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Over the past decade, flowsheet optimization has become an important tool
for process design. However, for flowsheet optimization the most time
consuming step is devoted to the evaluation of the first derivatives,
especially from the modular process simulator. To overcome this problem,
the PROSIM simulator has been modified in order to generate exact
gradient information automatically. Based on the modular input-output
sensitivities and a chain-ruling procedure, this strategy allows significant
time savings during the optimization. Several optimization methods are
implemented (a Reduced Gradient and two Successive Quadratic
Programming strategies) and their results are compared in combination
with the analytical derivatives. Furthermore, it is often useful to assess
the sensitivity of the optimum flowsheet to design parameters (e.g., feed
flowrates, constants in kinetic and transport equations) that may be
subject to variation and uncertainty. With the calculation of exact
derivatives, post-optimality analyses, which were considered too
expensive before, can now be implemented with very inexpensive
computational costs. The optimal flowsheet sensitivity analysis thus
allows us to estimate easily the changes in the optimal process under
parametric variations and other process uncertainties.



1. Introduction

Within the past decade, process flowsheet optimization has become a
widely used process engineering tool. Spurred by the recent improvements
in nonlinear programming algorithms as well as by an infeasible path
approach to recycle convergence and optimization, process optimization is
now a standard feature within many commercial process simulators.

However, the application of efficient nonlinear programming strategies
requires the calculation of accurate derivatives from the process model.
Currently, virtually all modular process simulators compute these by
finite difference and therefore incur inaccurate derivatives due to
truncation errors and convergence noise. These can have a detrimental
effect on the performance of the nonlinear programming strategy. A worst
case example of this deterioration is given in the next section. Moreover,
calculation of derivatives by finite difference represents the most
expensive part of a flowsheet optimization; thus there is a clear incentive
to improve the efficiency and accuracy of this task.

To address this problem, numerous studies (Volin and Ostrovsky, 1981;
Chen and Stadtherr, 1985; Biegler, 1985; Chan and Prince, 1986) have
outlined efficient derivative calculation strategies for modular
simulators. Moreover, the use of analytical derivatives in equation-based
environments such as SPEEDUP has also been exploited (Panteiides and
Sargent, 1985). However, in sequential modular environments, calculation
of exact derivatives has proved extremely difficult. In this study we
describe how such a calculation has been adapted to flowsheet
optimization within the PROSIM process simulator. An illustration of this
implementation is presented in section 3.

With the availability of exact derivatives the efficiency and reliability of
an optimization strategy are greatly accelerated and improved. Moreover,
evaluating the sensitivity of an optimal flowsheet to changes in external
parameters now becomes an easy and inexpensive task. Fiacco (1982) and
Ganesh and Biegler (1987) developed efficient algorithms for sensitivity



analysis for optimal solutions. Here we develop a reduced space strategy
for optimal flowsheet that improves on this previous work and leads to a
sensitivity approach that is very inexpensive (and often free) once an
optimal flowsheet is obtained. This approach is developed and described in
section 4.

The impact of exact derivative calculations within a process simulator for
optimization and optimal sensitivity analysis is demonstrated in section 5.
Here two process optimization problems are solved and compared with
several nonlinear programming strategies, and the effect of exact
derivatives is observed for reliability and fast performance. Both of these
processes are then analyzed for changes in the optimum solution with
respect to changes in external parameters. For both tasks, reductions of
effort of up to 75% are observed. Finally, some concluding remarks and
directions for future research are presented in section 6.

