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Abst r act

Kochenber ger and Wol sl ey have introduced slack vari abl es
into the constraints of a geonetric programand have added their
reciprocals to the objective function. They find this augnented
program advant ageous for nunerical mnimzation® In this paper
the augnented programis used to give a relatively sinple proof
of the "refined duality iheory11 of geonetric programmng. This
proof also shows that the optiml solutions for the augnented
program converge to the (desired) optimal solutions for the

original program
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1. | nt r oducti on.

Thi s paper gives a new and somewhat sinpler proof of the
"refined duality theory* of geometric programming. The first
proof was given by Duffin and Peterson [1, 2], and another proof
was given by Duffin [3]. Mreover, Rockafellar [5] has related
geonetric programring to his "generalized convex progranmm ng”y
Those three proofs are all different, and each gives different
insight into the structure of geonetric prograns.

The present proof does not enploy Subsidiary prograns’ [1, 2],
linéar programming [ 3], or convexity [5]. Only basic principles
of the calculus are needed. Geonetric progranm ng includes |inear
progranm ng as a special case, so the present paper also furnishes
a new proof of the duality theory of I|inear progranm ng.

G ven a geonetric programw th posynom al functions, the
treatnent here begins by adding a slack variable to each constraint
function. Also, the reciprocal of each slack variable is added to
the objective function. Cearly, the programso augnented is al so
defined in terms of posynonmial functions, Moreover, it is obvious
that the constraints of this augnmented programare tight at the
mninmum  This property makes the augnented program easier to analyze
because equalities replace inequalitieso Finally, the properties
of the original programare deduced by carrying out certain limt
oper ati ons.

The concept of the augnented programis due to Kochenberger [ 6],
and it has been enpl oyed by Wolsey [7]. They are mainly concerned
with nunerical calculations in geonetric progranm ng, which are
known to encounter certain difficulties when slack constraints are
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present. Because the augnented programhas no slack constraints
those difficulties tend to be nollified.

Since the constraint inequalities of the augnmented program
may be assuned to be equalities it is possible to elimnate the
slack variables. This results in an unconstrai ned progranwwhosé
obj ective function is precisely the function introduced in the

penal ty net hods of Carroll, Fiacco, and McCorm ck [ 4],

2. Basi ¢ concepts.

A posynomal g(t) is a function of positive variables

th,to,.,t , expressed as a finite sum

J « 1

g(t) L Tulr),
where the terns uiﬂt) have the form

3o
2

241 2im
u; (€) pegty Mol T

The exponents aij are arbitrary real constants/ but the coefficients
c,6 are positive constants. The primal geonetric programto be
considered is defined as foll ows.

ProgramA  Seek the mninumyvalue of a posynomal goft)

subject to the constraints

fep > erfep 50, .., tm> 0,
and subject to the posynonial constraints
gx(t) £1i,02(t) £1,...,g,(8) < 1.

It is convenient to list all the terns as

ul’uz,-a.,un

and then | et




O
g, &4 u K + , T raxAng+1
ol oml H:]L b T e
9p & Uy -

If there is a point t which satisfies the constraints then

programA is said to be consistent» The infimmof ggot)

subject to the constraints of A is wittenas M A inf go(t) °
- A

If M >0 then programA is said to have a finite infinunx

Associated with the precedi ng m ni ni zat i on programis a

maxi m zation programterned the geonetric dual prodram This dual

program B is defined as foll ows.

Program Bo Seek the maxi mumval ue of the product function

n c. 6. p A
vie)r Il (-g) T ACK,
i=l i k=0

wher e

XQA61 +...+ 67, moAl

A +...+ 6 mé&n +1
'.61=.ﬁ1 ¥ 1~ .0

A a_é +.0.+ & ,'r.n An . +1, n An,
N o=m n R = pr-l R -
P p
The vari abl es 61 .are subject to the linear constraints:
6- 2 O>i = 1>l|||>n) (msi-mum
i=8161 = 13 (normality)
i-—?l 6'1 a.J_.J =0, j =1,25.«ym (orthogonality)

Heres; the constants c, are t he posynom al coefficients in programA,

‘and the constants a.lj are the posynom al exponents in program A*




In evaluating the product function v(6) it is understood

that x*=x~*=1 for x = 0. This nmakes Vv(6) a continuous

function in the otthant 61. A"O. ProgramB is said to be consistent
if there is a point 6 which satisfies its constraints. The
supremumof v(6) subject to the constraints of ProgramB is witten

as M, Asupv(6). If M <oo then programB is said to have a
B n B * -

finite supremum ) _ o
The mai n goal of duality theory is to showthat M= L.
Toward that end, the followng lemma is needed.

