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ABSTRACT

We extend our iterated linear programming (L P) approach (Bullard and Biegler, 1991) to
two-phase vapor-liquid equilibrium problems, which are characterized by regions of
continuous operation with nonsmooth boundaries. Here we show that a simple
reformulation allows us to handle the disappearance or reappearance of phases and thus
allows usto solve a wider class of process problems. The proposed drategy uses a penalty
function approach, called Penalty Simulation of Nonsmooth Algebraic Terms and
Attributes (P-SONATA), to accommodate the nonsmooth nature of the system. To solve
the vapor-liquid equilibrium problem, we also extend the theor etical resultsof the approach
of Bullard and Biegler (1991) to characterize descent and conver gence properties for P-
SONATA. The performance of this formulation is demonstrated for process models
involving phase equilibrium, such as transtions from one and two phases in flash and
distillation problems, where mass and energy balances must be satisfied but the phase
equilibrium expression can berelaxed. |sothermal flash problems with ideal and nonideal
phase equilibrium relations are considered as well as a case which exhibits retrograde
condensation behavior near the critical point Finally, we examine limiting digtillation cases
including columns operating below the minimum reflux ratio (resulting in dry trays) and
below theminimum reboiler heat duty (resulting in vaporlesstrays).

Finally, we develop conver gence properties for P-SONATA and discuss additional classes
for nonsmooth problems. Theresults demondrate that this approach is sraightforward to
implement, captures awider range of phase equilibrium behavior, and otherwise performs
competitively with conventional Newton-based approaches.




1. INTRODUCTION

In aprevious paper (Bullard and Biegler, 1991) we develop an iterated linear programming
(LP) drategy for congtrained smulation problems. The motivation for this type of method -
is evident when failure to consider physical constraints and bounds on variables can cause
conver gence problems with existing methods. This simple, sraightforward algorithm
conver ges quadratically to the solution and has global conver gence properties for nonzero
solutions of the linear program.

Using this constrained simulation approach we can also consider other classes of
gmulation problems for which iterated LP's are efficient and robugt. In a related sudy
(Bullard and Biegler, 1992) we consder the nonsmooth smulation problem where equality
constraints arenot everywheredifferentiate. These problems havereceived little attention
in the literature. Problems such as pipeline networks containing check valves and
trangtions from laminar to turbulent flow include functions of this form and we extend our
iterated L P approach to address this type of nonsmooth problem.

In this paper we consider nonsmooth problems that arise from process models involving
phase equilibrium. These problems are less sraightforward to solve than problems which
contain explicit nonsmooth operators. For example, consider an isothermal flash unit,
where different sets of equations are valid depending on the number of phases present at
equilibrium. The combined set of equations is a nonsmooth problem with well-defined
smooth regions. Usually, however, the number of phases is not known a priori.
Typically, procedures have been proposed to address this nonsmooth problem (Boston and
Britt, 1978; Fournier and Boston, 1981; Kinoshita and Takamatsu, 1986; and Nelson,
1987). A more systematic approach, involving the minimization of Gibbs free energy, has
been implemented in the form of nonlinear programs (Gautam and Seider, 1979; Cadtillo
and Grossmann, 1981; and Soares et al., 1982) and mixed integer nonlinear programs
(Paules and Floudas, 1989).

In this sudy we identify and formulate a class of problems related to vapor-liquid
equilibrium (VLE) which can betreated directly using a penalty function extension of our
iterated LP constrained smulation approach. The resulting algorithm, termed Penalty
Smulation of Nonsmooth Algebraic Terms and Attributes (P-SONATA), iseaser to apply
than a direct nonlinear programming strategy and can be extended beyond smple flash
calculations to include ditillation cases with dry or vaporlesstrays. In the next section we
develop this formulation and algorithm for flash problems with one or two phases. Next
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we consider a number of flash examples with ideal and nonidedl equilibrium. Section 4
extends the P-SONATA formulation to distillation smulations as well. Here cases are
described below the minimum reflux ratio or below the minimum required heat duty. In
section 5 we then describe the convergence properties of P-SONATA and provide
guidelines for tuning parameters and for addressing other classes of nonsmooth problems.
Details of this analysis are provided in the gppendices. Findly, section 6 concludes the
paper and discusses topics for future research.

2. APPLICATIONS TO PHASE EQUILIBRIUM

Phase equilibrium problems, such asphasetranstions for flash and distillation units, are an
important class of problems which can be addressed with iterated linear programming. To
introduce the gpplication of the penalty function formulation to phase equilibrium problems,
we first congder the isotherma flash problem shown in Figure 1.

V,yi

1 - T,P yi=Ki&i, T, P)x;

. . L,x.

Figure 1. Isotherma flash operation.

Here afeed stream with flowrate F and composition Zi enters the flash operation with a
specified temperature T and pressure P.  The products are a vapor phase stream with
flowrate V and composition yi and/or a liquid phase stream with flowrate L and
composition X~ The isotherma flash contains equilibrium equations which are generdly
not valid in either of the one phase regions. A severe problem with flash calculations at
isotherma and isobaric conditions is that the number of equilibrium phasesis not known
in advance; continuous regions (one or two phases) are defined by different active sets.
Also, for the scope of this paper we restrict ourselves to a maximum of only two
equilibrium phases,
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Several different approaches have been suggested to circumvent this problem. Probably the
most familiar is the classic " sequential modular" approach (Boston and Britt, 1978;
Fournier and Boston, 1981; Kinoshita and Takamatsu, 1986; and Nelson, 1987). In
general, these methods calculate bubble and dew points and then deter mine the number of
phases present at equilibrium. The appropriate set of equations which describe the phase
behavior of the flash is then solved. This procedure-based method may be difficult to
extend to an eguation-oriented Smulation approach.

Another more recent approach involves minimizing the Gibbs free energy of the system
subject to material balance congraints, since the stability of original mixture requires Gibbs
free energy to be at its global minimum. Nonlinear programming (NL P) formulations for
minimizing Gibbs free ener gy have been suggested by Gautam and Seider (1979), Castillo
and Grossmann (1981), and Soares et al. (1982). Paules and Floudas (1989) have
reformulated the Gibbs free energy minimization as a mixed integer nonlinear program
(MINLP) in which discrete variables represent the existence/non-existence of phases at
equilibrium. However, the highly nonlinear, nonconvex form of the objective function
gives no guarantee that a global minimum will be found.

Finally, many of the methods mentioned above use stability criteria for phase
determination. In both the sequential modular and Gibbs minimization approaches, various
numerical methods exist for determining whether a phase is thermodynamically stable, as
discussed by Gautam and Seider (1979). When phase distribution is uncertain at
equilibrium, Gautam, Seider, and White (1980) recommend minimization of Gibbs free
energy using an algorithm for NLP and phase splitting. Michelsen (1982a, 1982b)
suggests stability analysis as aprdiminary step in isothermal flash calculations. He applies
atangent planecriterion to determine whether a given phase digribution is stable.

