
Carnegie Mellon University
Research Showcase @ CMU

Human-Computer Interaction Institute School of Computer Science

1999

Past, Present and Future of User Interface Software
Tools
Brad Myers
Carnegie Mellon University

Scott E. Hudson
Carnegie Mellon University

Randy Pausch
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/hcii

This Article is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been accepted for
inclusion in Human-Computer Interaction Institute by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

Recommended Citation
.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fhcii%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii?utm_source=repository.cmu.edu%2Fhcii%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fhcii%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/hcii?utm_source=repository.cmu.edu%2Fhcii%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

Past, Present and Future of
User Interface Software Tools

Brad Myers, Scott E. Hudson, and Randy Pausch

Human Computer Interaction Institute
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

{bam, hudson, pausch}@cs.cmu.edu

September 15, 1999

** DRAFT 10**

Abstract

A user interface software tool helps developers design and implement the user interface. Research
on past tools has had enormous impact on today’s developers—virtually all applications today
were built using some form of user interface tool. In this paper, we consider cases of both
success and failure in past user interface tools. From these cases we extract a set of themes which
can serve as lessons for future work. Using these themes, past tools can be characterized by what
aspects of the user interface they addressed, their threshold and ceiling, what path of least
resistance they offer, how predictable they are to use, and whether they addressed a target that
became irrelevant. We believe the lessons of these past themes are particularly important now,
because increasingly rapid technological changes are likely to significantly change user
interfaces. We are at the dawn of an era where user interfaces are about to break out of the
“desktop” box where they have been stuck for the past 15 years. The next millenium will open
with an increasing diversity of user interfaces on an increasing diversity of computerized devices.
These devices include hand-held personal digital assistants (PDAs), cell phones, pagers,
computerized pens, computerized notepads, and various kinds of desk, and wall-size computers,
as well as devices in everyday objects (such as mounted on refrigerators, or even embedded in
truck tires). The increased connectivity of computers, initially evidenced by the World-Wide
Web, but spreading also with technologies such as personal-area networks, will also have a
profound effect on the user interface to computers. Another important force will be recognition-
based user interfaces, especially speech, and camera-based vision systems. Other changes we see
are an increasing need for 3D and end-user customization, programming, and scripting. All of
these changes will require significant support from the underlying user interface software tools.

CR CATEGORIES AND SUBJECT DESCRIPTORS: D.2.2 [Software Engineering]: Tools
and Techniques-User Interfaces; H.1.2 [Models and Principles]: User/Machine Systems-Human
Factors; H.5.2 [Information Interfaces and Presentation]: User Interfaces-User Interface
Management Systems, Windowing Systems; K.2 [History of Computing]: Software

ADDITIONAL KEYWORDS AND PHRASES: User Interface Software, Toolkits, Interface
Builders, User Interface Development Environments, Event Languages, Scripting Languages.

GENERAL TERMS: Human factors, Languages.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 2

** draft of 09/16/99 **

1. Introduction

There is no question that research in the area of user interface software tools has had an enormous

impact on current practice of software development. Virtually all applications today are built

using window managers, toolkits and interface builders that have their roots in the research of the

70’s, 80’s and 90’s.

These tools have achieved a high level of sophistication due in part to the homogeneity of today’s

user interfaces, as well as the hardware and software platforms they run on. Whereas the 70’s saw

a tremendous amount of experimentation with a variety of input devices and user interface styles,

much of the diversity is now gone from user interfaces. Almost all applications on Windows,

Unix or the Macintosh look and work in a very similar fashion, primarily using a small set of

constructs invented 15 or more years ago. The specific techniques of graphical user interfaces

that were first shown to have tremendous commercial impact by the Macintosh (starting in 1984),

have been widely adopted with only small variations, and a relatively slow growth of new

techniques. Further, the computing platform has largely stabilized on the now familiar desktop

machine – one with a large (typically color) bitmap screen, a keyboard, and a mouse (with

between one and three buttons).

This stability has had important positive benefits. For end users, the consistency of interfaces

now available makes it possible for them to build skills which largely transfer between

applications and platforms – knowing one graphical user interface provides skills that apply to

many others. For tool builders this relative lack of change has also allowed them to go through

significant refinement of concepts. In many respects tools have been able to mature and “catch

up” with an otherwise moving target.

However, many feel that significant opportunities for improved interfaces are being lost to

stagnation. In addition, conventional GUI (Graphical User Interface) techniques appear to be ill-

suited for some of the kinds of interactive platforms now starting to emerge, with ubiquitous

computing devices [72] having tiny and large displays, recognition-based user interfaces using

speech and gestures, and requirements for other facilities such as end-user programming.

As predicted by Mark Weiser at Xerox PARC, the age of ubiquitous computing is at hand.

Personal Digital Assistants (PDAs) such as the 3Com PalmPilot and personal organizers such as

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 3

** draft of 09/16/99 **

the Sharp Wizard are already popular. Digital cell phones are merging with digital pagers and

PDAs to form portable, wireless communication devices that support voice, along with electronic

mail, and personal information such as schedules and contact lists. Wall-size displays are already

available as projection devices such as the SmartBoard 1610 [57] or large plasma panels such as

ImageSite from Fujitsu, which is 42 inch wide [11]. It is inevitable that the costs of hardware will

continue to drop, and that new computational opportunities will arise. For example, connectivity

will become easier due to new wireless technologies such as the BlueTooth in-room radio

network [13].

Interfaces on these very large and very small displays cannot typically use the standard desktop

model, and people will not necessarily expect these devices to act like “regular” computers.

Reviews comparing the 3Com PalmPilot with Windows CE devices often make the point that the

Windows user interface style created for the desktop does not work well on palm-size devices

(e.g., [28]). And it clearly does not work for a tiny display on a phone. Similarly, the standard

Windows widgets such as pull-down menus are not appropriate on large wall-size displays since,

for example, the menus may be literally too high for short users to reach [50]. Furthermore,

people will be interacting with multiple devices at the same time so the devices will need to

communicate and coordinate their activities.

The implication of these changes is that we can expect a dramatic increase in the diversity of both

the types of computing devices in use, and the task contexts in which they operate. This in turn

implies that we are poised for a major change in user interfaces, and with it dramatic new needs

for tools to build those interfaces. It is especially important to explicitly consider the effects our

tools will have on what we can and will build, and to create new tools that have the properties

needed to meet a new generation of demands. There are many examples that show that tools have

significant impact on the styles of interfaces that are created. For example, in the World-Wide

Web, it is actually easier to use pictures as buttons rather than to use “real” button widgets.

Therefore, designers created elaborate, animated user interfaces with rich visual design and high

production values.

Why are tools so important and successful? In general, tools help reduce the amount of code that

programmers need to produce when creating a user interface, and they allow user interfaces to be

created more quickly. This, in turn, enables more rapid prototyping and therefore more iterations

of iterative design that is a crucial component of achieving high-quality user interfaces [41].

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 4

** draft of 09/16/99 **

Another important advantage of tools is that they help achieve a consistent look and feel, since all

user interfaces created with a certain tool will be similar.

This paper briefly discusses the history of successes and failures of user interface software tool

research to provide a context for future developments. It then discusses the implications on tools

of the impending changes. Finally, it discusses the requirements for the underlying operating

system to support these tools. Other papers have also discussed future issues in HCI tools,

including the report of the 1996 NSF-ACM workshop on Strategic Directions in Human

Computer Interaction [35] and the 1991 NSF workshop on HCI research agendas [45].

2. Historical Perspective

2.1. Themes in Evaluating Tools

In evaluating past and future tools, we have identified some themes that seem to be important in

determining which are successful.

� The parts of the user interface that are addressed: The tools that succeeded

helped (just) where they were needed.

� Threshold and Ceiling: The “threshold” is how difficult it is to learn how to use the

system, and the “ceiling” is how much can be done using the system. The most

successful current systems seem to be either low-threshold and low-ceiling, or high

threshold and high ceiling. However, it remains an important challenge to find ways

to achieve the highly desirable outcome of systems with both a low threshold and a

high ceiling at the same time.

� Path of Least Resistance: Tools influence the kinds of user interfaces that can be

created. Successful tools use this to their advantage, leading implementers towards

doing the right things, and away from doing the wrong things.

