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Abstract

Kochenberger and Woolsley have introduced slack variables

into the constraints of a geometric program and have added their

reciprocals to the objective function. They find this augmented

program advantageous for numerical minimization^ In this paper

the augmented program is used to give a relatively simple proof

of the "refined duality theory11 of geometric programming. This

proof also shows that the optimal solutions for the augmented

program converge to the (desired) optimal solutions for the

original program.
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1. Introduction.

This paper gives a new and somewhat simpler proof of the

"refined duality theory11 of geometric programming. The first

proof was given by Duffin and Peterson [1,2], and another proof

was given by Duffin [3]. Moreover, Rockafellar [5] has related

geometric programming to his "generalized convex programming"9

Those three proofs are all different, and each gives different

insight into the structure of geometric programs.

The present proof does not employ Subsidiary programsT [1,2],

linear programming [3], or convexity [5]. Only basic principles

of the calculus are needed. Geometric programming includes linear

programming as a special case, so the present paper also furnishes

a new proof of the duality theory of linear programming.

Given a geometric program with posynomial functions, the

treatment here begins by adding a slack variable to each constraint

function. Also, the reciprocal of each slack variable is added to

the objective function. Clearly, the program so augmented is also

defined in terms of posynomial functionso Moreover, it is obvious

that the constraints of this augmented program are tight at the

minimum. This property makes the augmented program easier to analyze

because equalities replace inequalitieso Finally, the properties

of the original program are deduced by carrying out certain limit

operations.

The concept of the augmented program is due to Kochenberger [6],

and it has been employed by Woolsey [7]. They are mainly concerned

with numerical calculations in geometric programming, which are

known to encounter certain difficulties when slack constraints are



present. Because the augmented program has no slack constraints

those difficulties tend to be mollified.

Since the constraint inequalities of the augmented program

may be assumed to be equalities it is possible to eliminate the

slack variables. This results in an unconstrained program whose

objective function is precisely the function introduced in the

penalty methods of Carroll, Fiacco, and McCormick [4]o

2. Basic concepts.

A posynomial g(t) is a function of positive variables

tn,t0,^.,t expressed as a finite sum,
J_ « III

g(t) L

where the terms u.(t) have the form

The exponents a., are arbitrary real constants/ but the coefficients

c. are positive constants. The primal geometric program to be

considered is defined as follows.

Program A. Seek the minimum value of a posynomial gQ(t)

subject to the constraints

fcl > °'fc2 > 0,...,tm > 0,

and subject to the posynomial constraints

gx(t) £ i,g2(t) £ i,...,g

It is convenient to list all the terms as

and then let



K..+U , rax A n Q + 1
JL • •

If there is a point t which satisfies the constraints then

program A is said to be cons is tent» The inf imum of gQ(t)

subject to the constraints of A is written as MA A inf gQ(t) •

If MA > 0 then program A is said to have a finite inf imum«

Associated with the preceding minimization program is a

maximization program termed the geometric dual programo This dual

program B is defined as follows.

Program Bo Seek the maximum value of the product function

n c. 6. p A..
v(6)^ II (-ĝ) 1 II Ak ,

i=l i k=0

where

XQ A 61 +...+ 6^, m 0 A l

A, A 6 +...+ 6Q m - n + 1

o • • •

Y) = m n p — p*~l p •=

P p

The variables 6, are subject to the linear constraints:

6. 2 °>i = 1>"">n) (positivity)

S 6. = 13 (normality)

£ 6. a.. = 0, j = l,25..«jm« (orthogonality)

Here3 the constants c. are the posynomial coefficients in program A,

and the constants a.. are the posynomial exponents in program A*



In evaluating the product function v(6) it is understood

that xx = x~x = 1 for x = 0. This makes v(6) a continuous

function in the otthant 6 . ^ 0 . Program B is said to be consistent

if there is a point 6 which satisfies its constraints. The

supremum of v(6) subject to the constraints of Program B is written

as Mn A sup v(6). If M_ < oo then program B is said to have a
B " B *

finite supremum.

The main goal of duality theory is to show that MA = 1VL.

Toward that end, the following lemma is needed.

