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ABSTRACT

We extend our iterated linear programming (LP) approach (Bullard and Biegler, 1991) to

two-phase vapor-liquid equilibrium problems, which are characterized by regions of

continuous operation with nonsmooth boundaries. Here we show that a simple

reformulation allows us to handle the disappearance or reappearance of phases and thus

allows us to solve a wider class of process problems. The proposed strategy uses a penalty

function approach, called Penalty Simulation of Nonsmooth Algebraic Terms and

Attributes (P-SONATA), to accommodate the nonsmooth nature of the system. To solve

the vapor-liquid equilibrium problem, we also extend the theoretical results of the approach

of Bullard and Biegler (1991) to characterize descent and convergence properties for P-

SONATA. The performance of this formulation is demonstrated for process models

involving phase equilibrium, such as transitions from one and two phases in flash and

distillation problems, where mass and energy balances must be satisfied but the phase

equilibrium expression can be relaxed. Isothermal flash problems with ideal and nonideal

phase equilibrium relations are considered as well as a case which exhibits retrograde

condensation behavior near the critical point Finally, we examine limiting distillation cases

including columns operating below the minimum reflux ratio (resulting in dry trays) and

below the minimum reboiler heat duty (resulting in vaporless trays).

Finally, we develop convergence properties for P-SONATA and discuss additional classes

for nonsmooth problems. The results demonstrate that this approach is straightforward to

implement, captures a wider range of phase equilibrium behavior, and otherwise performs

competitively with conventional Newton-based approaches.
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1. INTRODUCTION

In a previous paper (Bullard and Biegler, 1991) we develop an iterated linear programming

(LP) strategy for constrained simulation problems. The motivation for this type of method

is evident when failure to consider physical constraints and bounds on variables can cause

convergence problems with existing methods. This simple, straightforward algorithm

converges quadratically to the solution and has global convergence properties for nonzero

solutions of the linear program.

Using this constrained simulation approach we can also consider other classes of

simulation problems for which iterated LP's are efficient and robust. In a related study

(Bullard and Biegler, 1992) we consider the nonsmooth simulation problem where equality

constraints are not everywhere differentiate. These problems have received little attention

in the literature. Problems such as pipeline networks containing check valves and

transitions from laminar to turbulent flow include functions of this form and we extend our

iterated LP approach to address this type of nonsmooth problem.

In this paper we consider nonsmooth problems that arise from process models involving

phase equilibrium. These problems are less straightforward to solve than problems which

contain explicit nonsmooth operators. For example, consider an isothermal flash unit,

where different sets of equations are valid depending on the number of phases present at

equilibrium. The combined set of equations is a nonsmooth problem with well-defined

smooth regions. Usually, however, the number of phases is not known a priori.

Typically, procedures have been proposed to address this nonsmooth problem (Boston and

Britt, 1978; Fournier and Boston, 1981; Kinoshita and Takamatsu, 1986; and Nelson,

1987). A more systematic approach, involving the minimization of Gibbs free energy, has

been implemented in the form of nonlinear programs (Gautam and Seider, 1979; Castillo

and Grossmann, 1981; and Soares et al., 1982) and mixed integer nonlinear programs

(Paules and Floudas, 1989).

In this study we identify and formulate a class of problems related to vapor-liquid

equilibrium (VLE) which can be treated directly using a penalty function extension of our

iterated LP constrained simulation approach. The resulting algorithm, termed Penalty

Simulation of Nonsmooth Algebraic Terms and Attributes (P-SONATA), is easier to apply

than a direct nonlinear programming strategy and can be extended beyond simple flash

calculations to include distillation cases with dry or vaporless trays. In the next section we

develop this formulation and algorithm for flash problems with one or two phases. Next



we consider a number of flash examples with ideal and nonideal equilibrium. Section 4
extends the P-SONATA formulation to distillation simulations as well. Here cases are
described below the minimum reflux ratio or below the minimum required heat duty. In
section 5 we then describe the convergence properties of P-SONATA and provide
guidelines for tuning parameters and for addressing other classes of nonsmooth problems.
Details of this analysis are provided in the appendices. Finally, section 6 concludes the
paper and discusses topics for future research.

2. APPLICATIONS TO PHASE EQUILIBRIUM

Phase equilibrium problems, such as phase transitions for flash and distillation units, are an
important class of problems which can be addressed with iterated linear programming. To
introduce the application of the penalty function formulation to phase equilibrium problems,
we first consider the isothermal flash problem shown in Figure 1.

F ,z :

L,x :

Figure 1. Isothermal flash operation.

Here a feed stream with flowrate F and composition Zi enters the flash operation with a
specified temperature T and pressure P. The products are a vapor phase stream with
flowrate V and composition yi and/or a liquid phase stream with flowrate L and
composition x̂ . The isothermal flash contains equilibrium equations which are generally
not valid in either of the one phase regions. A severe problem with flash calculations at
isothermal and isobaric conditions is that the number of equilibrium phases is not known
in advance; continuous regions (one or two phases) are defined by different active sets.
Also, for the scope of this paper we restrict ourselves to a maximum of only two
equilibrium phases.
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Several different approaches have been suggested to circumvent this problem. Probably the

most familiar is the classic "sequential modular" approach (Boston and Britt, 1978;

Fournier and Boston, 1981; Kinoshita and Takamatsu, 1986; and Nelson, 1987). In

general, these methods calculate bubble and dew points and then determine the number of

phases present at equilibrium. The appropriate set of equations which describe the phase

behavior of the flash is then solved. This procedure-based method may be difficult to

extend to an equation-oriented simulation approach.

Another more recent approach involves minimizing the Gibbs free energy of the system

subject to material balance constraints, since the stability of original mixture requires Gibbs

free energy to be at its global minimum. Nonlinear programming (NLP) formulations for

minimizing Gibbs free energy have been suggested by Gautam and Seider (1979), Castillo

and Grossmann (1981), and Soares et al. (1982). Paules and Floudas (1989) have

reformulated the Gibbs free energy minimization as a mixed integer nonlinear program

(MINLP) in which discrete variables represent the existence/non-existence of phases at

equilibrium. However, the highly nonlinear, nonconvex form of the objective function

gives no guarantee that a global minimum will be found.