� Predictability: Tools which use automatic techniques that are sometimes

unpredictable have been poorly received by programmers.

� Moving Targets: It is difficult to build tools without having significant experience

with, and understanding of, the tasks they support. However, the rapid development

of new interface technology, and new interface techniques, can make it difficult for

tools to keep pace. By the time a new user interface implementation task is

understood well enough to produce good tools, the task may have become less

important, or even obsolete.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 5

** draft of 09/16/99 **

2.2. What worked

User interface tools are an area where research has had a tremendous impact on the current

practice of software development [33]. Of course, window managers and the resulting “GUI

style” comes from the seminal research at the Stanford Research Institute, Xerox Palo Alto

Research Center (PARC), and MIT in the 1970s. Interface builders were invented in research

laboratories at BBN, the University of Toronto, Xerox PARC, and others. Now, interface

builders are at least a US$100 million per year business and are widely used for commercial

software development. Event languages, as widely used in HyperTalk and Visual Basic, were first

investigated in research laboratories. The current generation of environments, such as Microsoft’s

OLE (Object Linking and Embedding) and Java Beans, are based on the component architecture

which was developed in the Andrew environment [47] from Carnegie Mellon University. The

following sections discuss these successes in more detail. A more complete history appears

elsewhere [33] and another reference contains a comprehensive survey and explanation of user

interface tools [32].

2.2.1. Window Managers and Toolkits

Many research systems in the 1960s, such as NLS [10], demonstrated the use of multiple

windows at the same time. Alan Kay proposed the idea of overlapping windows in his 1969

University of Utah Ph.D. thesis [24] and they first appeared in 1974 in his Smalltalk system from

Xerox PARC. Many other research and commercial systems picked up the idea from there,

notably the Xerox Star, the Apple Macintosh, and Microsoft Windows.

Overlapping windows have been successful in part because, like operating systems before them,

they help manage scarce resources. In this case, however, the scarce resources in question

include both resources of the computer (e.g., a fairly limited number of pixels), and human

perceptual and cognitive resources (such as a limited visual field, and the attention of the user).

By allowing the user to control a set of overlapping display surfaces, the display can be made to

suit the focus and attention of the user’s task [16]. Further, by supporting partial overlap, cues for

human memory can be provided to help make activities such as task switching easier when not all

objects of interest can be displayed at once. By paying careful attention to the properties of

humans, overlapping windows effectively manage the limited resources of both available screen

space, and human attention and visual field.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 6

** draft of 09/16/99 **

Window managers provide a basic programming model for drawing and screen update (an

imaging model) and for accepting user input (an input model). However, programming directly at

the window manager level tends to be time consuming and tedious [53]. Further, when each

programmer creates all interface components from scratch, it is practically impossible to provide

much widespread consistency for the user.

To address these issues, user interface toolkits were developed on top of the abstractions provided

by window managers. Toolkits typically provide both a library of interactive components, and an

architectural framework to manage the operation of interfaces made up of those components.

Employing an established framework and a library of reusable components makes user interface

construction much easier than programming interfaces from scratch. As first demonstrated by the

Apple Macintosh toolbox [2], the fact that a toolkit makes the programmers job much easier can

be used as leverage to achieve the difficult goal of maintaining consistency. Thus by achieving

the goal of making the programmer’s job simpler, toolkits provide a path of least resistance to

also achieve the goal of supporting widespread interface consistency. Another reason for toolkits

success is that they focus on just the low-level aspects of the user interface, that are well-

recognized as important to have consistent and undesirable to re-implement.

2.2.2. Event Languages

With event languages, the occurrence of each significant event – such as manipulation of an input

device by the user – is placed in an event record data structure (often simply called an event).

These events are then sent to individual event handlers that contain the code necessary to properly

respond to that input. Researchers have investigated this style in a number of systems, including

the University of Alberta User Interface Management System [12], Sassafras [17], and others.

This led to very popular uses of the event language in many commercial tools, such as the

HyperTalk language of Apple’s HyperCard, Microsoft’s Visual Basic, and the Lingo scripting

language in Macromedia’s Director.

Event languages have been successful because they map well to the direct manipulation graphical

user interface. These systems generate events for each user action with the mouse and keyboard,

which are directed to the appropriate application that then must respond. Event languages also

help encourage the mode-free style of interfaces since the user is in charge of generating events

that the application handles. However, as will be discussed later, the recognition-based user

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 7

** draft of 09/16/99 **

interfaces that are emerging for modalities such as gestures and speech may not map well to this

event-based style, so we may need a new paradigm.

2.2.3. Interactive Graphical Tools

Another important contribution of user interface research has been the creation of what has come

to be called interface builders. These are interactive tools that allow interactive components to be

placed using a mouse to create windows and dialog boxes. Examples include Visual Basic and the

“resource editors” or “constructors” that come with Microsoft’s Visual C++ and most other

environments. Early research on this class of tools includes Trillium from Xerox PARC [15] and

MenuLay from the University of Toronto [6]. The idea was refined by Jean-Marie Hullot while a

researcher at INRIA, and Hullot later brought the idea with him to NeXT, which popularized this

type of tool with the NeXT Interface Builder.

An important reason for the success of interface builders has been that they use graphical means

to express graphical concepts (e.g., interface layout). By moving some aspects of user interface

implementation from conventional code into an interactive specification system, these aspects of

interface implementation are made available to those who are not conventional programmers.

This has allowed many domain experts to prototype and implement interfaces highly tailored to

their tasks, and has allowed visual design professionals to become more involved in creating the

appearance of interfaces. Even the programmers benefited, as the speed of building was

dramatically reduced.

These properties of interface builders can be thought of as providing a low threshold to use, and

avoiding a steep learning curve (at least initially). In these systems, simple things can be done in

simple ways.

2.2.4. Component Systems

The idea of creating applications by dynamically combining separately written and compiled

components was first demonstrated in the Andrew system [47] from Carnegie Mellon

University’s Information Technology Center. Each component controlled its rectangle of the

screen, and other components could be incorporated inside. For example, a drawing inside a text

document would be controlled by a drawing component, which would be independent of the text

editor component. This idea has been adopted by Microsoft’s OLE and ActiveX, Apple’s

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 8

** draft of 09/16/99 **

OpenDoc, and Sun’s Java Beans [22]. One reason for the success of the component model is that

it addresses the important and useful aspect of application building: how to appropriately

modularize the software into smaller parts, while still providing significant capabilities and

integration to users.

2.2.5. Scripting languages

It is no accident that the first toolkits were developed using programming languages that were

interpreted: Smalltalk [64] and then Dlisp [63], which were developed by researchers at Xerox

PARC had small toolkits. The interpreted language enables the developer to rapidly prototype

different user interface ideas and immediately make changes, which provides fast turn-around.

With the rise of C and C++, most user interface development migrated to compiled languages and

these capabilities were lost. Researchers have investigated ways to bring these advantages back,

resulting in scripting languages such as tcl/tk [Ousterhout 1991], Python [29] and Perl [70]. Now,

these research languages are seeing increasing commercial use, and popular languages such as

Visual Basic and Javascript are providing interpreted capabilities.

We observe that any scripting language that achieves wide use seems to require general-purpose

control structures, such as variables, loops and conditionals. Although intended for non-

professional programmers, these languages nearly always are used to go beyond what the

language designers originally had in mind, so full programmability inevitably proves necessary.

In fact, when someone develops any language that is supposed to be “simplified” (from a general-

purpose programming language), users always seem to want it to have more power. The full

range of control structures therefore generally creeps back in. This seems to be a trade-off

dilemma that is impossible to get around.

Combining scripting capabilities with components and an interface builder has proven to be a

particularly powerful approach. For example, there are thousands of components for Visual

Basic available from third-party vendors. Using the interface builder of Visual Basic for the

layout and the Visual Basic language for scripting the “glue” that holds everything together

enables people who are not professional programmers to create sophisticated and useful

interactive applications. Visual Basic shows that a little programming – if packaged properly –

can make it possible for domain experts to create interfaces that reflect their domain and task

knowledge.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 9

** draft of 09/16/99 **

2.2.6. Hypertext

The World-Wide Web (WWW) is another spectacular success of research on user interface

software and technology. It is based on the hypertext idea. Ted Nelson coined the term

“hypertext” in 1965 and worked on one of the first hypertext systems called the “Hypertext

Editing System” at Brown University. The NLS system [9] also had hypertext features. The

University of Maryland’s Hyperties was the first system where highlighted items in the text could

be clicked on to go to other pages [26]. HyperCard from Apple was significant in helping

popularize the idea for a wide audience. For a more complete history of Hypertext, see [42].