In this gudy we wish to smulate vapor-liquid equilibrium for a specified temperature and
pressure without having to specify in advance the number of phases present. In the one
phase regions, the mass and energy balance equations must be satisfied, but we can relax
the phase equilibrium expresson by introducing a " pseudo” pressure Pp which differs from
the specified presaure Ps outside the bounds of the dew and bubble points. In thisway we
can obtain a consistent set of equations in both the one and two phase regions which yields
aphyscally realistic solution.

As an alternative to the sequential modular and Gibbs minimization approaches, we apply
the extension of our L P formulation, P-SONATA. Here we pose the flash problem within
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the limitations of a penalty function formulation. This allows us to obtain a consistent
system of equationsin both the one and two phase regions by adding a penalty term to the
objective to account for differences from equilibrium. The development of this approach is
smple but can be generalized to complex equilibrium separations aswell. In addition, after
demondrating this approach on numerous examples, we also provide a convergence
analyssto show that P-SONATA is an appropriate way to solve these systems.

We begin with the equations for a smple n-component, two-phase flash:

zZiF-(xiL +yiV)=0, I =1,...n
F-(L+V) =0 D)
yi-Ki(P,T,x)xi =0, i=1l,...n

§X|.. ”Sy|:o
and introduce new var i@ and Pp. along with thefollowing relations:
d2Pp-Ps | 2
8£0
yi-Ki(Pp,T,x)xi =0

Here, Ps is the specified pressure of the flash and Pp is a "psaudo’ pressure, which is
allowed to differ from the specified pressure in the single phase regions if Ps goes above
the bubble or below the dew point pressures. In thetwo phaseregion, (1) and (2) reduce
-tothe gquare system

o+

8=0

Ps=Pp

ZiIF = XiL +yiV, i=l,...n

F=L+V (3
yi = Ki(Pp,T,X)xi i=l,...n

> xi- 3 yi=0
i=1 i=1

For the single phase liquid region, thisformulation reducesto:
V=0
8= Ps-Pp

zi =X




yg =Kj (fp, T, x3) x;
xi- ), yi=0
1

=1

=
and Pp isthe bubble point pressure. Finally, for the one phase vapor region the system of
eguations becomes:.

L=0

5=Pp - Ps

Zj =yi

F=V 5)

yi= Ki (EPo T, x0) x;

Y xi- ) yi=0

i=1 i=1
and Pp is the dew point pressure. We consider the following optimization problem to
obtain these solutions:

min 8
st h(x,y,L,V,Pp) =0
32Ps-Pp ' (6)
62Pp-Pg
8620
O<L ,V<F
O0<Xi,yi<1

whereh(x, y, L, V, Pp) =0 arethe flash equations given in (1), Note that the obj ective, 8,
must be congrained at the optimum and we show in section 5 and Appendix B that (6) has
solutions that satisfy (3), (4) or (5). To solve problem (6) we apply a version of Successive
Linear Programming (SLP). SLP requires little work at each iteration and as noted by
Zhang et al. (1985), SLP is quadratically convergent and quite efficient when the optimum
solution is a vertex optimum (i.e., the number of active condraints equals the number of
variables). In section 5 of this paper we show that problem (6) satisfies this requirement
and can therefore be solved inexpensively.

Moreover, the SLP approach is also closely related to the use of iterated linear
programming for constrained smulation (BuUard and Biegler, 1991). Here we extend our
previous formulation to consder (6). To ensure that each linear program has a solution at
each iteration i we also add artificial variables pj and nj
min  ]* (Pj+nj) +co 8
i




st hj + VhJd =pj-n;
8" Ps-Pp ()
8EPpP-Ps
8,pj,n £0
O<L,V<F
0<x;,yi<s1

Here we note the close similarity of the SLP approach to theiterated linear programming
approach of Bullard and Biegler (1991). In particular, solution of (7) provides a descent
direction for problem (6) provided that the parameter coischosen appropriatdy. Guidelines
for choosing co are derived in section 5. Finally, note that (7) always has a bounded
solution that is unaffected by singularitiesin h.

The P-SONATA algorithm for solving flash problems can now be stated asfollows:

0. Initialize die problem at w°. where thevector w includes all of the
variablesin (6). Herew and h are of the same dimension.

1. Evaluate hj (W*), V hj (w'), and pi= 035*2' !

IfDD £e, stop. (Here, eg., e = 10°). Else, go to 2.

2. Generate the search direction d by solving the linear program (7).
min " (pj+flj) + co 8

s hJ!(W*) +V hjw*) d =pj - nj
82>Ps-Pp
62Pp-Ps
0, pj,nj=0
OfL,V<F
O<xi,yi*1l

If||d]||<e, stop. Else, goto 3.

3. From the solution of (7), evaluate an upper bound on the directional
derivative, DD (see Appendix B for derivation) at w*:

DDE w'uz P + 1 -Elh}l
i j




Set the stepsizea= 1.

Evaluate w" = w' + ad,h(wN)and”" = co8" + £ |hj(w")|
j

6. If JN- M-Ow)< 0.1 aDD, thengoto?7.
Else, s&t a=max /0.0l a——-ONDDif \.
\ (~N-A(wi).DDa)/

i.e., by quadratic interpolation. Goto5. .

7. Setw'"' =w' + adandi =i+ L Gotol.

There aretwo important properties associated with this algorithm:

(1) TheKarush-Kuhn-Tucker conditions of (6) ensure a vertex optimum
(See Appendix B.2).

(20  Anuppe bound on CD can bederived or calculated from the Kuhn-
Tucker multipliers of (7). A discussion of this bound is deferred to Section
5. Because of theimportance of forcing pj and nj to zero upon conver gence
of P-SONATA, co should be made small. In practice we generally set

co between 0.001 and 10" ® althoughjerformancewas lar gely
insengitiveto thisvalue.

Thus, upon convergence, we have Ps = Pp and 8 = 0 for solutions in the two phase
regions. For regionswherethe equilibrium equation does not hold, such asthe one phase
regionsin the flash problem, 5> 0. In fact, the approach which we propose hereisrelated
toa particular Gibbs minimization formulation. In Appendix A we show that the Kuhn
Tucker conditions of the Gibbs minimization arereated to those of (6). Thus our approach
can be viewed as an efficient Successive Linear Programming (SLP) method for a special
class of Gibbs minimizations.