Lemma 1. Let u. and 6. be real numbers such that u. > 0 and

6 . J> 0 for i = 1,•••,N; then
N -x N u. 6.
(Lu.) A ^ II (-ji) x *\
i=l x i=l i

where N

A A L 6. .
~i=l x

Moreover, this inecruality becomes an equality if, and only if,

N
6.1 S u. = Au.., j = 1,2, ...,N.
J i x y

Proofo If all the 6i are positive, let ^ 4 6̂ /A and U. A u./6.

Then the e. are "weights11, and the classical inequality stating

that the weighted arithmetic mean of positive numbers U.^U , ..O,U

is not less than the corresponding weighted geometric mean can be

written as
N N e .

1 x x 1 x

This is equivalent to the inequality of the lemma. Moreover, the

classical inequality is an equality if, and only if,

Ul = U2 " ••• = UN '



It is easy to see that this condition is equivalent to the condition

stated in the lemma. The case where not all 6i are positive is

easily reduced to the case just treated, so the proof of Lemma 1 is complete.

Our first theorem shows that M- J> M , and it also gives

conditions that will ultimately help to prove that ML = M .

Theorem lo If t satisfies the constraints of program A and if 6

satisfies the constraints of program B, then

go(t) 2 v(6)

Moreover, this inequality is an equality if, and only if,

gQ(t)6i = ui(t), i = l,...,n0,

and

Proofo By virtue of Lemma 1 we know that

nk u. 6 >

( g ) k ^ n (f) x xk
k, k =

Multiplying these p + 1 inequalities together gives the inequality

P K n u 6 p A D. D2 D

I % > 1<T? « V " v(6>tl *2 —*». '
where D. ^ 2^ 6^ a^.. Since 6 satisfies the orthogonality

conditions D. = 0^ it follows that

P v
g 0 ^

 n ^ k 2 v(6),

because AQ = 1 and gk ̂  1 for k = 1, ...,p. This proves the

inequality of the theorem.

Clearly, gQ = v if, and only if, each of the p + 1

applications of Lemma 1 gives an equality. But the p + 1

conditions of the theorem are simply transcriptions of the equality

condition of Lemma 1, so the proof of Theorem 1 is complete.
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3O The augmented program. Given program A, its augmented program A

is defined as followso

Program A . Seek the minimum value of the posynomial

6o(t,T) A g (t) + L bT"
1,

° " U k=l K

subject to the constraints

t.. > 0, j = l,...,m,

Tk > 0, k = 1,...,p,

and subject to the posynomial constraints

Gk(t) £ 9gk(t) + bT k £ 1, k = 1,...,p.

Tfoe constants b and 8 are positive, and 0 < 1.

Clearly, program A is in the standard form of a geometric program.

Moreover, program A reduces to program A if 0 = 1 and b = 0.

To form the program B which is dual to program A+,it is

necessary to add p additional dual variables A-. corresponding

to the new terms bT~ in the objective posynomial. Also, p more
t

dual variables Ak are needed to correspond to the new terms bT,

in the constraint posynomials. The corresponding factors in the

dual objective function are of the form (b/Ak) (b/A, ) . However,

we might as well write this as (b/Ak)
 Ak because the orthogonality

condition on the new variables is -A, + A. = Oo Thus, the

augmented dual program B can be defined as follows.

Program B . Seek the maximum value of the product function

^ n c . 6 . p , 2 A - p \
CT i x S & k n A kn n A,

I
 k



where
n

a A E 6i ,
ml

A, A A-. + S &•> k = l,...,p.

"he

The variables 6. and Av are subject to the linear constraints

6 • J> 0, i=l 5.. o,n

A, ̂  0, k = 1, • • • ,p

110 6 + P A
1 i 1 k

n
2 6. a.. = 0, j = l,...,m.

Here, the constants a..,b,c.., and 9 are as given in program A .

Note that program B reduces to program B if we set 6 = 1 and

Ak = 0.

A geometric program is said to be degenerate if a term XL

can be made to vanish without causing other terms to approach plus

infinity. Otherwise,a program is said to be canonicalo In what

follows attention is restricted to canonical programs. The

treatment of degenerate programs can then be reduced to that of

canonical programs by deleting vanishing terms u, (see Section VI.5

of [1]).

