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Abstract

In this paper a new deterministic method for the global optimization of mathematical models

that involve the sum of linear fractional and/or bilinear terms is presented. Linear and

nonlinear convex estimator functions are developed for the linear fractional and bilinear terms.

Conditions under which these functions are nonredundant are established. It is shown that

additional estimators can be obtained through projections of the feasible region that can also

be incorporated in a convex nonlinear underestimator problem for predicting lower bounds for

the global optimum. The proposed algorithm consists of a spatial branch and bound search for

which several branching rules are discussed. Illustrative examples and computational results

are presented to demonstrate the efficiency of the proposed algorithm.



Introduction

Many engineering design problems can be formulated through mathematical programming

models (Reklaitis and Ravindran, 1983; Papalambros and Wilde, 1988; Grossmann, 1990).

These models, however, often involve nonconvex functions and therefore when conventional

techniques are used they can get trapped in local solutions. Recently there has been a

significant effort in the area of global optimization. Stochastic and deterministic methods have

been developed; for recent extensive reviews see Schoen (1991) and Horst (1990). Deterministic

methods have the advantage that they can provide rigorous guarantee of global optimality of

the solution but require some assumptions about the mathematical structure of the model.

Since many nonlinear optimization models in engineering design do exhibit a special structure,

there is a clear incentive to consider the solution of these problems with deterministic methods.

An important class of nonconvex optimization problems with special structure

correspond to nonlinear programming problems with bilinear or linear fractional terms. Al-

Khayyal (1992) presented a review of the models and applications of bilinear programming.

The bilinear and linear fractional terms are factorable functions for which McCormick (1976)

has presented a general approach for deriving underestimator functions that can be

incorporated in global optimization algorithms. Al-Khayyal and Falk (1983) proposed an

algorithm for bilinear programs with linear constraints in which linear estimators over the

bilinear terms are used. Swaney (1990) addressed the asymptotic behavior that can occur in

this type of algorithm when a solution does not lie at an extreme point. Algorithms for bilinear

programming models have also recently been developed by Sherali and Alameddine (1990).

These authors presented a linearization reformulation technique that embeds the method

proposed by Al-Khayyal and Falk (1983) and predicts stronger bounds for the global optimum.

However, the main limitation is that the size of the linear programming underestimator

problems grows exponentially with the number of constraints in the original problem.



Falk and Palocsay (1991) proposed an algorithm for optimizing the sum of linear

fractional functions subject to linear constraints. The algorithm consists of a sequence of

linear programming problems in which bounds on feasible subsets are added. These bounds

are tightened iteratively to reduce the search space. These authors also developed convergence

properties for this algorithm by extending the approach presented by Dinkelbach (1967).

However, the rate of convergence of this method can be slow. Konno et al. (1991) addressed

the minimization of the sum of two linear fractional functions over a polytope. This is done

using parametric linear programming algorithms. Floudas and Visweswaran (1990) presented

an algorithm based on a Benders based decomposition approach that can be used to solve

bilinear and/or fractional programming problems. In this method a sequence of subproblems

and relaxed dual subproblems are solved. Although the advantage of this method is that the

subproblems correspond to linear programs, one potential difficulty is that the number of

relaxed dual subproblems that have to be solved at each iteration may grow exponentially with

the number of variables interacting in different nonconvex terms.

In this paper a new deterministic method for the global optimization of mathematical

models that involve the sum of linear fractions and/or bilinear terms is presented. The

proposed method is a generalization of the work presented by Quesada and Grossmann (1992)

for minimizing the sum of linear fractional functions that arises in the global optimal design of

Heat Exchanger Networks. The unique feature of the proposed method is that bilinear and

linear fractional terms are substituted by both linear and nonlinear convex estimator functions

that can be derived using the approach presented by McCormick (1976). Conditions under

which the estimator functions for different types of terms are nonredundant are determined. A

convex nonlinear underestimator problem is then proposed that predicts lower bounds for the

global optimum. These bounds can be further strengthened by the inclusion of additional

estimators that are obtained through projections of the feasible space. For the particular case

of bilinear terms, the additional estimators are equivalent to the reformulation technique of

Sherali and Alameddine (1991). To find the global optimum, a spatial branch and bound



search is conducted in which the lower bounds are obtained from the nonlinear underestimator

problem. Modifications to the branching rules proposed by Sherali and Alameddine (1991) are

used in this search.

The paper is organized as follows. Firstly, the case of a nonconvex objective function

and a convex feasible region is considered. Here the properties of the different estimators

functions, the formulation of the convex NLP underestimator problem and the basic algorithm

are presented. Also, the performance of the algorithm is illustrated through a small example.

The algorithm is then extended to the case of nonconvex feasible regions for which the
m

necessary modifications are described. Finally, numerical results are given for a variety of

problems that have been reported in the literature.

Mathematical model

The following mathematical programming problem that is considered in this paper

involves a nonconvex objective function with linear fractional, bilinear and convex terms, and is

defined over a bounded convex feasible region,

min f = £ £ q, JjJ - I IcyPfl,+ h(p, q, z)
i€l j€J J 9j l€lf j€J' J J

s t g(p, q, z) < d (PO)

z e Z c R n

pL<P <P
U

qL<q <qu, ( q ^ O . J e J)

p e K+ , q € K+

The functions h, h:R l iU"' l+ I J I+m-> R\ and g, g:RIII*lrl*lal"l'IJ"l-> Rm, are assumed to be convex

and differentiable. The set Z is bounded; Cy are real coefficients of the linear fractional terms or

bilinear terms; d is an m-vector. The variables pt and qy are bounded and non-negative and the 4

lower bound for the variables qjf j e J, in the denominator of the fractional terms is strictly

positive. For simplicity in the presentation the sets I and I1, and J and Jf are assumed to be

disjoint, although this assumption can be easily relaxed.



If any variable p4 or qj (J G J) is not restricted to be positive, it can be substituted by two

new variables such that:

Pt = Pi*-Pf W

= Qj+ - Of

The variable cy for j e J is required to be strictly one signed to avoid singularities. In case that

the variable is negative it can be transformed by setting,

cy= -q,' (3)

To facilitate the analysis and the development of the algorithm, problem (PO) will be

reformulated by introducing additional variables and relabeling the variables p and q by the

variables x, y and r, with the following equations:

Pt=Xio q,=yj ^ = iij i e l . j e J (4)

Pi=ri0 q,=yj Piq, = Xij i e F . J e J ' (5)

Also, for convenience the following sets are defined for the positive (P) and negative (N)

terms in the objective of (PO):

PR = {(i,j,k,m) | i G I, j G J, cy > 0, k = j, m = 0}

PB = {(i,j,kjn) | i G I1, j G J', ctJ > 0. k = 0, m = j}

NR = {(i,j,k,m) | i G I, j G J. CiJ < 0, k = j, m = 0}

NB = {(ij,k,m) | i G I . J G J1, Cy< 0, k = 0, m = j}

with P = PR u PB and N = NR u NB.

By using (4) and (5) and the above definition of sets, problem (PO) can be written in the

following compact form:



min f = £ I c« r r X £ Cy x« + h(x, y, rf z)
iel j€J tel' JeJ*

st. yj rik > Xtm (i, j , k, m) e P

yjitk^x^ (i.j, k ,m)e N

g(x, y, r, z) < d (PI)

XL<X <XU

yL<y <y«

i*-<r <ru

ZE Z

where the new inequalities have been relaxed according to the sign of the cost coefficient (ĉ  > 0

for (i, j, k, m) € P and cy< 0 for (i, j, k, m) € N). Also, the bounds for x, y and r are obtained

from (4) and (5) using the bounds for p and q in (PO). Problems (PI) and (PO) are equivalent

and the algorithm is presented based on formulation (PI).