Hypertext did not attain widespread use, however, until the creation of the World-Wide Web

system by Berners-Lee in 1990, and the Mosaic browser a few years later. Some of the elements

of the success of the WWW are the ease of use of Mosaic, the simplicity and accessibility of the

html language used to author pages, the ease of making pages accessible on the web, and the

embedding of pictures with the text. The WWW provided a low threshold of use for both viewers

and authors. Viewers had a simple mechanism that provided access to many of the existing

network resources (e.g., ftp, telnet, gopher, etc.) within a hypertext framework, and authors used

the very simple html textual specification language. This allowed the system to be used by

content providers with a minimum of learning. Second, the success of the Mosaic browser

clearly demonstrated the power and compelling nature of visual images (and more generally, rich

content with high production values).

2.2.7. Object-Oriented Programming

Object-oriented programming and user interface research have a long and intertwined history,

starting with Smalltalk’s motivation to make it easy to create interactive, graphical programs.

C++ became popular when programming graphical user interfaces became widely necessary with

Windows 3.1. Object-oriented programming is especially natural for user interface programming

since the components of user interfaces (buttons, sliders, etc) are manifested as visible objects

with their own state (which corresponds to instance variables) and their own operations (which

correspond to methods).

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 10

** draft of 09/16/99 **

2.3. Promising Approaches That Have Not Caught On

In addition to the lessons learned from successes, a great deal can also be learned from looking at

ideas which initially seemed to show great promise, but which did not in the end succeed (or at

least have not yet succeeded) in delivering on that promise. Many of these succumbed to the

moving-target problem: as these systems were being researched, the styles of user interfaces were

changing towards today’s standard GUI. Furthermore, many of these tools were designed to

support a flexible variety of styles, which became less important with the standardization. This

section considers several such examples including the concept of a User Interface Management

System (UIMS), language-based approaches, constraints, and model-based systems.

2.3.1. User Interface Management Systems

In the early 80’s, the concept of a user interface management system (UIMS) [65] was an

important focusing point for the then-forming user interface software community. The term “user

interface management system” was coined [23] to suggest an analogy to database management

systems. Database management systems implement a much higher and more useable abstraction

on top of low level concepts such as disks and files. By providing this abstraction, they allow

independence from low-level details, automate (or simply hide) many previously very tedious

tasks, and generally make the task of creating data repositories much simpler and more robust.

Similarly, user interface management systems were to abstract the details of input and output

devices, providing standard or automatically generated implementations of interfaces, and

generally allowing interfaces to be specified at a higher level of abstraction.

However, this separation has not worked out well in practice. For every user interface, it is

important to control the low-level pragmatics of how the interactions look and feel, which these

UIMSs tried to isolate from the designer. Furthermore, the standardization of the user interface

elements in the late 1980’s on the desktop paradigm made the need for abstractions from the input

devices mostly unnecessary. Thus, UIMSs fell victim to the moving target problem.

2.3.2. Formal Language Based Tools

A number of the early approaches to building a UIMS used techniques borrowed from formal

languages or compilers. For example, many systems were based on state transition diagrams

(e.g., [21, 40, 71]) and parsers for context free grammars (e.g., [44]). Initially these approaches

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 11

** draft of 09/16/99 **

looked very promising. However, these techniques did not catch on for several important reasons

that can serve as important lessons for future tools.

The use of formal language techniques was driven in part by an early emphasis in UIMS work on

the task of dialog management. At the time that these early user interface management systems

were being conceived, the dominant user interface style was based on a conversational metaphor

(in which the system and user are seen as conversing about the objects of interest). In this setting,

dialog management takes on a very central role, and in fact a number of formal language based

systems did a very good job of supporting that central task. Unfortunately, just as these early

systems were being developed, the direct manipulation style of interface [56] was quickly coming

to prominence. In direct manipulation interfaces, the role of dialog management is greatly

reduced because structuring of the dialog by the system is typically detrimental to the concept of

directness. As a result, these early user interface tools quickly became ones which had done a

very good job of solving a problem that no longer mattered, thus falling victim to the moving

target problem.

There are other problems with this class of tools. In these systems it is very easy to express

sequencing (and hard to express unordered operations). As a result, they tend to lead the

programmer to create interfaces with rigid sequences of required actions. However, from a direct

manipulation point of view, required sequences are almost always undesirable. Thus, the path of

least resistance of these tools is detrimental to good user interface design.

Another reason that some systems did not catch on is that had a high threshold for using them

because they required programmers to learn a new special purpose programming language (in

addition to their primary implementation language such as Pascal, C, or C++). More importantly,

formal language based systems often required the programmers to use new programming

concepts. For example, some of these systems used grammars to express sequencing in dialogs.

However, many programmers were not adept at thinking in terms of grammars. Even though the

dramatically improved power of the tools seemed to justify a steep learning curve, many potential

users of these systems did not adopt them simply because they never got past initial difficulties.

2.3.3. Constraints

Many research systems have explored the use of constraints, which are relationships that are

declared once and then maintained automatically by the system, for implementing several

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 12

** draft of 09/16/99 **

different aspects of a user interface. Examples include Sketchpad [61], ThingLab [5], HIGGENS

[19], CONSTRAINT [68], Garnet [34], Rendezvous [18], Amulet [36], and subArctic [20].

With constraints, the designer can specify, for example, that a line must stay attached to a

rectangle, or that a scroll-bar must stay at the right of a window. Similarly, one could declare that

the color, size, or position of objects in multiple views be derived from the value of an object in

the application, or that one application object’s value be related to another based on a formula.

Once these relationships have been declared, a constraint solving system responds to changes

anywhere in the system by updating any values needed to maintain the declared constraints.

Constraint systems offer simple, declarative specifications for a capability useful in implementing

several different aspects of an interface. Further, a range of efficient algorithms have been

developed for their implementation. However, constraint systems have yet to be widely adopted

beyond research systems. One of the central reasons for this is that programmers do not like that

constraint solvers are sometimes unpredictable.

Once a set of constraints is set up, it is the job of the solver to find a solution – and if there are

multiple solutions, the solver may find one that the user did not expect. If there is a bug in a

constraint method, it can be difficult to find. A related problem is that, especially with the more

sophisticated solvers, to build a set of constraints that can be handled by the solver, the

programmer may need to ensure that the set of constraints is of a particular form, such as acyclic

or linear only, or may need to learn the details of how the solver works, which presents a high

threshold. Furthermore, the declarative nature of constraints is often difficult to master for people

used to programming in imperative languages— it requires them to think differently about their

problems, which also contributes to having a high threshold.

One area of user interface design for which constraints do seem successful is the layout of

graphical elements. Systems such as NeXTStep and Galaxy [69] provided a limited form of

constraints using the metaphor of “springs and struts” (for stretchy or rigid constraints) which

could be used to control layout. These and other metaphors have found wider acceptance because

they provided a limited form of constraints in a way that was easier to learn and more predictable

for programmers.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 13

** draft of 09/16/99 **

2.3.4. Model Based and Automatic Techniques

Another thread of user interface research that has shown significant promise, but has not found

wide acceptance, is the investigation of automatic techniques for generating interfaces. The goal

of this work is generally to allow the designer to specify interfaces at a very high level, with the

details of the implementation to be provided by the system. Motivations for this include the hope

that programmers without user interface design experience could just implement the functionality

and rely on these systems to create high-quality user interfaces. The systems might allow user

interfaces to be created with less effort (since parts would be generated automatically). Further,

there is the promise of significant additional benefits such as automatic portability across multiple

types of devices, and automatic generation of help for the application.

Early examples of model-based tools include Cousin [14] and HP/Apollo’s Open-Dialogue [55]

which provided a declarative language in which the designer listed the input and output needs of

the user interface. The system then generated the dialogs to display and request the data. These

evolved into model-based systems, such as Mike [43], Jade [67], UIDE [60], ITS [74], and

Humanoid [62]. These systems used techniques such as heuristic rules to automatically select

interactive components, layouts, and other details of the interface.