Lenma 1. Let u. and 6. be real nunbers such that u. > 0 - and

6° J>0 for i =1 e« N then )
N X N u. 6.
(Lu. )® A0l (H) * x\
i=| X i=l
ere N

A ALG.
H X

Moreover, this inecruality becones an equality if, and only if,

N
61 Su. = Au.., j =1,2, ...,N
Joi y

Proofo If all the 6 are positive, let " 4 6"A and U.léu.l/G.l.

Then the e, are "wei ghts*!, and the classical inequality stating

1--01U

that the weighted arithnetic nmean of positive nunbers U.l’\U -

2
is not less than the correspondi ng wei ghted geonetric nean can be

witten as
N N e.

1 X X 1 X
This is equivalent to the inequality of the Ienma. Moreover, the

classical inequality is an equality if, and only if,

Ul :U2 " eee :UN !




It is easy to see that this condition is equivalent to the condition
stated in the lemma. - The case where not all 6i_ are positive is
easi |y reduced tb the case just treated, so-the proof of Lemma 1is conplete..
Qur first theorem shows that M, 3> M, and it also gives
conditions that will ultimately help to prove that Mh = Nh.

Theoreml, If t satisfies the constraints of programA and if 6

sati sfies the constraints of programB, then

go(t) 2 v(6)

Moreover, this inequality is an equality if, and only"if,

dgo(t)6i =ui(t), i =1,...,n,,

and

1 K I - K- B
Proofo By virtue of Lemma 1 we know t hat

"K u., 6. =

(8] g, (B xl k= ober

Miltiplying these p + 1 inequalities together gives the inequality
P K nu.6.,p A D, D, D
'~ i n s b
| 0> I<T? H V" VIBY ) Ty

wher e D.:I n R gn aAj. Since 6 satisfies the orthogonality

condi ti ons D.:J = 0" it follows that

go"”OAk 2 v(6),

because A =1 and g« 1 for k=1, ...,p. This proves the
inequality of the theorem

d early; Oo=vVv if, and only if, each of the p + 1
applications of Lenma 1 gives an equality. But the p + 1
conditions of the theoremare sinply transcriptions of the equality

condition of Lemma 1, so the proof of Theorem 1l is conplete.




30 The augnented program G ven programA, its _augnented program A

is defined as foll ows,

ProgramA"'._ Seek the mninumyvalue of the posynom al
P
6a(t, T) Agy(t) +l[ b'I;<

subject to the constraints

t.. >0, j =1,...,
§ ] m

Tk>0, k:].,...,p,

and subject to the posynoni al constraints

G(t) £ 9g(t) +bT £1, k=1,...,p.

Tfoe constants b and 8 are positive, and 0 < 1.

Cearly, programA"' Is in the standard formof a geonetric program

Mor eover, programA+ reduces to programA if 0=1 and b = 0.
To formthe program BY which is dual to programA®, it is

necessary to add p additional dual variables A.K correspondi ng

1 in the objective posynomal. Also, p nore

to the newterms bTg
dual vari abl es A:( are needed to correspond to the new terns ka
in the constraint posynom als. The corresponding factors in the
dual objective function are of the form (b/Ak_)_ '(b/A,K) “* . However,
we mght as well wite this as (b/Ak)zAk because the orthogonality
condition on the newvariables is 'A’1<+ A;c = Q Thus, the

augnment ed dual program BT can be defined as foll ows.

Program B*. Seek the maxi num val ue of the product function

n c.6.p, 2A-
(8, A) .'_\.GCT (73—3&1 A K nAk




wher e
n
a AEG6; ,
=
Dy
AcAA +S &>k=1,...p
"he
Jhe~variables 6. and A -a+esubject—t-o—t-he—-Rear—eoRsStFatAts
6 4> 0, i =ls..0,N

A{on k:l'ooo’p

96 +%A = 1.

1 1 K
n
f6.;_a;_3 :O,j:I,...,m

Here, the constants a.l.J, b,c.i, and 9 are as qgiven in proqramA"'.

Not e that program BY reduces to programB if we set 6=1 and
Ak: 0.