3. EXAMPLE PROBLEMS

To examine the performance of this formulation, we consider seven example problems.
Thefirg threeinvolve two ideal flash units and one nonideal flash operating in the one and
two phase regions, and the fourth is a flash example which exhibits more complex
retrograde condensation behavior. Examples 5, 6, and 7 in section 4 illustrate the
extension of the penalty function formulation to the cases of ideal and nonideal digtillation
columns. In thedigtillation examples we consder " one phasg’ regions where the column is
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operating below "minimum reflux” conditions in Examples 5 and 7 and below "minimum
reboiler heat duty” in Example 6.

Examples 1-3: Isothermal Ideal and Nonideal Flash

Theideal flash unitsin Examples 1 and 2 are modeled using the ssmple Antoine equation
for phase equilibrium. For the nonideal flash in Example 3, the liquid phase is modelled by
UNIQUAC equations (Prausnitz et al., 1980). The generalized method of Hayden-
O'Connéll is used to compute the pure component and second viria coefficients are used to
evaluate the vapor phase fugacity coefficient All cases for these three flash examples were
initialized in the two phase region with V = L = 50. In the first two examples both liquid
and vapor mole fractions were initialized to 0.3. In the third example, the vapor and liquid
mole fractions wereinitialized to the feed compositions.

Here we characterize the flash problem as a nonsmooth system having well-defined smooth
regions. Nondifferentiabilities or "kinks" occur at the vapor-liquid transitions, or bubble
and dew points. For Example 3, shown in Figure 2, T,,b = 329.7°K and Tdew = 332.7°K.

100
80 -
V (moles) gp -

0- iy . B — —
327 329 331 333
T(K)

Figure 2. Vapor flowrate versus temperature for Example 3.

We also compare this approach to one where 8 was minimized as an NLP with MINOS in
the formulation shown in (8),
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min 8
st h(w) =0
02Pp-Ps (8)
82Ps-Pp
820

As shown in Tables 1-3, the number of function evaluations required by MINOS is
sgnificantly greater, and in a few cases MINOS terminated without finding a feasible
solution, indicated by (*¢). Heretherobustness of our method in these casesismost likely
duetotheeffect of the dack variables pj and nj in handling inconsstent linearizations.

Example 4. Retrograde Condensation

In the first three examples, we solved both ideal and nonideal flash problems to
demondrate the potential of the penalty function formulation to handle simple problems.
We can also smulate the behavior of more complex phase equilibria systems near the
critical point Consder the retrograde condensation phenomena described in Smith and
Van Ness (1987) for which, under certain conditions, a condensation process occurs asthe
result of a pressure reduction. The preés)retemperaturediagram for thistype of system is
depicted in Figure 3.

Critical locus

e . ——
—

Saturated liquid

e m————————————

hY

e
A
w
2
c
=
2
@
o
<
)
k)
o
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Figure 3. Portion of a PT diagram showing phase behavior in the critical region
(taken from Smith and Van Ness, 1987).

Herethecritical pointisat C, and Mp and Mr identify the points of maximum pressure and
maximum temperature. The dashed curvesindicate the liquid fraction in atwo-phase liquid
and vapor mixture. Insdethetwo phase envelope and to the left of the critical point C, we
expect that areduction in pressure along line BD will result in vaporization from the bubble
point to the dew point However, if we consder point F, a Sate of saturated vapor located
to the right of the critical point C, liquefaction occurs when the pressureis reduced and
reaches amaximum at G, after which vaporization takes place until the dew point isreached
atH.

In order tomodel thistype of system, we cannot use the UNIQUAC relations asin
Example 3, sincethey are not accurate near this critical region. Instead, we use the Soave-
Redlich-Kwong cubic equation of state (Soave, 1972), where the compressibility factor Z
is obtained by solving the cubic equation of Sate

f=73-Z2+Z(A-B-B2%) =0 ©)
and
P T 00-5)2
A=042747 B 2 % _al_pg.-s (10)
1 1
B=008664 B {Z xi —Pff} (10)
a°-°= | +(0.480+ 1574 an- 0.176 e0?)(I-T&°) (12)

Oneor three Ted rootswill be obtained from the solution of equation (9); in thelatter case,
the smallest root (ZL) will betaken for aliquid phase and the highest one (Zy) for avapor
phase, as shown in Figure 4.
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smallest root:
f liquid phase, Z,

largest root:
vapor phase, Zy

Figure 4. Plot of f versus Z, showing the location of Z corresponding to
liquid (ZL) and vapor (Zv) phases.

At the critical point we would expect " one phasg' behavior in which the liquid and vapor
roots of equation (9), ZL and Zv, would converge into oneroot In addition to the flash
equations and equation of gstate relations, we can enforce inequality congtraints which
ensurethat thefirst derivatives of equation (9) will be positiveat ZL and Zy. In addition,
given the second derivative of equation (9), f' = 6Z - 2, we can enforce an upper bound of
1/3on ZL and alower bound of /3 0on Zy.

To demongrate this approach, we consder an isothermal flash having a feed stream of
58.7 mole% ethane and 41.3 mole% n-heptane. Thephysical property datafor this system
aretaken from Reid, Prausnitz, and Sherwood (1977). We compar e oper ation at 400°F and
39£°F where the pressure is decreased from 38000 mm Hg to 25000 mm Hg. Both
isotherms illustrate retr ograde condensation behavior for the ethane/n-heptane system.
Table 4 reportsthe vapor and liquid flowrates obtained by P-SONATA in solving the
penalty function formulation with co = 10°. The iterations and function evaluations
required areshownin Table5.

The garting point for all of the problemsisin the two phase region, with L = 16.09 moles
and V = 83.91 moles and Ps = Pp. Sarting as a saturated vapor at T = 395°F, the system
exhibits maximum condensation at around 35000 mm Hg, and then reaches the dew point
at around 26000 mm Hg. Similarly for T = 400°F, the system exhibits maximum
condensation at around 36000 mm Hg, and then reaches the dew point at around 29000
mm Hg. Also using formulation (8), MINOS fails to find a feasible solution for 19 of the
22 cases.
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4. DISTILLATION EXAMPLES: HANDLING LARGER SYSTEMS

The same approach applied to Examples 1 through 4 can be extended to larger systems
auch asdidtillation.  In the flash examples the mass and energy balances wer e enfor ced
while the phase equilibrium equations were relaxed when necessary to allow for
conver gence to a physically realistic solution. For the ditillation case, we consider two
limiting cases, that of columns operating with dry and vaporless trays. The first limiting
case, with dry trays, occurs as a result of a high boilup rate and low reflux (for saturated
liquid feed); the second case, with vaporless trays, occurs with low boilup rate and high
reflux (for saturated vapor feed). These are limiting cases in which the column is operating
below the minimum reflux or minimum reboiler heat duty, respectively, where afeasible
solution cannot be found using traditional smulation techniques.