2. Optimization Problem and Solution Strategies

Process flowsheet optimization problems are usually non-linear in the
objective function as well as in the constraints. Here we consider the
standard nonlinear programming formulation given by:

Min <D(z,p) (1)
z

s.t. h(z,p) = 0
g(z.p) ^ o
z-(p) < z < z+(p)

where O : the objective function
h : set of equality constraint functions
g : set of inequality constraint functions
z : optimization variables
z-, z+ : variable bounds
p : set of fixed external parameters

Efficient algorithms have been developed to solve problem (1) for fixed
values of p, based on linearizations of the constraints and quadratic
approximations to the Lagrangian function. We consider three such



optimization algorithms for this study. The first algorithm is based on a
reduced gradient method and was developed by Pibouleau et al. (1985). The
second algorithm by Biegler and Cuthrell (1985) uses a successive
quadratic programming (SQP) approach and the third one (Vasantharajan
and Biegler, 1988) is also an SQP based algorithm but with a range and null
space decomposition of the constraint space, in order to reduce the size of
the Hessian matrix to be evaluated. The major steps of these algorithms
are shown in Figure 1. All three codes use the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) update formula for the estimation of the Hessian matrix of
the Lagrange function.

The flowsheet optimization formulation used to solve problems with
recycle streams is based on an Infeasible Path approach, where the tear
stream equations are included into the optimization problem as equality
constraints. This further specializes problem (1) to the following
formulation with hT = [ sT, cT] and zT = [ xT, yT] :

Min O(z.p) (2)
z

s.t. s(z,p) - y - w(x, y, p) - 0
c(z, p) - 0
g(z.p) * 0
z.(p) < z < z+(p)

where s : the tear or recycle equation
c : design equality constraints
y : tear variable, guessed tear stream
w : calculated tear stream
x : decision variables in process flowsheet

By handling multiple recycle and control loops directly within the
optimization step, this approach has been shown to be quite efficient in
modular simulators (Chen and Stadtherr, 1985; Biegler and Hughes, 1982,
1985; Lang and Biegler, 1987). However, the performance of these
optimization algorithms is often governed by the accuracy of the
derivatives supplied from the process model. Frequently, such derivatives
need to be calculated by finite difference and this introduces truncation
errors as well as convergence noise into the optimization algorithm.



To demonstrate the sensitivity of optimization methods to derivative
errors and motivate the work described in the next section, we briefly
consider a worst-case example proposed by Carter (1991). Consider a
simple unconstrained quadratic problem, Min zTAz, where we have:

e 4- 1/e e - 1/e

e — 1/e e + 1/e -
J2. m

as the matrix and starting point. Note that matrix A is positive definite
but the condition number of A equals 1/e2. Note that the gradient at zo is
given by: V<X>(zo) - VZe/2 [ 1, 1]T -e zo and if the approximated gradient
contains some error and is given by t(zk) = (VO(zk)-V2e [ 1, 1]T) we find
that with a Newton method for unconstrained optimization, we have the
following directions: djdeal = - A-1VO(zo) • - zo and dactual «= - A'1 t(zo) =
zo. Note that V<D(zo)Tdj<jeal - - zoTAzo < 0 and VO(zo)Tdactual - zoTAzo > 0,
and there is no descent direction for the Newton step generated with the
inexact gradient. Further, if we define a new point z ' » z o + a dactual. where
a is any positive stepsize, we have <J>(z') - O(zo) - (<x2+2cc)zoTAzo > 0.
Consequently, the algorithm fails from a point far from the solution, even
for small values of e! It is interesting to note that even if we used a
"steepest descent" step, dscj = -t(zo) = e zo, the same behavior would be
observed for this problem.

Of course, performance of an optimization algorithm is also determined by
constraints and variable bounds, but this worst case example shows that
gradient error can greatly affect the performance of any derivative-based
optimization method. As a result of this behavior, we now consider the
calculation of accurate derivatives from a process simulator.

3. Calculation of Exact Derivatives within a Modular
Simulator

In order to implement efficient optimization methods, accurate first order
derivatives of the optimization problem are required. Chen et al. (1985),
Biegler (1985), Kisala et al. (1987) and many other authors dealing with



process optimization agree that the computational effort for the
evaluation of the derivatives is, by far, the most expensive part of the
solution procedure. In order to obtain second derivatives, several authors
(Boston et al., 1978; Jirapongphan et al., 1980; Pierucci et al., 1982;
Perregard et al., 1992) considered simplified models as an alternative. But
such an approximation can lead to a different optimum (Biegler et al.,
1985). Since only the rigorous model can guarantee a rigorous optimal
solution, Wolbert et al. (1991) developed gradient evaluation techniques
for modular process simulators and showed that a complete analytical
derivative formulation leads to significant time savings and accuracy,
which amply justify the additional implementation effort. For flowsheet
optimization on modular simulators, the generation and use of exact
sensitivities has often been suggested (Biegier, 1985; Chen and Stadtherr,
1985; Leis et al., 1986; Chan and Prince, 1986), but until now was never
fully implemented in a modular process simulator. Thus, in this section we
briefly describe the implementation of Wolbert et al. (1991).