A geonetric programis said to be degenerate if a term .XLn

can be nmade to vani sh without causing other terns to approach plus
infinity. Oherwise,a programis said to be canonical, In what
follows attention is restricted to canonical progranms. The
treatnent of degenerate prograns can t.hen be reduced to that of

canoni cal prograns by deleting vanishing terns u, . (see Section VI.5

of [ 1] ).
Wt hout loss of generality it may be assuned that the matrix
ay 4 is of rank m (see Section I11o3 of [1]). Then, the equations
log(w/c.) =£2, a..logt._, i =1,...,n
i J- N4 J

show that the variables t4 are uniquely determned by the terns

u®. Consequently these equations showthat if the terns u, of




a canoni cal program are bounded away fromplus infinity, say u® £ K
then the variabl es tj are confined to a conpact set in the interior

of the first orthant. Thus, if programA is canonical and consi stent

there is'a point t* such that inf go(t) = go(t?*).

A
+

TFhreoremr2, T programmA TS canonrtar ardTTonsT stemt T rthen—proygram B

S ConsT stent—ang

mn Go(t,T) = mx V(6,A) for O<band 0 <0 <1
A" B*

Proofo dearly, progranwAf is also a canonical consistent program
It - follows that Gy has a mninmmfor sone values of the
variables, say t =t* and T = T'« For a fixed t the function
Gb is mnimzed by choosing the variabl es TJ._,,..,,Tp to take

the slack out of the p constraints; so‘ﬁe can eliminate these

slack variables to obtain the relation

Z

P
6(t, T) = got) +1Sld—9|g—}’c??,_ Kr<t).

Thus, the function T(t) has a mnimumat t = t*, which inplies

that the point t* satisfies the necessary optinmality conditions

aT 89 . P 1p?p 39y .

t. sy =t.=—"+Z 2 t, =0, j=1,...,m.
ot. . - ) 3 ) »
J oty 3oty 7 (I-Bgy )™ 73 aty

Carrying out the differentiations, we see that at t*

n~ n Ny '
0 PR K .

-t T f <ieeg)t MV - e 3t

Now, divide these equations by @ and use the tightness property

8g«x(t) + bTk = 1 to obtain the equations
;_;i 0 aij = U, 3= l,0c.,0m,

where we have | et




and

8u;
6. A —f— , | = nuBe s 3y = 1,eee,pc

Also, let

t hen we see that

ne P Pb 1
£ 6 +£A =(g +L|l-)- =1.

1 *x 1 kK ° 1Tk ©0

Th.us 6. and A so defined satisfy the positivity, orthogonality,
1 K

and normality constraints of programB .
Now, Theorem 1 is to be enployed to show t hat G = V(6, A

wth 6. and A, define#& as above. From those definitions we

- 1 K{‘_\ _ + = =
A A + A 6: = 2
have k = 7k LT TGy 26 .G
Using this result, we may redefine 6. and A, by the follow ng
I JC
four rel ations:
= Ua -
ai_ 0 L = 1,--.,1]0,
.i = AkOUl i' mk,....,nk, k=.l,oo.,p,
b
A : _k: 1,.-o,p,
k TkGO
T
by = Akak k=1,...,p.

These are the equality conditions of Theorem 1l relative to prograns

A* and B* so the proof of Theorem 2 now follows from Theorem 1.
8 . +
Let program A be defined by putting b =0 in programA .

8 +

Its dual programB is clearly obtained by putting A,K: 0O in B.
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Theor em 3. If programA is canoni cal and consi stent, then programB
6

and prograns A~ and B8are consi stent, and

mng~(t) = mx 0 v(6) for 0< 6 < 1.

Proofo The proof of Theorem 2 shows that there exist 6, >0

whi ch satisfy the orthogonality conditions. Hence, the
n
. (@)
6’ A ﬁi/);l 6j
satisfy both the orthogonality and the nornmality conditions.
I n ot her words program.B IS consistent.
For 0O < b, Theorem 2 shows that the augnented program A has

a m ni mnum val ue

M6, b) = V(6,A),

where 6 and A denote an optimal solution to program BY. _
Suppose that 9 > 9, and let V denote the corresponding dual

function. By Theorem 1, we know t hat

M 9%, b) 2 V*(6,A),

o)
M8*.b) ¢ V*(6.A (81 °
M9,b) ~ V(6,A ~-97 o
It is obvious fromthe formof programA" that M8,b) decreases
as b decreases. Thus, we infer the existence of |imM9,b) £ K
and [imM9 ,b) K as b -* 0". Moreover, the canonicality of

programA inplies that K >0 and K* > 0, so the preceding

inequality on a shows that a is bounded as b -> 0",

n m0 P
Since aAE£f£ 63 1is bounded and since £ 6. + S A = 1" it
n ml . 1 X 1 k

follows that the 6. and A, have limts 61 and A:x as b -> 0




11

(through a suitable subsequence).
: 2 2
From the proof of Theorem 2, we know that Aj/k =%/°%Q °°