The calculation of minimum reflux ratiosis an essential and difficult task in the design and
gmulation of digtillation columns. As defined by Underwood (1946), the minimum reflux
ratio rn, is the ratio which will require an infinite number of trays for the desired
separation.  In addition, Levy and Doherty (1985) aswell as Koehler et al. (1991) have
extended his approach for determining r,, to nonideal systems, including those with
azeotropes. Here we consider limiting cases for columns with a specified number of trays.
Thus, the minimum reflux is found at which the column can still operate with a specified
overhead product rate (D/F); the minimum reboiler heat duty has an analogous
interpretation with bottom product rate (B/F). We wish to obtain a solution to the
smulation problem for which the mass balances are enforced and the relaxed phase
equilibrium expression is satisfied both above and below the minimum ieflux and reboiler
heat duty rates, analogous to the flash examples of Section 3. The McCabe-Thiele diagrams
in Figures 5 and 6 illustrate the modes of operation below the minimum rates, where, in
each case, the gripping and rectifying operating lines do not inter sect.

If the specified reflux for the smulation problem isindeed below the minimum, the liquid
flowr ate on the trays above the feed becomes zer o and the phase equilibrium expression can
no longer be satisfied in an equation-oriented approach. Here, the penalty function
formulation allows the liquid flowrates on the trays above the feed tray to become zero
while the pseudo pressure Ppon those trays differs from the specified column pressure Ps
and allows the phase equilibrium relation to be satisfied. Thus the penalty function
formulation ensures that the mass and energy balances are satisfied-with arelaxed phase
equilibrium expression and a feasible solution exists for both two phase and one phase
(dry tray) regions. The penalty function formulation for the distillation case (13), below,
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is very dmilar to the general flash formulation (7) with the difference that there are
variables 6,, and Ppn"* s well as an associated set of inequality constraints smilar to (2) for
each stagein the column, m=1,..., NS.
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*ri

Sat. liq.

=
<

-

X

Figure5. The McCabe-Thiele diagram (lower) illustrates the digtillation case
(upper) having low reflux and high boilup rate with saturated liquid feed- When
reflux ratio is below its minimum oper ational value, liquid flow becomes zero on
trays above thefeed
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e

X

Figure6. TheMcCabe Thidediagram (lower) illustrates the ditillation case
(upper) of high reflux, low boilup rate with saturated vapor feed When Qrd is
below its minimum operational rate, vapor flow becomes zero on trays below the
feed, resulting in a vaporlesstray.
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NS
min Z(pj+nj)+__(05m
ji m
st hj+V hjd=p -n

Sm”Ppm-Psm m=1, .., NS (13)
8m ~ Psm- Ppm

8m, Pi, N EOD

Ly, V20

D/F or B/F specified

where hj includes the relaxed equilibrium expression
yi =Ki (Xp T, Pp)

as well as the remaining MESH (Material balance, Equilibrium, Summation of mole
fractions, and Heat balance) equations for distillation.

Example 5: Ideal Distillation Operating Below Minimum Reflux

Example 5 is an 25-tray ideal distillation column with a saturated liquid feed of 70%
benzene - 30% toluene to stage 7. This 228 variable problem was addressed in Bullard and
Biegler (1991) as a simulation case in which the reflux ratio was fixed and the square
system was solved using an iterated L P approach. Starting points for this column are same
as used in Bullard and Biegler (1991) and Vasanthargjan et al. (1990), and are reasonabl e
far from the solution. Because the recovery is not specified, we fix D/F = 0.30 and
decrease the reflux ratio to see the effect on liquid flowrate in the column.

In order to have a basis of comparison for the distillation cases, we aso used the FRAKB
block in FLOWTRAN to solve the problem. There is close agreement between the liquid
mole fractions predicted by the equation-oriented formulation and the ssimulation program,
with small differences resulting from different physical property data being used. We note,
however, that FLOWTRAN is unable to converge for small reflux ratio near or below the
minimum. Table 6 lists the dry tray location predicted by MINOS, P-SONATA, and
FLOWTRAN. As expected, the tray above the feed (at stage 7) is the first to become dry.
A comparison of iterations and function evaluations for MINOS and P-SONATA is listed
inTable7. The penaty weight for both MINOS and P-SONATA for this example
isco = 0.5. The solution from each case was used as the starting point for the next case for
both MINOS and P-SONATA. Here, the minimum operating reflux ratio is close to 0.005.
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In addition, solving an NLP with MINOS to minimize the reflux ratio subject to the
operating equations gives a minimum operating reflux of r = 0.005, which is consistent
with our results where the reflux is fixed. Both MINOS and P-SONATA predict the same
overhead and bottoms composition using (13) and indicate that tray 8 becomes dry near
r = 0.005.

Example 6: Ideal Distillation Operating Beow Minimum Reboiler Heat
Duty

Example 6 illustrates another limiting case of minimum operational reboiler heat duty. The
physical description and initialization of the column is the same as in Example 5. The feed
temperature is changed to 372°K to provide a saturated vapor feed and the overhead ratio
D/F is specified as 0.921. For a 100 kmol/h feed with 70% benzene, we begin with the
reboiler heat duty fixed at 6.33 MJ/h and gradually decrease the heat duty to see the effect
on vapor flowrate in the column.

Both MINOS and P-SONATA predict that vapor disappearance on tray 6, directly below
the feed tray (stage 7), occurs with Qreb < 0.316 MJ/h. Both approaches obtain the same
bottom and overhead mole fractions. A comparison of iterations and function evaluations
required by MINOS and P-SONATA for Example 6 is listed in Table 8. The penalty
weight for both MINOS and P-SONATA for this exampleis co=0.5. Asin Example
5, the solution from each case was used as the starting point for the next case for both
MINOS and P-SONATA.

Example 7: Nonideal Distillation Operating Below Minimum Reflux

Finally, Example 7 is a case of a nonideal 17-tray distillation column described by 997
equations. The problem was originally formulated by Vasanthargjan et al. (1990) and was
solved as a simulation problem in Bullard and Biegler (1991) with fixed reflux. The
starting points are far from the solution and are the same as specified in these references.
Asin Example 5, we consider the case of minimum operational reflux for this large scale
example. The saturated liquid feed to tray 12 consists of 15% methanol, 40% acetone, 5%
methylacetate, 20% benzene, and 20% chloroform. We expect the liquid flowrates on the
trays above the feed to go to zero when below the minimum reflux, r,, <0.00005. Asin
the nonideal flash in Example 3, the liquid phase is modelled by UNIQUAC equations.
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The generadized method of Hayden-O'Connell is used to compute the pure component and
cross second viria coefficients are used to eva uate the vapor phase fugacity coefficient

P-SONATA predicts the liquid top and bottom compositions shown in Table 9. Table 10
reports the number of iterations and function evauations required as well as the number of
dry trays predicted. We note that MINOS is unable to obtain afeasible solution for any of
the amulation cases. Because of the size and nonlinearity of Example 7, it was adso usgful
to dowly decrease the reflux while using the previous solution as the starting point for the
next case.