Without loss of generality it may be assumed that the matrix

a.. is of rank m (see Section IIIO3 of [1]). Then, the equations

log(u./c.) = £? a log t., i = l,...,n
i J- J""-1- XJ J

show that the variables t. are uniquely determined by the terms

u^. Consequently these equations show that if the terms u. of
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a canonical program are bounded away from plus infinity, say u^ £ K,

then the variables t. are confined to a compact set in the interior

of the first orthant. Thus, if program A is canonical and consistent

there is a point t* such that inf go(t) = go(t*).
A

Theorem 2O If program A is canonical and consistent, then program B

is consistent and

min G (t,T) = max V(6,A) for 0 < b and 0 < 0 < 1.
A + B +

Proofo Clearly, program A is also a canonical consistent program.

It follows that GQ has a minimum for some values of the

variables, say t = t* and T = T • For a fixed t the function

G is minimized by choosing the variables T.,,..,,T to take

the slack out of the p constraints; so we can eliminate these

slack variables to obtain the relation

6Q(t,T) = gQ(t) + S * ,«., k r<t).

Thus, the function T(t) has a minimum at t = t*, which implies

that the point t* satisfies the necessary optimality conditions

Carrying out the differentiations, we see that at t*

n~ n nn
0 p . 2fi k

= -i'ij + f < i - e g k )
2 ^ V i : - °- 3 " 1 -•

Now, divide these equations by G and use the tightness property

8gk(t) + bT- = 1 to obtain the equations

where we have let



6j_ £ •a i/G0 , i = l , . . . , n Q ,

and
8 u i6 . A —7?— , i = nu 3 • • • 3 n v * k — 1 , • • • , p «

Also, let

then we see that
n° P P b 1
£ 6. + £ A, = (g + L | - ) - = 1 .

1 x 1 k ° 1 Tk G0

Thus 6. and A, so defined satisfy the positivity, orthogonality,
1 .K

and normality constraints of program B .

Now, Theorem 1 is to be employed to show that GQ = V(6,A)

with 6. and Av defined as above. From those definitions we
1 K

have
k b 0gk i

Ak - ^k + ^ 6 i =

Using this result, we may redefine 6. and A, by the following
I JC

four relations:

• i

u .

= Ak0U.

b
~ T G

k 0

i -

k =

k =

These are the equality conditions of Theorem 1 relative to programs

A and B , so the proof of Theorem 2 now follows from Theorem 1.

8 +
Let program A be defined by putting b = 0 in program A .

8 +
Its dual program B is clearly obtained by putting A, = 0 in B .
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Theorem 3. If program A is canonical and consistent, then program B

6 8
and programs A and B are consistent, and

min g~(t) = max 0CT v(6) for 0 < 6 < 1.

Proofo The proof of Theorem 2 shows that there exist 6. > 0

which satisfy the orthogonality conditions. Hence, the

; °
satisfy both the orthogonality and the normality conditions.

In other words program B is consistent.

For 0 < b, Theorem 2 shows that the augmented program A has

a minimum value

M(6,b) = V(6,A),

where 6 and A denote an optimal solution to program B .

Suppose that 9 > 9, and let V denote the corresponding dual

function. By Theorem 1, we know that

M(9*,b) 2 V*(6,A),

so

M(8*.b) s V*(6,A) _ r 81. °
M(9,b) ^ V(6,A) ~ L 9 J •

It is obvious from the form of program A+ that M(8,b) decreases

as b decreases. Thus, we infer the existence of lim M(9,b) £ K

and lim M(9 ,b) ^ K as b -* 0 . Moreover, the canonicality of

program A implies that K > 0 and K* > 0, so the preceding

inequality on a shows that a is bounded as b -> 0+.
n m 0 P

Since a A £ 6. is bounded and since £ 6. + S Av = 1^ it
" m1 1 x 1 k

follows that the 6. and Av have limits 61 and A* as b -> 0+
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(through a suitable subsequence).

2 2
From the proof of Theorem 2, we know that Aj/k = Ai/GQ* so

A -> o+ as b •* 0+. Moreover, this identity shows that the factor
2 A-

occuring in the augmented dual function can be written as

4 ^ Kx, A,1/2 •k 1/2
log % ^ T/2

 l o9 A / + Ak log GQ.
Go

From this identity it follows that log % ~* ° as b "* ° •

As b -• 0 we now see that
t

V(6,A) -* eCT v(6*)

because the function V is continuous and because each %. -» 1.