Automatic and model based techniques have suffered from the problems of unpredictability. In

fact, because heuristics are often involved, the connection between specification and final result

can be quite difficult to understand and control. Programmers must also learn a new language for

specifying the models, which raises the threshold of use. In addition, model based systems have a

low ceiling. Because automatically generating interfaces is a very difficult task, automatic and

model based systems have each placed significant limitations on the kinds of interfaces they can

produce. A related problem is that the generated user interfaces were generally not as good as

those that could be created with conventional programming techniques. Finally, an important

motivation for model-based techniques was to provide independence of the input-output

specification from the details of the specific user interface characteristics, but with the

standardization of the user interface elements, this separation became less important. As we will

discuss later, a new requirement for device independence is emerging, which may raise the need

for model-based or related techniques in the future.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 14

** draft of 09/16/99 **

2.4. Discussion of Themes

Returning to the themes introduced in section 2.1, the most successful tools focused on a

particular part of the user interface that was a significant problem, and which could be addressed

thoroughly and effectively. The long stability of desktop paradigm and direct manipulation user

interface style has enabled maturing of tools, alleviating the moving target problem that affected

the earliest tools. However, as discussed next, we predict a new phase of increased

experimentation and change in user interfaces in the future, which will make the moving target

problem an important issue again.

The dual problems of threshold and ceiling effects are general among user interface tools. One of

the perennial challenges for user interface tool work is how to apply very powerful approaches

and still make them accessible and understandable to typical developers. There is often a

temptation to feel that the power of an approach justifies a steep learning curve. In many cases, a

simple cost / benefit analysis may even indicate this. Further, some techniques for achieving the

power needed for high ceiling systems seem to have the effect of raising the threshold. Similarly,

many attempts at lowered threshold have been at the expense of powerful features that allow for a

high ceiling. Systems such as SUIT [49] were able to provide very low thresholds, but provided

access to higher-ceiling support only via the “trap door” approach of allowing general call-outs to

the underlying programming language. Future trends will call for new and powerful techniques

(high ceiling) to deal with the anticipated dramatic increase in user interface diversity. The

lessons of past tools indicate that in practice high-threshold systems have not been adopted

because their intended audience never makes it past the initial threshold to productivity, so tools

must provide an easy entry and smooth path to increased power. While very challenging, creating

systems with both a low threshold and a high ceiling is possible, and will continue to be an

important goal for future tools.

Another issue is that of the path of least resistance offered by a tool. Our tools have a profound

effect on how we think about problems. It will remain imperative that our tools make “doing the

right thing” easy (in preference to “doing the wrong thing”). This applies both to the structure and

organization of the code, as well as to the user interface that results from the code. In other words,

the tools should make creating high-quality user interfaces easier than creating low quality ones.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 15

** draft of 09/16/99 **

3. Future Prospects and Visions

The next sections discuss some of our predictions and observations for the future of user interface

tools. It is impossible to discuss the tools without discussing the user interface changes that will

require the new tools. Therefore, these sections are organized around the new user interface

paradigms that we see emerging. We see important implications from computers becoming a

commodity, ubiquitous computing, the move to recognition-based and 3D user interfaces, and

end-user customization.

3.1. Computers Becoming a Commodity

As Moore’s law continues to hold, computers available to the general public have become fast

enough to perform anything that researchers’ computers can do. The trick that has been used by

computer science researchers of buying expensive, high performance computers to investigate

what will be available to the public in five or ten years no longer works, since the computers

available to the public are often as fast or faster than the researcher’s. This may have a profound

impact on how and what computer science research is performed. Furthermore, the quantitative

change in increased performance makes a qualitative change in the kinds of user interfaces

possible. For example, it has now enabled the production of inexpensive palm-size computers,

and single chip microprocessors the power of a 68000 that cost only about 30 cents and can be

embedded in various devices. Another impact of the high performance is that user interfaces are

becoming more cinematic, with smooth transitions, animation, sound effects, and many other

visual and audio effects.

3.2. Ubiquitous Computing

The idea of ubiquitous computing [72] is that computation will be embedded in many different

kinds of devices, on many different scales. Already we are seeing tiny digital pagers and phones

with embedded computers and displays, palm-size computers such as the PalmPilot, notebook-

size panel computers, laptops, desktops, and wall-size displays. Furthermore, computing is

appearing in more and more devices around the home and office. An important next wave will

appear when the devices can all easily communicate with each other, probably using radio

wireless technologies like HomeRF [39] or BlueTooth [13]. What are the implications of these

technologies on the tools that will be needed? The next sections discuss some ideas.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 16

** draft of 09/16/99 **

3.2.1. Varying Input and Output Capabilities

Virtually all of today’s interaction techniques have been highly optimized over the last twenty

years to work with a fairly large display and a mouse with one to three buttons. Virtually none of

the devices envisioned for ubiquitous computing have a mouse, some have no true pointing

devices at all, and many have different kinds of displays. The first important issue is how the

interaction techniques should change to take these varying input and output hardware into

account.

The most obvious impact is that developers will now have to create user interfaces that work with

vastly different sizes and characteristics of displays. Whereas screens on desktop machines have

only varied from 640x480 to 1280x1024 pixels (a factor of 4) and their screen vary from about 8

inches to about 20 inches in diagonal (a factor of 2.5), in the future, screens will be from cell

phone displays (60x80 pixels at about 2 inches in diagonal) to wall size displays (the DynaWall in

the i-Land project [58] is about 3000x1000 pixels at 4.5 meters long and 1.1 meters tall. A wall-

size display at Stanford is using a screen that is 3796x1436 pixels and 6 feet by 2 feet [75]).

These variations are factors of about 625 in resolution and 100 for size. Current techniques have

often made implicit assumptions about device characteristics. For example, standard widgets like

pull-down menubars cannot generally be used, since they may not fit on small screens and on

large screens, they might be too high for some short users [50]. There are starting to be examples

of “real” 3D volumetric displays (e.g., [1]), that will clearly require entirely different interaction

techniques.

Also the input modalities differ—cell phones have a numeric keypad and voice, palm-size

displays have touch-sensitive screens and a stylus but no keyboard, other PDAs have tiny

keyboards, and wall-size displays can often be touched or pointed at. Changing from a mouse to a

stylus on a touchpad requires different interaction techniques. Some devices will also provide

high-quality speech, gesture and handwriting recognition. Many tools cannot handle a different

number of mouse buttons, let alone the change from a mouse to a stylus, and the move to new

input modalities such as speech, gestures, eye tracking, video cameras, and biofeedback (e.g., [4])

is completely out of the question for such tools.

Thus, the same user interfaces obviously cannot be used on all platforms. If a developer is

creating an application that should run on a variety of platforms, it becomes much more difficult

to hand-design the screens for each kind of display. There is not yet even standardization within

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 17

** draft of 09/16/99 **

devices of the same class. For example, different kinds of PDAs have quite different display

characteristics and input methods.

This may encourage a return to the study of some techniques for device-independent user

interface specification, so that developers can describe the input and output needs of their

applications, vendors can describe the input and output capabilities of their devices, and users can

specify their preferences. Then, the system might choose appropriate interaction techniques

taking all of these into account.

3.2.2. Tools to Rapidly Prototype Devices, not just Software

An important consideration for the new devices is unlike desktop machines that all have the same

input and output capabilities (mouse, keyboard, and color screen), there will be a great variety of

shapes, sizes, and input-output designs. Much of the user interface will be in built into the

hardware itself, such as the physical buttons and switches. Therefore, the designer will have to

take into account not only the software, but also the physical properties of the devices and their

capabilities. Thus we will need tools that support the rapid design and prototyping of the

hardware. It will not be sufficient to use screen based techniques for prototyping the hardware

since the pragmatics and usability cannot be evaluated solely from a simulation on a screen.