Finally, many of the methods mentioned above use stability criteria for phase

determination. In both the sequential modular and Gibbs minimization approaches, various

numerical methods exist for determining whether a phase is thermodynamically stable, as

discussed by Gautam and Seider (1979). When phase distribution is uncertain at

equilibrium, Gautam, Seider, and White (1980) recommend minimization of Gibbs free

energy using an algorithm for NLP and phase splitting. Michelsen (1982a, 1982b)

suggests stability analysis as a preliminary step in isothermal flash calculations. He applies

a tangent plane criterion to determine whether a given phase distribution is stable.

In this study we wish to simulate vapor-liquid equilibrium for a specified temperature and

pressure without having to specify in advance the number of phases present. In the one

phase regions, the mass and energy balance equations must be satisfied, but we can relax

the phase equilibrium expression by introducing a "pseudo" pressure Pp which differs from

the specified pressure Ps outside the bounds of the dew and bubble points. In this way we

can obtain a consistent set of equations in both the one and two phase regions which yields

a physically realistic solution.

As an alternative to the sequential modular and Gibbs minimization approaches, we apply

the extension of our LP formulation, P-SONATA. Here we pose the flash problem within
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the limitations of a penalty function formulation. This allows us to obtain a consistent

system of equations in both the one and two phase regions by adding a penalty term to the

objective to account for differences from equilibrium. The development of this approach is

simple but can be generalized to complex equilibrium separations as well. In addition, after

demonstrating this approach on numerous examples, we also provide a convergence

analysis to show that P-SONATA is an appropriate way to solve these systems.

We begin with the equations for a simple n-component, two-phase flash:

zi F - (xi L + yi V) = 0, i = l,...n

F-(L + V) = 0 (1)

yi-Ki(P,T,x)xi = 0, i= l,...n

n n

SXi"Sy i=°
and introduce new variables 8 and Pp. along with the following relations:

PP (2)

8 £ 0

yi-Ki(Pp,T,x)xi = 0

Here, Ps is the specified pressure of the flash and Pp is a "pseudo" pressure, which is

allowed to differ from the specified pressure in the single phase regions if Ps goes above

the bubble or below the dew point pressures. In the two phase region, (1) and (2) reduce

to the square system

8 = 0

ZiF = XiL + yiV, i = l , . . . n

F = L + V (3)

yi = Ki(PP,T,x)xi i = l , . . . n
n n

For the single phase liquid region, this formulation reduces to:

V=0

8 = PS-Pp
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F = L (4)

and Pp is the bubble point pressure. Finally, for the one phase vapor region the system of

equations becomes:

L=0

5 = PP - P s

Zj = yi

F = V (5)

and Pp is the dew point pressure. We consider the following optimization problem to

obtain these solutions:
min 8

st h(x,y,L,V,PP) = O
Pp (6)

0<L,V<F
0 < Xi, yi < 1

where h(x, y, L, V, Pp) = 0 are the flash equations given in (1), Note that the objective, 8,

must be constrained at the optimum and we show in section 5 and Appendix B that (6) has

solutions that satisfy (3), (4) or (5). To solve problem (6) we apply a version of Successive

Linear Programming (SLP). SLP requires little work at each iteration and as noted by

Zhang et al. (1985), SLP is quadratically convergent and quite efficient when the optimum

solution is a vertex optimum (i.e., the number of active constraints equals the number of

variables). In section 5 of this paper we show that problem (6) satisfies this requirement

and can therefore be solved inexpensively.

Moreover, the SLP approach is also closely related to the use of iterated linear

programming for constrained simulation (BuUard and Biegler, 1991). Here we extend our

previous formulation to consider (6). To ensure that each linear program has a solution at

each iteration i we also add artificial variables pj and nj

min ]^ (Pj+nj) + co 8
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st hj + VhJd = pj-nj

8^P S -Pp (7)

8 £ P p - P s

8, pj, nj £ 0

0 < L , V < F

Here we note the close similarity of the SLP approach to the iterated linear programming

approach of Bullard and Biegler (1991). In particular, solution of (7) provides a descent

direction for problem (6) provided that the parameter co is chosen appropriately. Guidelines

for choosing co are derived in section 5. Finally, note that (7) always has a bounded

solution that is unaffected by singularities in h.

The P-SONATA algorithm for solving flash problems can now be stated as follows:

0. Initialize die problem at w°. where the vector w includes all of the
variables in (6). Here w and h are of the same dimension.

1. Evaluate hj (w*), V hj (w1),
j

If DD £ e, stop. (Here, e.g., e = 106). Else, go to 2.

2. Generate the search direction d by solving the linear program (7).

min ^ (pj+flj) + co 8
j

st hj(w*) + V hj(w*) d = pj - nj

82>PS-Pp

o, pj, nj > 0

O £ L , V < F

0 < xi, yi ^ 1

If||d|| < e , stop. Else, go to 3.

3. From the solution of (7), evaluate an upper bound on the directional

derivative, DD (see Appendix B for derivation) at w*:

DD£ coo"1-
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4. Set the stepsize a = 1.

5. Evaluate wN = wi + ad,h(wN)and^N = co8N + £ |hj(wN)|
j

6. If |J,N - M-Cw1) < 0.1 a DD, then go to 7.

Else, set a = max /o.Ol a, -O^DDff2 \.
\ ( ^ N - ^ ( w i ) . D D a ) /

i.e., by quadratic interpolation. Go to 5.

7. Setwi+1 = wi + adandi = i + L Gotol .

There are two important properties associated with this algorithm:

(1) The Karush-Kuhn-Tucker conditions of (6) ensure a vertex optimum
(See Appendix B.2).

(2) An upper bound on CD can be derived or calculated from the Kuhn-
Tucker multipliers of (7). A discussion of this bound is deferred to Section
5. Because of the importance of forcing pj and nj to zero upon convergence
of P-SONATA, co should be made small. In practice we generally set
co between 0.001 and 10"6 althoughjerformance was largely
insensitive to this value.

Thus, upon convergence, we have Ps = Pp and 8 = 0 for solutions in the two phase

regions. For regions where the equilibrium equation does not hold, such as the one phase

regions in the flash problem, 5 > 0. In fact, the approach which we propose here is related

to a particular Gibbs minimization formulation. In Appendix A we show that the Kuhn

Tucker conditions of the Gibbs minimization are related to those of (6). Thus our approach

can be viewed as an efficient Successive Linear Programming (SLP) method for a special

class of Gibbs minimizations.