Estimator functions

Following the treatment of McCormick (1976) (see Appendix A), the bilinear terms that

appear in the constraints of (PI) can be replaced by linear convex estimator functions (A. 11 and

A. 12) yielding the following constraints:

x4m<y,ur1k + (i.J,k,m)6P
(i,j,k.m)eP

(i.j.k,m)eN

(i,j.k.m)eN

(6a)

(6b)

(7a)

(7b)xim £ yjurlk + rtk^j - yjurlk
u

Note from the above that it is only necessary to include over or underestimators depending of

the sign of the cost coefficient, Cy.

Additionally, as shown in Appendix A, it is possible to develop nonlinear convex

underestimator functions according to (A. 15) for the constraints with (i, j, 1, m,) e P which

yields:

^ ^ - ^ i ) (i , j ,k,m)6P (8a)



jJ-JJc) (tj.k,m)eP (8b)

The following properties can be established for the linear and nonlinear estimator

functions in (6) and (8) for the linear fractional terms in (PO) with positive cost coefficients, c .̂

Property 1. When T^ = ^?r (or T^ = ^ r ) . (i, j, k, m) € PR, the linear overestimator (6a)

(or (6b)) is a linearization of the nonlinear underestimator (8a) (or (8b)).

Proof. See Appendix B.

Corollary 1. The nonlinear underestimator (8a) (or (8b)) is stronger than the linear

overestimator (6a) (or (6b)) when rlk
L = ^r (or rlk

u = -*£-), (i, j, k, m) e PR.

Proof. See Appendix B.

Tlie following property, however, establishes that the linear overestimators in (6) are not

necessarily redundant.

Property 2. When r,k
L > ^?r (or r&

u < -^£- )t (it jt k, m) e PR, the linear overestimator (6a)

(or 6b) is nonredundant.

Proof. See Appendix B.

For the bilinear terms in (PO) with positive cost coefficients, c ,̂ the following properties

can be established.

Property 3.: When x^1- = Tfjy}* (or x^ = To^yf), (i, j, k, m) € PB, the linear overestimator

(6a) (or (6b)) is a secant of the nonlinear underestimator (8a) (or (8b)).

Proof. See Appendix B

Corollary 2. The linear overestimator (6a) (or (6b)) is stronger than the nonlinear

underestimator (8a) (or (8b)) over the feasible region when x^ = r^^ (or x^11 = r^uy)11), (i, j, k,

m) e PB.

Proof. See Appendix B



Property 4. When xim
L> r^f (or X|m

u< rik
uyju), (i, j, k, m) € PB, the nonlinear

underestimator (8a) (or (8b)) is nonredundant.

Proof. See Appendix B

A geometrical interpretation of properties 1 to 4 is as follows. Consider the case of a

fractional term ((i, jf k, m) e PR, Property 1 and 2) and the projection of the feasible region into

the space of the variables involved in the nonconvex term (variables x and y. Figure la). The

estimators functions (6, 8) have the property that they yield an exact approximation of the

nonconvex term when one of the variables involved in the function is at its lower or upper *

bound (see Appendix A). For the fractional term the nonlinear estimators (8) are expressed in

terms of the variables involved in that term, x and y, and provide an exact approximation at the

boundary defined by the bounds of these variables. As for the linear underestimator in (6),

note that the contours of the fractional term (r = —) correspond to straight lines that pass

through the origin and are given by the dashed lines in Figure la. Therefore, the linear

estimator functions (6) give exact approximations at the boundaiy defined by the bounds of the

variables r and y. As shown in corollary 1, when the bound over the individual nonconvex term
xL

is redundant (e.g. r1- = :*r) there is no part of the feasible region in which the linear estimator
X L

will be stronger. However, when this bound is not redundant (e.g. i4- > -JJ) the linear estimator

provides an exact approximation at points in which the nonlinear cannot.

For the bilinear term, the linear estimators (6) are the ones that are expressed in terms of

the variables involved in the nonconvex term, y and r and therefore they provide an exact

approximation at the bounds of these variables as seen in Fig. lb. Also, according to Property 4,.

the nonlinear estimator in (8) will only be nonredundant if there is a strong bound over the

individual bilinear term (eg. xL > rV in Fig. lb).
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r ~~yxr Linear
estimators

Nonlinear
estimators

Nonlinear
estimators Linear

estimators

Figure 1. Projected feasible region for (a) fractional term and (b) bilinear term

Variable bounds

It is important to have tight lower and upper bounds for the variables x, y and r

involved in the nonconvex terms in (PI) since these bounds determine the quality of the

approximation given by the estimator functions in (6)f (7) and (8). Firstly, the bounds

determine the size of the search space for the global optimum. Secondly, from the value of

these bounds it is possible to determine in advance whether a given estimator function will be

redundant.

In the initialization step of the algorithm, lower and upper bounds for the variables x10

and yj in the fractional terms (i 6 I, J e J) and for the variables ri0 and yj in the bilinear terms (i

€ I1, j € Jf) are calculated. This is accomplished by solving the corresponding minimization and

maximization subproblems for each variable:

y,L = {min yj | g(x, y, r, z) £ d}

y,u = {maxy, | g(x, y. r, z) < d}

x,0
L = {min xim | g(x, y. r, z) < d}

XK)U = (maxxta | g(xf y, r, z) < d}

r10
L = {min rtk | g(x, yf rf z) < d}

riO
u = {max r^ | g(x, y, r, z) < d}

je JuJ1

je JuJ1

l€ I

ie I

ie r

ie r

(9a)

(9b)

(9c)

(9d)

(9e)

(9f)



where the bounds in (PI) are used for the variables x, y, r and z in the above subproblems.

These subproblems have a unique solution since the feasible region is convex. Also, since they

have the same feasible region and are independent, they can be solved in parallel.

Furthermore, for the fractional terms it is possible to calculate lower and upper bounds

for each individual term riJt i e I, j G J by solving the subproblems,

ry1- = {min^, st g(x, y, r, z) < d, z G Z) ie I, j e J (10a)

rtj
u = ( m a ^ , st g(x, y, r, z) < d, z G Z} iG I, j G J (10b)

The subproblems in (10) have a unique solution (Bazaara and Shetty (1979)) and in the case

that the feasible region is given by linear constraints they can be reformulated as LP problems

through the transformation proposed by Charnes and Cooper (1962). Having generated these

bounds it is possible to determine whether the linear overestimators (6) for a fractional term are

nonredundant.

Note that for the bilinear terms, it is not possible to obtain valid bounds over each

individual nonconvex term Xy, i G I1, j G J\ since the resulting subproblems are nonconvex.

However, the nonlinear underestimators (8) may still be useful when nonredundant bounds

over the individual bilinear terms are known a priori, or, as it will be shown later, when a

nonconvex feasible region is considered and bilinear terms are present in the constraints.