As shown in Figure 2, a module in a modular process simulator determines
the output (streams, output variables) of a physical unit from the inputs
(stream and operating parameters) by solving an algebraic set of equations
representing a behavioral model of that unit (e.g., mass and energy
balances, phase equilibrium) :

mk (4k .ilk) = 0 (4)

where mk is the model of unit k
^k are the inputs of unit k

are the outputs of unit k

The input-output sensitivities (diik/d^k) of t h a t module can be obtained
through analytical differentiation at the solution :

d(mk)

where each term can be evaluated analytically. Moreover, thermodynamic



models within each module require special attention. Westerberg et al.
(1979) mentioned that roughly 80% of the computation time during a
simulation is devoted to the thermodynamic properties evaluation. Koehret
(1987) observed results between 50 and 98% depending on the test problem
and the thermodynamic model used. Since the derivatives of these models
cannot be neglected for rigorous optimization, the efficiency of the
methodology presented here is highly dependent on how well the analytical
derivatives for thermodynamic models are implemented. As seen from
Figure 2 and detailed in Wolbert et al. (1991), derivative and chainruling
expressions for function relationships within each module have been
implemented on a version of PROSIM and, as an option, are evaluated as
part of the process simulation.

Once the module sensitivities are available, the input-output sensitivity
can be represented locally through the following equation:

For the sake of clarity, we now present the process sensitivity generation
through an example. The process is an adiabatic flash with partial liquid
recycle (Fig. 3). The goal is to maximize an arbitrary non-linear function of
stream S3 by acting on the flash pressure and the split ratio of stream S4.
An inequality constraint is added to ensure that the flash temperature is
greater than 270 K. The selected tear stream is S6, which adds 7 equality
constraints (the pressure being specified by the pump). The data for this
example are given in Table 1. Thermodynamic properties are obtained using
the Soave-Redlich-Kwong equation of state.

By arranging optimization variables and process parameters in order of
appearance in the calculation sequence, and by formulating all modules as
in equations (5) and (6), the flowsheet matrix of the linearized process can
be generated using the module sensitivities. The matrix for this example is
shown in Figure 4a. Applying a Gaussian elimination of the process
variables propagated onto the optimization variables only, the gradient
matrix of the objective function and the constraints (black outline in



Figure 4b) is generated. This matrix is then supplied to the optimization
algorithms described in Figure 1.

4. Parametric Sensitivity of Optimal Flowsheets

Once problem (2) has been solved, it is often desired to find the sensitivity
of the optimal flowsheet to changes in the fixed design parameters, p.
Typically, these parameters represent a single design case that is subject
to variation or uncertainty. For example, the design parameters may
represent transport coefficients, kinetic rate constant and feed flowrates.

To analyze the sensitivity of the optimum solution, Fiacco (1976)
smoothness properties as well as a procedure based on expansion of the
Karush-Kuhn-Tucker conditions. This was specialized to an efficient finite
difference strategy by Ganesh and Biegler (1987) and applied to flowsheet
optimization. Here we present a more efficient procedure based on the
availability of first derivatives. In particular, we also take advantage of
an observation by Kolstad and Lasdon (1990) .regarding the role of active
bound constraints. -

The Lagrangian for problem (1) can be formulated as follows :