3.2.3. Tools for Coordinating Multiple, Distributed Communicating Devices

With the rise of the use of the Internet and World-Wide Web, the computer is becoming a

technology for communication more than for computation. This trend will significantly increase

with the rise of ubiquitous computing. Many of the devices (cell-phones, pagers) are already

designed for communication from one person to another, and the computation is bringing added

functionality and integration. As room-area wireless networks increasingly enable multiple

devices to communicate, it will be more important that computers no longer are used as islands of

computation and storage, but rather as part of an integrated, multi-machine, multi-person

environment. Furthermore, as people increasingly distribute their own computation across

devices in their office, their home, their car, and their pocket, there will be an increasing need for

people to communicate with themselves on different devices. Supporting collaboration with other

people will be more complicated than with current multi-user applications such as GroupKit [51]

or Microsoft NetMeeting, since it can no longer be assumed that all the people have comparable

computers. Instead, some users might be on a cell-phone from a car while others are using PDAs

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 18

** draft of 09/16/99 **

on the train, or wall-size displays at home. Sometimes, users may have multiple devices in use at

the same time. For example, the Pebbles project is investigating how PDAs can be used

effectively at the same time as PCs [38]. Devices and people will have different levels of

connectedness at different times, from disconnected, to connected with slow links, to being on a

high-speed network. Decisions about what information is to be sent and shown to the user should

be based on the importance and timeliness of the information and the capabilities of the current

connection and devices. Furthermore, the user’s interaction will be need to take into account

information from the Internet and information generated by sensors and people from all over the

world. The status from the environment should also be taken into account (some call these

“context-aware” user interfaces [8]).

The implications of all this on tools are profound. It will be important for tools to provide

facilities to manage data sharing and synchronization, especially since it must be assumed that the

data will go out of date while disconnected and need to be updated when reconnected. Since data

will be updated automatically by the environment and by other people, techniques for notification

and awareness will be important. Furthermore, the tools will be needed to help present the

information in an appropriate way for whatever device is being used. If the user has multiple

devices in use at the same time, then the content and input might be spread over all the active

devices. All applications running in this future environment should be cognizant of multiple

people and sharing, so that group work can be easily accommodated. This implies that security

issues will become increasingly important, and better user interfaces for monitoring, specifying

and testing security settings will be crucial.

Since these capabilities should be available to all applications, it will be important for them to be

provided at a low level, which suggests that the supporting capabilities be included in the

underlying operating system or toolkits.

3.3. Recognition-Based User Interfaces

Whereas most of today’s tools provide good support for widgets such as menus and dialog boxes

which use a keyboard and a mouse, these will be a much smaller proportion of the interfaces of

the future. We expect to see substantially more use of techniques such as gestures, handwriting,

and speech input and output. These are called recognition-based because they require software to

interpret the input stream from the user to identify the content.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 19

** draft of 09/16/99 **

These new modalities will fundamentally change how interfaces are developed. To create speech

user interfaces today requires learning about vocabularies, parsers, and Hidden-Markov-Models

(HMMs). To create gestural interfaces, the programmer may need to know about HMMs, feature

vectors, and/or Mahalanobis distance1 (depending on the recognition technology). Tools will be

needed that hide all of this complexity and provide an easy-to-use interface to programmers.

Beyond getting a speech interface to work for a single application, it will be necessary for

applications to support many different kinds of modalities. Where the form and mode of the

output generated by computer-based systems is currently defined by the system designer, a new

trend may be to increasingly allow the user to determine the way in which the computer will

interact and to support multiple modalities at the same time. For instance, the user may determine

that in a given situation, textual natural language output is preferred to speech, or that pictures

may be more appropriate than words. These distinctions will be made dynamically, based on the

abilities of the user or the limitations of the presentation environment. For example, there is

evidence that users should be encouraged to switch modalities (e.g., from speech to handwriting)

if the system is having difficulty interpreting their input [59]. As the computing environment

used to present data becomes distinct from the environment used to create or store information,

interface systems will need to support information adaptation as a fundamental property of

information delivery.

Recognition-based interfaces have a number of fundamental differences from today’s interfaces.

The primary difference is that the input is uncertain—the recognizer can make errors interpreting

the input. Therefore, interfaces must contain feedback facilities to allow the user to monitor and

correct the interpretation. Furthermore, interpreting the input often requires deep knowledge

about the context of the application. For example, to interpret “move the red truck to here,” the

system needs access to the objects in the application (to find the red truck) along with timing

information about pointing gestures (to find “here”).

There are significant implications for tool design. First, a conventional event-based model may no

longer work, since recognition systems need to provide input continuously, rather than just in

discrete events when they are finished. For example, when encircling objects with a gesture and

continuing to move, the objects should start moving immediately when the boundary is closed,

1 Used by the popular Rubine recognizer [54].

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 20

** draft of 09/16/99 **

rather than waiting for the end of the gesture. Similarly, in speech, the interpretation of the

speech should begin immediately, and feedback should be provided as soon as possible.

Temporal coordination with other modalities (such as pointing) requires that the continuous

nature of the input be preserved.

Another issue is the separation of knowledge about the application’s contents. Today’s user

interface tools work without any deep knowledge about what the application is doing—they only

need to know the surface widgets and appearance. To support the new modalities, this will no

longer work. We believe an appropriate architecture is for the tools to have access to the main

application data structures and internals. Otherwise, each application will need to deal with its

own speech interpretation, which is undesirable. Increasingly, future user interfaces will be built

around standardized data structures or “knowledge bases” to make these facilities available

without requiring each application to rebuild them. The current trend towards “reflection” and the

“open data model” is a step in this direction, but this is a deep unsolved problem in artificial

intelligence systems in general, so we should not expect any solutions in the near term.

3.4. Three-Dimensional Technologies

Another trend is the migration from two-dimensional presentation space (or a 2½ dimensional

space, in the case of overlapping windows) to three-dimensional space. Three-dimensional

technologies offer significant opportunities for human-computer interfaces. Application areas that

may benefit from three-dimensional interfaces include training and simulation, as well as

interactive exploration of complex data environments.

Providing tools for 3D is a very difficult problem, as can be seen by the lack of acceptance for the

Virtual Reality Modeling Language (VRML), which was to be a 3D standard for the World-Wide

Web. For 3D to be effective, the notions of selecting and interacting with information will need to

be revised, and techniques for navigating through information spaces will need to be radically

altered from the present page-based models. Researchers are still at the stage where they are

developing new interaction techniques, gestures and metaphors for 3D interfaces. We predict the

need to settle on a set of 3D interaction techniques and 3D widgets before high-level tools for

interactive behaviors will be possible. Some research systems, such as Alice [48] are exploring

how to hide the mathematics, which will be increasingly important in the tools of the future.

Providing support in a 3D toolkit in 1999 suffers from the problems that 2D toolkits had 15 years

ago. First, the need for performance causes the underlying implementation details to be visible

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 21

** draft of 09/16/99 **

even through higher level abstractions should be hiding them. Second, we are not sure what

applications will be developed with this new style. In this regard, 3D interfaces are probably in

worse shape than 2D interface were, because 2D interfaces were able to adopt many paper

conventions, for example, in desktop publishing. Until a breakthrough occurs in our

understanding of what kinds of applications 3D will be useful for, it will be extremely difficult

for toolkits to know what abstractions to provide. A central aspect of three-dimensional interfaces

is “near-real-time” interactivity, the ability for the system to respond quickly enough that the

effect of direct manipulation is achieved. Near-real-time interactivity implies strong performance

demands that touch on all aspects of an application, from data management through computation

to graphical rendering. Designing interfaces and applications to meet these demands in an

application-independent manner presents a major challenge to the HCI community. Maintaining

the required performance in the context of an unpredictable user-configured environment implies

a “time-critical” capability, where the system automatically gracefully degrades quality in order

to maintain performance. The design of general algorithms for time-critical applications is a new

area and a significant challenge.

3.5. End-User Programming, Customization, and Scripting

One of the most successful computer programs of all time is the spreadsheet, and the primary

reason for its success is that end users can program (by writing formulas and macros).2 However,

end user programming is rare in other applications, and where it exists, usually requires learning

conventional programming. An important reason that the World-Wide Web has been so

successful is that everyone can create his or her own pages. However, for “active” pages that use

forms, animations, or computation, again programming is required, usually by a professional

programmer using a programming language like PERL or Java. “Productivity applications” are

becoming increasingly programmable (e.g., by writing Visual Basic scripts for Microsoft Word),

but only to those with some affinity for programming. Other systems use what are called scripting

2 It is interesting to note that spreadsheet formulas are a form of constraint and are tremendously successful,

whereas constraints for programmers have not been successful. We conjecture that this is because

constraints fit with the business person’s mental model who just needs a computation and an answer, but

not with the programmer’s who needs more control over performance and methods. A key for any tool is to

fit with the users’ model.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 22

** draft of 09/16/99 **

languages, such as Lingo for MacroMedia Director, but these are often fairly conventional

programming languages.