3. EXAMPLE PROBLEMS

To examine the performance of this formulation, we consider seven example problems.

The first three involve two ideal flash units and one nonideal flash operating in the one and

two phase regions, and the fourth is a flash example which exhibits more complex

retrograde condensation behavior. Examples 5, 6, and 7 in section 4 illustrate the

extension of the penalty function formulation to the cases of ideal and nonideal distillation

columns. In the distillation examples we consider "one phase" regions where the column is
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operating below "minimum reflux" conditions in Examples 5 and 7 and below "minimum

reboiler heat duty" in Example 6.

Examples 1-3: Isothermal Ideal and Nonideal Flash

The ideal flash units in Examples 1 and 2 are modeled using the simple Antoine equation

for phase equilibrium. For the nonideal flash in Example 3, the liquid phase is modelled by

UNIQUAC equations (Prausnitz et al.y 1980). The generalized method of Hayden-

O'Connell is used to compute the pure component and second virial coefficients are used to

evaluate the vapor phase fugacity coefficient All cases for these three flash examples were

initialized in the two phase region with V = L = 50. In the first two examples both liquid

and vapor mole fractions were initialized to 0.3. In the third example, the vapor and liquid

mole fractions were initialized to the feed compositions.

Here we characterize the flash problem as a nonsmooth system having well-defined smooth

regions. Nondifferentiabilities or "kinks" occur at the vapor-liquid transitions, or bubble

and dew points. For Example 3, shown in Figure 2, Tbub = 329.7°K and Tdew = 332.7°K.

329 331
T(K)

333

Figure 2. Vapor flowrate versus temperature for Example 3.

We also compare this approach to one where 8 was minimized as an NLP with MINOS in

the formulation shown in (8),
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min 8

st h(w) = 0

(8)

8 > P S - P p
8 > 0

As shown in Tables 1-3, the number of function evaluations required by MINOS is

significantly greater, and in a few cases MINOS terminated without finding a feasible

solution, indicated by (*•). Here the robustness of our method in these cases is most likely

due to the effect of the slack variables pj and nj in handling inconsistent linearizations.

Example 4: Retrograde Condensation

In the first three examples, we solved both ideal and nonideal flash problems to

demonstrate the potential of the penalty function formulation to handle simple problems.

We can also simulate the behavior of more complex phase equilibria systems near the

critical point Consider the retrograde condensation phenomena described in Smith and

Van Ness (1987) for which, under certain conditions, a condensation process occurs as the

result of a pressure reduction. The pressure-temperature diagram for this type of system is

depicted in Figure 3.

Critical locus

Saturated

Saturated vapor
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Figure 3. Portion of a PT diagram showing phase behavior in the critical region

(taken from Smith and Van Ness, 1987).

Here the critical point is at C, and Mp and Mr identify the points of maximum pressure and

maximum temperature. The dashed curves indicate the liquid fraction in a two-phase liquid

and vapor mixture. Inside the two phase envelope and to the left of the critical point C, we

expect that a reduction in pressure along line BD will result in vaporization from the bubble

point to the dew point However, if we consider point F, a state of saturated vapor located

to the right of the critical point C, liquefaction occurs when the pressure is reduced and

reaches a maximum at G, after which vaporization takes place until the dew point is reached

atH.

In order to model this type of system, we cannot use the UNIQUAC relations as in

Example 3, since they are not accurate near this critical region. Instead, we use the Soave-

Redlich-Kwong cubic equation of state (Soave, 1972), where the compressibility factor Z

is obtained by solving the cubic equation of state

0 (9)

and

(11)

ai°-5 = l + (0.480+ 1.574 an- 0.176 eo?)(l-T&5) (12)

One or three Teal roots will be obtained from the solution of equation (9); in the latter case,

the smallest root (ZL) will be taken for a liquid phase and the highest one (Zy) for a vapor

phase, as shown in Figure 4.
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smallest root
liquid phase,

largest root:
vapor phase, Zy

Figure 4. Plot of f versus Z, showing the location of Z corresponding to

liquid (ZL) and vapor (Zv) phases.

At the critical point we would expect "one phase" behavior in which the liquid and vapor

roots of equation (9), ZL and Zv, would converge into one root In addition to the flash

equations and equation of state relations, we can enforce inequality constraints which

ensure that the first derivatives of equation (9) will be positive at ZL and Zy. In addition,

given the second derivative of equation (9), ff = 6Z - 2, we can enforce an upper bound of

1/3 on ZL and a lower bound of 1/3 on Zy.

To demonstrate this approach, we consider an isothermal flash having a feed stream of

58.7 mole% ethane and 41.3 mole% n-heptane. The physical property data for this system

are taken from Reid, Prausnitz, and Sherwood (1977). We compare operation at 400°F and

39£°F where the pressure is decreased from 38000 mm Hg to 25000 mm Hg. Both

isotherms illustrate retrograde condensation behavior for the ethane/n-heptane system.

Table 4 reports the vapor and liquid flowrates obtained by P-SONATA in solving the

penalty function formulation with co = 106 . The iterations and function evaluations

required are shown in Table 5.

The starting point for all of the problems is in the two phase region, with L = 16.09 moles

and V = 83.91 moles and Ps = Pp. Starting as a saturated vapor at T = 395°F, the system

exhibits maximum condensation at around 35000 mm Hg, and then reaches the dew point

at around 26000 mm Hg. Similarly for T = 400°F, the system exhibits maximum

condensation at around 36000 mm Hg, and then reaches the dew point at around 29000

mm Hg. Also using formulation (8), MINOS fails to find a feasible solution for 19 of the

22 cases.
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4. DISTILLATION EXAMPLES: HANDLING LARGER SYSTEMS

The same approach applied to Examples 1 through 4 can be extended to larger systems

such as distillation. In the flash examples the mass and energy balances were enforced

while the phase equilibrium equations were relaxed when necessary to allow for

convergence to a physically realistic solution. For the distillation case, we consider two

limiting cases, that of columns operating with dry and vaporless trays. The first limiting

case, with dry trays, occurs as a result of a high boilup rate and low reflux (for saturated

liquid feed); the second case, with vaporless trays, occurs with low boilup rate and high

reflux (for saturated vapor feed). These are limiting cases in which the column is operating

below the minimum reflux or minimum reboiler heat duty, respectively, where a feasible

solution cannot be found using traditional simulation techniques.