Projections

The linear and nonlinear estimator functions in (6), (7) and (8) presented in the previous

section use fixed lower and upper bounds of the variables over which the approximation is

obtained. Additional estimators that tighten the convex representation can be generated by

considering bounds corresponding to hyperplanes of the boundary of the feasible region and

which are projected in the space of the variables involved in the estimator function. In

particular, from the solution of the subproblems (9), (10) solved in the initialization step in
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which bounds for the individual variables are determined, the following inequalities projected

in the space (yj, x̂ ,,) can be obtained:

where X,are the Lagrange multipliers and gjln(yj, x,m, £*) Is a linearization of the constraint

given in terms of yj and x,m with the remaining variables C fixed at their optimal value C*:

yry! 1
The projections in (11) give rise to linear inequalities of the following form:

yj < a + bx,m (13a)

yj 2: a1 + b-Xta (13b)

from which the following nonlinear underestimators that are similar to (8) can be generated:

(i .J.k,m, ePR (14a)

(i.j.k,m)6PR (14b)

The following property can be established for these estimators:

Propertv 5 The nonlinear inequality (14a) (or (14b)) is a valid convex underestimator

when b < 0 (or b1 < 0), and is nonredundant with respect to the nonlinear underestimator in

(8a) (or (8b)).

Proof. See Appendix B.

It can happen that when the projected inequalities in (13) are obtained using the

solution of the bounding subproblem, only a simple bound over the variable is obtained (e.g.

b=0; a = y,u) instead of a linear inequality. In this case, if desired, it is possible to solve an

additional problem fixing the projection variable at a given value within the bounds (i.e. xim =

with x^1- < x^1 <
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The inequalities in (11) can also be projected in the space (yjf ri0), i e I\ j e Jf for the

bilinear terms in (PO) leading to inequalities of the form

ri0 < a + by, (15a)

r10 £ a + b'yj (15b)

These can also be used to generate additional estimator functions through the linear estimators

(6) and (7). In the bilinear case the estimators have the following form:

x*m < yjr* < yfa + (a + byj) yj - yjHa + by,) (i, j, k, m) G PB (16a)
Xim < yjTfc < yjurlk + (af + by,) yj - yj

u(af + b'yj) (i, j, k, m) e PB (16b)

> yj^k + (a - byj) y, - y,L(a - byj) (it j , kf m) e NB (17a)
yjTfc > yjurlk + (a* - b^) y, - yj

u(a' - h'^) (i, j, k, m) € NB (17b)

where b<0 and bf<0 yield convex estimators. These type of inequalities are in fact equivalent to

the ones proposed by Sherali and Alameddine(1990). The difference is that they are only

generated when quadratic convex terms are obtained and here only the bilinear term is

linearized. With the approach presented in this paper, only a small number of this type of

constraints are generated since it is possible to identify nonredundant linear functions in an

explicit form.

The bilinear terms in the constraints of problem (PI) can come from bilinear or

fractional terms in the objective function of problem (PO). When the original term was a

fractional one, projections of the type of equation (16) are not possible to be generated since the

variable r4j, i e I, j € J, does not exist in the constraint set g(x, y, r, z) < 0. Hence, it is not

possible to project the bounds of y, over rtJ. However, projections can be performed for the

bounds of r̂ , l e l j e J, when the following fractional bounding problems (10) are solved:

min (or max) —Q = rtj

st. g(x,y, r,z)<0 (PR)

0<x L <x <xu

0<y L <y <yu
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The nonlinear problem in (PR) has a unique solution. Moreover, as Charnes and Cooper

(1962) have shown. If the constraints g(x, y, r, z) are linear, (PR) can be transformed into a

linear programming problem. To achieve this, the transformation variable tj = — is introduced

yielding the formulation:

min (or max) tpqo

st. g(x, y, r, z) £ 0 (PRl)

0 < x L < x <xu

0 < y L < y <yu

The linear constraints and bounds in (PRl) are multiplied by tj and the resulting products of

variables are denoted as (x\ y\ r\ zf) which yields the LP problem:

min (or max) xi0'

s t g'(x\ y\ i \ z\ t) < 0 (PR2)

x1 £ 0, y1 > 0

Here g* inc ludes t h e transformed original constra ints and the addit ional l inear constra ints

generated from t h e b o u n d s . The so lut ion of the LP problem (PR2) is u s e d to generate

projections of the variable x^ over ^ In a similar form as In (11),

tJ) (18)

In th i s form the projection that is generated h a s the form:

xw,1 £ d + e t, (or XJO1 £ d1 + e't,) (19)

or expressing it In terms of the original variables,

r,j2d+£ (orrlj<d'+^) (20)
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In this way, additional estimator functions can be obtained by using equation (20) in

the linear underestimators (7),

x,m > r̂ yj > (dy, + e) + y^r* - (d + y) yj
L (i, j , k, m) e NR (21a)

X!,,, > rtjy, > (dy, + el + yjurlk - (d
f + y) yju (i, j, k, m) e NR (2lb)

These estimators are convex when e < 0 (ef < 0).

Property 6.The nonlinear estimators in (16), (17) and (21) provide an exact

approximation at the boundary defined by the projected cut.

Proof. See Appendix B.

The estimators in (14), (16), (17) and (21) are only a subset of all the projected

estimators functions that can be generated. In this paper at most one projected estimator for

each variable in the nonconvex term is used. The estimators (16) and (21) can be particularly

relevant because when the cost coefficient, c^, is negative the nonlinear estimators (8) cannot

be used. This is illustrated in example 3.

Convex Nonlinear Underestimator Problem

Having derived the linear and nonlinear bounding approximations (6), (7), (8), (14), (16),

(17) and (21) for the nonconvex terms in (PI), a convex nonlinear underestimator problem

(NLPJ for problem (PI) can be defined as follows. Valid bounds over the variables are

generated from (9) and (10) to define the set Q={ x, y, z: xL < x < x*1, yl < y < yu, rL < r < r"} and

the nonconvex terms in problem (PI) are substituted by the convex approximating functions.

The projections for the upper and lower bounds of the variables are denoted by linear functions

$(•) = a ± b(0 where the convexity conditions are satisfied (eg. Property 5). This then leads to

the following convex nonlinear programming problem:
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Z Z c« rii - Z S Cii xy + h(x, yt r, z)
l€l J€J l€l' j€j'

St. Xta, £ yjhTik + r ^ j - y^r^1- (if j, k, m) e N

(i,j,k,m)€ N

J, k, m) e P According to
J, k, m) € P Properties 1 to 4.

(i,j,k,m)€ P

^ ^ ^ ^ - y ? ' (i.J.k.m)eP
1 * ' (i.j.k,m)€PR

. k, m) € PR (NLPJ

& + <Wyj) yj - y ^ t y ) (*. j. k. m) e pB

yjurik + <)>(yj) yj - yj"<l>(y)) (l. j, k, m) e PB

& +¥yj) yj - yjN>(yj)) (i, j. k, m) e NB

yjurik + <t>(yj) yj - yj"<l>(yj) (i, j. k, m) € NB

«• e) + y j ^ - (d + ^ yjL (i.J. k , m ) e N R

+ ef) + y,urik - (d* + H y,u (it Jt k, m) G NR

g(x, y, r, z) < d

( x , y f r ) € Q , z e Z

Property 7, Any feasible point (x, y, r, z) in problem NLPL provides a valid lower bound to

the objective function of problem (PI). Furthermore, the optimal solution fL
f of (NLPJ provides a

valid lower bound to the global optimum (f*) of problem (PI).

Proof. See Appendix B.

3. If the optimum solution fL* from NLPL is equal to the objective function value

f from (PI) it corresponds to the global optimum of (PI).