L(z, p, X, n, TI) = F(z, p) + XTh(z,p) + ^Tg(z,p) + rwT(z-z+(p)) + Ti-T(z-(p)-z)

where X, \L, r\+t r\_ are the Karush-Kuhn-Tucker multipliers. At the optimal

solution (x*. X*. \i*, T I + * . T U * ) , the first order optimality conditions are

satisfied, i.e. all the first derivatives with respect to x, X, u, T\+ and T|_ are

equal to zero. Those conditions must also hold after perturbation of the
parameters p. in the case of infinitesimal perturbations, this leads to :

d(VzLCz*,p,X,*+i*,n*))= V&L* dz+ Vzh* dX+ Vzg^dji± B dn + VzpL* dp = 0
Vjh* dz+ Vjh* dp = 0

Xdz+ Vp
rgXdp = 0

(dz+Vj4dp)=0



where B is a n x nact lve bounds matrix with B(ij) - 1 if Zj is the j t h active
bound and g/v is the set of active inequality constraints. These equations
can be rearranged to form the following linear system :

V&L*

V?h*

B

Vzh*

0

0

0

V z g A

0

0

0

B

0

0

0

vjn*

Vjh*
(8)

-vj4
For infinitesimal perturbations of the parameters and when strict
complementary slackness holds, i.e., gj - 0 => HJ > 0 and z\ - z\± • 0 => T|j±

> 0, then the following is true:

• the set of active inequality constraints is constant and the active
constraints can be seen as additional equality constraints: H* - [h*;

*] and A* = [X* ; n* ] are vectors with m elements (Fiacco, 1976)

• the variables can be partitioned into free and fixed variables : z - [ Zf,
zb] and the sensitivities for zb are immediately given by VpZb
(Kolstad and Lasdon, 1990).

System (8) can now be simplified to:

2fH

VZfH

0

VjzJ
VjA*

V2f,pL* +

V p H T
+

(9)

Now in order to eliminate the multiplier sensitivities as well as reduce
the size of the Hessian that needs to be supplied in (9), we further perform
a range and null space decomposition of the equality constraints H* by
constructing a nonsingular nt x nf matrix [Z Y], with Z a rif x (nf-m) matrix
with columns spanning the null space of V z fH*T , i.e., V2fH*TZ=0. Here Z and
Y are obtained by forming xa QR factorization of V2fH*T, although for larger

systems advantage can also be taken to exploit sparsity of H* (see
Vasantharajan and Biegler, 1988). By representing Vpzf*T in terms of range



and null space components, dyT and dzT, respectively, and multiplying the
first row of (9) by ZT we have:

V Z f Hl Y 0

4 * VfzJ)
(10)

This system is easily solved, first for dyT (see Figure 4c) and then dzT

with VpZf*T =Z dz
T+ Y dY

T. ';

To construct (10) with accurate gradient information available from
section 3, we also need to consider an efficient strategy to obtain the
necessary second derivative information. Note that all of the information
to obtain dyT from the second row in (10) is obtained directly from the
gradients at the optimum point and is supplied by ProSim without
additional effort. However, Ganesh and Biegler (1988) showed that, while
an approximated Hessian is sufficient for optimization purposes, it is not
adequate for sensitivity analysis and further numerical perturbations must
be performed.

On the other hand, from eqn. (10) it is clear that the entire V 2L matrix is
not needed and this leads to considerable savings in evaluating second
order information. To obtain the reduced Hessian ZTV2LZ, system (10)
requires only (nf-m) perturbations. Here, instead of perturbing each

variable independently, we perturb all the variables along the directions of
the orthonormal columns of Z :

q) - V?L*(z?))

where the question mark subscript can be replaced by Zf, z^ or p; a is a

coefficient automatically tuned to keep the perturbation size within a
given range and ej is a zero (nf-m) vector except for a 1 in its i t n element.
In addition, the ZTV2LYdYT and ZTV2LVpzbT terms are directly obtained from
(11) by first premultiplying by the appropriate vector and transposition.
Note also that dyT is easily obtained from (10) through:



d ? - [vZfHT Y]"1 (VJHT + VZbHl VjfcJ) (1 2)

In addition, as a byproduct, the direct calculation of ZTV2LZ in (11) allows
a check for satisfaction of the second order Kuhn-Tucker conditions. This
condition is seldom considered by current nonlinear programming
algorithms. Here if the reduced Hessian matrix is not positive
semidefinite, the solution is not locally optimal. Fortunately, by restarting
the problem along a direction of negative curvature (e.g., shifting z along
the eigenvector corresponding to one of the negative eigenvalues) will lead
to convergence to a better (and probably locally optimal) solution. An
example of checking second order conditions as well as the restart
procedure is detailed in Wolbert (1992).