The calculation of minimum reflux ratios is an essential and difficult task in the design and

simulation of distillation columns. As defined by Underwood (1946), the minimum reflux

ratio rm is the ratio which will require an infinite number of trays for the desired

separation. In addition, Levy and Doherty (1985) as well as Koehler et al. (1991) have

extended his approach for determining rm to nonideal systems, including those with

azeotropes. Here we consider limiting cases for columns with a specified number of trays.

Thus, the minimum reflux is found at which the column can still operate with a specified

overhead product rate (D/F); the minimum reboiler heat duty has an analogous

interpretation with bottom product rate (B/F). We wish to obtain a solution to the

simulation problem for which the mass balances are enforced and the relaxed phase

equilibrium expression is satisfied both above and below the minimum ieflux and reboiler

heat duty rates, analogous to the flash examples of Section 3. The McCabe-Thiele diagrams

in Figures 5 and 6 illustrate the modes of operation below the minimum rates, where, in

each case, the stripping and rectifying operating lines do not intersect.

If the specified reflux for the simulation problem is indeed below the minimum, the liquid

flowrate on the trays above the feed becomes zero and the phase equilibrium expression can

no longer be satisfied in an equation-oriented approach. Here, the penalty function

formulation allows the liquid flowrates on the trays above the feed tray to become zero

while the pseudo pressure Ppon those trays differs from the specified column pressure Ps

and allows the phase equilibrium relation to be satisfied. Thus the penalty function

formulation ensures that the mass and energy balances are satisfied with a relaxed phase

equilibrium expression and a feasible solution exists for both two phase and one phase

(dry tray) regions. The penalty function formulation for the distillation case (13), below,
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is very similar to the general flash formulation (7) with the difference that there are

variables 6m and Ppm ŝ well as an associated set of inequality constraints similar to (2) for

each stage in the column, m = 1,..., NS.
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Figure 5. The McCabe-Thiele diagram (lower) illustrates the distillation case

(upper) having low reflux and high boilup rate with saturated liquid feed- When

reflux ratio is below its minimum operational value, liquid flow becomes zero on

trays above the feed
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Sat vap.

>

Figure 6. The McCabe-Thiele diagram (lower) illustrates the distillation case

(upper) of high reflux, low boilup rate with saturated vapor feed When Qreb is

below its minimum operational rate, vapor flow becomes zero on trays below the

feed, resulting in a vaporless tray.
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NS

mj
st hj + V hj d = pj - nj

5m^Ppm-Psm m = 1, ..., NS (13)

8m ^ Psm
8m, pj, nj £ 0

D/F or B/F specified

where hj includes the relaxed equilibrium expression

yi = Ki (xb T, PP)

as well as the remaining MESH (Material balance, Equilibrium, Summation of mole

fractions, and Heat balance) equations for distillation.

Example 5: Ideal Distillation Operating Below Minimum Reflux

Example 5 is an 25-tray ideal distillation column with a saturated liquid feed of 70%

benzene - 30% toluene to stage 7. This 228 variable problem was addressed in Bullard and

Biegler (1991) as a simulation case in which the reflux ratio was fixed and the square

system was solved using an iterated LP approach. Starting points for this column are same

as used in Bullard and Biegler (1991) and Vasantharajan et aL (1990), and are reasonable

far from the solution. Because the recovery is not specified, we fix D/F = 0.30 and

decrease the reflux ratio to see the effect on liquid flowrate in the column.

In order to have a basis of comparison for the distillation cases, we also used the FRAKB

block in FLOWTRAN to solve the problem. There is close agreement between the liquid

mole fractions predicted by the equation-oriented formulation and the simulation program,

with small differences resulting from different physical property data being used. We note,

however, that FLOWTRAN is unable to converge for small reflux ratio near or below the

minimum. Table 6 lists the dry tray location predicted by MINOS, P-SONATA, and

FLOWTRAN. As expected, the tray above the feed (at stage 7) is the first to become dry.

A comparison of iterations and function evaluations for MINOS and P-SONATA is listed

in Table 7. The penalty weight for both MINOS and P-SONATA for this example

is co = 0.5. The solution from each case was used as the starting point for the next case for

both MINOS and P-SONATA. Here, the minimum operating reflux ratio is close to 0.005.
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In addition, solving an NLP with MINOS to minimize the reflux ratio subject to the

operating equations gives a minimum operating reflux of r = 0.005, which is consistent

with our results where the reflux is fixed. Both MINOS and P-SONATA predict the same

overhead and bottoms composition using (13) and indicate that tray 8 becomes dry near

r = 0.005.

Example 6: Ideal Distillation Operating Below Minimum Reboiler Heat
Duty

Example 6 illustrates another limiting case of minimum operational reboiler heat duty. The

physical description and initialization of the column is the same as in Example 5. The feed

temperature is changed to 372°K to provide a saturated vapor feed and the overhead ratio

D/F is specified as 0.921. For a 100 kmol/h feed with 70% benzene, we begin with the

reboiler heat duty fixed at 6.33 MJ/h and gradually decrease the heat duty to see the effect

on vapor flowrate in the column.

Both MINOS and P-SONATA predict that vapor disappearance on tray 6, directly below

the feed tray (stage 7), occurs with Qreb < 0.316 MJ/h. Both approaches obtain the same

bottom and overhead mole fractions. A comparison of iterations and function evaluations

required by MINOS and P-SONATA for Example 6 is listed in Table 8. The penalty

weight for both MINOS and P-SONATA for this example is co = 0.5. As in Example

5, the solution from each case was used as the starting point for the next case for both

MINOS and P-SONATA.

Example 7: Nonideal Distillation Operating Below Minimum Reflux

Finally, Example 7 is a case of a nonideal 17-tray distillation column described by 997

equations. The problem was originally formulated by Vasantharajan et al. (1990) and was

solved as a simulation problem in Bullard and Biegler (1991) with fixed reflux. The

starting points are far from the solution and are the same as specified in these references.