Also, the domain of the t. variables is compact, so we can assume

that t. -» t. as b -» 0 . Then

co(t,T) -> go(t
!)

because the proof of Theorem 2 shows that the extra terms in GQ

are of the form b/T, = Gr^k w h i c l 1 approach zero. Also,

8gk(t) = 1 - bT k ̂  1,

so 6gk(t
!) <; lo We now see that gQ(t

T) = 8 v(6 !)^ and this

together with Theorem 1 completes the proof of Theorem 3.

4. The main the or emso We now have enough machinery to establish

the main theorems of geometric programming.

Theorem 4. If program A is canonical and consistent, then program B

is consistent, and

min gn(t) - sup v(6).
A u B

Proofo Theorem 3 asserts that program B is consistent. If tf

and 6f denote optimal solutions whose existence is guaranteed by



12

Theorem. 3. T*Tn have

go(t') - 9
a'v(6!) £ v(6') for O < 8 < 1.

Letting 8 -» 1"_, we infer from compactness and continuity of g,

that t! has a limit point t" which satisfies the constraints

of program A. Moreover, the preceding displayed relations imply

that gn(t") <; sup v(6). But Theorem 1 shows that g (tff) J> sup v(6),
u B B

so the proof of Theorem 4 is complete.

Theorem 5, Let program A be canonical, and suppose that program B

is consistent and has a finite supremum M . Then program A is

consistent, and

min gn(t) = sup v(6).
A u B

Proof/ Since the dual objective function is

n c. 6i p A
v(6) £ IK-jr̂ ) II A K ,

~ 1 5i 0 *

and since

n p

1 X 0 k

it is clear that v satisfies the identity

v(6) s [v(6/a)]a

for any a > 0.

The consistency of program B clearly implies the consistency

of program B+. Let 6• and Av satisfy the constraints of
1 Kl

program B +; then the 6^ ^ 6i/Ao s a t i s fy t h e constraints of

program B if program AQ > 0. Choosing a = ~hQ in our identity,

we see that
n c i p -A A p -A,
n(-i) = v(6)n A, K = [v(6')l ° n A, K ,
1 5i o K 0 k



13

so the augmented dual objective function

n c. 6i p . 2/v p A
vfft A^ A 8 n ( i n f ) n K

can be rewritten as

•̂  - \ p 2A, A, A.
V ( 6 , A) = [ v ( 6 ! ) ] U A ] I I [ (7—) ] [ ( 1 + T—) ] [ (A v +

0 1 Ak A k K

Since AQ ̂  1 and A. ^ 13 the factors in square brackets have

bounds independent of 6. and Av when 0 < 0 < 1; in particular,

[v(6f)] ^ MR ^ max{ljM }• Also

2A o , 2A
if)

, A

(x + A ) A eA ̂  (A + i ) A eA ̂  (A + i)eA

Clearly the functions on the right sides of these inequalities are

continuous on the positive real axis and have finite limits at 0

and oo . Thus these functions are uniformly bounded. Likewise

[A" 0] is seen to be uniformly bounded. Consequently, if 6^

and A, satisfy the constraints of program B 3 and if Ao > 05

then

V(6,A) ± K(b,6),

where the function K is defined for 0 < b and 0 < 0 < 1.

However, V is a continuous function of 6, so the preceding

bound remains true for \ = 0.

For fixed b > 0, program A is clearly consistent if 9 is

chosen very small. If program A is not consistent for all 6 < 1

then there is a 8. < 1 such that the constraints 8gk + bT, <^ 1

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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can be satisfied for 6 < 6][ but not for 6 > e^ If 0 -> 0X

from below it is obvious that some Tk -» 0 and hence min T(t) -> +oo

However, using the proof of Theorem 2 and the bound K, we have

min T(t) = max V(6,A) £ K(b,8).
B +

But K(b,0) does not approach +oo as 0 -> 8^, so this is a

contradiction.