System (10) leads to first order parametric sensitivities, i.e., changes in
the minimizer and objective function for infinitesimal perturbations of p.
In the case of finite parameter variations, on the other hand, system (10)
may be insufficient because of the influence of higher order terms as well
as changes in the active constraint sets or bounds. These problems can be
tackled by solving the following quadratic programming problem, with Z
spanning the null space of (V zh*)T , and Y an orthonormal basis for V z h \

First, if we ignore higher order terms, but consider finite parameter
perturbations with the possibility of active set changes, we can solve a QP
for each parameter parameter variation. For a parameter pj , we have:

+Min [(zT V2PiL* APi + zT v£,xL* Y d j f d j
s.L Vpjg*Api + (Vjg* Z)dj+ (V?g* Y)d$ £ 0 (13)

with d$=-[vzhTY]~1Vp.hTApi and Azi= Z dz + Y dy for parameter pj.
Otherwise, including the effect of all higher order terms is difficult;
frequently the only alternative is to re-solve problem (1). To address
higher order variations in p, however, requires only a slight modification
of (13). Here we re-evaluate the objective and constraint functions at (z*.
p + Ap) and solve:



Min [(VJL* Z + dylYTVxxL* z))d£ + L& dz{zTvxxL* z)d£]

s.t g*"+ (vjg* Z) d J+ (Vjg* Y) d$ £ 0 (14)
(5

where Az « Z dz + Y dY and d$=- (vzhT Y)"1 h*,

g* = g(z*,
z±=z±(p+Ap)

and Z and Y have the same definition as for (13). Note from (14) that
solution of this quadratic program will yield the exact optimal solution for
parameters p+Ap for a problem that is separable in p and z, is linearly
constrained and has a quadratic objective in z, and is arbitrarily nonlinear
in p.

Finally, the results of the quadratic programming problems (10) must be
analyzed with great care. The sensitivities are often one-sided values and,
when a combined parametric sensitivity is estimated, the consistency and
satisfaction of the constraints has to be checked. This can usually be done
by analyzing the Kuhn-Tucker coefficients and their sensitivity. From
these sensitivities or variations of the optimization parameters, the
sensitivities and variations of any other (objective or constraint)
functions of the process, v. can be deduced simply by using the derivatives

Vpi>* = Vpi>+ Vzv VpZ* or to*m V p »Ap+

or evaluating the function directly at the predicted point.

Av *= v(z*+Az, p+Ap) - v(z\ p) (16)

5. Example Problems

Adiabatic flash with liquid recycle



We used this example to present the analytical derivative generation, the
flowsheet was shown in Figure 3 and the main characteristics given in
Table 1. The thermodynamic model is the Soave.Redlich and Kwong equation
of state. The three optimization algorithms have been used to solve this
problem with and without analytical derivatives. The number of model
linearizations (NML), the number of flowsheet evaluations (NFE) and the
relative time (normalized to the Reduced Gradient case with numerical
perturbations) are given for each case in Table 2.

The reduced gradient method appears to be the slowest algorithm,
regardless of the approach used to generate the derivatives. This is mainly
due to the fact that an exact line search is done by golden section search.
While robust and reliable, this method can be quite expensive in terms of
function evaluations. The Reduced SQP algorithm is slightly faster than the
Full SQP algorithm when numerical perturbations are used, but with
analytical derivatives their computation times are equivalent. The Full SQP
method needs more iterations than reduced SQP, but the latter needs to
reduce its stepsize more often to satisfy the Armijo inequality for the line
search.