Proof. See Appendix B.
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Partitioning Scheme (Branch and Bound)

An optimal solution of problem NLPL provides a valid lower bound to the global optimum

of problem (PI) (Property 7). At the same time this solution is a feasible solution to the problem

(PI) since problem NLPL includes all the original constraints. Hence, only an evaluation of the

original objective function is required to obtain a valid upper bound. Also, the solutions of the

bounding subproblems (9) and (10) provide a feasible solution that can be used to generate an

upper bound of the global solution. When the lower and upper bound are equal, the global

solution has be obtained (Corollary 3). If there is a gap between these bounds, a partition of

the feasible region must be performed. The estimator functions can then be updated in each

subregion to yield tighter lower bounds over each subregion. A spatial branch and bound

search is performed to successively partition the feasible region along the coordinate directions

of the variables. When the lower bound for a particular subregion is greater or equal than the

best upper bound available, the subregion is discarded. Also during this search procedure

feasible solutions are obtained with which the best upper bound can be updated.

For partitioning the feasible region, it is necessary to select a variable over which the

division of the space will be performed and its corresponding value. The first rule considered

here is the same one that the one used by Sherali and Alameddine (1990), only that now

bilinear and fractional terms are present in the objective function.

Rule 1: (vf w, v\ vM) earg m a x ^ . ^ {Ct,(rik -

ifv'=O pv=Zp v Z

i Yvr

if py> Pw select TVO else select yw

ifv"=O P v = I

if Pv> ft* select Xvo else select yw
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In this way the nonconvex term for which the approximation differs the most is selected,

and the variable that is involved in this term and can affect the most the other approximations

is selected. A second rule that can also be used is as follows:

Rule 2: (vlf wlf v l \ vl") €arg max^M.*** {Cij(rlk -

co = a Abs{Cv! wl(rvl v l -

select a (v,w,vf\vM) for which Abs(rw~ ̂ p1 )> a>
Jvr

proceed as in Rule 1.

where 1 £ a > 0. This rule reduces to the first one when a = 1. There is a tradeoff between the

two rules. Rule 1 may be attractive when the size of 111, IFI, IJI or IJ11 is small because the

variables that are present in more terms are selected and a smaller number of partition

variables are used. In practice rule 2 can be more useful since there are cases in which there

are more than one term for which the difference in the approximation can be large. In this

situation it may be useful to select a variable on which partitioning has not been performed

previously because this allows for the tightening of its bounds.

Algorithm

StepO. Initialization.

(a) Set f = eo, F=0, select tolerances e and y

(b) For each variable x^, i e I, yjv j e J, and r^, ie I\ yjf i€ I1, and the terms ^, i e I, j e J,

determine:

-lower and upper bounds by solving the bounding programs in (9) and (10).

-Optional: obtain projections of the variables (as in (13), (15) and (19)) using

either the solutions of the previous bounding problems or problems at a fixed

level for the projection variable.

-Evaluate the original objective function for each of these feasible solutions. If f

< f set f=f and store the solution as the incumbent solution (*).

(c) Store the bounds in Q°, and set F=Fu{0}

Step 1. Convex underestimator problem

(a) Solve problem NLPLfor Q° to obtain fL°.
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(b) Evaluate the original objective function f°. If f °< f set f =f° and store the solution as the

incumbent solution f).

Step 2. Convergence

(a) For the subregions j in F, if fLJ- f > ef delete subregion j from F (F=F\{J}).

(b) If F=0 the e-global solution is given by the incumbent solution.

Step 3. Partition

(a) Take the last region k in F (Qk) and apply the selection rule (Rule 1 or Rule 2).

(b) Subdivide subregion Q.k in subregions £lk+1 and Qk+2 by adding the respective bound or

inequality. Delete subregion Clk from F and store subregions Qk+1 and Qk+2 in F (F=(F\{k})

Optional: Update the bounds in subregions k+1 and k+2 for the variables involved in the

nonconvex term with the partition variable.

Step 4. Convex underestimator problems

(a) Solve problem NLPL for Qk** and Qk*2 to obtain fL
k+1 and fL

k+2.

(b) Evaluate the original objective function for each of these feasible solutions. If f < f, set f =f

and store the solution as the incumbent solution (*).

-Optional: When the difference between the objective function of the convex underestimator

problem NLPL and the incumbent solution f is smaller than a given tolerance

((f* - fj/f* < y), solve the original nonconvex problem (P) for Qk+1 and/or Clk+2

using its convex solution as the initial point. If f< f set f =f and store the

solution as the incumbent solution O.

(c) If fL
k+1 < fL

k+2 invert ftk+1 and Qk+2 in F. Go to step 2.

It should be noted that when there is a strong interdependence between the variables

involved in the nonconvex terms, it can be useful to update the bounds of some of the variables

when a partition is performed (Step 3 optional). In particular the bounds of the variables that

are involved in nonconvex terms with the partition variables can be updated. Also, the original

nonconvex problem (PI) can be solved over the corresponding subregion when the difference

between the upper and lower bound are small to accelerate the convergence.

The proposed algorithm can be used for the global optimization of linear fractional

programming problems, bilinear programming problems or problems that involve fractional and
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bilinear terms in the objective function in which the feasible region is convex. When the

feasible region is described by linear constraints the bounding problems solved in the

initialization step O.b are LP problems.

Property 8. The branch and bound algorithm will either terminate in a finite number of

partitions at a global optimal solution, or generate a sequence of bounds that converge to the

global solution.

Proof. See Appendix B.

Illustrative Example

Example 1 Bilinear objective

The formulation of the NLP underestimator problem and the performance of the algorithm is

illustrated by solving the following example proposed by Al-Khayyal and Falk (1983).

min f = -x + xy -y

st. -6x + 8y < 3

3x - y < 3 (ALK)

0 < x , y < 5

The feasible region with the original objective function is plotted in Figure 2. First, valid

bounds are obtained for x and y by solving the corresponding LP's which yields:

0<x,y<1.5 (22)

From the solution of these LP problems two projected inequalities can be obtained:

3 + y
x<—g-2- (23)

3 + 6x
y^—8~ (24)

The NLP underestimator problem is then given by:

min f = -x + w -y
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st. -6x + 8y < 3

3x - y < 3

w £ 1.5 y + 1.5 x -2.25 (ALK1)

w £ 1.5 y +

0<x, y< 1.5

x - 1.5 [
3 + 6x,1

The solution of this initial NLPL is fL° = -1.2569 and the actual objective for this solution

is f = -0.892 which is the incumbent solution. The initial underestimator problems for the Al-

Khayyal and Falk approach and the one proposed here are shown in Figure 3.

2

1.76

1.6

1.26

1

0.76

0.6

0.26

.Optimal
solution

0 0.26 0.6 0.76 1 1.26 1.6 1.76 2

Figure 2. Feasible region and contours for example (ALK)

Since there is a gap between the lower bound and the incumbent solution a partition is

made selecting the variable x. The solutions of problem NLPL at the two subregions are fL*=

-0.995 (x < 0.803) and fL
2 = -1.1761 (x £ 0.803) and the incumbent solution is f = -1.0048.

Therefore, the first subregion can be eliminated. A new partition is performed in the second

subregion with the variable y yielding fL
3 = -1.0833 (y < 0.783) and fL

4= -1.0807 (y £ 0.783) with

the incumbent being f= -1.0833. Hence, the global solution is found at x= 1.167, y=0.5, f=-

1.0833 The computational results for this example are given in Table 1.
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The total time required to solve the problem with the proposed algorithm, including the

Table 1. Computational results for example 1 (or problem ALK)
method

Al-Khayyal
Sherali

proposed

Size1

(3,4)
(5.21)
(3,6)

Initial fL
-3.000
-1.500

-1.2569

Initial r
-0.750

-0.9375
-0.892

Subregions
>103

11
5

Solution
-1.0833
-1.0833
-1.0833

1 (n,m) n= no. of variables, m = no. constraints.

time for the bounding problems, is 0.75CPU sees, on a IBM/R6000-530 using MINOS 5.2 for

solving the LP and NLP problems.