End-user programming will be increasingly important in the future. No matter how successful

interface designers are, systems will still need to be customized to the needs of particular users.

Although there will likely be generic structures, for example, in an email filtering system, that can

be shared, such systems and agents will always need to be tailored to meet personal requirements.

Better interfaces and understandings of end-user programming are needed. Furthermore, these

capabilities should not be built into individual applications as is done today, since this means that

the user must learn a different programming technique for each application. Instead, the facilities

should be provided at the system level, and therefore should be part of the underlying toolkit.

Figure 1: The intent of this graph is to try to give a feel for how hard it is to use the tools to
create things of different levels of sophistication. For example, with C, it is quite hard to get
started, so the Y intercept (threshold) is high up. The vertical walls are where the designer needs
to stop and learn something entirely new. For C, the wall is where the user needs to learn the
Microsoft Foundation Classes (MFC) to do graphics. With Visual Basic, it is easier to get started,
so the Y intercept is lower, but Visual Basic has two walls—one when you have to learn the
Basic programming language, and another when you have to learn C. Click and Create is a menu
based tool from Corel, and its line stops (so it has a low ceiling) because it does not have an
extension language, and you can only do what is available from the menus and dialog boxes.

The important research problem with scripting and customization is that the threshold is still too

high—it is too difficult to learn how to program. The threshold and ceiling issue is illustrated by

the research on “Gentle Slope Systems” [7] [37] which are systems where for each incremental

increase in the level of customizability, the user only needs to learn an incremental amount. This

is contrasted with most systems which have “walls” where the user must stop and learn many new

concepts and techniques to make further progress (see Figure 1).

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 23

** draft of 09/16/99 **

3.6. Further Issues for Future Tools

In addition to the issues discussed above, we see some addition trends in the near future that will

contradict assumptions built into today’s tools.

� Skill and dexterity levels of users. Most current interfaces assume an average level of

dexterity and manual skill on the part of the user. However, based on current demographics

we know that as time passes there will be many more older adults using interactive systems

(not to mention younger, but disabled persons). With aging comes an inevitable decline in

motor, memory, and perceptual skills. However, while some retrofitting of graphical

interfaces for special needs users has taken place, only a little work has been performed on

specific interaction technique support for older adults (for example [31, 66, 76]). This again

makes the notion of a single fixed library of interactive components problematic and may

require redesign of many accepted interactive techniques and the tools that support them.

� Non-overlapping layout or rectangular and opaque interactive components. Early toolkits

(such as the Macintosh toolbox) assumed that interactive widgets such as buttons and text

fields would not overlap. Other toolkits (most notably those coming with the X-windows

system such as xtk [30] and systems that were heavily influenced by it such as the Java

AWT) instead assumed that overlap was possible, but that all components were rectangular

and opaque. These assumptions worked well for early GUI interfaces. However, they have

more recently become rather limiting and they typically preclude techniques such as

translucency [27] and Magic Lens interactions [3] which show great promise and are now

technically feasible.

� Using fixed libraries of interactive components. Most toolkits have long assumed that a fixed

library of interactive components covered the vast majority of interfaces that were to be built.

As a result, they have placed an emphasis on making components from the library easy to

employ, while generally neglecting the issue of making it easy to create new interactive

components. For example, creating a new widget in the popular Motif toolkit is very

difficult. The implicit or explicit assumptions (and in some cases simply poor early design

choices [52]) made by a system, significantly limit the kinds things that can be (easily)

accomplished with it.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 24

** draft of 09/16/99 **

� Interactive setting. Much of current user interface design knowledge (and hence the

supporting tools) also implicitly makes assumptions about the setting in which a user acts.

For example, most interfaces assume that the user is sitting, has two hands available, and can

look at the interface while operating it. However, some of these properties do not hold in

many situations in the world where computational support could be valuable (e.g., while

driving, or lying under a machine being repaired).

� Requiring the user’s full attention. Almost all current interfaces assume that they have the

user’s full attention—they typically do very little unless the user pays attention to them and

acts upon them. However, with ubiquitous computing, the number of devices for each user is

multiplying. If each of these demands a small piece of the user’s attention, the aggregate

result may be quite unpleasant. As a result, there is a clear need for new interaction

paradigms that minimize the amount of attention demanded [73]. With these interfaces will

be a need for tools which explicitly consider human attention as part of the design criteria.

This may require a strong integration of cognitive science knowledge that to date has not

been directly employed in user interface tools.

� Support for Evaluation. Today’s tools focus on the design and implementation of user

interfaces. However, achieving the general goal of supporting rapid iteration of designs

requires rapid evaluation, as well as rapid implementation. Unfortunately, few tools have

provided explicit support for evaluation. This is partially because tools that have tried, such

as MIKE [46] discovered that there are very few metrics that can be applied by computers. A

new generation of tools are trying to evaluate how people will interact with interfaces by

automatically creating cognitive models from high-level descriptions of the user interface

[25], but this work is very preliminary and much more research is needed.

� Creating usable interfaces: Going even further, tools might enforce or at least encourage user

interfaces that were highly usable, rather than today’s stance that tools should be neutral and

leave the design mostly to the human designer.

4. Operating System Issues

What is the “Operating System” in today’s systems? Does the Window Manager count as part of

the operating system? What about the toolkit that provides access to the standard drawing

capabilities and widgets (e.g., Win32 and the Microsoft Foundation Classes)? Today, there is

even a legal debate about whether the web browser can be considered part of the operating

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 25

** draft of 09/16/99 **

system. Furthermore, the distinction between the design-time tools (used for creating the user

interface) and the run-time tools (to execute the interface) blur as more services are used by both.

It seems clear that the facilities that are provided by the “operating system” will continue to

expand, and many of the features and tools that this article discusses will be included in what is

called the operating system, for good or ill.

Some of the capabilities must be provided at a very low level. For instance, access to information

about the input, output and communication capabilities of devices must be provided to the

application software, so it can make intelligent choices about the user interface. For instance,

Windows CE for palm-size devices seems to make it impossible to find out what kinds of

hardware buttons are available on the PDA. Another example is that none of today’s networking

interfaces make it possible for an application to decide how fast a connection is available. In fact,

it is usually impossible to find out if you are connected at all, so applications freeze up for

minutes waiting to see if the network might respond, when the operating system could easily tell

that the machine is disconnected. This is unacceptable. Interfaces of the future will need to make

intelligent choices based on knowledge about the current capabilities of the device and its

connections to the environment.

Other capabilities might be provided on top of the operating system, but alternatively might be

part of it. For applications to run on a variety of devices, a portable infrastructure must be

provided, possibly like the Java run-time library. There will also need to be high-level protocols

for accessing information on distributed files. End-user programming support will be needed

across multiple applications, so this should be provided in a universally applicable form. Ideally,

all of these required capabilities will be available, but not bundled with the operating system.

More progress will be made if multiple vendors and research groups can compete to provide the

best possible tools.

5. Conclusions

Generally, research and innovation in tools trail innovation in user interface design, since it only

makes sense to develop tools when you know for what kinds of interfaces you are building tools.

Given the consolidation of the user interface on the desktop metaphor in the last 15 years, it is not

surprising that tools have matured to the point where commercial tools have fairly successfully

covered the important aspects of user interface construction. It is clear that the research on user

interface software tools has had enormous impact on the process of software development.

However, we believe that user interface design is poised for a radical change in the near future,

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 26

** draft of 09/16/99 **

primarily brought on by the rise of ubiquitous computing, recognition-based user interfaces, 3D

and other technologies. Therefore, we expect to see a resurgence of interest and research on user

interface software tools in order to support the new user interface styles.

We believe that these new tools will be organized around providing a rich context of information

about the user, the devices, and the application’s state, rather than around events. This will enable

end-user programming, recognition-based user interfaces and the data sharing needed for

ubiquitous computing. It will be important to have replaceable user interfaces for the same

applications to provide different user interfaces on different devices for ubiquitous computing,

and to support customization. This will include having a procedural interface to everything that

can be performed by the user. We recommend that tools aim to have a low threshold so they are

easy to use, but still provide a high ceiling. Predictability seems to be very important to

programmers, and should not be sacrificed to make the tools “smarter.” Naturally, the most

successful tools will cover the most useful parts of the interface. All of these challenges provide

new opportunities and research problems for the user interface tools of the future.

