, r, z) in problem NLP_ provides avalid lower bound to
the objective function of problem (PI). Furthermore, the optimal solution " of (NLPJ provides a
valid lower bound to the global optimum (f*) of problem (PI).
Proof. Any feasible point (x, y, r, z) for problem (NLPJ is also a feasible solution to problem (PI)
since the inequalities g(x, y, r, z) £ 0 are identical in both problems. Since the approximating
functionsin (NLPJ represent a relaxation of the bilinear inequalitiesin (PI), they have the effect
of underestimating the objective function C of problem (PI). Thus it follows that at the given

feasible point f_ < f.
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For the global optimum (x*. y*, r\ z*) of problem (PI) it then follows that * = f*; where {* is
the objective of NLP_ evaluated at that point. Since f,\ the optimal solution of NLP_ is unique

dueto its convexity, * =)\ and thusf* > {* I

Cordllary 3, If the optimum solution f' from NLP_ isequal to the objective function value
f from (P1) it corresponds to the global optimum of (PI).
Prodf | ff is not the global optimal solution of problem (P) then there exists a global solution f* <
f. But by Property 7, f* < f* which contradictsthe assumption that f/=f isa solution to NLP,_

Property 8. The branch and bound algorithm will either terminate in a finite number of
partitions at a global optimal solution, or generate a sequence of bounds that converge to the
global solution.

Proof Given the branch and bound procedure, there are two possibilities. In thefirst one, at a
given node the lower bound f_ of the underestimator NLP, is identical to the original objective
function in which case the algorithm terminates in afinite number of partitions.

In the second possibility an infinite sequence of partitions is generated. Thisin turn implies
that there is a subregion that is being infinitely partitioned. Let the sequence of solutions be
denoted by (I and £=(x, y, r, 2). By thetermination criteriait is known that,

fk2f k>0 (B.35)

Since the upper bound is at least as strong as the evaluation of the actual objective function for
the current solution £°.

fICk*) -W)* &* -+ >0 (B.36)
there must exist at least one nonconvex term, +, for which its feasible region is infinitely

partitioned. By the partition rule 1,

....E'm_< _.’_“Im_)+
(Yj'rik_(ﬁ"rﬂ:' (a37)

Summing up over all the nonconvex terms, t, it followsthat
t (~-r) ST(CI - f(C1 ZF-*-k* >0 (B.39)
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The variables for the nonconvex term (¢) have some bounds defining an interval. Since the
partition is of the same nature as the one used by Al-Khayyal and Falk, the variables in the
sequence must converge to one of the bounds. Moreover, the series hasto converge to a point.

When one of the bounds of a variable are not changing, thisvariableis selected for the partition
in the algorithm. When one of the variables is at its bounds the representation is exact,XAbJF =

v

r. Therefore,
0>f(C1 - f (E)>P* f* >0 (B.39)
which means that equality between the lower bound f, and the original function f must hold.

Since by Property 7, f* is a lower bound to the global optimal solution, it corresponds to the

global solution. [
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