2

1.76

1.6

1 25

1

0.75

O.I

0.26

0

\

\ Optimal
solution

\

2

1.75

1.6

1.25

1

0.75

O.S

0.25

0

Optimal
solution

0 0.26 0.6 0.76 1 1.26 1.6 1.76 2 6 0.26 0.6 0.76 1 1.26 1.6 1.76 2

(a) (b)

Figure 3. Feasible region and contours for underestimators by (a) Al-Khayyal and Falk, (b)

proposed method.

This example has also been modified (Example la) to have an objective function that

involves bilinear and fractional terms as in problem (PO):

min f = -x + xy -y + ̂

st. -6x + 8y < 3

3x-y<3 (ALK1)

0<x,y<5

Applying the algorithm, the initial convex NLPLhas a solution of fL° = -1.00 with x=1.00

and y=0.00, and the incumbent solution is f* = -1.00. Hence, the global optimal solution is

obtained in this case without having to perform a spatial branch and bound search.
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Nonconvex Feasible Regions

The solution method presented for the nonconvex objective function defined over a

convex feasible region in problem (PO) can be extended with some modifications to the case of

nonconvex feasible regions. In this section an outline of the necessary modifications are given.

Here the constraints that describe the feasible region can involve convex, linear fractional and

bilinear terms in the same form than the nonconvex objective function in problem (PO). The

problem considered is as follows (variable bounds are omitted):

mingo

st. g^O /e L (P2)

where g,= S i v f - I I <VPiQj + Wp, q, z), /=O,1 L
i€i jej J 9j ter j€j- J

Problem (P2) can be reformulated in the same form as (PO) yielding,

mingo

s t g,<0 ie L (P3)

,k ,m)€P

, k ,m)eN

where g/=£ £ Cj, ry- £ Z Ct/xy + hk(xf y, rt z), /=O,1 L
i€l j€J i€i' jej'

The same type of transformations and estimator functions that were presented previously are

used for every function g, (/ e {0}u L)

An important difference between having the nonconvex terms only in the objective

function or in the constraint is that there are alternative representations of the nonconvex

constraints. Depending of the individual bounds of each particular nonconvex term, different

representations may be tighter or nonredundant.

Consider the following nonconvex constraint:
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(25)

which can also we written as follows
|-<;x2 (z<x,x2) (26)

n
z= £z, (27)

With (26) and (27) it is possible to develop nonlinear overestimator functions over the

fractional term, —. If the bounds are nonredundant, linear underestimators can also be
xi

obtained. These estimators give exact approximations at the lower and upper bounds of the

variables involved in the estimators function (xlf x^ and z).

The constraint in (25), however, can also be expressed as,

| (28)

and nonlinear underestimators can be generated over each fractional term, — These
xi

estimators provide exact approximations at the lower and upper bounds of each variables z,and

which are nonredundant. There are points for which each variable z, is at either of its bounds

and X!L < X! < xiu, x2
L < x2 < x2

u and zL < z < zu. For this point, representation (26) cannot yield

an exact approximation while the representation (28) is exact.

Independently on whether or not the nonconvex constraints in problem (P2) are

rearranged, several modifications are required in the algorithm presented earlier to handle

nonconvex feasible regions. Firstly, the solution of the nonlinear convex problems are not

necessarily feasible solutions and they cannot always be used to update the upper bound. For

this reason the original nonconvex problem (P2) can be solved to ensure that an upper bound is

available during the search. In this work the solution of the first convex problem NLPL is used

as an initial point. To update the upper bound additional nonconvex problems can be solved

during the search.
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Secondly, to generate the lower and upper bounds of the variables there are different

options. One is to simply consider the subset of convex constraints to generate these bounds.

Alternatively, the nonconvex terms present in the constraints can be substituted by the linear

estimator functions (6)-(7). This allows to consider the possible interactions between all the

variables. The bounding subproblems can be solved in parallel since they are independent. In

the case that they are solved in a sequential form the bounds that are obtained can be used in

the subsequent subproblems if these variables are involved in estimator functions of nonconvex

terms since better approximations will be obtained.

Finally, a modification of the branching rule is also necessary. The coefficients of the

nonconvex terms in the constraints are not sufficient for comparing the approximations since

the constraints can be scaled up or down by constant factors affecting in this form the

selection of the term. This problem can be avoided by including the Lagrange multipliers of the

constraints along with the coefficient of the nonconvex term in the selection rule. In this form

the selection rule when nonconvex terms are present in the constraints and objective function

is as follows:

Rule 3: (v, w, v\ v") e arg max(1 Jtkjn) {X'q,' (rik - ^ ) } / € L uO

proceed as Rule 1 or Rule 2

This rule has the advantage that when different expressions of the same constraint (as in 26

and 28) are included in the formulation, only the constraint that is active {Xe > 0) is considered

when selecting the partition variable.

Illustrative Example

Example 2 Nonconvex Feasible Region

The following example has a feasible region that is disjoint (see Fig 4). The problem is

given by:
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min f = -x r 2x2 - yi - 2y2

s t x^i < 10

xay2 ̂  10

2xj + 2y2 > 13

15x2 + 20y2 > 87

0.5 < xj < 5

0.5 < x2 < 4

0.5<y!< 10

0.5 < y2 < 3

The first convex underestimator problem has a solution of fL° = -23.8. Using this

solution as a starting point, the original nonconvex problem is solved to obtain an upper

bound. This yields the incumbent solution with an objective function of f = -23.06. The

variable yi is selected for partitioning (y!= 8.944) since it is over its terms that the

approximations are not exact. The two new subregions have solutions that are greater of equal

than the incumbent solution and the global solution is Xi=1.118, x2=4, y!=8.944 and y2=2.5

with f=-23.06.

Computational Results

In this section the global

optimization of linear fractional,

bilinear and polynomial problems is

considered with the proposed

algorithm. Size and characteristics of

these problems are given in Table 2.

Examples 3, 4 and 5 are fractional

programs given in Falk and Palocsay

Figure 4. Disjoint feasible region for example problem. (1991). Examples 6, 8, 9 and 10
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correspond to bilinear problems, example 7 is a polynomial problem that can be reformulated

as a bilinear problem and example 11 involves both bilinear and fractional terms. The

computational results are given in Table 3. As can be seen 4 out of the 12 examples only

required the solution of one convex NLP underestimator problem. Except for the example 11,

the computational requirements were very modest. The bounding subproblems, nonconvex

subproblems and the convex NLP subproblems were solved using MINOS 5.2 through GAMS on

a IBM/R6000-530. The total time requirements for the underestimator subproblems was less

than 1 cpu sec. except for problem 11 that required 10.3 sec. For the initialization step the

total time requirements were also less than 1 cpu sec. Details on the examples are given

below.

In some of these examples (Examples 9 and 10) it was not possible to generate

Table 2. Size and characteristics of exam
Example

1
l a
2
3
4
5
6
7
8
9
10
11
12

Total no.
variables

2
2
4
6
7
6
4
4
2
4
9
10
2 0

Nonconvex
var.