The use of analytical derivatives leads to important time savings for all of
the optimization methods. These savings are however different for each
method (48% for the Reduced Gradient method, 73% for the Full SQP and
66% for the Reduced SQP ), since they are only realized over the fraction of
time that gradients are required.

Considering now the optimum sensitivity analysis, we first evaluate the
computation times (equivalent number of function evaluations, ENFE) of a
full Hessian approach (Fiacco, 1976), a reduced approach proposed by
Ganesh and Biegler (1987) and the reduced approach with analytical
derivatives (Wolbert et al., 1992). We consider here, for a finite parameter
variation, that all the feed's partial flow rates and the upper bound of the
split ratio are simultaneously increased by a given percentage. The
resulting ENFE are shown in Figure 5. The reduced approach results in an
average of 75% savings when compared to a full Hessian approach. The use
of analytical derivatives leads to an additional 75% savings for the



reduced approach; this sums up to an average of 94% time savings between
a full approach with numerical perturbations and a reduced approach with
analytical derivatives.

The reduced Hessian for this problem is a positive scalar equal to 0.06097.
Thus second order conditions are satisfied and further results of the post-
optimality analysis can be seen in Figures 6 and 7. Figure 6 shows the
evolution of the actual, optimal objective function value and its
approximations obtained by three techniques: an extrapolation from the
optimum sensitivities (10), from the finite variations (14, 15) and by
using the results for the optimization variables of the finite variation
study to run a new flowsheet evaluation (14, 16). Figure 8 gives a better
idea about the accuracy of the different approximations through the
relative error of each estimation. These results show the efficiency but
also the limitations of such methods. Quite good estimates can be obtained
for a low cost. However, since these methods are based on a one step
linearization technique, their accuracy is highly dependent on the
extrapolation size, the nonlinearities taken into account during re-solution
or estimation, and also on the nonlinearities in the model.

Ammonia synthesis plant

The flowsheet of this chemical process is shown in Figure 8 and its
characteristics are given in Table 3. An economic objective function is
maximized subject to 8 equality (tear) constraints and 3 inequalities; the
tear stream equations have to be satisfied, the preheater ( C5 - C6) has to
compensate the energy consumption inside the reactor, a purity of at least
99 % ammonia must be in stream C16, less than 3.4 mol/s of ammonia
must be lost in stream C12 and the pressure drop of the high pressure
flash is at least 0.4 MPa. Sixteen optimization variables have been
considered (see Table 3) and the Soave-Redlich-Kwong equation of state
has again been used for this example. The three optimization algorithms
have also been compared to solve this problem with and without analytical
derivatives. The number of model linearizations (NML), the number of
flowsheet evaluations (NFE) and the relative time are given for each case
in Table 4 (normalized to the Reduced Gradient method with numerical



perturbations).

The results are similar to those obtained for the first example, and so are
the reasons for these results. In particular,

• the Reduced Gradient method is always slower.
• the Reduced SQP is faster than Full SQP for

numerical perturbations, and about the same when analytical
derivatives are used.

• important time savings are observed due to analytical
derivatives

42 % Reduced Gradient
74 % Full SQP
74 % Reduced SQP

For the optimum sensitivity analysis, we note that the reduced Hessian is
a fourth order matrix with eigenvalues of [2.8657E-4, 8.3561 E-10,
1.8335E-4, 7.7208E-5], which satisfy second order optimality. Note also
that the extremely low second eigenvalue indicates the presence of
nonunique optima. Again we consider a simultaneous variation of the feed
flowrates as well as the upper bound for the reactor conversion. The
changes in the true optimum and its approximations are shown in Figure
19, while the relative error of these approximations are presented in
Figure 10. The approximations are in good agreement with re-evaluated
optimal values of the objective function. Moreover, the accuracy, for a
given parameter perturbation size, is even better than for the first
example.