A ->0" as be* 0. Mreover, this identity shows that the factor
2A
¥ b (b/é.k) K occuring in the augmented dual function can bewitten as

2b kA w2
log % " ?1“_4 Ko, AT A log G
0

Fromthis identity it follows that log %~* ° @ P ° ¥

As b -« & we now see that
t

V(6,A) -* e v(6*)
beC.ause the function V is continuous and because each % -» 1.
Al so, the domain of the t.j variables is conmpact, so we can‘assune
t hat t';; -» tj as b -»0'. Then

Co(t, T) ->go(t’)

because the proof of Theorem 2 shows that the extra terms in Gy

whicl 1

are of the form b/T,K = Gr Ak approach zero. Also,

8gk(t) =1 - bTy " 1,
so 6gx(t') < lo We nowsee that go(t') = 8  v(6')” and this

together with Theorem 1 conpl etes the proof of Theorem 3.

4. The main theorems, W now have enough machinery to establish

the main theorens of geonmetric programm ng.

Theorem 4. If program A is canonical and consistent., then proaramB

is consistent, and

mn gp(t) = sup v(6).
A T B

Rroofo Theorem 3 asserts that programB is consistent. [If tf

and 6' denote optinal solutions whose existence is guaranteed by
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Theorem 3. ®*n have
go(t') = 92 v(6') £v(6') for O< 8 < 1.

Letting 8 -» 1", we infer fromconpactness and continuity of O
that t' has a lint point t" which satisfies the constraints
of programA. Moreover, the preceding displayed relations inply

that gn(t") < sup v(6). But Theoreml shows that ¢ ét”) J> sup v(6),
u B B

so the proof of Theorem4 is conplete.

Theorem 5, Let programA be canonical, and suppose that programB

is consistent and has a finite suprenmum NP. Then progran1A'T§

consi stent, and
mn gp(t) = sup v(6).
A U B

Proof/ Since the dual objective function is

6

nc °ip A,
v(6) £ 1kjr) I AR
~ | 0 *
and since
n p
1 X 0 k

it is clear that v satisfies the identity
v(6) s [v(6/a)]?
for any a > 0.
The consistency of program B clearly inplies:the consi stency

of programB*. Let 6+ and A, satisfy the constraints of
1 K

sati sf the

programB*; then the 6~ ~ % /%0 y constrai nts of

programB if program Aqg > 0. Choosing a = ~hg in our identity,

we see that 6 i _ ]
n c [ p -A A p -A
n(-i) =v(6)n A “=1[v(6)l °nA X
1 °] o (O
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so the augnented dual objective function

o nc. % p.. 2y p A
vift, & A F neE .nr-f—.) x n Sy ko
= 1 %4 T °k 1
can be rewritten as
A A A

N
! k
Ve A = [v(s') U, ]||[(‘)°—) . Ty ¢ )
Since A 1 and A.K N 13 the factors in square brackets have
bounds i ndependent of 6.1 and A when 0 < 0 < 1; in particular,
[v(6)] Y oA My A max{uMB} Al so

2A
|f) gmax[lb}( =)

A A
L+ <(L+E

(X + A) ~Aehn (A+i)*‘eA"(.A+i')eA

Clearly the functions on the right sides of these inequalities are
continuous on the positive real axis and have finite limts at O
and oo. Thus these functions are uniformy bounded. Likew se
[AE)-’\O] is seen to be uniformy bounded. Consequently, if 6"
and Ak satisfy the constraints of program B+3 and if A(3 > 05
t hen
V(6,A) = K(b, 6),

where the function K is defined for 0 <b and 0 < 0 < 1.
However, V is a continuous function of 6, so the pr ecedi ng
bound remains true for \ = 0.

For fixed b > 0, programA"'is clearly consistent if 9 s
chosen very small. | f programA"' Is not consistent for all 6 <1

then there is a 8.‘l < 1 such that the constraints 8gyx + bT, 1<<-A 1

HUNT LIBRARY
CARNEGIEMELLON UNIVERSITY
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can be satisfied for 6 < 6; but not for 6 >e If 0 -> Ox
frombelow it is obvious that some T¢-» O and hence nin T(t) -> +00.

However, using the proof of Theorem 2 and the bound K, we have

mn T(t) = max V(6,A) £ K(b,8).
B+

But K(b,0) does not approach +0oo0 as 0 -> 8" sothis is a
contradiction.