2
2
4
4
4
4
4
3
2
4
6
7
14

Nonconvex
terms

1
2
4
2
2
2
4
2
1
2
2
5
7

pie problems.
Constraints

2
3
6
5
9
6
6
3
1
4
6
7
16

Feasible
Region

C
C
N
C
C

c
c
c
N
N
N
N
C

C-convex, N=nonconvex

additional estimators through the projections and there was a difference between the lower and

upper bound at the initial node. For these examples the estimators used here correspond to

the convex envelope of that nonconvex terms. Nevertheless, the algorithm presented here and

the modifications to the branching rule (Rule 2 and 3) allowed fast convergence by using a

different variable to partition on.
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Table 3. Computational results for examples.
Example

1
l a
2
3
4
5
6
7
8
9
10
11
12

Initial lower
bound
-1.2569

-1
-21.8

-5.0529
-2.47
1.5953

-13
-6

-6.66
2.8284
-500
7049
126.91

Initial upper
bound
-0.892

-1
-21.06
-4.9919

-2.47
1.625

-13
-2

-6.66
2.966
-400
2834

131.87

Global
solution
-1.0833

-1
-21.06
-5.0
-2.47

1.6231
-13
-4.5

-6.66
2.966
-400
7049

127.01

Number of
subregions

5
1
3
3
1
3
1
3
1
5
3

53 1

3
1 Not solved to optimality. Tolerance 5%

Example 3. Linear fractional objective. The formulation for this example is given by:

+ 73 x2 + 13 63x! - 18x2 + 39
maxf =

st 5J

13 2 6 x 2 + 1 3

5x! - 3x2 = 3

1.5 <x2 < 3

(FA1)

Introducing the additional variables, y4 and z,, and constraints to express the objective

function as a sum of linear fractions of single variables yields.

St. yi = 37x! + 73 x2 + 13

Zi =13 X! + 13x2 + 13

y2 = 63x! - 18x2 + 39

Z2 = 13x! + 26x2 + 13

5x! - 3x2 = 3

1.5 <Xi < 3

Since this is a minimization problem and all the coefficients are negative, it is not

possible to use the nonlinear underestimators (8) of the fractional terms. Bounds are
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generated for all the variables and it Is possible to identify a projection for the first fractional

term that can be used to generate an additional estimator

4.5764 (29)

The first convex underestimator problem has a solution of fL° = -5.0529 with the ratio

terms r=(-3.8525, -1.228), The exact objective function is f = -4.9919 and it is the incumbent

solution. The approximation for the first term is exact, so the second term is used for

partitioning the feasible space. Two subregions are considered using the value of the

incumbent solution to partition. The first one has a solution of fL
l = -4.98 (r2 > 1.1394) and it

can be discarded, the second one has a solution of fL
2 = -5.0002 (r2 < 1.1394). This subregion

is 0.004% within global optimality. At this point the algorithm can stop or if an extra partition

is done the global solution with an objective function of f=-5.0 is found exactly with x^ 3.0

and X2 =4.0. 11 should be noted that Falk and Palocsay (1991) required 20 iterations to solve

this problem.

Example 4. Linear fractional objective. For the next example a similar transformation

is necessary. The problem is given by:

mlnf. - * - ?
Zl Z2

st y! = 3x! + x2 - 2x3 +0.8

Zi = 2X! - X2 + X3

y2 = 4x! - 2x2 + x3

ZJ2 = 7X! + 3X2 - X3

X! + X2 - X3 < 1

-X!+x 2 -x 3 <- l (FA2)

+ 5x2 + 12x3 < 34.8

+ 12x2 + 7x3 < 34.8

x2 + x3 < -4.1
Xi £ 0, X2 £ 0, X3 > 0

The global optimal solution is xi =1, x3 = 0 and f*= -2.47.
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Example 5. Linear fractional objective. The last problem of this series corresponds to a

minimization problem and the formulation after the addition of extra variables is given by:

st y! = -Xj + 2x 2 + 2

ZX = 3Xj - 4X2 + 5

y2 = 4xj - 3X2 + 4 (FA3)

Z2 = -2x2 + X2 + 3

X! + X2 ̂  1.5

*1<X2

0 < Xj < 1

0<Xa< 1

for this example a solution within e=0.07% of the global optimal x^O, x2=0.284 and f*= 1.6231

is obtained.

Example 6. Bilinear objective. The next example is a bilinear problem taken from

Visweswaran and Floudas (1990b) and the formulation is given by,

minf = xj - x 2 - y i - x ^ + xjy2 +X2yi -X2y2

st. Xj + 4x2 < 8

4x2 + x2 ̂  12

3x2 + 4x2 £ 12

2yi + y2 ̂  8 (FL1)

y, + 2y2 < 8

y! + y2 < 5

Xi.x2ty l f y 2 >0

The global optimal solution corresponds to X!=3, x2=0, yi=4, y2=0 and f*=-13.

Example 7. Polynomial objective. The next problem is a polynomial problem taken from

Floudas and Visweswaran (1991) and the formulation is:

min f =-6y + 4.5y2 - y3

0 < y < 3 (FL3)
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The feasible region is convex and the only nonconvex term is the one with the cubic term. The

problem can be reformulated as:

m i n f = - 6 y + 4.5y2-

st x3

(FL31)

0 < Xj < 3, 0 < x2 < 9, 0 < x3 < 27, 0 < y < 3

o

- l

- 2

-3

-4

-5

1

Original function

0 . 5 1 1 . 5 2 2 . 5 3

Figure 5. First underestimator for polynomial problem.

The original objective function and the approximation are plotted against the original

variable in Fig. 5. The global optimal solution is at y=3 with f*=-4.5.

Example 8. Bilinear constraint. Consider the small example presented by Sahinidis

and Grossmann (1991) where the formulation includes a bilinear constraint,

min f = -x - y

st xy < 4

0 < x < 6 (FL2)

0 < y < 4

The global optimal solution is at x=6, y=2/3 and f*=-6,66.

Example 9. Bilinear constraint. The next small example is taken from Lo and

Papalambros (1990). Here the model is given by:

min x2

st 7- - x2 < 0
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> 0

0.1 <x, y<2.5

The global solution is x^O.517, Xa=1.932 with f*=2.966.

Example 10. Bilinear constraint. The following example is taken from Lasdon et al.

(1979) and Swaney (1990)

min 6xj + I6X2 + IOX4 -9*5 + 1 0 x 7 * 1 5 x 8

St X! + X2 - X3 - Xg =0

0.03X! +O.OlX2 -X3X9 - X3Xg= 0

x3 + X4 - Xe = 0

Xe + x7 - Xe = 0

+ 0.02X4 - 0.025X5 < 0

+ 0.02x7 - 0.015xe £ 0

x £ 0, X! < 300, x2 < 300, x3 < 100, X4 < 100, X5 ̂ 100, Xg< 200, x7 < 200, Xe < 200

0.01 <X9<0.03

The global solution is located at x3=0, Xe=100 and X9=0.01 with f*=-400.

Example 11. Bilinear and fractional constraints. The last example is the mathematical

model for an alkylation plant and is taken from Liebman et al. (1986). The model is:

min 5.04xj + 0.035x2 + 10x3 + 3.36xs - O.O63X4X7

st x2 = 1.22x4 -x5

X9 + 0.222x10 - 35.82 = 0

3x7-x1 0 -133 = 0

x7 < 86.35 + 1.098XQ - 0.038 XQ2 + 0.325(x6 - 89)

+ 1000x3 - 9800(^ = 0;

x2 + X5 -XiXa = 0

1.12 + 0.13167X8 -0.00667X82 -f1 > 0

1 < X! <, 2000, 1 < x2 < 16000, 0 < x3 < 120, 1 < X4 £ 5000, 0 < X5 < 2000

85 < xs < 93, 90 < x7 < 95, 3 < Xs ̂  12, 1.2 < X9 ̂  4, 145 £ x10 < 162
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Tighter bounds for the variables are obtained by solving a bounding subproblems. In this

formulation it is possible to rewrite some of the constraints, in particular it proves useful to

rewrite the sixth constraint in the following forms:

The first convex problem has a solution of f0
L = -2824 and using these solution as an

initial point for solving a nonconvex problem an upper bound of !"= -1161 with x5=2000 is

obtained and corresponds to the global solution. After 53 nodes the solution is proven optimal

within a 5% tolerance.