5. PROPERTIES OF P-SONATA AND OTHER NONSMOOTH PROBLEMS

In this section we eva uate the convergence properties of P-SONATA for the vapor-liquid
equilibrium problems that were solved in the previous two sections. Also, we areinterested
in examining the generdity of the P-SONATA approach for other nonsmooth problems.
Thus, we now consder the conditions on nonsmooth problems for which P-SONATA will
yield valid solutions. In addition to problem (6), we consider the nonsmooth problem with
n equations and Mg piecewise linear terms given by:

h(x, A) =0

8, = maxke Km( fkm + aom' X}, m=1,... Mg
14

Note that each piecewise linear term is made up of K, linear segments. Here x is the n-
vector of variables and A is a vector of length Mg with elements 8,,. We choose only
piecewise linear terms in the (14) in order to Implify the analys's, dthough terms such as
5m=max { fk’m(X)} have aso beentreatedin practice.

An gppedling way to handle this problem is to generdize the P-SONATA agorithm above.
Aswith equation (6) we can formulate the following NLP to solve (14):

minz,(oﬁm
m (15
S h (xA)=0
Smzilaxtfm M=o Ms

keKm
xt<xgx!
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Note that problem (6) is a special case of (15). If we linearize the equalities and apply the
iterated linear programming strategy, the following subproblem can be solved at each
iteration:

minZoa am+2(pj+nj)
m i
s hj (X,A)+V hj (X,AY) d =pj-nj (16)
- rp LA Tky|
Vil — - xam ot A @

keK
xLs xX* +d <x?
Ppn "0
whered:[ X-X=> ]
L A-Al

Note that both (7) and (13) are special cases of (16). However, not all nonsmooth
problems can be handled using the penalty function formulation (16). Generally, the NLP
(15) may not convergeto a vertex optimum (e.g. to satisfy (14) or (2)) and thiswill cause
difficulties for the SLP approach. A smple example of this problem isillustrated by the
two dimensional problem illustrated in Figure 7 and described by:

mm 8

¢ hxS=0
X (17)
d2-x

Here the condraints 8 £ x and 8 £ -x account for the nonsmooth function 8 =|x|. In Figure

7 two alternative equations, hi and 112, are shown along with the absolute value congtraint
S =|x|.




hi(x,8)=0

Figure 1. Example of limitation of application of the penalty function
formulation with nonsmooth function 5 = x|.

For afunction of the form hi, where the equality congraint h ismonotonic in 8, the penalty
function formulation (1S) will convergeto point A, wherethe condraint 5 =-x is satisfied
However, application of (15) to equality congtraint 112 will minimize the objective (8) by

converging to point B, where%: 0, and nether part of the absolute value congraint is

satisfied. Thus, thereis no vertex solution to the problem, and the nonsmooth congraint is
not satisfied with an equality congraint of the form h, (see Appendix B.2 for an extended
discussion).

Figure 7 gives us an intuitive geometric description of the application of the penalty
function approach. We therefore need to consider the theoretical limitations of the approach
in‘Orde to more clearly define the class of problems for which P-SONATA is applicable.

To relate problems (15) and (16) note that solving (16) is equivalent to solving the
uncongrained nonsmooth problem

ming Y, odm+ 3 |+ VB d|+ MY \2 [max (0, X + fim - 8m) 1 (1g
m j moI

where M is a sufficiently large constant. A natural exact penalty function follows from (18)

for (15);

R = 2, 08n+ 2, [hjl+M Y, Y, [ max (0, 8% p X + fim - Om ) (19)
j m k

m
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The following three properties are derived in Appendix B which allow (16) to solve

problem (15):

@

(b)

To guarantee activity of theinequality congraints for each 5m at
convergence, wereguirethat

(0>-Z‘Yj V5. hj (see Appendix B.1).

J
whereyisthe Lagrange multiplier on h from (16).

An upper bound on thisquantity is:
@> | Vs, by
j
Fortunatdy, for the phase equilibrium problem, the quantity on the right
hand sideis zero. (5 does not appear in the flash equations)
Toenaure that repeated solution of LP (16) will lead to the solution of NLP

(15), werequire that
I>|(V<h)Xak.zlla>" [ Y]] (20)
I m I
wherek isthe active congraint for each 5m in (16). Note that

if”(vxh)~1X m Ills large, co may need to become very small and
m ]

thisleadsto precison problems. We can easly extend the derivation to the
case where the dacksin the objective function of (16) are weighted by a
large number N:
min Y, 0 5m + N X Pj +"]
m i

with the corresponding redriction that

N >||(v, 'Y agm||m 21)
m

(c) The solution of (16) is a descent direction for (15) (see Appendix B.3).
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Thus, with appropriate selection of the parameter co, the application of the P-
SONATA approach is an effective method for a subclass of nonsmooth problems which
have a vertex optimum. In particular, for the phase equilibrium problems, we have (V4 h)
nonsingular and the nonzer o elements of af,,, are +/-1 from (6). Consequently, the upper
bound on cois bounded away from zero and an appropriately small value of co can be used.
On the other hand, the counterexample shown in Figure! does not yield a vertex solution

and, in fact, (b) cannot be satisfied because%: X

3X

From the analysis in Appendix B, we therefore see that P-SONATA is appropriate for a
restricted problem class given by the properties described above. Fortunately, because of
features of the VLE problem, using the penalty function approach allows us to effectively
smulate thetrangtion between one and two phaseregions. For problemsthat do not satisty
these conditions, a different approach must be used. For this reason we develop an
alternate SONATA formulation in a separate sudy (Bullard and Biegler, 1992). Here the
nonsmooth termsin (14) arereplaced by the congraints.

5m A fken + *\m <* m=1, .., M5

3 hi (e + Ao ) 2 kekim

2, M (fem + 27 m

k (22)
0E£Xc<1

Note that at least one of the linear segments must equal 5;, and thus the max operator is
sagisfied. The congraints in (22) are then linearized and an iterated linear programming
drategy is applied. While this approach does not apply directly to phase equilibrium
problems, it has been applied effectively to numerous problems with explicit nonsmooth
terms such as pipe networ ks with checkvalves and flow transition problems. A description
of this approach along with its convergence properties is given in Bullard and Biegler
(1992).