The preceding contradiction shows that the constraints 0ĝ .(t) £

can be satisfied for all 0 < 1. Then, the compactness property of

canonical programs and the continuity of the g, imply that the

constraints can also be satisfied for 0 = 1 . This shows that

program A is consistent. But then Theorem 5 is a consequence of

Theorem 4.

Theorem 6. Program A is canonical if, and only if, there is a

vector 6 f with strictly positive components that satisfy the

constraints of program B.

Proofo If program A is canonical it follows that it is consistent

for 0 small. Then the proof of Theorem 2 shows that there are

strictly positive 6. which satisfy the constraints of program B .

Hence the 6. L 6 -/Tn 6. are strictly positive and satisfy the

constraints of program B.

Conversely, suppose that 6! is a positive vector satisfying

the constraints of program Bo By orthogonality

n f m n t

Z 6i logCuj/Cj) = £(£ 6i a ^ l o g t. = 0o

Thus, no term u, can vanish without causing other terms u. to
.K 1

approach plus infinity, so program A is canonical and hence the
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proof of Theorem 6 is complete.

The preceding theorems constitute the major part of the duality

theory of geometric programming. The theory may be completed by

employing the concept of a subconsistent program. Program A is

8said to be subcons istent if program A is consistent for all 6 < 1.

Using this terminology the preceding theorems may be restated so

as to apply to degenerate programs. The details may be fourid in

references [1],[2], and [3].
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5. Convergence of the numerical methodo Although Kochenberger and

Woolsey have been obtaining approximate numerical solutions to

geometric programs by solving the appropriate augmented programs,

they have not shown that the approximations can be made arbitrarily

accurate by choosing b sufficiently close to zero. That such

convergence is in fact the case can be readily established by

examining the proof of Theorem 3. Such an examination should con-

vince the reader that the following theorem is valid.

Theorem 7. Suppose that program A is canonical and consistent, and

let 0 be fixed so that 0 < 8 < L Then the augmented program A

and its geometric dual program B have optimal solutions t(b) and

(6 (b) , A(b) ) respectively when 0 < b. Moreover, when b -» 0

^through any sequence3 the corresponding sequences (t(b)} and

{6(b)} each have at least one limit point t! and 6! respectively.

Furthermore9 each pair of limit points t1 and 6! generated in

6 8this manner are optimal solutions to programs A and B

pectively.

Note that the consistency of program A implies the "super-
g

consistency" of program A for 0 < 8 < 1 (that is, there is a feasible

solution t to program A such that 6gk(t) < 1, k = l,...,p).

However, it is clear that KochenbergerTs method can be applied only

to superconsistent programs, because the augmented program A for

a consistent program A that is not superconsistent is obviously

not consistent when 0 < b and 8 = 1 . Moreover, it is obvious

that every superconsistent geometric program An can be formulated
Q

as a program A corresponding to a consistent geometric program A
it

by choosing each coefficient c. = c./8 for some 8 < 1 that is
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sufficiently close to 1. Needless to say, this restriction of the

applicability of KochenbergerTs method to superconsistent programs

is a rather insignificant limitation*.

Finally, we should mention that Kochenberger and Woolsey no

longer use the augmented programs A and B for numerical

minimization. Experimental investigations [7] indicate that it is

numerically better to introduce an additional positive parameter r

r r -1

and add bT^ + bT k (instead of just bT k ) to the objective

function gn. In particular, they have obtained sufficiently

accurate approximate optimal solutions to a number of programs

of practical significance by choosing b = r = .01.

It is clear that there are many other posynomials in T-. that

produce tight constraints when added to the objective function gQ;

the only requirement on such posynomials is that they are not

themselves minimized by any T^ < 1. There is little doubt that

such methods converge in the sense of Theorem 7, but the proofs

are probably more complicated than the proof given here and hence

probably do not provide an even simpler proof of the refined

duality theory of geometric programmingo Of course, each such

numerical method corresponds to the use of a different !penalty

function1. Moreover, each penalty function is known to produce

a numerical method [4] for solving the primal program directly.

Perhaps, a hybrid of the purely penalty function approach and

KochenbergerTs approach would be most effectiveo Such a hybrid

method could conceivably exploit the fact that the primal

constraint is slack when its corresponding dual positivity con-

straints are tight*
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