Example 12. Linear fractional objective. This formulation corresponds to a heat

exchanger network in which the objective is to minmiize the total area. Arithmetic mean is

used for calculating the temperature driving force.

50Qn 70Qi2 5Q2i 20Q22 2Qm 50Qci lOOQ^
m l n f = "*r~+ ~*f~ + W~ + "*r~ + W~ +~£F~+ ~*T~

11 12 21 22 HI Cl C2

Q +Q =T -T
**12 22 C12 Cll

Q =400-T
^ H l C12
Q =1 .5(T -310)
**C1 H l l
Q =1 .5(T -T )
^ 1 1 H12 Hl l

Q = 1.5 (410-T )
^12 H12

Q = 1.5 (T - 300)
^ C 2 H21
Q =1 .5(T -T )
^21 H22 H21

Q = 1.5 (420-T )
^22 H22

T -T +T -300
A ,p H12 Cl l H l l
ATn = 2

410-T +T -T
A ,p C12 H12 C l l

12 2
T -T +T -300

A a , H22 C l l H21
AT = o

21 2
420 - T + T - T

Arp C12 H22 C l lAi = s22 2
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450 - 400 + 450 - T
A~, £12.AT = o

Hi 2

310 - 285 + T - 295
Arr% HI 1
A T c i = 2

300 - 285 + T - 295
An> H21AT = o

C2 2Qf AT.T^O

The global optimal solution is Q2j = 100, Q c i = 150 and QQ2 = 80 with f = 127.01.

Conclusions

An algorithm for the global optimization of linear fractional and bilinear programming problems

has been proposed that relies on the solution of nonlinear convex underestimator problems

which result from substituting the nonconvex terms by linear and nonlinear estimator

functions. Conditions under which these functions are nonredundant have been established.

It has also been shown that additional valid estimator functions can be obtained through

projections from subproblems for tightening the variable bounds. Thirteen examples reported

in the literature have been solved using the proposed method, showing that strong lower

bounds are obtained in most of the cases. This greatly reduces the enumeration of nodes in

the spatial branch and bound search with which the computational requirements are kept

small. Efforts are currently under way to test the performance of the algorithm in larger

problems.
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Appendix A. Estimators for Factorable Functions

A concave overestimating function of a product of functions Is given by (McCormick (1983)),

fix) g(y) < minlf" Cg(y) + gL C^x) - f» gL. f1- Cg(y) + guCf(x) - P- g"] (A. 1)

where f, g1^ and gL are positive bounds over the functions fix) and g(y) such that:

f" (A.2)

0 5 gL 5 g(y) £ gu (A.3)

and Cjcx) and Cgty) are concave functions such that for all x and y in some convex set:

C,(x) Sf(x) (A.4)

Cg(y) £g(y) (A.5)

In a similar way as in (A. 1), the convex underestimating function of a product of functions is

given by.

fix) g(y) £ maxlf cg(y) + g" c^x) - f g". f1- cg(y) + gLcrfx) - f- g-] (A.6)

and q(x) and cg(y) are convex functions such that for all x and y in some convex set:

(A.7)

(A.8)

In the case of bilinear functions (flx)=x and g(y)=y) the individual concave and convex bounding

functions of each individual term are given by the function itself:

C(x) =x = c«(x) (A.9)

= y = Cg(y) (A. 10)

Thus, from (A. 1) and (A.6) the following under and over estimator functions are obtained:

xy £ max[ x*y + y*oc -xy-. x"y +y"x -

xy £ maxl yhf + y"x -xV1, x"y +y*oc - x'y-) (A.12)
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For fractional linear terms (f(x)=x and g(y)=n). it is possible to generate a convex

underestimator function because the individual convex bounding functions are given by,

cKx)=x (A. 13)

From (A.11) the underestimator function can be expressed as:

The estimator functions (A. 11), (A. 12) and (A. 15) have the property that they match the

original function when one of the variables is at a bound. This is because the individual convex

and concave bounding functions in (A.9), (A. 10), (A. 13) and (A. 14) are the functions themselves.
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Appendix B. Mathematical Properties and Proofs

Property 1. When r^ = ^"J- (or r*11 = ̂ fc-), (i, j, k, m) e PR, the linear overestimator (6a)

(or (6b)) is a linearization of the nonlinear underestimator (8a) (or (8b)).

Proof Consider the linear overestimator (6a)

Xim ^ Yĵ ik + idty - yj
urlkL (B. 1)

Rearranging (B.I) leads to:

r lk^-^+r lkL (B.2)

Xi *"

Using the condition that rik
L= ^ j - f equation (B.2) yields

r i k ^ ^ + x ^ H ^ r - -gjjfcpr) (B.3)

The nonlinear underestimator (8a) gives rise to the constraint

r l k ^ + XimL(^-^j) (B.4)

The first term of equations (B.3) and (B.4) is the same. Now compare the nonlinear term NTty)

= fc" - T îr) fr<>m equation (B.4) with the linear term {—^ - T̂ sta") from equation (B.3). Both

terms are equal at y)u. Furthermore, a linearization of the nonlinear term at yj = yju yields the

linear term:

NT(yJ«) + V M NT(y j - ) (y J -y j - )= .^ (yj-yju)= ^ - ^ f T (B.5)

Thus, (6a) is a linearization of (8a) and in a similar form it can be proven that for r^ = -^t",

(6b) is a linearization of (8b). I

Corollary 1. The nonlinear underestimator (8a) (or (8b)) is stronger than the linear

overestimator (6a) (or (6b)) when rik
L = ?*k (or rik

u = -*j£), (i, jf k, m) e PR.

Proof. From Property 1 and the fact that the nonlinear underestimators in (8a) are convex in yj,

any linearization is a supporting hyperplane (see Fig. 1). I
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overestimator

-i

Figure 1. Comparison between linear and nonlinear estimators (6a) and (8a) of the linear

fractional terms in (PO).

Property 2. When rlk
L > ~?r (or r^ < ^r~) , (i, j, k, m) € PR, the linear overestimator (6a)

(or 6b) is nonredundant.

Proof. Consider a feasible point with x^ and yf such that —r = rlk
L

f with x̂ n* > Xjm
L and yj* <

yju. Evaluating the linear overestimator (6a) at (x^/, yj+) and rearranging it as in (B.2) yields:

+ rlk
L (B.6)

The linear overestimator for that point t h e n reduces to f

rik
L

The nonlinear underestimator (8a) for this point is,
Xi * 1 1

r i k ̂  -^Sr + L (
and using the relation ™}~ = rlk

L, for expressing (B.8) in terms of rlk
L yields

Defining a=Aj and p = - ^ r . the equation (B.9) can be expressed as

r,k£ [a + p] r^ - apr,k
L = r,kL [ a + p (1 - a) ]

Since 0 < a < 1 and 0 <, P < 1,

(B.7)

(B.8)

(B.9)

(B.10)

(B.ll)

the nonlinear underestimator reduces to.
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Comparing (B.7) and (B.12), it follows that the linear overestimator (6a) is stronger at the point

*, y/) and then nonredundant. I

Property 3.: When x^ = Tufyf* (or x^*1 = ru^j11), (i, j, k, m) e PBf the linear overestimator

(6a) (or (6b)) is a secant of the nonlinear underestimator (8a) (or (8b)).