The preceding contradiction shows that the constraints Og"._(t) £1
can be satisfied for all 0 < 1. Then, the conpactness property of

canoni cal prograns and the continuity of the Oy inmply that the

constraints can also be satisfied for 0=1. This shows that
programA is consistent. But then Theoremb5 is a consequence of
Theorem 4.

Theor em 6. ProgramA is canonical if, and only if, there is a .

vector 6" with strictly positive conponents that satisfy the

constrai nts of program B.

Proofo If programA is canonical it follows that it is consistent
for O small. Then the proof of Theorem 2 shows that there are

strictly positive 6. which satisfy the constraints of program B*.

n
Hence the 6.; L 6-/TP 6. are strictly positive and satisfy the

constraints of program B.

Conversely, suppose that 6' is a positive vector satisfying

the constraints of program B, By ort hogonal ity

n mn

]Z_6i logQuj/G) = 1£(1£ 6; a"dl og t.:l = 0o

Thus, no term u, can vani sh wi thout causing other terns u. to
K 1
approach plus infinity, so programA is canonical and hence the
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proof of Theorem6 is conplete.

The preceding'théorens constitute the najor part of the duality
theory'of geonetric programring. The theory may be conpl et ed by
enpl oyi ng the concept of a subconsistent program ProgramA is

8

said to be subconsistent if programA~ is consistent for all 6 < 1.

Using this term nology the preceding theorens may be restated so
as to apply to degenerate prograns. The details may be fourid in

references [1],[2], and [3].
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5. Convergence. of the nunerical nethodo Although Kochenberger and

Wbol sey have been bbtaining approxi mate nunerical solutions to
geonetric prograns by solving the appropriate augnented prog}ans,

t hey have not shown that the approximations can be made arbitrarily
accurate by choosing b sufficiently close to zero. That such
convergence is in fact the case can be readily established by

exam ning the proof of Theorem 3. Such an exam nation should con-
vince the reader that the following theoremis valid.

Theorem 7. Suppose that programA is canonical and consistent, and

let O be fixed so that 0 < 8 < L Then the augnented progran1Af

and its geometric dual program BY have optimal solutions t(b) and

(6(b) , A(b) ) respectively when 0 <b. Moreover, when b -» ot

At hrough any sequences the correspondi ng éequences' (t(b)} and

{6(b)} each have at least one limt point t' and 6 respectively.

"Furthernore, each pair of linit points t! and 6 (generated in

this manner are optinal solutions to prograns A§ and 88
pectively.
Note that the consistency of programA inplies the "super-
g
consi stency" of programA for 0 < 8 <1 (that is, there is a feasible
solution 't to program A such that 6gc(t) <1, k=1,...,p).
However, it is clear that Kochenberger's method can be appligd only

to superconsistent progranms, because the augnented programA for
a consistent programA that is not superconsistent is obviously
not consistent when O <b and 8=1. Moreover, it is obvious

that every superconsistent geonetric program A" can be fornul ated

Q
as a programA corresponding to a consistent geonetric programA
1 T
by choosng each coefficient c. = ¢./8 for saime 8 < 1 that is
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sufficiently close to 1. Needless to say, this restriction of the
applicability of KochenbergerTs met hod to superconsistent prograns
is a rather insignificant limtation*

Finaily, we should nention that Kochenberger and Wol sey no
| onger use the augnmented prograns At and BY for nunerica
m nimzation. Experimental investigations [7] indicate that it is

nunerically better to introduce an additional positive paraneter r
r -r -1

and add bT~ + bTyg (instead of just bTy ) to the objective
function g,. In particular, they have obtained sufficiently
accurate approximate optimal solutions to a nunber of prograns
of practical significance by choosing b =r = .01.

It is clear that there are many other posynomals in 'FF t hat
produce tight constraints when added to the objective function gq
“the only requirenent on such posynonmials is that they are not
t hemsel ves minimzed by any T < 1. There is little doubt that
such nmet hods converge in the sense of Theorem7, but the proofs
are probably nore conplicated than the proof given here and hence
probably do not provide an even sinpler proof of the refined
duality theory of geonetric programmng, O course, each such
numerical method corresponds to the use of a different 'penalty
function!. Moreover, each penalty function is known to produce
a numerical nethod [4] for solving the primal programdirectly.
Per haps, a hybrid of the purely penalty function approach and
Kochenber ger's approach woul d be nost effective, Such a hybrid
met hod coul d conceivably exploit the fact that the prinmal
constraint is slack when its correspdnding dual positivity con-

straints are tight*




[7]

[4)

Flacco,

N Vl, and e P.
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