As in Example 5, we consider the case of minimum operational reflux for this large scale

example. The saturated liquid feed to tray 12 consists of 15% methanol, 40% acetone, 5%

methylacetate, 20% benzene, and 20% chloroform. We expect the liquid flowrates on the

trays above the feed to go to zero when below the minimum reflux, rm < 0.00005. As in

the nonideal flash in Example 3, the liquid phase is modelled by UNIQUAC equations.
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The generalized method of Hayden-OfConnell is used to compute the pure component and
cross second virial coefficients are used to evaluate the vapor phase fugacity coefficient

P-SONATA predicts the liquid top and bottom compositions shown in Table 9. Table 10
reports the number of iterations and function evaluations required as well as the number of
dry trays predicted. We note that MINOS is unable to obtain a feasible solution for any of
the simulation cases. Because of the size and nonlinearity of Example 7, it was also useful
to slowly decrease the reflux while using the previous solution as the starting point for the
next case.

5. PROPERTIES OF P-SONATA AND OTHER NONSMOOTH PROBLEMS

In this section we evaluate the convergence properties of P-SONATA for the vapor-liquid
equilibrium problems that were solved in the previous two sections. Also, we are interested
in examining the generality of the P-SONATA approach for other nonsmooth problems.
Thus, we now consider the conditions on nonsmooth problems for which P-SONATA will
yield valid solutions. In addition to problem (6), we consider the nonsmooth problem with
n equations and Mg piecewise linear terms given by:

h(x, A) = 0

8m = maxke Km( fk,m + ak>m
Tx}, m = 1,... Mg

(14)

Note that each piecewise linear term is made up of Km linear segments. Here x is the n-
vector of variables and A is a vector of length Mg with elements 8m. We choose only
piecewise linear terms in the (14) in order to simplify the analysis, although terms such as
5m = max { fk̂ m(x)} have also been treated in practice.

An appealing way to handle this problem is to generalize the P-SONATA algorithm above.
As with equation (6) we can formulate the following NLP to solve (14):

(15)
st h (x,A) = 0

m = l , . . . , M 5
5

keKm

x L < x < x u
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Note that problem (6) is a special case of (15). If we linearize the equalities and apply the

iterated linear programming strategy, the following subproblem can be solved at each

iteration:

m

st hj (xJ, A1) + V hj (xj, A1) d = pj - nj
r p ^ ^ mmm -I T k y |

keKm

XL < x̂  + d̂  < x^
P» n; ^ 0

(16)

where d = x-x>

L A-A 1

Note that both (7) and (13) are special cases of (16). However, not all nonsmooth

problems can be handled using the penalty function formulation (16). Generally, the NLP

(15) may not converge to a vertex optimum (e.g. to satisfy (14) or (2)) and this will cause

difficulties for the SLP approach. A simple example of this problem is illustrated by the

two dimensional problem illustrated in Figure 7 and described by:

mm

st

8

h(x,S) = 0

S^x (17)

Here the constraints 8 £ x and 8 £ -x account for the nonsmooth function 8 = | x|. In Figure

7 two alternative equations, hi and I12, are shown along with the absolute value constraint



h i ( x , 8 ) = 0

Figure 1. Example of limitation of application of the penalty function

formulation with nonsmooth function 5 = | x|.

For a function of the form hi, where the equality constraint h is monotonic in 8, the penalty

function formulation (IS) will converge to point A, where the constraint 5 = -x is satisfied

However, application of (15) to equality constraint I12 will minimize the objective (8) by

converging to point B, where
dh2

3x
- 0, and neither part of the absolute value constraint is

satisfied. Thus, there is no vertex solution to the problem, and the nonsmooth constraint is

not satisfied with an equality constraint of the form h2 (see Appendix B.2 for an extended

discussion).

Figure 7 gives us an intuitive geometric description of the application of the penalty

function approach. We therefore need to consider the theoretical limitations of the approach

in Order to more clearly define the class of problems for which P-SONATA is applicable.

To relate problems (15) and (16) note that solving (16) is equivalent to solving the

unconstrained nonsmooth problem

co
m m \r

(18)

where M is a sufficiently large constant. A natural exact penalty function follows from (18)

for (15):

m m
(19)
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The following three properties are derived in Appendix B which allow (16) to solve

problem (15):

(a) To guarantee activity of the inequality constraints for each 5m at

convergence, we require that

j (see Appendix B. 1).
j

where yis the Lagrange multiplier on h from (16).

An upper bound on this quantity is:

j
Fortunately, for the phase equilibrium problem, the quantity on the right

hand side is zero. (5 does not appear in the flash equations)

(b) To ensure that repeated solution of LP (16) will lead to the solution of NLP

(15), we require that

l>| | (Vxh)1Xak.m | |a>^|[Y j | | (20)
II m II

where k is the active constraint for each 5m in (16). Note that

if (Vxh)~ X ^m is large, co may need to become very small and
II m il

this leads to precision problems. We can easily extend the derivation to the

case where the slacks in the objective function of (16) are weighted by a

large number N:

co 5m + N X P j + nj
m j

with the corresponding restriction that

(21)
m

(c) The solution of (16) is a descent direction for (15) (see Appendix B.3).
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Thus, with appropriate selection of the parameter co, the application of the P-

SONATA approach is an effective method for a subclass of nonsmooth problems which

have a vertex optimum. In particular, for the phase equilibrium problems, we have (Vx h)

nonsingular and the nonzero elements of a£m are +/-1 from (6). Consequently, the upper

bound on co is bounded away from zero and an appropriately small value of co can be used.

On the other hand, the counterexample shown in Figure! does not yield a vertex solution

and, in fact, (b) cannot be satisfied because = (X
3x

From the analysis in Appendix B, we therefore see that P-SONATA is appropriate for a

restricted problem class given by the properties described above. Fortunately, because of

features of the VLE problem, using the penalty function approach allows us to effectively

simulate the transition between one and two phase regions. For problems that do not satisfy

these conditions, a different approach must be used. For this reason we develop an

alternate SONATA formulation in a separate study (Bullard and Biegler, 1992). Here the

nonsmooth terms in (14) are replaced by the constraints:

5m ^ fkan + *\m <* m = 1, ..., M5
^ keKm

£8

k (22)
0 £ Xk < 1

Note that at least one of the linear segments must equal 5m and thus the max operator is

satisfied. The constraints in (22) are then linearized and an iterated linear programming

strategy is applied. While this approach does not apply directly to phase equilibrium

problems, it has been applied effectively to numerous problems with explicit nonsmooth

terms such as pipe networks with checkvalves and flow transition problems. A description

of this approach along with its convergence properties is given in Bullard and Biegler

(1992).