6. CONCLUSIONS

In this paper we extend the constrained smulation algorithm introduced in BuUaid and
Biegler (1991) to handle nonsmooth relations that arise in two-phase vapor-liquid
equilibrium problems. The performance of this formulation is demonstrated for process
models involving phase equilibrium, such as trangtions from one and two phases in flash
and digtillation problems, where mass and ener gy balances must be satisfied but the phase
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equilibrium expression can be relaxed outside the two phase region. Isothermal flash
problems with ideal and nonideal phase equilibrium relations are consdered as well as a
case which exhibits retrograde condensation behavior near the critical point. We also
examine limiting digtillation cases including columns oper ating below minimum reflux ratio
(resulting in dry trays) and below minimum reboiler heat duty (resulting in vaporless
trays). In all of these examples, we demongrate that P-SONATA yields a congstent set of
equations in both the one and two phase regions of operation. Thus, by applying this
formulation, we can effectively smulate these types of honsmooth systems to obtain
physically realistic solutions.

These types of phase equilibrium problems could also be extended to any equilibrium-
based separation where the mass and energy balances must be satisfied but the phase
equilibrium expression can be relaxed outside the two phase region. We have not yet
consdered a system with mor e than two phases; examples such as liquid-liquid equilibrium
have not been investigated, and the extension of this approach to those systemsis an open
question. However, based on the results shown in this paper, the penalty function
formulation, P-SONATA, appears to be a promising approach for handling VLE systems
of one or two phases. '

Finally, by extending the conver gence results of Bullard and Biegler (1991), we analyze
the P-SONATA algorithm in order to demondrate its cohvergence properties for vapor-
liquid equilibrium as well as a subclass of other nonsmooth problems which can be solved
by incor por ating penalty functions in the objective.
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APPENDIX A: Relation Between Gibbs Free Energy Minimization and P-SONATA

The objective is to establish arelationship between the Gibbs minimization formulation and
the proposed formulation involving Py, Le. the solution of the reformulated P, problems
satisfies the Kuhn Tucker conditions of the origina Gibbs minimization.

1 n
minGT=) nl(AGf+RTInfl)+ ) "V(AG|  + RTInfA)

i=1 i=1
st ni“+niv=ni’ i=1..n (A.D)
nit20,ni¥=0 i=l,...n

where ni denotes the moles of component i in each phase. Here we show an equivalence
under the following assumptions:

1) Vapor/liquid systems are considered with only amaximum of two phases.
2) 'Vapor and liquid fugacities are defined using vapor and liquid fugacity coefficients
(Of and 7i, respectively) which are not functions of pressure.

3) K{ = (7 AO/POi) > 0awaysfori = I,n. Inthis case,
T

mTIFKVLD) "R (T+LIVK)

and neither n* nor " can become zero unless the entire phase disappears. Under
these assumptions, the nonnegativity conditionsin (A.1) can be smplified to give
the following problem:

" n n

minG” = 2 nj*(AG/+ RTInfeb)+ X "iV<ASi' + RTInf,")
i=1 i=]
st mL+m'=niT i=1,., (A.2)

iniLEO,iniVZO

i=1 i=1
Expanding,

minG" :% (T AG{EnlRTMf +nV RTInfA

st ni“+ni¥=ni" i=1I,.n (A3)

n ]
B niLzo,ZniVEO

i=1 i=1

The Kuhn Tucker conditions of this problem are now
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dnf L i=i J

gat[i n{'RTln(fiL)] +o;-BY =0 (A.4)
;" L i=1

1
n

BLY mil=0
i=1

1L
pv Y, m V=0
i=}
where oq are the multipliersfor the equality constraints.

Now (A.4) reduces to

v
RTIn{£Y)+ RTi nj"a%(ii—} +o;-pY =0
j-i n;

RTIN@B+ RT Xn"M ,0i-p* =0 (A5)

=1

wher e the second terms go to zer o from the Gibbs-Duhem relation:

(A.6)
n .
Z n; din (fl) =0
j=1 on;
AI:[er natively, for n* = RT In f,, we have
Hi“ +ai-p-=0

BLiniL=0

i=1

T
[3"2111":0
i=1

These conditions allow three cases:

CASE 1(2 phase):
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L i1
Both ) niland ), n;V>0
i=1 i=1
pl=p¥=0

(A.8)
Mi" =W (equilibrium)
CASE 2 (1 liquid phase):
Il ¥
Y nil>0and Y, niV=0 (A.9)
izl iﬂl
BV =miV-pil>0
A 1 vapor ph
L Il
Zniv>0andz n;L=0

(A.10)
i=1 i=1
Bl =pil- V>0

Subgtituting fugacity and activity coefficient expressons for vapor and liquid fugacities
leadsto:

P oY Pyinf|_ v
RTIn ay RTIn ok scongtant (P or B9 (AM)
i j
f P®; __DL__
En
_Ki)'“_= SR B —expm%l?m =A (A.12)
Ry—
| E"LJ

PYixi= PDiyi/A=Di(P/A ) yi=®; Ppy; (A.13)

wherePp=P/A, the " pseudopressure’ in (6).
Now for the flash operation,

nL =L x
nV =Vy; : (A.19)
nT =Fz;
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So we can express the flash problem in the penalty formulation as

mincoS
& X Xi-Xyi=0
[ i

L+V=F

yi =Ki(X, T, Pp)xi = (71RO /Pp <3 )xi

Lxi + Vyi = Fzi (A.15)
8 " Ps-Pp

8 £ Pp- Ps

0<(Xxi,yi)l

O<(L,V)<F

Thus, we can show that the solution of (A.1S) satisfies the Kuhn Tucker conditions of the
original Gibbs minimization. Finally, we note that the second assumption is necessary in
(A.13); otherwise 71 and Oj would be functions of Ps (not Pp) and the definition for K]
would not hold in (A.15). Note, however, that even under these conditions P-SONATA
would agree with the Gibbs minimization in the two-phaseregion (Pp = Ps). Moreover, P-
SONATA would till identify the correct phaseswhen V or L are zero but the compositions
for themissing phase would not be the same as with Gibbs minimization.
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APPENDIX B: BOUNDS FOR co TO ENSURE CONSTRAINT
ACTIVITY

From the problem

h(x,maxy(a xmX + fxm)) =0 (B.1)
or the phase equilibrium problem (1),(2) we pose the NLP (B,2):

minEmSm
m (B.2)
S h(x,A)=0
5m2aThmx+fk'm

Here x and h are of the same dimension n. Now we consider bounds for co when applied
with an iterated L P method

B.I. Lower bound to establish constraint activity of the LP.