Proof. The nonlinear underestimator (8a)

h-^u) (B.13)

can be expressed as:

Using xlm
L = rlk

LyJ
L

x*m - yjurlk + rikL ^^ -yj
L) < 0 (B. 15)

The linear overestimator (6a) is given by

Xto < y,urlk + r ^ j - y ^ r ^ (B. 16)

that can be expressed as:

xim - yjurlk + rlk
L (yju - yj) < 0 (B.17)

The difference between both equations (B.15) and (B.17) is in the last term r ~ - -yjL) versus

(yju - y,). Both term are equal at the extreme values yj = y,L and yj = yju. Since the nonlinear

term is convex and the linear one matches its value at the extreme points the latter is a secant

of the nonlinear estimator. I

Corollary 2. The linear overestimator (6a) (or (6b)) is stronger than the nonlinear

underestimator (8a) (or (8b)) over the feasible region when x^ = r^^ (or x^ = T^^), (i, jf k.

m) € PB.

Proof. This follows trivially from Property 3 and the fact that the nonlinear underestimator (8a)

is convex (see Fig. 6). I
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Figure 6. Comparison between linear and nonlinear estimators (6a) and (8a) of the bilinear

terms in (PO).

Property 4. When xlm
L> r ^ j 1 - (or Xim

u< rlk
uyju), (if j, k, m) € PB , the nonlinear

underestimator (8a) (or (8b)) is nonredundant.

Proof. Consider a feasible point (rlk\ y,*) such that r^yf = x^1-, rik
u > r^* > r^ and Xim

u > x^,*

L. The nonlinear underestimator (8a) for this point gives:

yielding

y U - *ik y + - y + ~ **

which in turn implies

Now consider the linear overestimator (6a) for the same point:

which yields.

+rik
L

(B.19)

(B.20)

(B.21)

(B.22)
y.u r . L

Defining a= ^7 > 1 and P = J^T < 1. equation (B.22) reduces to:

= x,m
L(l -a)) (B.23)
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Since (p- 1) < 0 and (1- a) < 0, x^ < O X4m
L with O > 1. The comparison with the other linear

overestlmator (6b) is equivalent and also yields xlm < Ox^1-, which in turn implies that the

nonlinear underestimator (8a) is stronger at (r^, yj+). I

Property 5 The nonlinear inequality (14a) (or (14b)) is a valid convex underestimator

when b < 0 (or b1 < 0), and is nonredundant with respect to the nonlinear underestimator in

(8a) (or (8b)).

Proof For the first part of the proof constraint (13) can be expressed as,

yj a + (B.24)

Multiplying by the lower bound constraint (x^ - Xjm
L £ 0) yields the valid inequality,

Rearranging yields:

(Xlm" ^ M a +

which corresponds to the nonlinear underestimator (14).

The Hessian matrix of the underestimating function in (14) is given by
2 b ( a + bx«mL)

(B.26)

(a +
0

yj3

(B.27)

The term (a+bxjm) is positive over the feasible region since,

a+bx,m ^ y, > 0

and hence,
21

Also

If x^M) equation (B.26) reduces to the convex inequality (b<0).

(B.28)

(B.29)

(B.30)

(B.31)

Therefore, if b<0 the Hessian matrix (B.27) is positive definitive and the function is convex.
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Now consider a feasible point (x^*, yf) in the strict interior such that y,* = a + hx^* and

XJL < yj+ < yju a n d *«mL < Xim* < ^m11- Equation (14) for the nonlinear underestimator with

projection reduces to.

and is therefore an exact approximation of the linear fractional term. Since yj+ does not lie in

the boundary defined by the bounds of the variables x^ and yj the nonlinear underestimator

(8a) yields,
x i m L . Xlm* " Xfan Xjm xim'<' " Xjm _ xlm'1' /R nm

yj+ y j u yj+ yj+ " yj+

which Is a strict inequality. The other nolinear underestimator (8b) for this point yields,

(B.34)

which is a strict inequality.

Hence, the projected nonlinear underestimator (14) is stronger than the nonlinear

underestlmators (8) for the point (xlm^, y,*). I

Property 6.The additional estimators in (16), (17) and (21) provide an exact

approximation at the boundary defined by the projected cut.

Proof. In the same spirit as the proof for Property 5, select a point for which the projected

inequality (20) is a strict inequality and for which the variables are not at their bounds.

I

Property 7. Any feasible point (x, y, r, z) in problem NLPL provides a valid lower bound to

the objective function of problem (PI). Furthermore, the optimal solution fL
f of (NLPJ provides a

valid lower bound to the global optimum (f*) of problem (PI).

Proof. Any feasible point (x, y, r, z) for problem (NLPJ is also a feasible solution to problem (PI)

since the inequalities g(x, y, r, z) £ 0 are identical in both problems. Since the approximating

functions in (NLPJ represent a relaxation of the bilinear inequalities in (PI), they have the effect

of underestimating the objective function C of problem (PI). Thus it follows that at the given

feasible point fL < f.
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For the global optimum (x*. y*, r\ z*) of problem (PI) it then follows that f* > fL*t where fL* is

the objective of NLPL evaluated at that point. Since fL\ the optimal solution of NLPL is unique

due to its convexity, fL* > fL\ and thus f* > fL*. I

Corollary 3, If the optimum solution fL' from NLPL is equal to the objective function value

f from (PI) it corresponds to the global optimum of (PI).

Proof Iff is not the global optimal solution of problem (P) then there exists a global solution f* <

f. But by Property 7, fL* < f* which contradicts the assumption that fL=f is a solution to NLPL

I

Property 8. The branch and bound algorithm will either terminate in a finite number of

partitions at a global optimal solution, or generate a sequence of bounds that converge to the

global solution.

Proof Given the branch and bound procedure, there are two possibilities. In the first one, at a

given node the lower bound fL of the underestimator NLPL is identical to the original objective

function in which case the algorithm terminates in a finite number of partitions.

In the second possibility an infinite sequence of partitions is generated. This in turn implies

that there is a subregion that is being infinitely partitioned. Let the sequence of solutions be

denoted by (kl and £=(x, y, r, z). By the termination criteria it is known that,

f k - f L
k > 0 (B.35)

Since the upper bound is at least as strong as the evaluation of the actual objective function for

the current solution £k.

flCk*) - W) * & k' - *Lk' > 0 (B.36)

there must exist at least one nonconvex term, +, for which its feasible region is infinitely

partitioned. By the partition rule 1,

( a 3 7 )

Summing up over all the nonconvex terms, t, it follows that

t ( ^ - rlk
+) S f (Cl - fL(C

kl ZF-*- k* > 0 (B.38)
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The variables for the nonconvex term (•) have some bounds defining an interval. Since the

partition is of the same nature as the one used by Al-Khayyal and Falk, the variables in the

sequence must converge to one of the bounds. Moreover, the series has to converge to a point.

When one of the bounds of a variable are not changing, this variable is selected for the partition
x, +

in the algorithm. When one of the variables is at its bounds the representation is exact, ^pr =

rlk
+. Therefore,

0 >f (Ckl - fL (Ck) >P'k- fL
k' > 0 (B.39)

which means that equality between the lower bound fL and the original function f must hold.

Since by Property 7, fL
k' is a lower bound to the global optimal solution, it corresponds to the

global solution. I
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