Acknowledgements

The authors wish to thank Brad Vander Zanden, Dan Olsen, Rob Miller, Rich McDaniel and the

referees for their help with this article.

References

1. 3DTL, “3D Technology Labs, Phone: (408) 541-8550; Fax: (408) 541-8555; Address: 1243
Reamwood Ave., Sunnyvale, CA 94089. http://www.3dtl.com/,” 1999.

2. Apple Computer Inc., Inside Macintosh. 1985, Addison-Wesley.

3. Bier, E.A., et al. “Toolglass and Magic Lenses: The See-Through Interface,” in Proceedings
SIGGRAPH'93: Computer Graphics. 1993. 25. pp. 73-80.

4. BioControl Systems, “BioControl Systems, Inc., 2555 Park Blvd., Suite 12, Palo Alto, CA
94306. Tel - (650) 329-8494; Fax - (650) 329-8498. http://www.biocontrol.com/.” 1999.

5. Borning, A., “The Programming Language Aspects of Thinglab; a Constraint-Oriented
Simulation Laboratory.” ACM Transactions on Programming Languages and Systems, 1981. 3(4)
pp. 353-387.

6. Buxton, W., et al. “Towards a Comprehensive User Interface Management System,” in
Proceedings SIGGRAPH'83: Computer Graphics. 1983. Detroit, Mich: 17. pp. 35-42.

7. Dertouzos, M. and al., e., “ISAT Summer Study: Gentle Slope Systems; Making Computers
Easier to Use,” 1992. Presented at Woods Hole, MA, August 16.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 27

** draft of 09/16/99 **

8. Dey, A.K., Abowd, G.D., and Wood, A. “Cyberdesk: A Framework for Providing Self-
Integrating Context-Aware Services,” in Proceedings of the 1998 International Conference on
Intelligent User Interfaces (IUI'98). 1998. pp. 47-54.

9. Engelbart, D. and English, W., “A Research Center for Augmenting Human Intellect.”
Reprinted in ACM SIGGRAPH Video Review, 1994., 1968. 106

10. English, W.K., Engelbart, D.C., and Berman, M.L., “Display Selection Techniques for Text
Manipulation.” IEEE Transactions on Human Factors in Electronics, 1967. HFE-8(1)

11. Fujitsu, “Fujitsu Plasma Panel Displays. http://www.fujitsu-
ede.com/products/plasma/01.html,” 1998.

12. Green, M. “The University of Alberta User Interface Management System,” in Proceedings
SIGGRAPH'85: Computer Graphics. 1985. San Francisco, CA: 19. pp. 205-213.

13. Haartsen, J., et al., “Bluetooth: Vision, Goals, and Architecture.” ACM Mobile Computing
and Communications Review, 1998. 2(4) pp. 38-45. Oct. www.bluetooth.com.

14. Hayes, P.J., Szekely, P.A., and Lerner, R.A. “Design Alternatives for User Interface
Management Systems Based on Experience with COUSIN,” in Proceedings SIGCHI'85: Human
Factors in Computing Systems. 1985. San Francisco, CA: pp. 169-175.

15. Henderson Jr, D.A. “The Trillium User Interface Design Environment,” in Proceedings
SIGCHI'86: Human Factors in Computing Systems. 1986. Boston, MA: pp. 221-227.

16. Henderson Jr, D.A. and Card, S.K., “Rooms: The Use of Multiple Virtual Workspaces to
Reduce Space Contention in a Window-Based Graphical User Interface.” ACM Transactions on
Graphics, 1986. 5(3) pp. 211-243.

17. Hill, R.D., “Supporting Concurrency, Communication and Synchronization in Human-
Computer Interaction -- The Sassafras UIMS.” ACM Transactions on Graphics, 1986. 5(3) pp.
179-210.

18. Hill, R.D., et al., “The Rendezvous Architecture and Language for Constructing Multiuser
Applications.” ACM Transactions on Computer-Human Interaction, 1994. 1(2) pp. 81-125.

19. Hudson, S. and King, R., “A Generator of Direct Manipulation Office Systems.” ACM Trans.
on Office Infomation Systems, 1986. 4(2) pp. 132-163.

20. Hudson, S.E. and Smith, I. “Ultra-Lightweight Constraints,” in Proceedings UIST'96: ACM
SIGGRAPH Symposium on User Interface Software and Technology. 1996. Seattle, WA: pp. 147-
155. http://www.cc.gatech.edu/gvu/ui/sub_arctic/.

21. Jacob, R.J.K., “A Specification Language for Direct Manipulation Interfaces.” ACM
Transactions on Graphics, 1986. 5(4) pp. 283-317.

22. JavaSoft, JavaBeans. Sun Microsystems, JavaBeans V1.0, 1996, http://java.sun.com/beans.

23. Kasik, D.J. “A User Interface Management System,” in Proceedings SIGGRAPH'82:
Computer Graphics, 16(3). 1982. Boston, MA: 16. pp. 99-106.

24. Kay, A., The Reactive Engine. PhD Thesis, Electrical Engineering and Computer Science
University of Utah, 1969, 327.

25. Kieras, D.E., et al. “GLEAN: A Computer-Based Tool for Rapid GOMS Model Usability
Evaluation of User Interface Designs,” in Proceedings UIST'95: Eighth Annual Symposium on
User Interface Software and Technology. 1995. pp. 91-100.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 28

** draft of 09/16/99 **

26. Koved, L. and Shneiderman, B., “Embedded menus: Selecting items in context.”
Communications of the ACM, 1986. 4(29) pp. 312-318.

27. Kramer, A. “Translucent Patches: Dissolving Windows,” in Proceedings UIST'94: ACM
SIGGRAPH Symposium on User Interface Software and Technology. 1994. Marina del Rey, CA:
pp. 121-130.

28. Lasky, M.S., McCracken, H., and Bielski, V., “Just how helpful are handhelds?” CNN
Interactive and PC World OnLine, 1998. (September 9)
http://cnn.com:80/TECH/computing/9809/09/palmtops.idg/.

29. Lutz, M., Programming Python. 1996, O'Reilly & Associates. ISBN: 1-56592-197-6.
http://www.python.org/.

30. McCormack, J. and Asente, P. “An Overview of the X Toolkit,” in Proceedings UIST'88:
ACM SIGGRAPH Symposium on User Interface Software and Technology. 1988. Banff, Alberta,
Canada: pp. 46-55.

31. Meyer, B., et al. “Age Group Differences in World Wide Web Navigation,” in SIGCHI'97
Adjunct Proceedings: Human Factors in Computer Systems, Extended Abstracts. 1997. Atlanta,
GA: pp. 295-296.

32. Myers, B.A., “User Interface Software Tools.” ACM Transactions on Computer Human
Interaction, 1995. 2(1) pp. 64-103.

33. Myers, B.A., “A Brief History of Human Computer Interaction Technology.” ACM
interactions, 1998. 5(2) pp. 44-54. March.

34. Myers, B.A., et al., “Garnet: Comprehensive Support for Graphical, Highly-Interactive User
Interfaces.” IEEE Computer, 1990. 23(11) pp. 71-85.

35. Myers, B.A., Hollan, J., and Cruz, I., “Strategic Directions in Human Computer Interaction.”
Computing Surveys, 1996. 28(4) pp. 794-809. December.
http://www.cs.cmu.edu/~bam/nsfworkshop/hcireport.html.

36. Myers, B.A., et al., “The Amulet Environment: New Models for Effective User Interface
Software Development.” IEEE Transactions on Software Engineering, 1997. 23(6) pp. 347-365.
June.

37. Myers, B.A., Smith, D.C., and Horn, B. “Report of the `End-User Programming' Working
Group,” in Languages for Developing User Interfaces. 1992. Boston, MA: Jones and Bartlett.
pp. 343-366.

38. Myers, B.A., Stiel, H., and Gargiulo, R. “Collaboration Using Multiple PDAs Connected to a
PC,” in Proceedings CSCW'98: ACM Conference on Computer-Supported Cooperative Work.
1998. Seattle, WA: pp. 285-294.