6. CONCLUSIONS

In this paper we extend the constrained simulation algorithm introduced in BuUaid and

Biegler (1991) to handle nonsmooth relations that arise in two-phase vapor-liquid

equilibrium problems. The performance of this formulation is demonstrated for process

models involving phase equilibrium, such as transitions from one and two phases in flash

and distillation problems, where mass and energy balances must be satisfied but the phase
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equilibrium expression can be relaxed outside the two phase region. Isothermal flash

problems with ideal and nonideal phase equilibrium relations are considered as well as a

case which exhibits retrograde condensation behavior near the critical point. We also

examine limiting distillation cases including columns operating below minimum reflux ratio

(resulting in dry trays) and below minimum reboiler heat duty (resulting in vaporless

trays). In all of these examples, we demonstrate that P-SONATA yields a consistent set of

equations in both the one and two phase regions of operation. Thus, by applying this

formulation, we can effectively simulate these types of nonsmooth systems to obtain

physically realistic solutions.

These types of phase equilibrium problems could also be extended to any equilibrium-

based separation where the mass and energy balances must be satisfied but the phase

equilibrium expression can be relaxed outside the two phase region. We have not yet

considered a system with more than two phases; examples such as liquid-liquid equilibrium

have not been investigated, and the extension of this approach to those systems is an open

question. However, based on the results shown in this paper, the penalty function

formulation, P-SONATA, appears to be a promising approach for handling VLE systems

of one or two phases.

Finally, by extending the convergence results of Bullard and Biegler (1991), we analyze

the P-SONATA algorithm in order to demonstrate its convergence properties for vapor-

liquid equilibrium as well as a subclass of other nonsmooth problems which can be solved

by incorporating penalty functions in the objective.
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APPENDIX A: Relation Between Gibbs Free Energy Minimization and P-SONATA

The objective is to establish a relationship between the Gibbs minimization formulation and

the proposed formulation involving Pp, Le. the solution of the reformulated Pp problems

satisfies the Kuhn Tucker conditions of the original Gibbs minimization.

niV(AGjf + RTlnf^)

st n iL + n i v = niT i = l,...n (A.I)

n i L > 0 , n i v > 0 i=l, . . .n

where ni denotes the moles of component i in each phase. Here we show an equivalence

under the following assumptions:

1) Vapor/liquid systems are considered with only a maximum of two phases.

2) Vapor and liquid fugacities are defined using vapor and liquid fugacity coefficients
(O{ and 7i, respectively) which are not functions of pressure.

3) K{ = (7i PiO / P Oi) > 0 always for i = l,n. In this case,

n n i ^

and neither nj* nor n^ can become zero unless the entire phase disappears. Under

these assumptions, the nonnegativity conditions in (A.1) can be simplified to give

the following problem:

minGT = 2 njL(AG/+ RTlnf-L)+ X n iV<A G i f + RTlnf i
v)

st n} L + mv = ni T i = l,...n (A.2)
n n

Expanding,

minGT = Y (niT AGjf i ^ j ^

st niL + n i v = niT i = l,...n (A3)

The Kuhn Tucker conditions of this problem are now
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dnf L i=i J

where oq are the multipliers for the equality constraints.

Now (A.4) reduces to

Alternatively, for n* = RT In f,, we have

HiL + ai - pL = 0

These conditions allow three cases:

CASE 1(2 phase):

(A.4)

j-i

RTln(fB + R T X n ^ M +Oi-pL =0 (A.5)
3 L

where the second terms go to zero from the Gibbs-Duhem relation:

(A.7)
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(A.8)

Mi L = W v (equilibrium)

CASE 2 (1 liquid phase):

(A.9)

CASE 3 (1 vapor phase):

(A. 10)

Substituting fugacity and activity coefficient expressions for vapor and liquid fugacities

leads to:

RTln

_ y i _ =

K i X i

- RTln

j /

: constant (P or -

n
v \

where Pp = P / A, the "pseudopressure" in (6).

Now for the flash operation,

(AM)

(A.12)

(A.13)

(A.14)
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So we can express the flash problem in the penalty formulation as

mincoS

st X Xi - X yi = 0
i i

L + V = F
yi = Ki(x, T, Pp)Xi = (71 PiO / PP <I>i )xi

Lxi + Vyi = Fzi (

8 ^ P s - PP

8 £ PP - P s

0 < ( x i , y i ) ^ l

0 < ( L , V ) < F

Thus, we can show that the solution of (A. IS) satisfies the Kuhn Tucker conditions of the

original Gibbs minimization. Finally, we note that the second assumption is necessary in

(A. 13); otherwise 71 and Oj would be functions of Ps (not Pp) and the definition for Kj

would not hold in (A.15). Note, however, that even under these conditions P-SONATA

would agree with the Gibbs minimization in the two-phase region (Pp = Ps). Moreover, P-

SONATA would still identify the correct phases when V or L are zero but the compositions

for the missing phase would not be the same as with Gibbs minimization.
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APPENDIX B: BOUNDS FOR co TO ENSURE CONSTRAINT

ACTIVITY

From the problem

h(x ,max k (a T
k m x + f k m ) ) = 0 (B.I)

or the phase equilibrium problem (1),(2) we pose the NLP (B,2):

m (B.2)
st h (x, A) = 0

Here x and h are of the same dimension n. Now we consider bounds for co when applied

with an iterated LP method

B.I. Lower bound to establish constraint activity of the LP.

Problem (B.2) is solved by repeated solution of the following subproblem (B.3) at iteration

i:

ttSm + JLPj + nj
m j

st hj (xi, A1) + V hj (xi, A ^ d = Pj - nj (B3)
6m £ a \ m x + fk,m m = 1,..., M5

kelQn
Pj, nj £ 0

where d = x " x *
L A - A 1 J

Here we require a bound on co which ensures activity of the equality constraints for each

5m. Taking the Kuhn-Tucker conditions for (B.3) gives the following Lagrange function:

L= X G>8m + X Pj + nj - £ (ctj"Pj+aj iij
m

(B.4)
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x + fl
m

with optimality conditions given by:

1 - Y j -

1+Yj

CD+ 2
j

Vy.l
j

Ctj+pj

- «r

7xhj-

= 0,

= 0

= 0

5* hj - 2
k

m k

aj"nJ

Pk.m = 0

k̂,m a k,m = 0

= 0

(B.5)

and from these expressions we have

andO<{(Xj+, ocf}<2 (B,6)

Now to guarantee activity for the inequalities, we require:

5kfm > 0 for m = 1, .••, n§ which is implied by (B.5) and (B.6) when
k

co > - ]£ Yj ^5m hj. An upper bound on the right hand side is given by

co > 2J IV^ hj I. For the formulation for the flash problem (7), co > 0.
j

B.2. Requirements on co so that repeated solution of (B.3) will lead to
solution of (B.2).