6. Conclusions

The methodology developed for the generation of analytical derivatives in a
simultaneous modular simulator leads to significant time savings for
process optimization and post-optimality analysis. Computation time has
been reduced by up to 75% for SQP based algorithms. Moreover, the Reduced
Gradient code was less efficient than SQP and did not take as much
advantage of the analytical derivative feature. This is mainly due to an
expensive exact line search step. While the Reduced SQP performed better
than the Full SQP code when numerical perturbations are used, with
analytical derivatives both codes led to similar computation times. In fact,
the Reduced SQP method needed fewer iterations to converge but here full



steps in the line search are not accepted as often as with the Full SQP
method. Therefore it sometimes requires one or two additional flowsheet
evaluations per iteration.

For the post optimality analyses, optimum sensitivity analysis and finite
parametric variation analysis, appear to perform accurately and
efficiently. Combining model projection techniques and fast derivative
generation, these approaches can be done at reasonable cost and provide
very useful information about the optimal solution. The analysis of the
results should however be done with caution; for large parameter
variations ("large" being problem dependent), the linear or quadratic
approximations of the constraints and the Lagrangian, respectively, may no
longer be valid.

The advantages of analytical derivatives are not only based on their low
cost as much better accuracy is also observed and module convergence
"noise" during perturbations and perturbation size selection no longer
affect gradient values. Two applications of our methodology have been
presented here, but many other applications can take advantage of this
feature. Simulation problems, process sensitivity studies and control loop
generation using static gain matrices are some methods that have already
been used with analytical derivatives. Other 'methods (MINLP, flexibility
analysis, process parameter identification, ...) are also being considered. In
addition, this methodology has already been extended to distillation
columns and plug flow reactor models with similar results.

For future work, a key aspect will be the automatic generation of exact
derivatives from existing codes for process models. To accomplish this, a
number of such derivative generating codes are currently available or under
development (see Griewank and Corliss, 1991, for a survey). In general,
these tools parallel the model's calculation sequence with a derivative
calculation that applies the chainrule to the sequence and handles the
bookkeeping to keep track of intermediate values. Such strategies are
preprocessors or coprocessors that use the model's FORTRAN source code
directly and generate derivative FORTRAN code that is run along with the
model. Examples of these include:



• JAKE-F, which has seen many applications but is limited to a subset of
FORTRAN (Hillstrom, 1982)

• DAPRE, which has been developed for use with the NAG library (Pryce
and Davis, 1987)

• A D O L - C , which is implemented very efficiently using operator
overloading features of C++ (Griewank et al, 1990)

• ADIFOR, the most recent development (Bischof et al, 1992), which uses
a source transformation approach within the ParaScope environment
(Callahan et al, 1988). This environment is used for dependency analysis
among the variables as well as parsing the FORTRAN code .

In Bischof et al. (1992), for example, a FORTRAN adiabatic flash block was
processed and Jacobian matrices were calculated by an ADIFOR-generated
derivative code, for all outputs with respect to "all inputs. No changes were
required in the original model and the total time for evaluating both the
flash block and its Jacobian was only twice that of evaluating the function.
A number of similar examples were solved in other disciplines with up to a
70-fold increases in performance. Future development and application of
ADIFOR as well as other tools will deal with calculation of higher
derivatives, undoubtedly for use in optimization algorithms as well as
nonlinear analysis. These developments, coupled with the benefits of exact
derivatives demonstrated in this study will yield tremendous performance
improvements for process optimization.
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OPTIMIZATION PROBLEM

SQP ALGORITHMS

Constraint linearizationAddition of slack variables

Linearization of
Objective functionConstraint linearization

REDUCED SQPPULL SQP
constraint set
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range and null spaceHessian

estimation
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estimation

Minimization of the Objective function
in the null space through:

- successive quadratic approximation
(linearization of Objective function
and Hessian estimation)

- exact line search
Full space step

evaluation

Approximate line search

Convergence tests Convergence tests

LOCAL OPTIMAL SOLUTION

Figure 1: Optimization algorithms for NLP problems
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Unitk