Problem (B.2) is solved by repeated solution of the following subproblem (B.3) at iteration
I:

minZttSm +3-I:Pj +nj

m J
& hi(xi,A)+V h (xi, Ard =P -nj (B3)
eme£ a\y X + fium m=1,..., Mg
kelQn
P, nj £0
Whered:[ Xwxx |
LA-A'J

Here we require a bound on co which ensures activity of the equality constraints for each
5m. Taking the Kuhn-Tucker conditions for (B.3) gives the following Lagrange function:

L= X G>8,+ X P +nj - £ (ct]"Pj+aj iij)
m i j
+ Y, % (hj+ Vs hT (A - A") + V hT (x - xi) - pj + 1) (B.4)
j
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+ZZBk.m(aTL,mX " em = 8m)
m k

with optimality conditions given by:

1-Yj- oyt =
1+vj =l =0
CD+ 2,% VS h - 2 Pkm =0 (B.5)

j k
Yyl 74hj+ X Y frm 2 km = 0
j m

Ctitpi =0, ajuny =0
Bm(ahx+fm-8m)=0

and from these expressions we have

pjn; =0, -1<sy<1
andO<{ (Xj", ocf}=<2 (B,6)

Now to guarantee activity for the inequalities, we require:

Z[ng >0 form= 1, ., ng which isimplied by (B.5) and (B.6) when
k
co>-]E£Yj *5,hj. Anuppe bound on theright hand sideis given by

co>‘2]'l VA hj.I . For theformulation for theflash problem (7), co> 0.

]
B.2. Requirements on co so that repeated solution of (B.3) will lead to

solution of (B.2).

As seen in the counterexample (Section 5), conditions on co cannot always be imposed so
that the iterated LP solves (B.1). To derive sufficient conditions for this we note that (B.3)
Is equivaent to solving the following nonsmooth problem:

ming ECO6, + X" * VM JUMXE[™A (°>2\m X + fkdn-5y,)] B.7)

i =
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where M is sufficiently large to ensure satisfaction of the inequalities. A natural exact
penalty function followsfrom (B.7):

nE) = Y @8+ 2, bl +M D ) [max (0, 8%, x + fim- 5 ) ] (B.8)
Jj m ok

m

In Appendix B.3 we show that the solution to (B.3) gives a descent direction for (B.8).
Tordate (B.7) to (B.2) we note that the solution of (B.2) is given by minimization of

HX) = Y, 08u+T O |+ MDY, Y [max (0,85 X +fim-Sm)] (B9
m b m k

aslongas.

C>maxj|Yj| and M> maxgm (Bm)

(seeHan and Mangasarian, 1979), and we need to showthat C<1 and M < M
in (B.8).

From the Kuhn-Tucker conditions of (B.2) we have:

(D+Z'{IV5mh Zﬁklm =0, mzl,...,MS

Z'Y_]Vxhj"'ZZmaalfm =0

ﬂum(a'i,mX+fm 8m)=0

(BAG)

Now, if at least one inequality, k, is active for each 5;,, we have PK;m >0 and a vertex
optimum. Multipliersarethen given by:

[JR]= [://;: A;E ][ oge] (B.11)

where e =[1,1,..., 1] (M5 vector)
AK = [%K,i .%K2 oo KM« 1 (N X M5 matrix)
and Bxm > 0.

By Motzkin's theorem of the alter native, it can be shown that these (B.1 1) has a solution if
and only if thefollowing system has no solution (Mangasarian, 1969):
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VshTAS8+V,hTAx=0

We now consider three specia cases.

(@ In the counterexample of Figure () in Section 5, V, h2=0, Ak=%+ 1 and
(B.12) does have a solution at point B. Hence, (B.l 1) has no solution.

(b) IfAE=0itisclear that (B.12) has no solution (and any positive value of co can
be used). Moreover, if V, hisnonsingular we have pk,, =CD and 75 =0.
Finally, from (B.l 1) we see that (B.2) has avertex solution.

(© 1fV5h=0 andVy hisnonsingular (the case for VLE systems), then Ax =0
and it is easily seen that (B.12) has no solution. Here
PRm =< and y=- (Vy h)"1 Afe co. Also, itisclear from (B.ll) that (B.2) has a
vertex solution.

Finaly, to use (B.8) we need to find co which satisfies
c0>0 and 1> |[(Vx ) ! Apel @2 ivil

Here co must therefore be suitably small.

B.3 Descent property for exact penalty function.

Consider the exact penalty function for (B.2):

HEY = X 08+ 2 [l +MY Y, (@ln X+ fim-8m) +
m j m k

with the directional derivative given by

Din(x0= 2 <°(5p- 8,>£Vh'fd vad
+Zmax(+Vth)+M5_‘,E (@Y dx - dB)

M yeK.
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J.={j|h;(xs5')>0}

where J.= {j|h;(xi,8')<0}
Jo={j|hj(xi,8") = 0}
K ={ kla'{mxi+bkm—§1i,>0]

Assumethat b°r, 2: a* x° + fkm, then because we solve linear programs this congraint is
always satisfied. Thus, the last term always vanishes in \i(x). Also by making
subgtitutionsfrom (B.3) (seealso Bullard and Biegler, 1991) we have:

Dap= 2, ®(Om- Sm)+ Y, pj+nj- 3, |yl
m j j
Now by settingd = 0we have afeasiblepoint for (B.3) since

S,i,,Za'im xi + fym

p, =hj (x',AY) jed+

nj = - hj (< A jed.

Pj =nj = hj (& AY) =0 otherwise

then wewould expect the obj ectivefunction at theoptimal solution to satisfy

T 08ty p+nsY ady+Y b ah)]
m J m J

Subtracting theright hand side from theleft showsthat Ddji* < 0.
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Example 1: Ideal Flash (N-Butane, N-Hexane, N-Pentane) (co= 10"

M NGCS P- SONATA

T(K) (r FE (r FE
390 38 208 3 61
392 42 226 30 57

41 220 27 51
396 29 155 15 26
398 27 237 7 10
400 25 135 5 6
402 16 8 5 6
404 13 63 5 6
406 15 82 6 8
408 15 86 8 12
410 15 83 15 27
411 14 76 21 39
412 16 82 17 31

Table 1. Comparison of iterations and function evaluations
required by MINOS and P-SONATA for Example 1, where
Thub = 394.1°K and Tg4w =410.6°K, The feed composition is

(0-20, 0-50, 0.30).

one phase
liquid region

two phase
region

onephase
vapor region
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Example 2: Ideal Flash (N-Butane, Cis-2-Butane, N-Propane) (G> = 10°)

M NOS P- SONATA

T(K) [ FE [ FE
298 41 314 8 12 one phase
300 o o 6 8 liquid region

2 % 1w | 4 5
34 12 64 5 7 two phase
306 17 90 7 1 region

308 35 204 13 23
310 37 205 21 39 one phase
312 1 74 16 26 vapor region

** terminated as infeasble

Table 2. Comparison of iterations and function evaluations
required by MINOS and P-SONATA for Example 2, where

Tpup = 300°K and T g4ew= 308.2°K. The feed compostion is (0.35,
0.40, 0.25).
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Example 3: Nonideal Flash (Methanol, Acetone, Methyl Acetate, Benzene, Chloroform)