As seen in the counterexample (Section 5), conditions on co cannot always be imposed so

that the iterated LP solves (B. 1). To derive sufficient conditions for this we note that (B.3)

is equivalent to solving the following nonsmooth problem:

Eco6m + XlhJ + VhJdl + M X E [ m ^ ( ° > a \ m X + fk4n-5m)] (B.7)
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where M is sufficiently large to ensure satisfaction of the inequalities. A natural exact
penalty function follows from (B.7):

(B.8)
m

In Appendix B.3 we show that the solution to (B.3) gives a descent direction for (B.8).

To relate (B.7) to (B.2) we note that the solution of (B.2) is given by minimization of

m m
(B.9)

as long as:

C>maxj|Yj| and M>

(see Han and Mangasarian, 1979), and we need to show that C < 1 and M < M

in (B.8).

From the Kuhn-Tucker conditions of (B.2) we have:

, m = 0 ; m = l , ...,MS

lcm = 0

(BAG)

m k

Now, if at least one inequality, k, is active for each 5m, we have Pk, m > 0 and a vertex

optimum. Multipliers are then given by:

Y

PkJ

Vxh A£

Vgh -I " coe
(B.ll)

where eT = [ 1,1,..., 1 ] (M5 vector)
Ak = [ ak,i . ak,2 • •••• ak,M« 1 (n x M5 matrix)

By Motzkinfs theorem of the alternative, it can be shown that these (B.I 1) has a solution if

and only if the following system has no solution (Mangasarian, 1969):
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0 e
Ax

L AS
Ax

L A8

(B.12)

We now consider three special cases:

(a) In the counterexample of Figure () in Section 5, Vx h2 = 0, Ak = ± 1 and

(B.12) does have a solution at point B. Hence, (B.I 1) has no solution.

(b) If A£ = 0 it is clear that (B.12) has no solution (and any positive value of co can

be used). Moreover, if Vx h is nonsingular we have pk m = CD and 75 = 0.

Finally, from (B.I 1) we see that (B.2) has a vertex solution.

(c) If V5 h = 0 and Vx h is nonsingular (the case for VLE systems), then Ax = 0

and it is easily seen that (B.12) has no solution. Here

Pkm = <*> and y= - (Vx h)" A£e co. Also, it is clear from (B.ll) that (B.2) has a

vertex solution.

Finally, to use (B.8) we need to find co which satisfies

co>O and 1 >

Here co must therefore be suitably small.

B.3 Descent property for exact penalty function.

Consider the exact penalty function for (B.2):

m m

with the directional derivative given by

Ddn(x0= 2 <°(5m-8I>£
m U J.

Vhjd

m



-34-

J + = { j | h j ( x S 5 i ) > 0 }

where J.= { j |h j (x i ,8 i )<0}

Jo={j|h j(xi ,8 i) = 0}

Assume that b°m 2: a^ x° + fkm, then because we solve linear programs this constraint is

always satisfied. Thus, the last term always vanishes in \i(x). Also by making

substitutions from (B.3) (see also Bullard and Biegler, 1991) we have:

m j j
Now by setting d = 0 we have a feasible point for (B.3) since

p j = hj(x i ,A1) j e J +

nj = - hj (x1, A1) j e J .

Pj = nj = hj (x>, A1) = 0 otherwise

then we would expect the objective function at the optimal solution to satisfy

m j m j

Subtracting the right hand side from the left shows that Ddji' < 0.
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Example 1: Ideal Flash (N-Butane, N-Hexane, N-Pentane) (co = 10"6)

T(K)

390
392
394

396
398
400
402
404
406
408
410

411
412

MINOS
rr

38
42
41

29
27
25
16
13
15
15
15

14
16

FE

208
226
220

155
237
135
83
63
82
86
83

76
82

rr

33
30
27

15
7
5
5
5
6
8
15

21
17

P-SONATA
FE

61
57
51

26
10
6
6
6
8
12
27

39
31

Table 1. Comparison of iterations and function evaluations

required by MINOS and P-SONATA for Example 1, where

Tbub = 394.1°K and Tdew = 410.6°K, The feed composition is

(0-20, 0-50, 0.30).

one phase

liquid region

two phase

region

one phase

vapor region



-39-

Example 2: Ideal Flash (N-Butane, Cis-2-Butane, N-Propane) (G> = 106)

T(K)

298
300

302
304
306
308

310
312

MINOS
rr

41
**

34
12
17
35

37
11

FE

314
**

192
64
90
204

205
74

rr

8
6

4
5
7
13

21
16

P-SONATA
FE

12
8

5
7
11
23

39
26

** terminated as infeasible

one phase

liquid region

two phase

region

one phase

vapor region

Table 2. Comparison of iterations and function evaluations

required by MINOS and P-SONATA for Example 2, where

Tbub = 300°K and T dew= 308.2°K. The feed composition is (0.35,

0.40, 0.25).
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Example 3: Nonideal Flash (Methanol, Acetone, Methyl Acetate, Benzene, Chloroform)
(0) = 10-3)

T(K)

329

329.8

330

331

332

332.7

333

rr

8

10

10

12

12

12

12

MINOS
FE

17

29

29

34

39

41

35

rr

5

6

6

6

12

6

6

P-SONATA
FE

6

7

7

7

15

7

7

Table 3. Comparison of iterations and function evaluations

required by MINOS and P-SONATA for Example 3, where

Tbub = 329.7°K and Tdew = 332.7°K. The feed composition is

((U5, 0.40, 0.05, 0.20, 0.20).

one phase
liquid region

two phase

region

one phase
vapor region
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P-SONATA
P(mm Hg)

38000
37000
36000
35000
32000
30000
29000
28000
27000
26000
25000

T =
L(moles)

0
0
0

15.91
10.58
7.15
5.28
3.29
1.17
0
0

395°F
V(moles)