Module Equations

Sensitivity Analysis

Internal Variables

Figure 2: Structure of modules for sensitivity analysis



Max(s3**S32 - S34 -

Objective
&

Constraint

Pump

Tear
Stream

variables
(S6)

variables
Criteria

Propane (kmol/fr
1-Butene (")
Butane (")

trans-2-Butene (Ir

ds-2-ButeneO
PentaneO

Temperatuie(K)
Diessurefbar)

Pres. Flash (bar)
Split ratio

Initial
values
5.682
10.13
13.73
13.78
13.88
7.301
297.3

2.722
0.5

-1.57113

Solution

1.239
2.881
4.006
4.059
4.133
2.355
277.0
in nrx
1.315
OR

2.14620

Feed

10
15
20
20
20
10

310.927
10.073

-^ Active
bound

Figure 3: Adiabatic flash
with liquid recycle

Table 1: Data and results for the
adiabatic flash problem
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Mixer

Flash

Splitter

Pump
Tear stream

Objective et Constraints

Sensitivity block

I I I Identity matrix

Figure 4 a : Incidence matrix for the flash problem
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•

Derivatives for
infeasiblepath
optimization

Figure 4b: Generation of the optimization derivatives

P-essvariables

Pump
Tear stream

Objective et Constraints

Derivatives for
Optimum Sensitivity

Analysis

Figure 4c: Generation of the optimum sensitivity analysis derivatives
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Figure 5: Cost comparison of the different approaches for optimum analysis.
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Figure 6 : True optimum and estimation as a function of perturbation size.
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Figure 7: Relative error of the optimum estimates.



C3

Total flow= 148.05 mol/s
molar fraction H2 = 0,743

0,24
Ar =0,006

CH4 = 0,011
Temperature = 299.82 K
Pressure = 1.013 MPa

Figure 8: Flowsheet of the ammonia synthesis plant.
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Figure 9: True optimum and its estimations as a function of variation size.
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Figure 10: Relative error of the optimum estimates.



Derivative
generation

Numerical
perturbations

Analytical
derivatives

Optimization
methods

Reduced Gradient
FullSQP

Reduced SQP

Reduced Gradient
FullSQP

Reduced SQP

NML

20
23
16

20
22
16

NFE

321
228
170

141
25
26

Relative
time

LOO
0,72
0.53

0.52
0.19
0.18

N M L : Number of model linearizations
N F E : Number of f lowsheet evaluations

Table 2: Optimization results for the adiabatic flash problem.



Pressure between com. (MPa)
Output pressure comp. (MPa)
preheater duty (MW)
conversion ratio

Temp, output 1st exch. (K)
Temp, output 2nd exch. (K)
Pressure 1st flash (MPa)

Pressure 2nd flash (MPa)
Splitter ratio

Tear stream

Partial flow H2 (mol/s)
Partial flow N2
Partial flow Ar
Partial flow CH4

Partial flow NH3

Temperature (K)

Objective function

initialisation

4.413

20.68
3.456
0.4100

299.8
242.0

L241

19.99
0.1000

168.2
44.70
6352
14.47

64.76

242.0

14.27

Lo. bounds

4.137

19.99
L46
035
295.9

233.1
1.014
19.65

0.05

0.0

0.0
0.0
0.0
0.0

100

[Jp. bounds

6.895

29.72
5.86
0.45
310.9

333.1
6.895
29.41

0.12

1000

1000
1000
1000
1000

1000

Solution

4.869

29.72 Up.b.
3-538
0.4500 Up.b.

295.9 Lab.
2441
2.402

2931
0.5261E-O1

18&5
40.77
1424
22J99

7023

244.1

1721

Table 3: Data and results for the ammonia synthesis problem



Derivative
generation

Numerical
perturbations

Analytical
derivatives

Optimization
methods

Reduced Gradient
FullSQP

Reduced SQP

Reduced Gradient
FullSQP

Reduced SQP

NML

87
49
44

103
49
46

NFE

2092
839
760

927
56
51

Relative
time

1.00
0.40
0.36

0.58
0.10
0.09

NML: Number of model linearizations
NFE: Number of flowsheet evaluations

Table 4: Optimization results for the ammonia synthesis problem
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