39. Negus, K.J., et al., “HomeRF and SWAP: Wireless Networking for the Connected Home.”
ACM Mobile Computing and Communications Review, 1998. 2(4) pp. 28-37. Oct.
www.homerf.org.

40. Newman, W.M. “A System for Interactive Graphical Programming,” in AFIPS Spring Joint
Computer Conference. 1968. 28. pp. 47-54.

41. Nielsen, J., Usability Engineering. 1993, Boston: Academic Press.

42. Nielsen, J., Multimedia and Hypertext: the Internet and Beyond. 1995, Boston: Academic
Press Professional. 480.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 29

** draft of 09/16/99 **

43. Olsen Jr., D.R., “Mike: The Menu Interaction Kontrol Environment.” ACM Transactions on
Graphics, 1986. 5(4) pp. 318-344.

44. Olsen Jr., D.R. and Dempsey, E.P. “Syngraph: A Graphical User Interface Generator,” in
Proceedings SIGGRAPH'83: Computer Graphics. 1983. Detroit, MI: 17. pp. 43-50.

45. Olsen Jr., D.R., et al., “Research Directions for User Interface Software Tools.” Behaviour
and Information Technology, 1993. 12(2) pp. 80-97.

46. Olsen Jr., D.R. and Halversen, B.W. “Interface Usage Measurements in a User Interface
Management System,” in Proceedings UIST'88: ACM SIGGRAPH Symposium on User Interface
Software and Technology. 1988. Banff, Alberta, Canada: pp. 102-108.

47. Palay, A.J., et al. “The Andrew Toolkit - An Overview,” in Proceedings Winter Usenix
Technical Conference. 1988. Dallas, Tex: pp. 9-21.

48. Pausch, R., et al., “Alice: A Rapid Prototyping System for 3D Graphics.” IEEE Computer
Graphics and Applications, 1995. 15(3) pp. 8-11. May.

49. Pausch, R., Conway, M., and DeLine, R., “Lesson Learned from SUIT, the Simple User
Interface Toolkit.” ACM Transactions on Information Systems, 1992. 10(4) pp. 320-344.

50. Pier, K. and Landay, J., Issues for Location-Independent Interfaces. Xerox PARC, Technical
Report ISTL92-4, 1992, Palo Alto, CA.
http://www.cs.berkeley.edu/~landay/research/publications/LII.ps.

51. Roseman, M. and Greenberg, S., “Building Real Time Groupware with GroupKit, A
Groupware Toolkit.” ACM Transactions on Computer Human Interaction, 1996. 3(1) pp. 66-106.

52. Rosenberg, J., et al. “X Toolkits: The Lessons Learned,” in Proceedings UIST'90: ACM
SIGGRAPH Symposium on User Interface Software and Technology. 1990. Snowbird, Utah: pp.
108-111.

53. Rosenthal, D.S.H. “A Simple X11 Client Program, or, How Hard Can It Really Be to Write
'Hello World',” in Proceedings of USENIX. 1987. pp. 229-233.

54. Rubine, D. “Specifying Gestures by Example,” in Proceedings SIGGRAPH'91: Computer
Graphics. 1991. Las Vegas, NV: 25. pp. 329-337.

55. Schulert, A.J., Rogers, G.T., and Hamilton, J.A. “ADM-A Dialogue Manager,” in
Proceedings SIGCHI'85: Human Factors in Computing Systems. 1985. San Francisco, CA: pp.
177-183.

56. Shneiderman, B., “Direct Manipulation: A Step Beyond Programming Languages.” IEEE
Computer, 1983. 16(8) pp. 57-69. Aug.

57. SmartTech, “Smartboards, SMART Technologies, Suite 600, 1177 - 11th Avenue S.W.
Calgary, Alberta, Canada, 403.245.0333. http://www.smarttech.com,” 1998.

58. Streitz, N.A., et al. “i-Land: An Interactive Landscape for Creativity and Innovation,” in
Proceedings SIGCHI'99: Human Factors in Computing Systems. 1999. Pittsburgh, PA: pp. to
appear.

59. Suhm, B., Myers, B., and Waibel, A. “Designing Interactive Error Recovery Methods for
Speech Interfaces,” in CHI'96 Workshop on Designing the User Interface for Speech Recognition
Applications. 1996.

60. Sukaviriya, P., Foley, J.D., and Griffith, T. “A Second Generation User Interface Design
Environment: The Model and The Runtime Architecture,” in Proceedings INTERCHI'93:
Human Factors in Computing Systems. 1993. Amsterdam, The Netherlands: pp. 375-382.

Past, Present and Future of User Interface Software Tools To appear in ACM TOCHI - 30

** draft of 09/16/99 **

61. Sutherland, I.E. “SketchPad: A Man-Machine Graphical Communication System,” in AFIPS
Spring Joint Computer Conference. 1963. 23. pp. 329-346.

62. Szekely, P., Luo, P., and Neches, R. “Beyond Interface Builders: Model-Based Interface
Tools,” in Proceedings INTERCHI'93: Human Factors in Computing Systems. 1993.
Amsterdam, The Netherlands: pp. 383-390.

63. Teitelman, W., “A Display Oriented Programmer's Assistant.” International Journal of Man-
Machine Studies, 1979. 11 pp. 157-187. Also Xerox PARC Technical Report CSL-77-3, Palo
Alto, CA, March 8, 1977.

64. Tesler, L., “The Smalltalk Environment.” Byte Magazine, 1981. 6(8) pp. 90-147.

65. Thomas, J.J., “Graphical Input Interaction Technique (GIIT) Workshop Summary.”
SIGGRAPH Computer Graphics, 1983. 17(1) pp. 5-30. (Summary of first ZBattelle Seattle
UIMS Workshop June 2-4, 1982).

66. Tobias, C.L. “Computers and the Elderly: A Review of the Literature and Directions for
Future Research Age Research on Skill Acquisition, Assessment, and Change and Applications to
Design,” in Proceedings of the Human Factors Society 31st Annual Meeting. 1987. pp. 866-870.

67. Vander Zanden, B. and Myers, B.A. “Automatic, Look-and-Feel Independent Dialog Creation
for Graphical User Interfaces,” in Proceedings SIGCHI'90: Human Factors in Computing
Systems. 1990. Seattle, WA: pp. 27-34.

68. Vander Zanden, B.T. “Constraint Grammars--A New Model for Specifying Graphical
Applications,” in Proceedings SIGCHI'89: Human Factors in Computing Systems. 1989. Austin,
TX: pp. 325-330.

69. Visix Software Inc., “Galaxy Application Environment.,” 1997. (Company dissolved in 1998.
Galaxy was bought by Ambiencia Information Systems, Inc., Campinas, Brazil,
support@ambiencia.com. http://www.ambiencia.com).

70. Wall, L. and Schwartz, R.L., Programming perl. 1992, Sebastopol, CA: O'Reilly &
Associates.

71. Wasserman, A.I. and Shewmake, D.T., “Rapid Prototyping of Interactive Information
Systems.” ACM Software Engineering Notes, 1982. 7(5) pp. 171-180.

72. Weiser, M., “Some Computer Science Issues in Ubiquitous Computing.” CACM, 1993. 36(7)
pp. 74-83. July.

73. Weiser, M. and Brown, J.S., The Coming Age of Calm Technology. 1996,
http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm. Revised version of: Weiser &
Brown. "Designing Calm Technology", PowerGrid Journal, v 1.01,
http://powergrid.electriciti.com/1.01 (July 1996).

74. Wiecha, C., et al., “ITS: A Tool for Rapidly Developing Interactive Applications.” ACM
Transactions on Information Systems, 1990. 8(3) pp. 204-236.

75. Winograd, T., A Human-Centered Interaction Architecture. Working paper for the Interactive
Workspaces Project, Stanford University, 1998, http://graphics.stanford.EDU/projects/iwork/.

76. Worden, A., et al. “Making Computers Easier for Older Adults to Use: Area Cursors and
Sticky Icons,” in Proceedings, CHI'97: Human Factors in Computing Systems. 1997. Atlanta,
GA: ACM. pp. 266-271.

	Carnegie Mellon University
	Research Showcase @ CMU
	1999

	Past, Present and Future of User Interface Software Tools
	Brad Myers
	Scott E. Hudson
	Randy Pausch
	Recommended Citation