100
100
100
84.81
89.42
92.85
94.70
96.70
98.83
100
100

T =
L(moles)

0
0

12.22
10.79
6.14
2.59
0.653
0
0
0
0

400°F
V(moles)

100
100
87.77
89.20
93.86
97.4
99.35
100
100
100
100

Table 4. Liquid and vapor flowrates obtained by P-SONATA at T = 400°F
and T = 395°F for Example 4.
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P-SONATA
P(mm Hg)

38000
37000
36000
35000
32000
30000
29000
28000
27000
26000
25000

T =
Iterations

10
10
10
90
39
73
61
13
11
105
24

395°F
FE

10
10
10
168
68
132
99
15
13
179
38

T = 400°F
Iterations

10
84
98
58
84
49
29
17
279
13
34

FE

10
144
181
101
144
83
37
24
537
18
48

Table 5. Iterations and function evaluations required by P-SONATA at T ••

400°F and T = 395°F for Example 4.
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Reflux Ratio

1.0

0.1

0.01

0.005

0.001

0.0005

MINOS

-

-

-

-

8

8

P-SONATA

-

-

-

-

8

8

FLOWTRAN

-

-

-
**

aleak

* •

** failed to converge

Table 6. Location of dry tray predicted by MINOS, P-SONATA, and

FLOWTRAN for Example 5. The feed tray is tray 7.
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Reflux
ratio r

1.0
0.1

0.01

0.005

0.001

0.0005

MINOS
Iterations

13
10
5
3
4
4

FE

49
306
10
6
8
8

P-SONATA
Iterations FE

36
6
3
2
4
4

78
7
3
2

6
6

Table 7. Comparison of iterations and function evaluations required by

MINOS and P-SONATA for Example 5.
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Heat duty
Qreb(MJ/h)

6.33
5.06
3.79
2.53
1.26

0.633
0.316
0.0633
0.0317
0.00633

MINOS

rr
15

4

4

4

4

4

4

4

4

4

FE

81

8

8

8

8

8

8

8

8

8

P-SONATA

rr
5

4

3

3

4

3

3

3

3

3

FE

5

5

4

3

5

4

4

4

4

4

Vaporless
trayloc.

-

-

-

-

-

-

6

6

6

6

Table 8. Comparison of iterations, function evaluations, and cpu times

required by MINOS and P-SONATA for Example 6. The location of vaporless

trays is also identified. The feed tray is tray 7.
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Reflux
ratio

8.5
7.0
6.0
5.5
4.5
4.0
3.0
2.5
2.0
1.5
1.0
0.75
0.10
0.001
5E-05
4E-05

0.013
0.010
0.009
0.008
0.007
0.006
0.006
0.007
0.008
0.013
0.025
0.036
0.075
0.075
0.075
0.075

bottom product
XA

0.350
0.356
0.340
0.362
0.367
0.373
0.391
0.385
0.389
0.389
0.391
0.391
0.393
0.393
0.393
0.393

XMA

0.053
0.055
0.055
0.056
0.056
0.057
0.057
0.058
0.058
0.058
0.058
0.057
0.055
0.055
0.055
0.055

XB

0.283
0.281
0.280
0.279
0.278
0.276
0.275
0.274
0.272
0.269
0.264
0.260
0.240
0.240
0.240
0.240

xc

0.301
0.298
0.296
0.294
0.291
0.287
0.284
0.281
0.277
0.271
0.262
0.256
0.236
0.236
0.236
0.236

XM

0.373
0.377
0.379
0.380
0.382
0.384
0.384
0.383
0.380
0.372
0.353
0.335
0.271
0.271
0.271
0.271

top product
XA

0.482
0.472
0.465
0.461
0.453
0.443
0.437
0.431
0.424
0.418
0.415
0.415
0.411
0.411
0.411
0.411

XMA

0.044
0.042
0.041
0.041
0.040
0.039
0.038
0.038
0.037
0.037
0.038
0.038
0.042
0.042
0.042
0.042

XB

0.065
0.068
0.070
0.071
0.073
0.076
0.078
0.080
0.083
0.088
0.096
0.103
0.135
0.135
0.135
0.135

xc

0.035
0.041
0.044
0.047
0.052
0.058
0.063
0.068
0.076
0.085
0.099
0.108
0.141
0.141
0.141
0.141

Table 9. Top and bottom liquid mole fractions of methanol, acetone, methyl acetate,
benzene, and chloroform obtained by P-SONATA for Example 7.



-47-

Reflux ratio Iterations Function evaluations Dry tray location

8.5
7.0
6.0
5.5
4.5
4.0
3.0
2.5
2.0
1.5
1.0
0.75
0.10
0.001
5E-05
4E-05

3
6
3
3
3
2
11

13
5
4
15
4
9
5
8
10

3
6
3
3
3
2
20
26
5
4
27
5
29
5
20
15

-
-
-
-
-
-
-
-
-
-
-
-
-
-

13
13

Table 10. Iterations and function evaluations required by P-SONATA

for Example 7. The location of the dry tray is also reported The feed tray is tray 12
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Figure 1. Isothermal Flash Operation.

Figure 2. Vapor flowrate versus temperature for Example 3.

Figure 3. Portion of a PT diagram showing phase behavior in the critical region

(taken from Smith and Van Ness, 1987).

Figure 4. Plot of f versus Z, showing the location of Z corresponding to

liquid (ZL) and vapor (Zy) phases.

Figure 5. The McCabe-Thiele diagram (lower) illustrates the distillation case

(upper) having low reflux and high boilup rate with saturated liquid feed. When

reflux ratio is below its minimum operational value, liquid flow becomes zero on

trays above the feed.

Figure 6. The McCabe-Thiele diagram (lower) illustrates the distillation case

(upper) of high reflux, low boilup rate with saturated vapor feed. When Qreb is

below its minimum operational rate, vapor flow becomes zero on trays below the

feed, resulting in a vaporless tray.

Figure 7. Example of limitation of application of the penalty function

formulation with nonsmooth function 8 = | x|.
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F,z.
T,P

•

L,x;
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smallest root
liquid phase,

\

largest root:
vapor phase, Zy



Critical locus

Saturated l iqu i<^ /^

0.2 "' / <
0.1 'yS{

! I"'
^ v^Saturated vapor
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Sat vap.
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5=|x| h2(x,8) =

hi(x,5)=0
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