(0) = 10°)
MINOS P-SONATA

T(K) rr FE rr FE
one phase
329 8 17 5 6 liquid region

329.8 10 29 6 7

330 10 29 6 7
331 12 34 6 7 two phase
332 12 39 12 15 region

332.7 12 41 6 7
333 12 35 6 7 one phase
vapor region

Table 3. Comparison of iterations and function evaluations
required by MINOS and P-SONATA for Example 3, where
Thub = 329.7°K and Tdawv = 332.7°K. The feed composition is
((U5, 0.40, 0.05, 0.20, 0.20).
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P- SONATA T=395°F T=400°F

P(mm Hg) { L(noles) V(nol es) L(moles)  V(mol es)
38000 0 100 0 100
37000 0 100 0 100
36000 0 100 12.22 87.77
35000 15.91 84. 81 10.79 89. 20
32000 10.58 89. 42 6.14 93.86
30000 7.15 92.85 2.59 97.4
29000 5.28 94.70 0.653 99.35
28000 3.29 96. 70 0 100
27000 1.17 98. 83 0 100
26000 0 100 0 100
25000 0 100 0 100

Table4. Liquid and vapor flowrates obtained by P-SONATA a T = 400°F
and T = 395°F for Example 4.
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P- SONATA T=395°F T =400°F

P( mmHg) |terations FE |terations FE
38000 10 10 10 10
37000 10 10 84 144
36000 10 10 98 181
35000 90 168 58 101
32000 39 68 84 144
30000 73 132 49 83
29000 61 99 29 37
28000 13 15 17 24
27000 1 13 279 537
26000 105 179 13 18
25000 24 38 34 48

Table5. Iterations and function evaluations required by P-SONATA at T ee=

400°F and T = 395°F for Example 4.




Reflux Ratio MINOS P-SONATA  FLOWTRAN

10 - - -
0.1 - - -
0.01 - - -
0.005 - - **
0.001 8 8 dnk
0.0005 8 8 "

** faled to converge

Table 6. Location of dry tray predicted by MINOS, P-SONATA, and
FLOWTRAN for Example 5. The feed tray is tray 7.
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Reflux MINOS P-SONATA
ratior Iterations FE Iterations FE
10 13 49 36 78
0.1 10 306 6 7
0.01 5 10 3 3
0.005 3 6 2 2
0.001 4 8 4 6
0.0005 4 8 4 6

Table 7. Comparison of iterations and function evaluations required by
MINOS and P-SONATA for Example 5.
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Heat duty MINOS P-SONATA Vaporless
Qreb(MJ/h) rr FE trayloc.

_‘

—
n
m

6.33 15 81

5.06

3.79

2.53

126

0.633

0.316
0.0633
0.0317
0.00633

A N . . T N -

0O OO 00 00 0O 0O O 00 0

W W wwwdseowwdrsao

e e = LI VS I - N 6 ) B¢
1

o OO OO O

Table8. Comparison of iteratiqns, function evaluations, and cpu times
required by MINOS and P-SONATA for Example 6. The location of vaporless
traysis also identified. The feed tray istray 7.
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Reflux bottom product topproduct

ratio XM XA XMA XB XC XM XA XMA  XB  xC
85 0.013 0350 0.053 0.283 0.301) 0.373 0.482 0.044 0.065 0.035
7.0 0.010 0.356 0.055 0.281 0.298]| 0.377 0.472 0.042 0.068 0.041
6.0 0.009 0.340 0.055 0.280 0.296] 0.379 0.465 0.041 0.070 0.044
9.5 0.008 0362 0.056 0.279 0.294] 0.380 0461 0.041 0.071 0.047
4.5 0.007 0367 0.056 0.278 0.291]| 0.382 0.453 0.040 0.073 0.052
4.0 10006 0373 0057 0.276 0.287| 0.384 0.443 0.039 0.076 0.058
3.0 0.006 0.391 0.057 0.275 0.284]| 0.384 0.437 0.038 0.078 0.063
2.5 0.007 0.385 0.058 0.274 0.281] 0.383 0.431 0.038 0.080 0.068
2.0 0.008 0.389 0.058 0.272 0.277| 0.380 0.424 0.037 0.083 0.076
15 0.013 0.389 0.058 0.269 0.271] 0.372 0.418 0.037 0.088 0.085
10 0025 0391 0.058 0.264 0.262| 0.353 0415 0.038 0.096 0.099
0.75 0.036 0391 0.057 0.260 0.256]| 0.335 0415 0.038 0.103 0.108
0.10 0075 0393 0.055 0.240 0.236} 0271 0411 0.042 0.135 0.141
0.001 0.075 0393 0.055 0.240 0.236] 0271 0411 0.042 0.135 0.141
SE-05 0075 0.393 0055 0.240 0.236] 0.271 0411 0.042 0.135 0.141
4E-05 0075 0393 0055 0.240 0.236} 0.271 0411 0.042 0.135 0.141

Table 9. Top and battom liquid mole fractions of methanal, acetone, methyl acetate,
benzene, and chloroform obtained by P-SONATA for Example?.
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Reflux ratio Iterations Function evaluations  Dry tray location

85 3 3 .
7.0 6 6 -
60 3 3 -
55 3 3 .
45 3 3 -
4,0 2 2 .
30 1 20 -
25 13 26 .
20 5 5 .
15 4 4 -
10 15 27 -
0.75 4 5 -
0. 10 9 29 -
0. 001 5 5 -
5E- 05 8 20 13
4E- 05 10 15 13

Table 10. Iterations and function evaluations required by P-SONATA
for Example 7. Thelocation of thedry tray isalsoreported Thefeed tray istray 12
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Figure 1. Isothermal Flash Operation.
Figure 2. Vapor flowrate versus temperature for Example 3.

Figure 3. Portion of aPT diagram showing phase behavior in the critical region
(taken from Smith and Van Ness, 1987).

Figure 4. Plot of f versus Z, showing the location of Z corresponding to
liquid (ZL) and vapor (Zy) phases.

Figure5. The McCabe-Thiele diagram (lower) illustrates the distillation case
(upper) having low reflux and high boilup rate with saturated liquid feed. When
reflux ratio is below its minimum operational value, liquid flow becomes zero on
trays above the feed.

Figure6. The McCabe-Thiele diagram (lower) illustrates the distillation case
(upper) of high reflux, low boilup rate with saturated vapor feed. When Qrebis
below its minimum operational rate, vapor flow becomes zero on trays below the
feed, resulting in avaporless tray.

Figure 7. Example of limitation of application of the penalty function
formulation with nonsmooth function 8 = | x|.
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smallest root:
liquid phase, Zt,

lar gest root:
vapor phase, Zy
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